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Abstract In many application domains, there is a need for learning algorithms
that can effectively exploit attribute value taxonomies (AVT)—hierarchical group-
ings of attribute values—to learn compact, comprehensible and accurate classifiers
from data—including data that are partially specified. This paper describes AVT-
NBL, a natural generalization of the naive Bayes learner (NBL), for learning clas-
sifiers from AVT and data. Our experimental results show that AVT-NBL is able
to generate classifiers that are substantially more compact and more accurate than
those produced by NBL on a broad range of data sets with different percentages of
partially specified values. We also show that AVT-NBL is more efficient in its use
of training data: AVT-NBL produces classifiers that outperform those produced by
NBL using substantially fewer training examples.

Keywords Attribute value taxonomies - AVT-based naive Bayes learner -
Partially specified data

1 Introduction

Synthesis of accurate and compact pattern classifiers from data is one of the ma-
jor applications of data mining. In a typical inductive learning scenario, instances
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to be classified are represented as ordered tuples of attribute values. However,
attribute values can be grouped together to reflect assumed or actual similarities
among the values in a domain of interest or in the context of a specific application.
Such a hierarchical grouping of attribute values yields an attribute value taxonomy
(AVT). Such AVT are quite common in biological sciences. For example, the Gene
Ontology Consortium is developing hierarchical taxonomies for describing many
aspects of macromolecular sequence, structure and function [5]. Undercoffer et
al. have developed a hierarchical taxonomy that captures the features that are ob-
servable or measurable by the target of an attack or by a system of sensors acting
on behalf of the target [41]. Several ontologies being developed as part of the
Semantic Web-related efforts [7] also capture hierarchical groupings of attribute
values. Kohavi and Provost have noted the need to be able to incorporate back-
ground knowledge in the form of hierarchies over data attributes in e-commerce
applications of data mining [25, 26]. Against this background, algorithms for
learning from AVT and data are of significant practical interest for several
reasons:

(a) An important goal of machine learning is to discover comprehensible, yet
accurate and robust, classifiers [34]. The availability of AVT presents the op-
portunity to learn classification rules that are expressed in terms of abstract
attribute values leading to simpler, accurate and easier-to-comprehend rules
that are expressed using familiar hierarchically related concepts [25, 44].

(b) Exploiting AVT in learning classifiers can potentially perform regulariza-
tion to minimize overfitting when learning from relatively small data sets. A
common approach used by statisticians when estimating from small samples
involves shrinkage [29] to estimate the relevant statistics with adequate confi-
dence. Learning algorithms that exploit AVT can potentially perform shrink-
age automatically, thereby yielding robust classifiers and minimizing over-
fitting.

(c) The presence of explicitly defined AVT allows specification of data at differ-
ent levels of precision, giving rise to partially specified instances [45]. The
attribute value of a particular attribute can be specified at different levels of
precision in different instances. For example, the medical diagnostic test re-
sults given by different institutions are presented at different levels of preci-
sion. Partially specified data are unavoidable in knowledge acquisition scenar-
ios that call for integration of information from semantically heterogeneous
information sources [10]. Semantic differences between information sources
arise as a direct consequence of differences in ontological commitments [7].
Hence, algorithms for learning classifiers from AVT and partially specified
data are of great interest.

Against this background, this paper introduces AVT-NBL, an AVT-based gen-
eralization of the standard algorithm for learning naive Bayes classifiers from par-
tially specified data. The rest of the paper is organized as follows: Sect. 2 formal-
izes the notions on learning classifiers with AVT taxonomies; Sect. 3 presents
the AVT-NBL algorithm; Sect. 4 discusses briefly on alternative approaches;
Sect. 5 describes our experimental results and Sect. 6 concludes with summary and
discussion.
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2 Preliminaries

In what follows, we formally define AVT and its induced instance space. We in-
troduce the notion of partially specified instances and formalize the problem of
learning from AVT and data.

2.1 Attribute value taxonomies

Let A = {A1, Ar,..., Ay} be an ordered set of nominal attributes and let
dom(A;) denote the set of values (the domain) of attribute A;. We formally de-
fine attribute value taxonomy (AVT) as follows:

Definition 2.1 (Attribute Value Taxonomy) Attribute value taxonomy I; for at-
tribute A; is a Tree-structured concept hierarchy in the form of a partially order
set (dom(A;), <), where dom(A;) is a finite set that enumerates all attribute val-
ues in A; and < is the partial order that specifies a relationships among attribute
values in dom(A;). Collectively, T = {11, T, ..., Iy} represents the ordered set
of attribute value taxonomies associated with attributes Ay, Aa, ..., AN.

Let Nodes(7;) represent the set of all values in 7;, and Root(7;) stand
for the root of 7;. The set of leaves of the tree, Leaves(7;), corresponds to
the set of primitive values of attribute A;. The internal nodes of the tree (i.e.
Nodes(T;)—Leaves(7;)) correspond to abstract values of attribute A;. Each arc
of the tree corresponds to a relationship over attribute values in the AVT. Thus, an
AVT defines an abstraction hierarchy over values of an attribute.

For example, Fig. 1 shows two attributes with corresponding AVTs for de-
scribing students in terms of their student status and work status. With regard to
the AVT associated with student status, Sophomore is a primitive value while Un-
dergraduate is an abstract value. Undergraduate is an abstraction of Sophomore,
whereas Sophomore is a further specification of Undergraduate. We can similarly
define AVT over ordered attributes as well as intervals defined over numerical
attributes.

After [21], we define a cut y; for 7; as follows:

Definition 2.2 (Cut) A cut y; is a subset of elements in Nodes(7;) satisfying the
following two properties: (1) For any leaf m € Leaves(7;), either m € y; or m

Student Status
Undergraduate
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Fig. 1 Two attribute value taxonomies on student status and work status.
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is a descendant of an element n € y;; and (2) for any two nodes f, g € y;, f is
neither a descendant nor an ancestor of g.

The set of abstract attribute values at any given cut of 7; form a partition of the
set of values at a lower level cut and also induce a partition of all primitive values
of A;. For example, in Fig. 1, the cut {Undergraduate, Graduate} defines a parti-
tion over all the primitive values {Freshman, Sophomore, Junior, Senior, Master,
PhD} in the student status attribute, and the cut {On-Campus, Off-Campus} de-
fines a partition over its lower level cut {On-Campus, Government, Private} in the
work status attribute.

For attribute A;, we denote A; to be the set of all valid cuts in 7;. We denote
A= vazl A; to be the Cartesian product of the cuts through the individual AVTs.
Hence, I' = {y1, y2, ..., yn} defines a global cut through T = {77, 75, ..., Iy},
where each y; € A; and I' € A.

Definition 2.3 (Cut Refinement) We say that a cut y; is a refinement of a cut y;
if yi is obtained by replacing at least one attribute value v € y; by its descendants
¥ (v, T;). Conversely, y; is an abstraction of y;. We say that a global cut [isa
refinement of a global cut T if at least one cut in [isa refinement of a cut in T.
Conversely, the global cut T is an abstraction of the global cut r.

As an example, Fig. 2 illustrates a demonstrative cut refinement process based
on the AVTs shown in Fig. 1. The cut y; = {Undergraduate, Graduate} in
the student status attribute has been refined to y| = {Undergraduate, Master,
PhD} by replacing Graduate with its two children, Master, PhD. Therefore, r
= {Undergraduate, Master, PhD, On-Campus, Off-Campus} is a cut refinement
of I' = {Undergraduate, Graduate, On-Campus, Off-Campus}.

2.2 AVT-induced abstract-instance space
A classifier is built on a set of labeled training instances. The original instance

space I without AVTs is an instance space defined over the domains of all at-
tributes. We can formally define AVT-induced instance space as follows:

Student Status

Fig. 2 Cut refinement. The cut y; = {Undergraduate, Graduate} in the student status at-
tribute has been refined to y; = {Undergraduate, Master, PhD}, such that the global cut I' =
{Undergraduate, Graduate, On-Campus, Off-Campus} has been refined to I' = {Undergraduate,
Master, PhD, On-Campus, Off-Campus}.
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Definition 2.4 (Abstract Instance Space) Any choice I" of A = x; A; defines an
abstract instance space Ir. When 3i y; € T such that y; # Leaves(T;), the result-
ing instance space is an abstraction of the original instance space 1. The original
instance space is given by I = Ir,, where Vi y; € T'g, v = Values(A;) =
Leaves(T;), that is, the primitive values of the attributes Ay ... An.

Definition 2.5 (AVT-Induced Instance Space) A set of AVTs, T = {T| ...Tn},
associated with a set of Attributes, A = {A; ... Ay}, induces an instance space
IT = Urealr (the union of instance spaces induced by all of the cuts through the
set of AVTs T ).

2.3 Partially specified data

In order to facilitate precise definition of partially specified data, we define two
operations on AVT 7; associated with attribute A;.

— depth(7;, v(A;)) returns the length of the path from root to an attribute value
v(A;) in the taxonomy;

— leaf (7;, v(A;)) returns a Boolean value indicating if v(A;) is a leaf node in
7;, that is, if v(A;) € Leaves(7;).

Definition 2.6 (Partially Specified Data) An instance X , is represented by a tu-
ple (Vip, v2p, ..., UNp). Xp is

— a partially specified instance if one or more of its attribute values are not
primitive: vip € X, depth(T;, vip) = 0 A =leaf (T, vip)
— a completely specified instance if Vi v;, € Leaves(T;).

Thus, a partially specified instance is an instance in which at least one of the
attribute values is partially specified (or partially missing). Relative to the AVT
shown in Fig. 1, the instance (Senior, TA) is a fully specified instance. Some ex-
amples of partially specified instances are (Undergraduate, RA), (Freshman, Gov-
ernment), (Graduate, Off-Campus). The conventional missing value (normally
recorded as ?) is a special case of partially specified attribute value, whose attribute
value corresponds to the root of its AVT and contains no descriptive information
about that attribute. We call this kind of missing fotally missing.

Definition 2.7 (A Partially Specified Data Set) A partially specified data set,
Dr (relative to a set T of attribute value taxonomies), is a collection of instances
drawn from It, where each instance is labeled with the appropriate class la-
bel from C = {c1,c2,...,cpm}, a finite set of mutually disjoint classes. Thus,
Dr CIr xC.

2.4 Learning classifiers from data

The problem of learning classifiers from AVT and data is a natural generalization
of the problem of learning classifiers from data without AVT. The original data set
D is simply a collection of labeled instances of the form (X, cx p), where X, € 1
and cx, € C is a class label. A classifier is a hypothesis in the form of a function
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h : I — C, whose domain is the instance space / and whose range is the set of
classes C. An hypothesis space H is a set of hypotheses that can be represented in
some hypothesis language or by a parameterised family of functions (e.g. decision
trees, naive Bayes classifiers, SVM, etc.). The task of learning classifiers from the
original data set D entails identifying a hypothesis 7 € H that satisfies some
criteria (e.g. a hypothesis that is most likely given the training data D).

The problem of learning classifiers from AVT and data can be stated as fol-
lows:

Definition 2.8 (Learning Classifiers from AVT and Data) Given a  user-
supplied set of AVTs, T, and a data set, Dt, of (possibly) partially specified
labeled instances, construct a classifier ht : It — C for assigning appropriate
class labels to each instance in the instance space It .

Of special interest are the cases in which the resulting hypothesis space Hr
has structure that makes it possible to search it efficiently for a hypothesis that is
both concise as well as accurate.

3 AVT-based naive Bayes learner
3.1 Naive Bayes learner (NBL)

Naive Bayes classifier is a simple and yet effective classifier that has competitive
performance with other more sophisticated classifiers [18]. Naive Bayes classifier
operates under the assumption that each attribute is independent of others given
the class. Thus, the joint probability given a class can be written as the product
of individual class conditional probabilities for each attribute. The Bayesian ap-
proach to classifying an instance X, = (vip, V2p, ..., UNp) is to assign it the
most probable class cmap (X p):

cMaP(X p) = argmax P (vip, v2p, ..., Unplcj) p(c))
(,'/EC
= argmax p(c;) l_[ P(viplcj).
CjEC i

The task of the naive Bayes Learner (NBL) is to estimate Yc; € C and
Vv;, € dom(A;), relevant class probabilities, p(c;), and the class conditional
probabilities, P (v;,|c;), from training data, D. These probabilities, which com-
pletely specify a naive Bayes classifier, can be estimated from a training set,
D, using standard probability estimation methods [31] based on relative fre-
quency counts of the corresponding classes and attribute value and class label co-
occurrences observed in D. We denote o; (vi|c;) as the frequency count of value
vi of attribute A; given class label c¢; and o (c;) as the frequency count of class
label c; in a training set D. Hence, these relative frequency counts completely
summarize the information needed for constructing a naive Bayes classifier from
D, and they constitute sufficient statistics for naive Bayes learner [9, 10].
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3.2 AVI-NBL

We now introduce AVT-NBL, an algorithm for learning naive Bayes classifiers
from AVT and data. Given an ordered set of AVTs, T = {7, 75, ..., Iy}, corre-
sponding to the attributes A = {Ay, A3, ..., Ay} and a data set D = {(X, cxp)}
of labeled examples of the form (X p, cx ), where X, € Ir is a partially or fully
specified instance and cx,, € C is the corresponding class label, the task of AVT-
NBL is to construct a naive Bayes classifier for assigning X, to its most probable
class, cMap(X ). As in the case of NBL, we assume that each attribute is indepen-
dent of the other attributes given the class.

LetT = {y1, y2, ..., yn} be a global cut, where y; stands for a cut through 7;.
A naive Bayes classifier defined on the instance space It is completely specified
by a set of class conditional probabilities for each value of each attribute. Suppose
we denote the table of class conditional probabilities associated with values in y;
by C PT (y;). Then the naive Bayes classifier defined over the instance space It is
specified by h/(I") = {CPT (y1), CPT (y2),...,CPT (yn)}.

If each cut, y; € I'g is chosen to correspond to the primitive values of the
respective attribute, i.e. Vi y; = Leaves(7;). h(I'g) is simply the standard naive
Bayes classifier based on the attributes Ay, Az, ..., Ay. If each cut y; € T is
chosen to pass through the root of each AVT, i.e. Vi y; = {Root(7;)}, h(I") simply
assigns each instance to the class that is a priori most probable.

AVT-NBL starts with the naive Bayes classifier that is based on the most ab-
stract value of each attribute (the most general hypothesis in H7) and successively
refines the classifier (hypothesis) using a criterion that is designed to trade off
between the accuracy of classification and the complexity of the resulting naive
Bayes classifier. Successive refinements of I" correspond to a partial ordering of
naive Bayes classifiers based on the structure of the AVTs in T'.

For example, in Fig. 2, [ is a cut refinement of T", and hence corresponding hy-
pothesis h(f‘) is a refinement of 4 (I"). Relative to the two cuts, Table 1 shows the
conditional probability tables that we need to compute during learning for 4 (I")
and h (D), respectively (assuming C = {+, —} as two possible class labels). From
the class conditional probability table, we can count the number of class condi-
tional probabilities needed to specify the corresponding naive Bayes classifier. As
shown in Table 1, the total number of class conditional probabilities for z(I") and
h(I") are 8 and 10, respectively.

3.2.1 Class conditional frequency counts

Given an attribute value taxonomy 7; for attribute A;, we can define a tree of class
conditional frequency counts CC FC (7;) such that there is a one-to-one corre-
spondence between the nodes of the AVT 7; and the nodes of the corresponding
CCFC(T;). It follows that the class conditional frequency counts associated with
a nonleaf node of CC FC (7;) should correspond to the aggregation of the corre-
sponding class conditional frequency counts associated with its children. Because
each cut through an AVT 7; corresponds to a partition of the set of possible val-
ues in Nodes(7;) of the attribute A;, the corresponding cut y; through CC FC (7;)
specifies a valid class conditional probability table C PT (y;) for the attribute A;.
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Table 1 Conditional probability tables. This table shows the entries of conditional probability
tables associated with two global cut I" and I" shown in Fig. 2 (assuming C = +, —).

Value Pr(+) Pr(—)
CPT for h(T")
Undergraduate  P(Undergraduate|+)  P(Undergraduate|—)
Graduate P(Graduate|+) P(Graduate|—)
On-Campus P(On-Campus|+) P(On-Campus|—)

Off-Campus P(Off-Campus|+) P(Off-Campus|—)

CPT for h( T)
Undergraduate ~ P(Undergraduate|+)  P(Undergraduate|—)
Master P(Master|+) P(Master|—)
PhD P(Ph.D.|+) P(PhD|—)
On-Campus P(On-Campus|+) P(On-Campus|—)
Off-Campus P(Off-Campus|+) P(Off-Campus|—)

In the case of numerical attributes, AVTs are defined over intervals based on
observed values for the attribute in the data set. Each cut through the AVT corre-
sponds to a partition of the numerical attribute into a set of intervals. We calculate
the class conditional probabilities for each interval. As in the case of nominal at-
tributes, we define a tree of class conditional frequency counts CC FC(7;) for
each numerical attribute A;. CC F C (7;) is used to calculate the conditional prob-
ability table C PT (y;) corresponding to a cut y;.

When all of the instances in the data set D are fully specified, estimation of
CC FC(T7;) for each attribute is straightforward: we simply estimate the class con-
ditional frequency counts associated with each of the primitive values of A; from
the data set D and use them recursively to compute the class conditional frequency
counts associated with the nonleaf nodes of CC FC (7;).

When some of the data are partially specified, we can use a two-step process
for computing CC FC (7;): First we make an upward pass aggregating the class
conditional frequency counts based on the specified attribute values in the data set.
Then we propagate the counts associated with partially specified attribute values
down through the tree, augmenting the counts at lower levels according to the
distribution of values along the branches based on the subset of the data for which
the corresponding values are fully specified!.

Let 0 (v|c;) be the frequency count of value v of attribute A; given class label
c;j in a training set D and p; (v|c;) the estimated class conditional probability of
value v of attribute A; given class label ¢; in a training set D. Let 7 (v, 7;) be
the set of all children (direct descendants) of a node with value v in 7;; A(v, 7;)
the list of ancestors, including the root, for v in 7;. The procedure of computing
CCFC(T;) is shown below.

Algorithm 3.1 Calculating class conditional frequency counts.
Input: Training data D and Ty, 7>, ..., IyN.

! This procedure can be seen as a special case of EM (expectation maximization) algorithm
[15] to estimate sufficient statistics for CC FC (7;).



Learning accurate and concise naive Bayes classifiers from AVT and data

Output: CCFC(71),CCFC(T2),...,CCFC(1In).

Step 1: Calculate frequency counts o;(v|c;) for each node v in T; using
the class conditional frequency counts associated with the specified values
of attribute A; in training set D.

Step 2: For each attribute value v in I; that received nonzero counts as a
result of step 1, aggregate the counts upward from each such node v to its
ancestors, A(v, T;): 0; (W|c ) werw,7) < oi(wlc;) + 0; (v]c)).

Step 3: Starting from the root, recursively propagate the counts corre-
sponding to partially specified instances at each node v downward ac-
cording to the observed distribution among its children to obtain updated
counts for each child u; € (v, 7;):

i (v|cj) 7 (v T7)]
<|ﬂ(v,77{)|) I3y oilugle)=0,
Gi(MI|Cj)= o;(v|c;) — ‘.”(U’T")‘G‘ urlci
oi(ulcp)| 1+ i@l j)|,,(v_7—i)‘/‘=1 i(ule)) Otherwise.
k=1 Gi(uk|cj)

We use a simple example to illustrate the estimation of class conditional fre-
quency counts when some of the instances are partially specified. On the AVT
for student status shown in Fig. 3(A), we mark each attribute value with a count
showing the total number of positively labeled (4-) instances having that specific
value. First, we aggregate the counts upward from each node to its ancestors. For
example, in Fig. 3(B), the four counts 10, 20, 5, 15 on primitive attribute values
Freshman, Sophomore, Junior, and Senior add up to 50 as the count for Under-
graduate. Because we also have 15 instances that are partially specified with the
value Undergraduate, the two counts (15 and 50) aggregate again toward the root.
Next, we distribute the counts of a partially specified attribute value downward ac-
cording to the distributions of values among their descendant nodes. For example,
15, the count of partially specified attribute value Undergraduate, is propagated
down into fractional counts 3, 6, 1.5, 4.5 for Freshman, Sophomore, Junior and
Senior (see Fig. 3(C) for values in parentheses). Finally, we update the estimated
frequency counts for all attribute values as shown in Fig. 3(D).

Now that we have estimated the class conditional frequency counts for all at-
tribute value taxonomies, we can calculate the conditional probability table with
regard to any global cut I'. Let I' = {yq,..., yn} be a global cut, where y;
stands for a cut through CC FC(7;). The estimated conditional probability ta-
ble C PT (y;) associated with the cut y; can be calculated from CC F C (7;) using
Laplace estimates [31, 24].

1/ID| + o;(vicj)
vil/IDI+ ) oi(ule))

uey;

pi(v|cj)vey,~ <~

Recall that the naive Bayes classifier 4(I") based on a chosen global cut I' is
completely specified by the conditional probability tables associated with the cuts
inl: (") ={CPT(y1),....CPT(yn)}.
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Student Status 65+35
Undergraduate

Student Status

50+(15)

35+(0)

20 5

100

Undergraduate

100

Undergraduate

50+(15)

Master

10+(3
+(3) 25

15+(4.5)

Sophomore

20+(6) 5+(15) 26 6.5
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Fig. 3 Estimation of class conditional frequency counts. (A) Initial counts associated with each
attribute value showing the number of positively labeled instances. (B) Aggregation of counts
upwards from each node to its ancestors. (C) Distribution of counts of a partially specified at-
tribute value downwards among descendant nodes. (D) Updating the estimated frequency counts
for all attribute values.

3.2.2 Searching for a compact naive Bayes classifier

The scoring function that we use to evaluate a candidate AVT-guided refinement
of a naive Bayes classifier is based on a variant of the minimum description length
(MDL) score [37], which provides a basis for trading off the complexity against
the error of the model. MDL score captures the intuition that the goal of a learner
is to compress the training data D and encode it in the form of a hypothesis or
a model % so as to minimize the length of the message that encodes the model &
and the data D given the model A. [19] suggested the use of a conditional MDL
(CMDL) score in the case of hypotheses that are used for classification (as op-
posed to modelling the joint probability distribution of a set of random variables)
to capture this tradeoff. In general, computation of CMDL score is not feasible
for Bayesian networks with arbitrary structure [19]. However, in the case of naive
Bayes classifiers induced by a set of AVT, as shown below, it is possible to effi-
ciently calculate the CMDL score.

CMDL(h|D) = (l"g%) size(h) — CLL(h|D)
where, CLL(h|D) = |D|Z‘pﬂl log Py (cx, [Vip, - - UNp)

Here, Pj(cx » [vip, ..., unp) denotes the conditional probability assigned to the
class cx, € C associated with the training sample X, = (vip, v2p, ..., Unp) by
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the classifier %, size(h) is the number of parameters used by #, |D| the size of
the data set, and CLL (h|D) is the conditional log likelihood of the hypothesis &
given the data D. In the case of a naive Bayes classifier /4, size(h) corresponds to
the total number of class conditional probabilities needed to describe /. Because
each attribute is assumed to be independent of the others given the class in a naive
Bayes classifier, we have

|D| P(cx )1_[1 Ph(vip|CX,)
CLL h D = D 10 p ; ’
( | ) | | Zp:l g (Z_J'CII P(Cl)nt Ph(vip‘(fj)

where P (c;) is the prior probability of the class c¢;, which can be estimated from
the observed class distribution in the data D.

It is useful to distinguish between two cases in the calculation of the con-
ditional likelihood CLL(h|D) when D contains partially specified instances:
(1) When a partially specified value of attribute A; for an instance lies on the cut y
through CC F C(7;) or corresponds to one of the descendants of the nodes in the
cut. In this case, we can treat that instance as though it were fully specified relative
to the naive Bayes classifier based on the cut y of CC FC(7;) and use the class
conditional probabilities associated with the cut y to calculate its contribution to
CLL(h|D). (2) When a partially specified value (say v) of A; is an ancestor of a
subset (say A ) of the nodes in y . In this case, p(v|c;) = Zu,-ex p(u;lc;), such that
we can aggregate the class conditional probabilities of the nodes in A to calculate
the contribution of the corresponding instance to CLL (h|D).

Because each attribute is assumed to be independent of others given the
class, the search for the AVT-based naive Bayes classifier (AVI-NBC) can be
performed efficiently by optimizing the criterion independently for each attribute.
This results in a hypothesis % that intuitively trades off the complexity of naive
Bayes classifier (in terms of the number of parameters used to describe the
relevant class conditional probabilities) against accuracy of classification. The
algorithm terminates when none of the candidate refinements of the classifier
yield statistically significant improvement in the CMDL score. The procedure is
outlined below.

Algorithm 3.2 Searching for compact AVT-based naive Bayes classifier.

Input: Training data D and CCFC(T1), CCFC(1p),...,CCFC(7y).
Output: A naive Bayes classifier trading off the complexity against the
error.
1. Initialize each y; in T = {y1, v2, ..., yn} to {Root(7;)}.
2. Estimate probabilities that specify the hypothesis h(I").
3. Foreachcuty;inl ={y,v2,...,YN}:
A. Set §; < y;
B. Until there are no updates to y;
i. Foreachv € §;
a. Generate a refinement y;” of y; by replacing v with (v, T;), and
refine I' accordingly to obtain I'. Construct corresponding hy-
pothesis h(f)
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b. If CMDL(h(I')|D) < CMDL(h(T)|D), replace T with I and
Yi with y’
ii. 5,‘ <~ Vi
4. Output h(T")

4 Alternative approaches to learning classifiers from AVT and data

Besides AVI-NBL, we can envision two alternative approaches to learning classi-
fiers from AVT and data.

4.1 Approaches that treat partially specified attribute values as if they were
totally missing

Each partially specified (and hence partially missing) attribute value is treated as
if it were totally missing, and the resulting data set with missing attribute values
is handled using standard approaches for dealing with missing attribute values
in learning classifiers from an otherwise fully specified data set in which some
attribute values are missing in some of the instances values. A main advantage of
this approach is that it requires no modification to the learning algorithm. All that
is needed is a simple preprocessing step in which all partially specified attribute
values are turned into missing attribute values.

4.2 AVT-based propositionalisation methods

The data set is represented using a set of Boolean attributes obtained from
Nodes(T;) of attribute A; by associating a Boolean attribute with each node (ex-
cept the root) in 7;. Thus, each instance in the original data set defined using N
attributes is turned into a Boolean instance specified using N Boolean attributes,
where N = YN | (INodes(T;)| — 1).

In the case of the student status taxonomy shown in Fig. 1, this would result
in binary features that correspond to the propositions such as (student = Under-
graduate), (student = Graduate), (student = Freshman), ... (student = Senior),
(student = Master), (student = PhD). Based on the specified value of an attribute
in an instance, e.g. (student = Master), the values of its ancestors in the AVT (e.g.
student = Graduate) are set to True because the AVT asserts that Master students
are also Graduate students. But the Boolean attributes that correspond to descen-
dants of the specified attribute value are treated as unknown. For example, when
the value of the student status attribute is partially specified in an instance, e.g.
(student = Graduate), the corresponding Boolean attribute is set to True, but the
Boolean attributes that correspond to the descendants of Graduate in this taxon-
omy are treated as missing. The resulting data with some missing attribute values
can be handled using standard approaches to dealing with missing attribute values.
For numerical attributes, the Boolean attributes are the intervals that correspond
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to nodes of the respective AVTs. If a numerical value falls in a certain interval, the
corresponding Boolean attribute is set to True, otherwise it is set to False. We call
the resulting algorithm—NBL applied to AVT-based propositionalized version of
the data—Prop-NBL.

Note that the Boolean features created by the propositionalisation technique
described above are not independent given the class. A Boolean attribute that cor-
responds to any node in an AVT is necessarily correlated with Boolean attributes
that correspond to its descendants as well as its ancestors in the tree. For example,
the Boolean attribute (student = Graduate) is correlated with (student = Master).
(Indeed, it is this correlation that enables us to exploit the information provided
by AVT in learning from partially specified data). Thus, a naive Bayes classifier
that would be optimal in the maximal a posteriori sense [28] when the original
attributes student status and work status are independent given class would no
longer be optimal when the new set of Boolean attributes are used because of
strong dependencies among the Boolean attributes derived from an AVT.

A main advantage of the AVT-based propositionalisation methods is that they
require no modification to the learning algorithm. However, it does require pre-
processing of partially specified data using the information supplied by an AVT.
The number of attributes in the transformed data set is substantially larger than
the number of attributes in the original data set. More important, the statistical de-
pendence among the Boolean attributes in the propositionalised representation of
the original data set can degrade the performance of classifiers, e.g. naive Bayes
that rely on independence of attributes given class. Against this background, we
experimentally compare AVT-NBL with Prop-NBL and the standard naive Bayes
algorithm (NBL).

5 Experiments and results
5.1 Experiments

Our experiments were designed to explore the performance of AVI-NBL relative
to that of NBL and PROP-NBL.

Although partially specified data and hierarchical AVT are common in many
application domains, at present, there are few standard benchmark data sets of par-
tially specified data and the associated AVT. We select 37 data sets from the UC
Irvine Machine Learning Repository, among which 8 data sets use only nominal
attributes and 29 data sets have both nominal attributes and numerical attributes.
Every numerical attribute in the 29 data sets has been discretised into a maxi-
mum of 10 bins. For only three of the data sets (i.e. Mushroom, Soybean, and
Nursery), AVTs were supplied by domain experts. For the remaining data sets,
no expert-generated AVTs are readily available. Hence, the AVTs on both nom-
inal and numerical attributes were generated using AVT-Learner, a hierarchical
agglomerative clustering algorithm to construct AVTs for learning [23].

The first set of experiments compares the performance of AVI-NBL, NBL,
and PROP-NBL on the original data.

The second set of experiments explores the performance of the algorithms on
data sets with different percentages of totally missing and partially missing at-
tribute values. Three data sets with a prespecified percentage (10%, 30% or 50%,
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excluding the missing values in the original data set) of totally or partially miss-
ing attribute values were generated by assuming that the missing values are uni-
formly distributed on the nominal attributes [45]. From the original data set D,
a data set D, of partially (or totally) missing values was generated as follows:
Let (n;, nj—1, ..., ng) be the path from the fully specified primitive value n; to
the root n of the corresponding AVT. select one of the nodes (excluding n;) along
this path with uniform probability. Read the corresponding attribute value from the
AVT and assign it as the partially specified value of the corresponding attribute.
Note that the selection of the root of the AVT would result in a totally missing
attribute value.

In each case, the error rate and the size (as measured by the number of class
conditional probabilities used to specify the learned classifier) were estimated us-
ing 10-fold cross-validation, and we calculate 90% confidence interval on the error
rate.

A third set of experiments were designed to investigate the performance of
classifiers generated by AVT-NBL, Prop-NBL and NBL as a function of the
training-set size. We divided each data set into two disjoint parts: a training pool
and a test pool. Training sets of different sizes, corresponding to 10%, 20%, ...,
100% of the training pool, were sampled and used to train naive Bayes classifiers
using AVT-NBL, Prop-NBL, and NBL. The resulting classifiers were evaluated
on the entire test pool. The experiment was repeated 9 times for each training-set
size. The entire process was repeated using 3 different random partitions of data
into training and test pools. The accuracy of the learned classifiers on the examples
in the test pool were averaged across the 9 x 3 = 27 runs.

5.2 Results

5.2.1 AVT-NBL yields lower error rates than NBL and PROP-NBL on the
original fully specified data

Table 2 shows the estimated error rates of the classifiers generated by the AVT-
NBL, NBL and PROP-NBL on 37 UCI benchmark data sets. According to the
results, the error rate of AVI-NBL is substantially smaller than that of NBL and
PROP-NBL. It is worth noting that PROP-NBL (NBL applied to a transformed
data set using Boolean features that correspond to nodes of the AVTs) generally
produces classifiers that have higher error rates than NBL. This can be explained
by the fact that the Boolean features generated from an AVT are generally not
independent given the class.

5.2.2 AVI-NBL yields classifiers that are substantially more compact than those
generated by PROP-NBL and NBL

The shaded columns in Table 2 compare the total number of class condi-
tional probabilities needed to specify the classifiers produced by AVT-NBL,
NBL, and PROP-NBL on original data. The results show that AVT-NBL is
effective in exploiting the information supplied by the AVT to generate accu-
rate yet compact classifiers. Thus, AVT-guided learning algorithms offer an
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Table 2 Comparison of error rate and size of classifiers generated by NBL, PROP-NBL and
AVT-NBL on 37 UCI benchmark data. The error rates and the sizes were estimated using 10-
fold cross-validation. We calculate 90% confidence interval on the error rates. The size of the
classifiers for each data set is constant for NBL and Prop-NBL, and for AVT-NBL, the size
shown represents the average across the 10 cross-validation experiments.

NBL Prop-NBL AVT-NBL

Data Set Error Size  Error Size Error Size
Anneal 6.01 (£1.30) 954 10.69 (£1.69) 2886 1.00 (£0.55) 666
Audiology 26.55 (£5.31) 3696 27.87(+5.39) 8184 23.01 (£5.06) 3600
Autos 22.44 (£4.78) 1477 21.46 (£4.70) 5187 13.17 (£3.87) 805
Balance-scale 8.64 (+1.84) 63 11.52 (£2.09) 195 8.64 (+1.84) 60
Breast-cancer 28.32 (+4.82) 84 27.27 (£4.76) 338 27.62 (£4.78) 62
Breast-w 2.72 (£1.01) 180 2.86 (£1.03) 642 2.72 (£1.01) 74
Car 14.47 (£1.53) 88 1545 (£1.57) 244 13.83 (£1.50) 80
Colic 17.93 (£3.28) 252 20.11 (£3.43) 826 16.58 (£3.18) 164
Credit-a 14.06 (£2.17) 204 18.70 (£2.43) 690 13.48 (£2.13) 124
Credit-g 24.50 (£2.23) 202 26.20 (£2.28) 642 24.60 (£2.23) 154
Dermatology 2.18 (£1.38) 876 1.91 (£1.29) 2790 2.18 (£1.38) 576
Diabetes 22.53(4+2.47) 162 25.65 (£2.58) 578 22.01 (£2.45) 108
Glass 22.90(+4.71) 637 28.04 (£5.04) 2275 19.16 (£4.41) 385
Heart-c 14.19 (£3.29) 370 16.50 (£3.50) 1205 12.87 (£3.16) 210
Heart-h 13.61 (£3.28) 355 14.97 (£3.41) 1155 13.61 (£3.28) 215
Heart-statlog 16.30 (+£3.69) 148 16.30 (£3.69) 482 13.33(£3.39) 78
Hepatitis 10.97 (£4.12) 174 9.03 (£3.78) 538 7.10 (£3.38) 112
Hypothyroid 4.32 (£0.54) 436 6.68 (£0.67) 1276 4.22 (£0.54) 344
Tonosphere 7.98 (£2.37) 648 8.26 (£2.41) 2318 5.41 (£1.98) 310
Iris 4.00 (£2.62) 123 4.67 (£2.82) 435 5.33 (£3.01) 90
Kr-vs-kp 12.11 (£0.95) 150 12.20 (£0.95) 306 12.08 (£0.95) 146
Labor 8.77 (£6.14) 170 10.53 (£6.67) 546 10.53 (£6.67) 70
Letter 27.17 (£0.52) 4186 34.40 (£0.55) 15002 29.47 (£0.53) 2652
Lymph 14.19 (£4.70) 240 18.24 (£5.21) 660 15.54 (+£4.88) 184
Mushroom 4.43 (£1.30) 252 4.45 (+1.30) 682 0.14 (£0.14) 202
Nursery 9.67 (£1.48) 135 10.59 (+1.54) 355 9.67 (£1.48) 125
Primary-tumor 49.85 (£4.45) 836 52.51 (+4.45) 1782 52.21 (£4.45) 814
Segment 1091 (+£1.06) 1183 11.86(£1.10) 4193 10.00 (£1.02) 560
Sick 2.52 (£0.42) 218 4.51 (£0.55) 638 2.17 (£0.39) 190
Sonar 0.96 (£1.11) 1202 0.96 (£1.11) 4322 0.48 (£0.79) 312
Soybean 7.03 (£1.60) 1900 8.19 (£1.72) 4959 5.71 (£1.45) 1729
Splice 4.64 (£0.61) 864 4.08 (£0.57) 2727 4.23 (£0.58) 723
Vehicle 33.33 (£2.66) 724 32.98 (£2.65) 2596 32.15 (£2.63) 368
Vote 9.89 (£2.35) 66 9.89 (£2.35) 130 9.89 (£2.35) 64
Vowel 64.24 (£2.50) 1320 63.33 (£2.51) 4675 57.58 (£2.58) 1122
Waveform-5000 35.96 (£1.11) 1203  36.38 (+1.12) 4323 34.92 (£1.11) 825
Zoo 6.93 (£4.57) 259 5.94 (£4.25) 567 3.96 (£3.51) 245

approach to compressing class conditional probability distributions that are
different from the statistical independence-based factorization used in Bayesian

networks.

5.2.3 AVT-NBL yields significantly lower error rates than NBL and PROP-NBL
on partially specified data and data with totally missing values

Table 3 compares the estimated error rates of AVI-NBL with that of NBL
and PROP-NBL in the presence of varying percentages (10%, 30% and 50%)
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Table 3 Comparison of error rates on data with 10%, 30% and 50% partially or totally missing
values. The error rates were estimated using 10-fold cross-validation, and we calculate 90%
confidence interval on each error rate.

Data Partially missing Totally missing

Methods NBL Prop-NBL AVT-NBL NBL Prop-NBL AVT-NBL

Mushroom 10% 4.65 (£1.33)  4.69 (£1.34)  0.30 (£0.30)  4.65 (£1.33) 476 (£1.35)  1.29 (£071)
30% 528 (£1.41) 484 (£1.36) 0.64 (£0.50) 528 (£1.41) 537 (£1.43) 278 (£1.04)
50% 6.63 (£1.57) 5.82(£148) 124 (£0.70) 6.63 (£1.57) 698 (£1.61) 4.61 (£1.33)

Nursery  10% 1527 (£1.81) 15.50 (£1.82) 12.85(£1.67) 1527 (£1.81) 16.53 (£1.86) 13.24 (£1.70)
30% 26.84 (£2.23) 2625 (£2.21) 21.19 (£2.05) 26.84 (£2.23) 27.65 (£2.24) 22.48 (£2.09)
50% 36.96 (£2.43) 35.88 (£2.41) 29.34 (£2.29) 36.96 (£2.43) 38.66 (£2.45) 32.51 (£235)

Soybean  10% 8.76 (£1.76)  9.08 (£1.79) 6.75(£1.57) 8.76 (£1.76)  9.09 (£1.79)  6.88 (£1.58)
30% 12.45(£2.07) 11.54 (£2.00) 10.32 (£1.90) 12.45(£2.07) 12.31(£2.05) 10.41 (£1.91)
50% 1939 (£2.47) 1691 (£234) 16.93 (£234) 19.39 (£2.47) 19.59 (£2.48) 17.97 (£2.40)

of partially missing attribute values and totally missing attribute values. Naive
Bayes classifiers generated by AVT-NBL have substantially lower error rates
than those generated by NBL and PROP-NBL, with the differences being
more pronounced at higher percentages of partially (or totally) missing attribute
values.

5.2.4 AVI-NBL produces more accurate classifiers than NBL and Prop-NBL
for a given training set size

Figure 4 shows the plot of the accuracy of the classifiers learned as a function of
training set size for Audiology data. We obtained similar results on other bench-
mark data sets used in this study. Thus, AVT-NBL is more efficient than NBL and
Prop-NBL in its use of training data.

Audiology Data
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Fig. 4 Classifier accuracy as a function of training set size on audiology data by AVT-NBL,
Prop-NBL and NBL, respectively. Note that the X axis shows the percentage of training in-
stances that has been sampled in training the naive Bayes classifier, and the Y axis shows the
predictive accuracy in percentage.
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6 Summary and discussion
6.1 Summary

In this paper, we have described AVT-NBL?, an algorithm for learning classifiers
from attribute value taxonomies (AVT) and data in which different instances may
have attribute values specified at different levels of abstraction. AVI-NBL is a
natural generalization of the standard algorithm for learning naive Bayes classi-
fiers. The standard naive Bayes learner (NBL) can be viewed as a special case of
AVT-NBL by collapsing a multilevel AVT associated with each attribute into a
corresponding single-level AVT whose leaves correspond to the primitive values
of the attribute.
Our experimental results presented in this paper show that:

1. AVT-NBL is able to learn substantially compact and more accurate classifiers
on a broad range of data sets than those produced by standard NBL and Prop-
NBL (applying NBL to data with an augmented set of Boolean attributes).

2. When applied to data sets in which attribute values are partially specified or to-
tally missing, AVI-NBL can yield classifiers that are more accurate and com-
pact than those generated by NBL and Prop-NBL.

3. AVT-NBL is more efficient in its use of training data. AVI-NBL produces
classifiers that outperform those produced by NBL using substantially fewer
training examples.

Thus, AVT-NBL offers an effective approach to learning compact (hence
more comprehensible) accurate classifiers from data—including data that are par-
tially specified. AVT-guided learning algorithms offer a promising approach to
knowledge acquisition from autonomous, semantically heterogeneous informa-
tion sources, where domain-specific AVTs are often available and data are often
partially specified.

6.2 Related work

There is some work in the machine-learning community on the problem of learn-
ing classifiers from attribute value taxonomies (sometimes called tree-structured
attributes) and fully specified data in the case of decision trees and rules. [32] out-
lined an approach to using ISA hierarchies in decision-tree learning to minimize
misclassification costs. [36] mentions handling of tree-structured attributes as a
desirable extension to C4.5 decision-tree package and suggests introducing nom-
inal attributes for each level of the hierarchy and encoding examples using these
new attributes. [1] proposes a technique for choosing a node in an AVT for a binary
split using the information-gain criterion. [2] consider a multiple split test, where
each test corresponds to a cut through AVT. Because number of cuts and hence
the number of tests to be considered grows exponentially in the number of leaves
of the hierarchy, this method scales poorly with the size of the hierarchy. [17],
[39] and [22] describe the use of AVT in rule learning. [20] proposed a method

2 A Java implementation of AVT-NBL and the data sets and AVTs used in this study are
available at http://www.cs.iastate.edu/"jzhang/ICDMO04/index.html
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for exploring hierarchically structured background knowledge for learning associ-
ation rules at multiple levels of abstraction. [16] suggested the use of abstraction-
based search (ABS) to learn Bayesian networks with compact structure. [45] de-
scribe AVT-DTL, an efficient algorithm for learning decision-tree classifiers from
AVT and partially specified data. There has been very little experimental inves-
tigation of these algorithms in learning classifiers using data sets and AVT from
real-world applications. Furthermore, with the exception of AVI-DTL, to the best
of our knowledge, there are no algorithms for learning classifiers from AVT and
partially specified data.

Attribute value taxonomies allow the use of a hierarchy of abstract attribute
values (corresponding to nodes in an AVT) in building classifiers. Each abstract
value of an attribute corresponds to a set of primitive values of the corresponding
attribute. Quinlan’s C4.5 [36] provides an option called subsetting, which allows
C4.5 to consider splits based on subsets of attribute values (as opposed to single
values) along each branch. [13] has also incorporated set-valued attributes in the
RIPPER algorithm for rule learning. However, set-valued attributes are not con-
strained by an AVT. An unconstrained search through candidate subsets of values
of each attribute during the learning phase can result in compact classifiers if com-
pactness is measured in terms of the number of nodes in a decision tree. However,
this measure of compactness is misleading because, in the absence of the structure
imposed over sets of attribute values used in constructing the classifier, specifying
the outcome of each test (outgoing branch from a node in the decision tree) re-
quires enumerating the members of the set of values corresponding to that branch,
making each rule a conjunction of arbitrary disjunctions (as opposed to disjunc-
tions constrained by an AVT), making the resulting classifiers difficult to interpret.
Because algorithms like RIPPER and C4.5 with subsetting have to search the set
of candidate value subsets for each attribute under consideration, while adding
conditions to a rule or a node to trees, they are computationally more demand-
ing than algorithms that incorporate the AVTs into learning directly. At present,
algorithms that utilize set-valued attributes do not include the capability to learn
from partially specified data. Neither do they lend themselves to exploratory data
analysis wherein users need to explore data from multiple perspectives (which
correspond to different choices of AVT).

There has been some work on the use of class taxonomy (CT) in the learning
of classifiers in scenarios where class labels correspond to nodes in a predefined
class hierarchy. [12] have proposed a revised entropy calculation for constructing
decision trees for assigning protein sequences to hierarchically structured func-
tional classes. [27] describes the use of taxonomies over class labels to improve
the performance of text classifiers. But none of them address the problem of learn-
ing from partially specified data (where class labels and/or attribute values are
partially specified).

There is a large body of work on the use of domain theories to guide learn-
ing. The use of prior knowledge or domain theories specified typically in first-
order logic to guide learning from data in the ML-SMART system [6]; the FOCL
system [33]; and the KBANN system, which initializes a neural network using
a domain theory specified in propositional logic [40]. AVT can be viewed as a
restricted class of domain theories. [3] used background knowledge to generate
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relational features for knowledge discovery. [4] applied breadth-first marker prop-
agation to exploit background knowledge in rule learning. However, the work on
exploiting domain theories in learning has not focused on the effective use of AVT
to learn classifiers from partially specified data. [42] first used the taxonomies in
information retrieval from large databases. [14] and [11] proposed database mod-
els to handle imprecision using partial values and associated probabilities, where
a partial value refers to a set of possible values for an attribute. [30] proposed
aggregation operators defined over partial values. While this work suggests ways
to aggregate statistics so as to minimize information loss, it does not address the
problem of learning from AVT and partially specified data.

Automated construction of hierarchical taxonomies over attribute values and
class labels is beginning to receive attention in the machine-learning community.
Examples include distributional clustering [35], extended FOCL and statistical
clustering [43], information bottleneck [38], link-based clustering on relational
data [8]. Such algorithms provide a source of AVT in domains where none are
available. The focus of work described in this paper is on algorithms that use AVT
in learning classifiers from data.

6.3 Future work

Some promising directions for future work in AVT-guided learning include

1. Development AVT-based variants of other machine-learning algorithms for
construction of classifiers from partially specified data and from distributed,
semantically heterogeneous data sources [9, 10]. Specifically, it would be in-
teresting to design AVT- and CT-based variants of algorithms for constructing
bag-of-words classifiers, Bayesian networks, nonlinear regression classifiers,
and hyperplane classifiers (Perceptron, Winnow Perceptron, and Support Vec-
tor Machines).

2. Extensions that incorporate class taxonomies (CT). It would be interesting to
explore approaches that exploit the hierarchical structure over class labels di-
rectly in constructing classifiers. It is also interesting to explore several pos-
sibilities for combining approaches to exploiting CT with approaches to ex-
ploiting AVT to design algorithms that make the optimal use of CT and AVT
to learn robust, compact and easy-to-interpret classifiers from partially speci-
fied data.

3. Extensions that incorporate richer classes of AVT. Our work has so far focused
on tree-structured taxonomies defined over nominal attribute values. It would
be interesting to extend this work in several directions motivated by the nat-
ural characteristics of data: (a) Hierarchies of intervals to handle numerical
attribute values; (b) ordered generalization hierarchies, where there is an or-
dering relation among nodes at a given level of a hierarchy (e.g. hierarchies
over education levels); (c) tangled hierarchies that are represented by directed
acyclic graphs (DAG) and incomplete hierarchies, which can be represented
by a forest of trees or DAGs.

4. Further experimental evaluation of AVT-NBL, AVI-DTL and related learning
algorithms on a broad range of data sets in scientific knowledge discovery
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applications, including: (a) census data from official data libraries?; (b) data
sets for macromolecular sequence-structure-function relationships discovery,
including Gene Ontology Consortium* and MIPS?; (c) data sets of system and
network logs for intrusion detection.
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