
MoSCoE: A Framework for Modeling Web Service Composition and
Execution

Jyotishman Pathak1,2 Samik Basu1 Robyn Lutz1,3 Vasant Honavar1,2

1Department of Computer Science, Iowa State University, Ames IA 50011
2Center for Computational Intelligence, Learning & Discovery, Iowa State University, Ames IA 50011

3Jet Propulsion Lab/California Institute of Technology, Pasadena CA 91109

{jpathak, sbasu, rlutz, honavar}@cs.iastate.edu

Abstract

Development of sound approaches and software tools
for specification, assembly, and deployment of compos-
ite Web services from independently developed compo-
nents promises to enhance collaborative software de-
sign and reuse. In this context, the proposed research
introduces a new incremental approach to service com-
position, MoSCoE (Modeling Web Service Composition
and Execution), based on the three steps of abstraction,
composition and refinement. Abstraction refers to the
high-level description of the service desired (goal) by the
user, which drives the identification of an appropriate
composition strategy. In the event that such a composi-
tion is not realizable, MoSCoE guides the user through
successive refinements of the specification towards a re-
alizable goal service that meets the user requirements.

1 Introduction

Recent advances in networks, information and com-
putation grids, and WWW have resulted in the pro-
liferation of a multitude of physically distributed and
autonomously developed software components or ser-
vices [2]. The ability to construct and deploy com-
plex workflows of composite Web services by leverag-
ing such component repositories would lead to substan-
tial gains in productivity in several application domains
including e-Enterprise, e-Business, e-Government, and
e-Science. In this context, many research and indus-
trial efforts [11] have focused on various aspects of Web
service composition ranging from service discovery, to
service specification and deployment of composite ser-
vices. However, despite the recent progress, the cur-
rent state of the art in developing composite services
has several limitations:

• For specifying the functional requirements of a
composite service, the user is responsible for un-

derstanding and using service specification lan-
guages like OWL-S [12, 13, 26] and BPEL4WS
[3, 20], or even complicated labeled transition sys-
tems [5] which requires more detailed understand-
ing about the behavior of the desired service. This
makes the process of service composition tedious
and error-prone. As a result, there is a need for de-
veloping approaches which allow specifying com-
position requirements using high-level languages
that are intuitive and easy to understand.

• The existing approaches provide “single-step
request-response” paradigm for Web service com-
position. In other words, a user submits a goal
specification to a composition analyzer, which tries
to find an appropriate strategy for realizing the
composite service. In the event, such a composi-
tion is unrealizable, the whole process fails. As
opposed to this, we claim that, there should be
provision for iteratively refining the goal specifi-
cation in an intuitive, yet efficient way, to build
composite services.

• Individual Web services needed for realizing a
desired functionality are often developed by au-
tonomous groups or organizations. Consequently,
semantic gaps, arising from different choices of vo-
cabulary for specifying the functionality of the ser-
vices, are inevitable. We believe that frameworks
for assembling complex Web services from inde-
pendently developed component services should
provide support for bridging such semantic gaps.

• Available services as well as user requirements
change over time. Thus, environments for service
composition need to support rapid re-design and
re-deployment of services, through appropriate re-
use of parts of previously assembled services or
incorporation of new components.

1



Motivated by these concerns, the proposed re-
search develops a new service composition framework,
MoSCoE (Modeling Web Service Composition and
Execution) to overcome some of the above mentioned
limitations. Specifically, our work is aimed at:

• Developing a model-driven iterative refinement
and incremental approach to Web service compo-
sition using high-level description languages such
as UML state machines [8].

• Grounding the Web service composition frame-
work within an automata-theoretic [10] setup, and
using formal verification methods to guarantee the
soundness and completeness (with certain restric-
tions) of the composition process.

• Building on current approaches [13] for associat-
ing semantics to Web services using ontologies and
techniques for specifying mappings between on-
tologies.

• Demonstrating the feasibility of our approach with
real-world applications in bioinformatics [27] and
electrical power systems [17].

The rest of this paper is organized as follows: Sec-
tion 2 discusses related work in service composition,
Section 3 talks about our contributions and results
accomplished so far, Section 4 introduces our current
work in developing MoSCoE, and finally Section 5 ends
with conclusions and directions for further work.

2 Related Work

Several efforts have led to the development of plat-
forms and languages to support composition and de-
ployment of services [11]. In particular, BPEL4WS
[3] has emerged as an industry standard for represent-
ing service compositions where flow of a process and
bindings between services are known a priori and spec-
ified manually. However, manual composition is cum-
bersome and often error-prone. To this end, many
(semi-)automatic composition approaches have been
proposed. Berardi et al. [6] discussed the application of
Mealy machines for service representation and reduced
the problem of composition to satisfiability of deter-
ministic propositional dynamic logic. The technique
was later extended in [5] to a framework for represent-
ing services as labeled transition systems and defined
composition semantics via message passing. Pistore et
al. [20, 26] developed a framework for translation of
BPEL and OWL-S code into transition systems and
applied planning via symbolic model checking tech-
nique to do composition. Similarly, KarmaSIM [14]

translates OWL-S descriptions into petri nets to au-
tomate tasks such as simulation, validation, compo-
sition and performance analysis. Sycara et al. [25]
proposed an approach for automatic discovery, inter-
action and composition of semantic Web services using
hierarchical task network planning. A similar approach
for composing semantic Web services using hierarchical
task network planner, SHOP2, was proposed in [22].
More recently, the authors in [1] developed an archi-
tecture for integrating semantic Web services by auto-
matically generating a BPEL workflow using planning-
based techniques.

A number of model-driven approaches for service
composition have also been developed [19] where stan-
dard UML tools are used to provide a higher level of ab-
straction of the desired composite service. SELF-SERV
[4] proposed using state-charts for modeling composite
services, which are then declaratively composed and
executed in a dynamic peer-to-peer environment. Sko-
gan et al. [23] use UML for capturing composite Web
service patterns. These patterns, expressed in UML ac-
tivity diagrams with additional extensions, specify the
control flow between the individual services realizing
the composite service.

MoSCoE builds on the approaches mentioned above
and aims to provide a model-driven framework for
(semi-)automatically composing Web services. How-
ever, there are certain aspects of MoSCoE which are
inherently different from others. Firstly, our approach
extends the traditional notion of finite state automata
by defining its language over alphabets that include
functions with pre- and post-conditions over infinite-
domain variables. This extension allows us to develop
a formalism for determining a feasible composition, and
at the same item be generic to be reduced to solve a
similar problem using transition systems [5, 20]. Sec-
ondly, MoSCoE adopts an iterative refinement and
incremental paradigm for service composition. The
automata-theoretic approach of MoSCoE allows it to
identify specific parts of the goal specification which
cannot be realized using the pre-existing services. Us-
ing this failure-cause information, MoSCoE offers guid-
ance to users for iteratively refining the goal. Thirdly,
MoSCoE allows users to specify the non-functional as-
pects of the composite service which are used to se-
lect individual components that realize the goal. Fur-
thermore, these requirements are monitored during
execution of the composite service to ensure compli-
ance. Finally, MoSCoE supports specification of se-
mantic correspondences between multiple Web service
ontologies—an essential element for integration of au-
tonomous and heterogeneous services.

2



3 Prior Research

Our proposed approach (Section 4) for developing
a framework for Web services composition and execu-
tion builds on our work on three related topics: work-
flow composition, service discovery, and inter-ontology
mappings. We describe them briefly as follows:

Workflow Composition: In [16], we introduced the
notion of ontology-extended workflow components and
proposed semantically consistent methods for manually
assembling such components into complex ontology-
extended component-based workflows. Our approach
relied on making explicit the typically implicit on-
tologies underlying autonomously developed compo-
nents and specifying semantic correspondences be-
tween them. We defined a workflow schema describing
the components of the workflow and the characteristics
of the environment in which the workflow will be exe-
cuted capturing its functional (task to be performed),
informational (data flow), and behavioral (control flow)
aspects.

Service Discovery: In [18], we developed a frame-
work for semantic Web services discovery to assist com-
position of complex workflows. The proposed approach
relied on user-supplied, context-specific mappings from
an user ontology to relevant domain ontologies used
to specify Web services (based on OWL-S [12]). We
showed how user’s query for a Web service that meets
certain selection criteria (in terms of functional and
non-functional aspects) can be transformed into queries
processable by a matchmaking engine that is aware of
the relevant domain ontologies and Web services.

Ontology Mappings: Specifying inter-ontology se-
mantic correspondences is an important aspect for both
service discovery [18] and composition [16]. To ad-
dress this need, we have developed INDUS (Intelli-
gent Data Understanding System) [7], which provides
a user-friendly editor for editing Web service ontologies
(describing properties and capabilities of the services)
and for specifying relevant mappings between the on-
tologies. In addition, INDUS provides basic reasoning
capability to verify the semantic consistency of these
ontologies and mappings.

4 Current Work

Our current work seeks to develop a new framework
for (semi)-automatically realizing new services from
pre-existing ones (Figure 1). Composition in MoSCoE
is based on the three steps of abstraction, composition
and refinement. In MoSCoE, the user provides a high-
level specification of the desired service G using UML

state machines [8], a visual paradigm for representing
dynamics of software systems. State machines are in-
tuitive, have formal semantics and are relatively easy
to use and understand. They provide the sequence
of functions and relationships required to attain the
goal service. MoSCoE translates this goal specifica-
tion (by flattening the state machine) into a Finite
State Automata [10] (FSA), AG, which reveals the ex-
act sequence in which G evolves. In addition, state
machines in MoSCoE are semantically annotated by
the client using appropriate domain ontologies from a
repository. This is achieved by importing OWL ontolo-
gies into a UML model [9]. MoSCoE assumes that these
ontologies (and mappings between them) are specified
by a domain expert using existing tools such as INDUS
[7]. The user also provides non-functional requirements
such as performance and reliability criteria that need
to be satisfied by the composite service. The service
providers in MoSCoE publish their component services
by providing OWL-S and WSDL specifications. In par-
ticular, given n component services, C1, · · · , Cn, their
OWL-S process models are translated by MoSCoE into
corresponding FSAs, A1, · · · , An.

Service
Providers

Domain Specific
Data

UML State Machine

OWL−S

WSDL

OWL−S

WSDL

Abstract Composition
Analyzer

Failure Analyzer

Executable
Composition Analyzer

Execution Engine

BPELSelect Alternate

EXECUTION MGMT MODULE

USER

Ontology and Mapping Storage
DOMAIN ONTOLOGIST

Non−functional 
Requirements

In
pu

t

Available Resource

(Requirements Violated)

FSAs

Finite State Automata
Generator

COMPOSITION MGMT MODULE

Refinement
Request

State machine (goal)

OWL−S
Functional−aspects

Non−functional 
Requirements

Non−functional 
Requirements

No Strategy

List of Strategies

MatchMaker

Service 1 Service 2

Figure 1. MoSCoE Architectural Diagram

MoSCoE manipulates these input data (user-
developed service specification and published compo-
nent service descriptions) and automatically identifies
a composition that realizes the goal service. Because
users provide high-level specification of the compos-

3



ite service which may not be realizable using the pub-
lished component services, MoSCoE guides the users
for iterative refinement of the goal service specification.
The framework consists of two main modules: compo-
sition management module and execution management
module. The former identifies candidate composition
strategies that realize the goal, while the latter deals
with actual execution of the composite service.

Composition Management Module. Given a
FSA AG for the goal service and a set of component
FSAs A = {A1, · · · , An} for the existing services, ser-
vice composition in MoSCoE amounts to realization
of a composition strategy S (or a set thereof). This
strategy defines the sequence in which component ser-
vice FSAs should be composed such that the resultant
automata accepts a non-empty sub-language of AG, in
essence, leading it to one of its final state. The details
for determining a composition strategy are discussed
in [15].

In the event the strategy S is unrealizable either
due to incomplete specification about function names
or pre-/post-conditions required by the desired service,
but not satisfied by the component services, MoSCoE
invokes its failure analyzer sub-module. This module
supports iterative refinement of the abstract goal spec-
ification and provides feedback to the user regarding
the cause of the failure in an intuitive, yet efficient
manner [15]. The feedback may contain information
about the function names and/or pre-/post-conditions
required by the desired service that are not supplied
by any of the component services. Such information
can help to identify specific states in the state machine
description of the goal service. In essence, the mod-
ule identifies all un-matched transitions along with the
corresponding goal FSA states. We refer to them as
failure transitions and failure states, respectively. The
failure states of the goal FSA are mapped back to the
corresponding states in the state machine and the user
is asked to appropriately refine them to allow matching
of failure transitions. This process is iterated until a
realizable composition strategy is obtained or the user
decides to abort. After each such refinement, the FSA
translator is invoked again to generate FSA from the
refined state machine description. This translation will
be done incrementally and locally from the FSA gen-
erated in the previous iteration, and is based on incre-
mental evaluation techniques for declarative languages
[21] and automata-theoretic model checking [24].

In order to determine a feasible composition strat-
egy, the composition management module relies on two
translators: a state machine to FSA translator and a
OWL-S process specification to FSA translator to ob-

tain the automata representation of the corresponding
goal and component services, respectively. Translation
of state machines to finite state automata is shown in
[15], and translation of the OWL-S process specifica-
tions to FSA is carried out using techniques proposed
in [14, 26].

Execution Management Module. The result
from the composition management module is a set
of strategies each defining a sequence in which com-
ponent services can be invoked to realize a specified
goal. The execution management module considers
non-functional requirements (e.g., performance, cost)
of the goal (provided by the user) and analyzes each
composition strategy. It selects a strategy that meets
all the non-functional requirements of the goal, gen-
erates executable BPEL4WS code, and invokes the
MoSCoE execution engine. This engine is also respon-
sible for monitoring the execution, recording violation
of any requirement of the goal service at runtime. In
the event a violation occurs, the engine tries to select
an alternate composition strategy. Furthermore, dur-
ing execution of the strategy, the engine refers to the
pre-defined set of inter-ontology mappings to carry out
various data and control flow transformations [7, 16].

5 Conclusion and Further Work

In this paper we introduce MoSCoE, a new model-
driven paradigm for incremental composition of Web
services. MoSCoE extends the current approaches
for Web service modeling and introduces a technique
for iterative refinement and incremental development
of composite services in a dynamic environment. At
its core, MoSCoE uses UML state machines for visu-
ally representing composite services, and allows ser-
vice providers to publish their services using stan-
dard service description languages such as OWL-S.
MoSCoE translates these specifications into finite state
automata to determine feasible composition strategies
that are sound and provably correct. As more lan-
guages for service descriptions are standardized, appro-
priate translators can be developed to generate FSAs.
Furthermore, by applying ontologies and inter-ontology
mappings to ground service descriptions, MoSCoE pro-
vides a mechanism for bridging semantic gaps between
independently developed components. MoSCoE’s ser-
vice creation environment can be used to generate po-
tential workflows for achieving the desired functional-
ity by reusing existing Web services in various domains
such as Bioinformatics [27].

In the future, we plan to extend MoSCoE to incorpo-
rate additional features such as failure handling, QoS

4



management, and an interactive visual environment for
testing and debugging composite services.

References

[1] V. Agarwal, K. Dasgupta, and et al. A Service Cre-
ation Environment Based on End to End Composition
of Web Services. In 14th Intl. Conference on World
Wide Web, pages 128–137. ACM Press, 2005.

[2] G. Alonso, F. Casati, H. Kuna, and V. Machiraju.
Web Services: Concepts, Architectures and Applica-
tions. Springer-Verlag, 2004.

[3] T. Andrews, F. Curbera, and et al. Business Process
Execution Language for Web Services, Version 1.1.
In http://www.ibm.com/developerworks/library/ws-
bpel/, 2003.

[4] B. Benatallah, Q. Sheng, and M. Dumas. The
Self-Serv Environment for Web Services Composition.
IEEE Internet Computing, 7(1):40–48, 2003.

[5] D. Berardi, D. Calvanese, D. G. Giuseppe, R. Hull,
and M. Mecella. Automatic Composition of
Transition-based Semantic Web Services with Messag-
ing. In 31st Intl. Conference on Very Large Databases,
pages 613–624, 2005.

[6] D. Berardi, D. Calvanese, D. G. Giuseppe, M. Lenz-
erini, and M. Mecella. Automatic Composition of e-
Services that Export their Behavior. In 1st Intl. Con-
ference on Service Oriented Computing, pages 43–58,
2003.

[7] D. Caragea, J. Pathak, J. Bao, A. Silvescu, C. An-
dorf, D. Dobbs, and V. Honavar. Information Inte-
gration and Knowledge Acquisition from Semantically
Heterogeneous Biological Data Sources. In 2nd Intl.
Workshop on Data Integration in Life Sciences, pages
175–190. Springer-Verlag, 2005.

[8] M. Crane and J. Dingel. On the Semantics of UML
State Machines: Categorization and Comparision.
In Technical Report 2005-501, School of Computing,
Queen’s University, Canada, 2005.

[9] D. Duric. MDA-based Ontology Infrastructure. Com-
puter Science and Information Systems, 1(1):91–116,
2004.

[10] J. E. Hopcroft and J. D. Ullman. Introduction
to Automata Theory, Languages and Computation.
Addison-Welsey, 1979.

[11] R. Hull and J. Su. Tools for Composite Web Ser-
vices: A Short Overview. SIGMOD Record, 34(2):86–
95, 2005.

[12] D. Martin, M. Burstein, J. Hobbs, and et al. OWL-S:
Semantic Markup for Web Services, Version 1.1. In
http://www.daml.org/services/owl-s, 2004.

[13] S. McIlraith, T. Son, and H. Zeng. Semantic Web
Services. IEEE Intelligent Systems, 16(2):46–53, 2001.

[14] S. Narayanan and S. McIlraith. Simulation, Verifica-
tion and Automated Composition of Web Services. In
11th Intl. World Wide Web Conference, pages 77–88.
ACM Press, 2002.

[15] J. Pathak, S. Basu, R. Lutz, and V. Honavar. An
Automata-theoretic Approach to Service Development
Using Abstraction, Composition and Refinement. In
Submitted to IEEE 4th International Conference on
Web Services, Under Review.

[16] J. Pathak, D. Caragea, and V. Honavar. Ontology-
Extended Component-Based Workflows - A Frame-
work for Constructing Complex Workflows from Se-
mantically Heterogeneous Software Components. In
2nd Intl. Workshop on Semantic Web and Databases,
pages 41–56. Springer-Verlag, 2004.

[17] J. Pathak, Y. Jiang, V. Honavar, and J. McCalley.
Condition Data Aggregation with Application to Fail-
ure Rate Calculation of Power Transformers. In 39th
Annual Hawaii Intl. Conference on System Sciences.
IEEE Press, 2006.

[18] J. Pathak, N. Koul, D. Caragea, and V. Honavar.
A Framework for Semantic Web Services Discovery.
In 7th ACM Intl. Workshop on Web Information and
Data Management, pages 45–50. ACM press, 2005.

[19] K. Pfadenhauer, S. Dustdar, and B. Kittl. Challenges
and Solutions for Model Driven Web Service Com-
position. In 14th IEEE Intl. Workshop on Enabling
Technologies: Infrastructures for Collaborative Enter-
prises, pages 126–131. IEEE Press, 2005.

[20] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi.
Automated Synthesis of Composite BPEL4WS Web
Services. In 3rd Intl. Conference on Web Services,
pages 293–301. IEEE Press, 2005.

[21] D. Saha and C. R. Ramakrishnan. Incremental Evalu-
ation of Tabled Logic Programs. In International Con-
ference on Logic Programming, volume 2916, pages
389–406. Springer-Verlag, 2003.

[22] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau.
HTN Planning for Web Service Composition using
SHOP. Journal of Web Semantics, 1(4):377–396,
2004.

[23] D. Skogan, R. Grønmo, and I. Solheim. Web Service
Composition in UML. In 8th IEEE Intl. Enterprise
Distributed Object Computing Conference, pages 47–
57. IEEE Press, 2004.

[24] O. Sokolsky and S. A. Smolka. Incremental Model
Checking in the Modal Mu-Calculus. In Proceedings of
the 6th International Conference on Computer Aided
Verification, pages 351–363. Springer-Verlag, 1994.

[25] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srini-
vasan. Automated Discovery, Interaction and Com-
position of Semantic Web Services. Journal of Web
Semantics, 1(1):27–46, 2003.

[26] P. Traverso and M. Pistore. Automated Composition
of Semantic Web Services into Executable Processes.
In 3rd Intl. Semantic Web Conference, pages 380–394.
Springer-Verlag, 2004.

[27] F. Wu, J. Pathak, C. Yan, D. Dobbs, and V. Honavar.
PPID: A Database of Protein-Protein Interface. In To
be submitted to BMC Bioinformatics, 2006.

5


	Introduction
	Related Work
	Prior Research
	Current Work
	Conclusion and Further Work

