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Abstract—The widespread use of ontologies to associate
semantics with data has resulted in a growing interest in the
problem of learning predictive models from data sources that
use different ontologies to model the same underlying domain
(world of interest). Learning from such semantically disparate
data sources involves the use of a mapping to resolve semantic
disparity among the ontologies used. Often, in practice, the
mapping used to resolve the disparity may contain errors
and as such the learning algorithms used in such a setting
must be robust in presence of mapping errors. We reduce
the problem of learning from semantically disparate data
sources in the presence of mapping errors to a variant of
the problem of learning in the presence of nasty classification
noise. This reduction allows us to transfer theoretical results
and algorithms from the latter to the former.

Keywords-semantically disparate data sources ; ontology
mapping errors; nasty classification noise; PAC;

I. INTRODUCTION

Recent advances in high throughput data acquisition tech-
nologies in many applications have resulted in a proliferation
of autonomous and distributed data sources. Different data
sources often use disparate vocabularies (e.g., M.S. student
versus Masters student), units (e.g., temperature measured in
degrees Centigrade versus Fahrenheit), and levels of detail
(e.g. graduate student, student) to describe the objects of
interest in the world being modeled. In such a setting,
different data sources represent different conceptual models
of the same underlying world. In the semantic web vision
this typically translates to each data source assuming a
particular ontology to model objects, properties and relation-
ships in the world of interest. Hence, learning from such
data sources requires reconciling the semantic differences
between the learner’s conceptual model of the world (i.e.,
learner’s ontology) and the models of the world associated
with the the disparate data sources (i.e., the data source
ontologies). This is achieved through a data integration step
[1] [2] that presents to the learning algorithm, a single
view of the different data sources. Data integration involves
mapping the terms in the data source ontologies to the
learner’s ontology (See [3] for a survey). However, this
mapping process is often error prone. Errors in mappings
can be due to human error, errors in the automated mapping
algorithm used, or by lack of exact correspondences between
terms in a source ontology and the target ontology. Hence,
it is of interest to characterize the effect of mapping errors

on the accuracy of the predictive models (e.g., classifiers)
learned in such a setting.

Against this background, this paper reduces the problem
of learning from semantically disparate data sources in the
presence of mapping errors to a variant of the problem of
learning in the presence of nasty classification noise in a
PAC-like framework (see [4], [5] for background on PAC
learning). This reduction proves to be very useful in practice
as techniques to deal with noise have been well studied in
literature and can be applied to the setting of learning in
presence of mapping errors.

II. LEARNING FROM SEMANTICALLY DISPARATE DATA

We introduce the notion of a k-Delegating Oracle to
model learning from multiple data sources. We then extend
the model to a mapping aware k-Delegating Oracle to model
learning from semantically disparate data sources.

A. k-Delegating Oracle

Let X be an instance space, D a probability distribution
over X , F a function space and f : X −→ {0, 1} the target
function to be learned (f ∈ F) (assume binary classification
for simplicity). An oracle EX(f,X ,D) is a procedure that
returns a labeled example 〈x, f(x)〉 where x is drawn from
X according to D. We use the notation Prx∈D[x] to indicate
the probability of drawing an instance x from X according
to the distribution D. The classical model of supervised
learning, consisting of a learner L with access to an Oracle
EX(f,X ,D), is not expressive enough to model learning
from multiple data sources. Consequently we introduce the
notion of a k-Delegating Oracle to model learning from
multiple data sources.

A k-delegating oracle kEX(f,X ,D) invokes subordinate
oracles EX1(f,X ,D1), . . . EXk(f,X ,Dk) with probabil-
ities p1 . . . pk respectively. The ith oracle EXi(f,X ,Di)
when invoked returns an example of the form 〈x, f(x)〉
where x is drawn from X according to Di. The distribution
D of the k-delegating oracle is Prx∈D[x] =

∑k
i=1 pi ×

Prx∈Di
[x]

B. Mapping Aware k-Delegating Oracle

Let Xs1 ,Xs2 . . .Xsk be k instances spaces; Let
D1,D2 . . .Dk be probability distributions over
Xs1 ,Xs2 . . .Xsk respectively and F1,F2 . . .Fk be k
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functions spaces defined over the corresponding instance
spaces where each function in F i labels instances in Xsi

with a label in the set Ci.
A mapping aware k-delegating oracle has access to a

mapping set M = {m1,m2 . . .mk} where mi = {mx
i ,m

c
i};

mx
i : Xsi −→ X is an attribute mapping function; and

mc
i : Ci −→ C is a class mapping function where

Ci = Range(fi) and C = Range(f). It invokes subordinate
oracles EX1(f1,Xs1 ,D1) . . . EXk(fk,Xsk ,Dk) where the
ith subordinate oracle EXi(fi,Xsi ,Di) returns examples
of the form 〈xsi , fi(xsi)〉 where xsi is drawn from Xsi

according to Di and fi ∈ F i. It uses the mapping mi

to convert an instance 〈xsi , fi(xsi)〉 received form the ith

subordinate oracle to 〈mx
i (xsi),mc

i (fi(xsi))〉 before passing
it to the learner. We assume the mappings mi are computable
and satisfy the following conditions: ∀xsi ∈ Xsi ,mx

i (xsi) ∈
X ; ∀l ∈ Ci,m

c
i (l) ∈ C and whenever x ∈ Xsi ,Xsj ,

mx
i (x) = mx

j (x). These conditions ensure that the examples
returned by the mapping aware k-delegating oracle are of the
form 〈x, l(x)〉 where x ∈ X and l(x) ∈ C.

Ideally the mappings should ensure that the examples
returned to the learner are labeled according to the target
function f . However, in practice mappings may have errors
and consequently the instances may be labeled according to
φ which may be different from f . We denote the mapping
aware k-delegating oracle by kEX(φ,X ,D,M) where φ is
the labeling function.

From a learner L’s point of view (that uses the mapping
aware k-delegating oracle) we need to describe, in addition
to the labeling function φ, the distribution D (over X ) with
which the instances are sampled. Let Y xsi be a set that
consists of all the elements in Xsi that are mapped to an
element x ∈ X using the mapping mx

i . Then the distribution
D over X is given by

Prx∈D[x] =
k∑
i=1

∑
y∈Y x

si

pi × Pry∈Di
[y] (1)

Note that the sampling distribution D now depends on
mappings mx

1 . . .m
x
k (because of dependence on Y xsi ).

III. LEARNING IN THE PRESENCE OF MAPPING ERRORS

We now proceed to describe (formally) what it means
for a mapping to be correct (and correspondingly to have
errors) and establish an equivalence between learning in the
presence of mapping errors and learning from noisy data.

A. Mapping Errors

The sets of class labels C1 . . . Ck as well C partition
the corresponding instance spaces Xs1 . . .Xsk

and X re-
spectively. Each cell in a partition corresponds to a set
of instances that share the same class label. The mapping
mc
i establishes a correspondence between the cells of the

partition of Xsi and those of the partition of X . We define

Instances with 
Label 0

Instances with 
Label 1

Instances with 
Label 0

Instances with 
Label 1

Figure 1. An example of a correct mapping.

errors in mappings relative to a reference set of mappings
mc

1,expert(l) . . .m
c
k,expert(l) (e.g., provided by an expert).

Definition 1 (Correct Class Mapping): A class mapping
mc
i is said to be correct if ∀l ∈ Ci mc

i (l) = mc
i,expert(l).

Definition 2 (Correct Attribute Mapping): An attribute
mapping mx

i is said to be correct whenever ∀x ∈ Xsi ,
fi(x) = l and mc

i,expert(l) = l1 −→ f(mx
i (x)) = l1

Definition 3 (Correct Mapping Set): A mapping
set M = {m1,m2 . . .mk} is said to be correct if
∀i ∈ {1, 2, . . . , k} mx

i and mc
i are correct.

Observation 1: Given a correct mappings set M , for each
labeled example of the form 〈x, φ(x)〉 ∈ X × C provided
by kEX(φ,X ,D,M), it must be the case that φ(x) = f(x)
where f is the target function.

Observation 1 shows that when the mappings have no er-
rors the instances passed to the learner are labeled according
to the target function f . In the rest of the paper, we assume
that a correct class label mapping is available (say from a
domain expert) and all mapping errors are attribute mapping
errors. An example of an correct mapping and an incorrect
mapping is shown in Figure 1. and Figure 2. respectively.

B. Mapping Errors as Noise

We show that the mapping errors manifest themselves as
classification noise in the labeled examples provided to the
learner. Let Prx∈D[e = 〈x, f(x)〉] denote the probability
that a labeled example e = 〈x, f(x)〉 is obtained by a single
call to the oracle EX(f,X ,D).

Definition 4 (Equivalent Oracles): The oracles
EX1(f1,X ,D1) and EX2(f2,X ,D2) are said to
be equivalent whenever ∀e ∈ X × Range(f1) ∪
Range(f2), P rx∈D1 [e = 〈x, f1(x)〉] = Prx∈D2 [e =
〈x, f2(x)〉]

The following observation follows directly from Observa-
tion 1 and the definition of equivalent oracles.
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Figure 2. An example of a mapping with errors.

Observation 2: A k-delegating oracle kEX(φ,X ,D,M)
is equivalent to a classical oracle EX(f,X ,D) whenever
the mapping set M is correct with respect to target function
f .

Definition 5 (Noisy Oracle): Let ηx : X 7→ [0, 1] be an
instance dependent classification noise rate. A noisy oracle
EX1ηx

(f,X ,Deq) operates as follows: It calls a classical
oracle EX(f,X ,Deq) to obtain a labeled example 〈x, f(x)〉
and returns to the learner the example 〈x, f(x)〉 with a
probability 1− ηx and 〈x, 1− f(x)〉 with probability ηx.

Given a k-delegating oracle kEX(φ,X ,D,M), let β(x)
be the probability that an instance x obtained by a single call
to kEX(φ,X ,D,M) has the label φ(x) which is different
from f(x). Let γ(x) be the probability that an instance x
obtained by a single call to kEX(φ,X ,D,M) has the label
φ(x) which is same as f(x).

Theorem 1: A k-delegating oracle kEX(φ,X ,D,M) is
equivalent to a noisy oracle EX1ηx(f,X ,Deq) when the
distributions D and Deq are identical and ηx = β(x)

β(x)+γ(x)

Proof: From (1), the distribution D over X of the given
k-delegating oracle is

Prx∈D[x] =
k∑
i=1

∑
y∈Y x

si

pi × Pry∈Di [y]

We define αi(x) =
∑
y∈Y x

si
Pry∈Di

[y], then

Prx∈D[x] =
k∑
i=1

pi × αi(x)

Now αi(x) can be seen as the weight (sum of probabilities)
of instances drawn from Xi

s according to Di that is mapped
to x ∈ X . In presence of mapping errors let the set
Y xsi = Axsi ∪ Bxsi where Axsi is subset of instances in Y xsi

that are correctly mapped to x ∈ X while Bxsi is the subset

of instances in Y xsi that get mapped to x ∈ X due to
mapping errors. Let γi(x) =

∑
y∈Ax

si
Pry∈Xsi ,Di

[y] and
βi(x) =

∑
y∈Bx

si
Pry∈Xsi ,Di [y]. Note that βi(x) and γi(x)

(respectively) are the weights of instances drawn from Xi
s

according to Di that are incorrectly and correctly mapped
to x ∈ X . Recall that x ∈ Xi

s is correctly mapped using mx
i

if the following holds

fi(x) = l1 and m
c
i,expert(l1) = l −→ f(mx

i (x)) = l.

It follows that

αi(x) = βi(x) + γi(x)

In addition γ(x) =
∑k
i=1 pi × γi(x) and β(x) =∑k

i=1 pi × βi(x). Note that β(x) is the probability that given
the instance x is drawn (from X according to D), it is labeled
incorrectly . Similarly γ(x) is the probability that given the
instance x is drawn (again from X according to D), it is
labeled correctly. Hence

Prx∈D[x] = γ(x) + β(x)

To avoid cluttering the notation we will abbreviate
kEX(φ,X ,D,M) and EX1ηx(f,X ,Deq) by kEX and
EX1ηx

respectively when the parameters are obvious from
the context. Consider a labeled example e = 〈x, l(x)〉 ∈
E = X × {0, 1} where l(x) is the label associated with x.
The labeled example e = 〈x, l(x)〉 can be sampled either
from kEX or EX1ηx and since the class labels are binary
l(x) is either f(x) of 1− f(x).
case : l(x) = f(x)

Prx∈Deq
[e = 〈x, f(x)〉] = (1− ηx)Prx∈Deq

[x]

Prx∈D[e = 〈x, f(x)〉] = γ(x)

case: l(x) = 1− f(x)

Prx∈Deq
[e = 〈x, 1− f(x)〉] = ηxPrx∈Deq

[x]

Prx∈D[e = 〈x, f(x)〉] = β(x)

When the noisy oracle EX1ηx
(f,X ,Deq) is such that

Prx∈Deq [x] = Prx∈D[x] = γ(x) + β(x) =
k∑
i=1

pi × αi(x)

and
ηx =

β(x)
β(x) + γ(x)

it follows that for either case

Prx∈Deq [e = 〈x, f(x)〉] = Prx∈D[e = 〈x, f(x)〉] (2)

This establishes the equivalence of oracles EX1ηx and
kEX .

The theorem shows that the effect of the mapping errors
in the k-delegating oracle kEX can be simulated by the
noise function ηx associated with EX1ηx

.
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C. Mapping Errors as Nasty Noise
We now argue that the noise model ηx associated with

EX1ηx
(f,X ,D) can be simulated by the nasty classification

noise [6] model which in turn can be simulated by the nasty
sample noise model [6].

Definition 6: (Instance Dependent Classification
Noise(IDCN) Oracle): An Instance Dependent Classifi-
cation Noise Oracle, denoted by IDCN(m, ηx, f,X ,D),
is one where an intermediary obtains a dataset Dm of
m i.i.d examples by making m calls to a noisy oracle
EX1ηx

(f,X ,Deq). The resulting dataset is then provided
to the learner.

Definition 7: (km-delegating Oracle ): A km-delegating
Oracle, denoted by kEXm(φ,X ,D,M), is one where an
intermediary obtains a dataset Dm of m i.i.d examples by
making m calls to a k-delegating oracle kEX(φ,X ,D,M).
The resulting dataset is then provided to the learner.

Definition 8: (Nasty Sample Noise (NSN) Oracle
(adapted from [6])): A Nasty Sample Noise Oracle, denoted
by NSN(m, η, f,X ,D), is one where an adversary obtains
a dataset Dm of m i.i.d examples by making m calls to
a classical oracle EX(f,X ,D). The adversary then picks
n out of m instances of its choosing from Dm (where
n is distributed according to a binomial distribution with
parameters m and nasty noise rate η) and replaces them
with any examples of its choice from X × Range(f). The
resulting dataset is then provided to the learner.

Definition 9: (Nasty Classification Noise (NCN) Oracle
(adapted from [6])): A Nasty Classification Noise Oracle,
denoted by NCN(m, η, f,X ,D), is one where an adversary
obtains a dataset Dm of m i.i.d examples by making m
calls to a classical oracle EX(f,X ,D). The adversary then
picks n out of m instances of its choosing from Dm (where
n is distributed according to a binomial distribution with
parameters m and nasty noise rate η) and flips their class
labels. The resulting dataset is then provided to the learner.

Nasty Classification Noise (NCN) is a weaker case of
NSN where the adversary is constrained such that it can
modify only the class labels of n instances selected from
Dm in a manner identical to that in the case of NSN

Consider a dataset obtained from IDCN(m, ηx, f,X ,D).
Let λ =

∑
x∈X ηx × Prx∈D[x]. The value λ represents

the probability that a random example in the dataset
obtained by a single call to EX1ηx(f,X ,D) is mislabeled.
The number of examples in the dataset obtained from
IDCN(m, ηx, f,X ,D) that have incorrect labels with
respect to f can be viewed as number of successes in a
sequence of m independent binary experiments each with a
success probability λ. In the case of NCN(m, η, f,X ,D),
if we choose η = λ =

∑
x∈X ηx × Prx∈D[x], it follows that

the number of incorrectly labeled examples in the dataset
can also be viewed as number of successes in a sequence
of m independent binary experiments each with a success
probability λ. However, the n examples that are mislabeled

Delegating Oracle

IDCN  Oracle

NCN  Oracle

NSN  Oracle

Figure 3. A schematic representation of hierarchy between types of oracles
(the arrows denote can be simulated by).

in the dataset obtained from IDCN(m, ηx, f,X ,D) are
determined by function ηx whereas in the case of a dataset
obtained from NCN(m, η, f,X ,D) any n of the m
instances can be mislabeled (For example the label of an
instance x for which ηx = 0 will never be mislabeled in
a dataset obtained from IDCN(m, ηx, f,X ,D) whereas
it is possible that the same instance can be mislabeled
in a dataset obtained from NCN(m, η, f,X ,D)). The
preceding argument leads to the following observation:
Observation 3: The IDCN model can be simulated by the
NCN model and hence also by the NSN model.

The IDCN oracle uses a noisy oracle EX1ηx(f,X ,Deq)
while the kEXm(φ,X ,D,M) oracle uses a k-delegating
oracle kEX(φ,X ,D,M). However, Theorem 1 states that
every k-delegating Oracle has an equivalent Noisy Oracle.
This leads to the following observation:
Observation 4: The kEXm(φ,X ,D,M) Oracle can be
simulated by the IDCN model.

Observation 3 and observation 4 results in a hierarchy
of Oracles and is depicted in Figure 3. It follows, in a
straightforward way, from the hierarchy of oracles (see
Figure 3), that learning in presence of ontology mapping
errors can be seen as a weaker case of learning with nasty
classification noise. As a result a learner can apply the same
techniques to deal with mapping errors that it applies to
deal with nasty classification noise. This result proves to
be very useful in practice, since techniques to deal with
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noise have been studied extensively in literature and can be
ported in a straightforward way to the setting of learning in
presence of mapping errors. For example, similar to learning
from noisy data, learning in presence of mapping errors is
prone to overfitting and may be addressed by pruning [7]
[8] [9]. Similarly, on the lines of eliminating class noise (
see approaches in [10] [11] [12] ) filtering instances with
mapping errors may be used to improve the performance
of the classifiers learned in the presence of mapping errors.
In addition, insights from noisy learning can be borrowed
to to the setting of learning in presence of mapping errors,
e.g. the classifier AdaBoost whose performance is known to
degrade in presence of classification errors (see [13]), is not
a good choice to learn in the setting of mapping errors (a
good choice may be Robust Alternating AdaBoost [14], an
noise-tolerant version of AdaBoost and hence also tolerant
to mapping errors).

D. Learning in the Presence of Mapping Errors

We now proceed to present some theoretical results for
learning in presence of mapping errors in a PAC like setting.

Definition 10 (PAC Learnability (from [5])): A class F
of boolean functions is PAC-learnable using hypothesis class
H in polynomial time if there exists an algorithm that,
for any f ∈ H, any 0 < ε < 1/2, 0 < δ < 1 and
any distribution D on X , when given access to the PAC
oracle, runs in time polynomial in log|X |, 1/ε, 1/δ and with
probability at least 1−δ outputs a function h ∈ H for which
Prx∈D[h(x) 6= f(x)] ≤ ε.

Definition 11 (Mapping Error Rate): The mapping error
rate of a k-delegating oracle kEX(φ,X ,D,M) is defined
as the probability that an example 〈x, φ(x)〉 obtained by
making a call to kEX(φ,X ,D,M) has a label that is
different from that assigned by the target function f .

Observation 5: The mapping error rate of a k-delegating
oracle kEX(φ,X ,D,M) =

∑
x∈X β(x)× Prx∈D[x].

PAC learning is information theoretically impossible in
the case when the probability that a randomly drawn ex-
ample from an oracle has an incorrect label ≥ 0.5. Hence
PAC learning is not possible in the case of Noisy oracle
EX1ηx

(f,X ,Deq) when ∀x, ηx > 0.5 or in the case of
NCN(m, η, f,X ,D) when η ≥ 0.5. Correspondingly, PAC
learning is also not possible when the mapping error rate
β ≥ 0.5. This result provides an upper bound on the amount
of mapping errors that can be tolerated.

Consider NastyConsistent, a PAC learning algorithm un-
der the NSN model [6].

Algorithm NastyConsistent
Input: certainty parameter δ > 0, the nasty error rate η < 1

2
and required accuracy ε = 2η + ∆.
begin

1) Request a sample S = {〈x, l(x)〉} of size
m > c

∆2 (d+ log2/δ) from the NSN oracle.

2) Output any h ∈ F such that |{x ∈ S : h(x) 6=
l(x)}| ≤ m(η + ∆/4) (if no such h exists, output
any h ∈ F).

end
Theorem 2: (Restatement of theorem 4 in [6]) Let C be

any class of VC-dimension d (See [15] for background on
VC-dimension). Then, there exists a choice of the constant
c for which NastyConsistent is a PAC learning algorithm
under nasty sample noise of rate η.

Proof: See proof of Theorem 4 in [6].
Consider the following variant of the NastyConsistent

algorithm which uses kEXm(φ,X ,D,M) Oracle to return
the sample S to the learner (as opposed to NSN Oracle in
NastyConsistent).

Algorithm MappingErrorTolerantConsistent
Input: certainty parameter δ > 0, the mapping error rate
β < 1

2 and required accuracy ε = 2η + ∆.
begin

1) Request a labeled dataset S = {〈x, φ(x)} of size
m > c

∆2 (d+ log2/δ) from kEXm(φ,X ,D,M) .

2) Output any h ∈ F such that |{x ∈ S : h(x) 6=
φ(x)}| ≤ m(η + ∆/4) (if no such h exists, output
any h ∈ F).

end
Theorem 3: Let C be any class of VC-dimension d. Then,

there exists a choice of the constant c for which MappingEr-
rorTolerantConsistent is a PAC learning algorithm under the
mapping error rate β.

Proof: The algorithm MappingErrorTolerantConsistent
differs NastyConsistent in that it uses a kEXm(φ,X ,D,M)
instead of a NSN Oracle to get the labeled dataset. Since we
have shown that the kEXm(φ,X ,D,M) can be simulated
by the NCN oracle which in turn can be simulated by the
NSN oracle, the statement of the theorem follows from
Theorem 2.
The observation that learning in presence of mapping errors
is a weaker case of the NSN model results in some open
problems. It is known that certain concept-classes are not
PAC-learnable in the NCN setting (see Non-trivial Concept
class and associated theorem 3 in [6]). This raises the open
question as to whether such a non-trivial concept class is
PAC learnable in the restricted case of IDCN and hence in
the presence of mapping errors

IV. SUMMARY AND DISCUSSION

A. Significance

The rapid proliferation of autonomous, distributed data
sources in many emerging data-rich domains (e.g., bioin-
formatics, social informatics, security informatics) coupled
with the rise in the use of ontologies to associate semantics
with the data has led to a growing interest in the problem of
learning predictive models from semantically disparate data
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sources. Many practical approaches to this problem rely on
mapping the instance descriptions used by the individual
data sources into instance descriptions expressed in a com-
mon representation assumed by the learner (As an example
[16] lists mappings between 20 different ontologies to the
gene ontology). Establishing such mappings is a complex
and inevitably error-prone process. Hence there is a need
for approaches to learning from such data in the presence
of mapping errors. In this paper we have established that
the problem of learning from semantically disparate data
sources in the presence of mapping errors can be reduced
to the problem of learning from a single data source in
the presence of nasty classification noise within a PAC-like
framework. Based on this reduction, we outlined some of the
techniques that can be used to cope with errors in mappings
in this setting. We believe these techniques will prove to be
very useful in practice as the use of ontologies becomes even
more widespread. On a theoretical side, we also presented an
algorithm that can be used to learn in presence of mapping
errors in a PAC like setting.

B. Related Work

The problem of learning predictive models in the presence
of noise in the data has received considerable attention in the
literature, specifically in a PAC like setting [21] [22] [5][6].
There is also growing interest in the problem of learning
predictive models from distributed data sources [17] [18].
Crammer et al. [19] have examined the problem of learning
predictors from a set of related data sources. Ben-David et
al. [20] have analyzed the sample complexity of learning
from semantically disparate data sources. However, none of
these works have considered the effect of errors in mappings
between the representations used by the individual data
sources. Of related interest is the work in ontology mapping
field [3] [23]. However, the primary focus in this area is
aligning ontologies (through use of mappings), merging
related ontologies or detecting logical inconsistencies in
mappings [24]. However, a consistent mapping need not be
correct in the sense described in this paper and in addition
the focus of this paper is to learn in presence of mapping
errors.
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