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Abstract—Rapid growth of RDF data in the Linked Open Data
(LOD) cloud offers unprecedented opportunities for analyzing
such data using machine learning algorithms. The massive size
and distributed nature of LOD cloud present a challenging
machine learning problem where the data can only be accessed
remotely, i.e. through a query interface such as the SPARQL end-
point of the data store. Existing approaches to learning classifiers
from RDF data in such a setting fail to take advantage of RDF
schema (RDFS) associated with the data store that asserts sub-
class hierarchies which provide information that can potentially
be exploited by the learner. Against this background, we present
a general approach that augments an existing directed graphical
model with hidden variables that encode subclass hierarchies via
probabilistic constraints. We also present an algorithm ProbAVT
that adopts the variational Bayesian expectation maximization
approach to efficiently learn parameters in such settings. Our
experiments with several synthetic and real world datasets show
that: (i) ProbAVT matches or outperforms its counterpart that
does not incorporate background knowledge in the form of
subclass hierarchies; (ii) ProbAVT remains competitive compared
to other state-of-art models that incorporate subclass hierarchies,
and is able to scale up to large hierarchies consisting of over tens
of thousands of nodes.

I. INTRODUCTION

Resource Description Framework (RDF) offers a formal lan-
guage for describing structured information on the Web, which
emerged as a basic representation format for the Semantic Web
over the past decade [1]. Cyganiak [2] estimated in 2011 that
there are about 300 interlinked data sets containing over 31 bil-
lion triples published in the Linked Open Data cloud covering
domains including government, life sciences, geography, social
media, and commerce. The increasing availability of large
RDF data sets on the web offers unprecedented opportunities
for extracting useful knowledge or predictive models from
RDF data, and using the resulting models to guide decisions
in a broad range of application domains. Indeed, recent effort
has considered the use of machine learning approaches, and

in particular, statistical relational learning algorithms [3], to
extract knowledge from RDF data [4], [5], [6], [7], [8].

However, most existing approaches to learning predictive
models from RDF data assume that the learning algorithm has
direct access to RDF data. In many settings, it may not be fea-
sible to transfer a massive RDF data set from a remote location
for local processing by the learning algorithm. Even in settings
where it is feasible to provide the learning algorithm direct
access to a local copy of an RDF data set, algorithms that
assume in-memory access to data cannot cope with RDF data
sets that are too large to fit in memory. Lin et al. [6] presented
an approach for constructing Relational Bayesian Classifiers
(RBCs) [9] from RDF data using statistical queries through the
SPARQL endpoint of the RDF store. More recently, Lin et al.
[5] have proposed extensions of this approach for learning a
class of generative models from a network of interlinked RDF
data stores.

However, RDF triples in an RDF store have often associated
with them, RDF Schema (RDFS) [10] that specify a set
of classes; these classes organize RDF objects (subjects and
objects of predicates) and predicates into type hierarchies as
well as domain and range restrictions on RDF predicates (i.e.,
the type of RDF objects that can appear as subjects or objects
of a predicate respectively). RDF schema offer a means to
view RDF data at different levels of abstraction. For example,
an individual can be described as a student at one level of
abstraction; or as an undergraduate or a graduate at a finer
level of abstraction; or (in the case of an undergraduate) as
a freshman, sophomore, junior or senior. RDF schema offer
the possibility of learning classifiers that are expressed in
terms of abstract attribute values leading to simpler, accurate
and easier-to-comprehend models that are expressed using
familiar hierarchically related attributes. Abstraction provides
a form of regularization to minimize overfitting (the finer
the level of granularity of description used, the smaller the
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number of data samples available to estimate the relevant
parameters of the predictive models). Current approaches to
exploiting abstraction hierarchies to learn from data have
serious limitations in settings where the learner does not have
direct access to data: (i) Propositionalization techniques that
use background knowledge to preprocess the data to obtain
a flattened encoding of data [11], [12], [13], [14] using a
fixed number of attributes and then use standard supervised
learning techniques to build predictive models from such data;
(ii) Adaptations of kernel methods such as support vector
machines that encode prior knowledge to constrain kernel
classifiers [15], [16], [17] which rely on computing a pairwise
similarity between data instances (typically in the kernel-
induced feature space); (iii) Variants of standard learning
algorithms e.g., decision tree learner, naive Bayes learner
designed to directly exploit prior knowledge in the form of
attribute value taxonomies in a principled fashion to trade
off the compactness of the classifiers against their predictive
accuracy [18], [19]. However, these approaches assume direct
access to data and hence are inapplicable in settings where the
data are simply too large to fit in memory.

Against this background, we introduce ProbAVT, an algo-
rithm for learning classifier from a remote RDF data store
in settings where the RDF data (ABox in the Semantic Web
parlance) is too large to be downloaded across the Internet
by the learner and/or to fit in memory, but RDFS (TBox in
the Semantic Web parlance) is not. ProbAVT offers a general
approach to encode the constraints specified in a subclass
hierarchy using hidden (latent or unobserved) variables in a
directed graphical model, and adopts the variational Bayesian
expectation maximization (VBEM) approach to efficiently
learn parameters. Our experiments with several synthetic and
real world datasets show that: (i) ProbAVT matches or out-
performs its counterpart that does not incorporate background
knowledge in the form of subclass hierarchies; (ii) ProbAVT
is competitive with other state-of-art models that incorporate
subclass hierarchies but assume direct access to data, and is
able to scale up to large data sets and large hierarchies.

The rest of the paper is organized as follows: we begin
with preliminaries defining and formulating the problem of
learning classifiers from RDF data and the associated RDFS
subclass hierarchies. We then present a general approach to
incorporate subclass hierarchies using hidden variables in a
directed graphical model, and adopt the VBEM approach for
parameter learning. We use naive Bayes as a demonstrating
example to give concrete derivations. Finally we present
results of experiments on several synthetic and real world
datasets, and conclude with a summary of the key results and
a brief discussion of related work.

II. DEFINING RDF LEARNERS WITH SUBCLASS
HIERARCHIES

Let I , B, L and V be pairwise disjoint infinite sets denoting
the sets of URIs, Blank nodes, Literals and Variables respec-
tively. An RDF triple is of the form (s, p, o) 2 (I [ B) ⇥
I ⇥ (I [ B [ L) where s is the subject, p the predicate, and
o the object. An RDF graph is a set of RDF triples. Given

an RDF graph G, the set of resources is the union of all
subjects and objects in G. In this paper, we assume that an
RDF graph may include subclass hierarchies, i.e. it includes
the following set of reserved predicates: rdfs:subClassOf
(sc), rdfs:domain (dom), rdfs:range (range), and
rdf:type (type). Given an RDF graph G, the TBox
denoted by G

T

is the subset of G defined by {(s, p, o) 2
G : p 2 {sc,dom,range}} [ {(s,type, o) 2 G : o 2
{rdfs : Class,rdfs : Property}}. The ABox of G denoted
by G

A

is G \ G
T

.
Given an RDF graph G, and a target class T which

is a distinguished URI of type rdfs:Class in G,
we denote the set of instances of the target class as
T (G) = {x : (x,type, T ) 2 G}. An attribute A (of a
target class T ) is a tuple of predicates (p1, . . . , pN ) such
that the domain of p1 is T , the range of p

n

is the domain
of p

n+1, and the range of p
N

is a literal. Given an instance
x
i

of the target class T and an attribute A
k

= (pk1 , . . . , p
k

J

),
we define Bi

k

to be the bag (multi-set) of literals matched
by the variable ? v

J

in the Basic Graph Pattern [20]
((x, pk1 , ? v1) AND (? v1, pk2 , ? v2) . . . (? vJ�1, p

k

J

, ? v
J

))
where v

j

2 V are variables. A target attribute is a
distinguished attribute denoted by A

c

, which describes the
class label of an instance, hence we assume that each instance
x
i

2 T (G) has exactly one class label, denoted by c
i

, and the
set of all possible values of c

i

is denoted by C.
An RDF data set D is a tuple (G, T ,A, A

c

) where G is an
RDF graph, T a target class in G, A = (A1, . . . , AK

) a tuple
of attributes, and A

c

is a target attribute. Given an RDF data set
D = (G, T ,A, A

c

), its induced multiset attributed data set [6]
is defined as M(D) = {((Bi

1, . . . , B
i

K

), c
i

) : x
i

2 T (G)}.
Let R be an rdfs:Class, we denote Sub(R) to be the set of
all subclasses of R (including R itself). In this work we further
assume that the range of each attribute A

k

can be asserted by
a subclass hierarchy R

k

, and we denote R = (R1, . . . , RK

).

Definition 1. The input to an RDF
sc

1 node classifier h is
(Bi

1, . . . , B
i

K

) where x
i

is an instance of a target class T , and
the output h(x

i

) 2 C is a class label.
An RDF

sc

Learner L is an algorithm that given an RDF
data set D = (G, T ,A, A

c

) asserted with a tuple of subclass
hierarchies R, its induced multiset attributed data set M(D),
a hypothesis class H , and a performance criterion P , outputs
a classifier h 2 H that optimizes P .

III. LEARNING RDF CLASSIFIERS WITH SUBCLASS
HIERARCHIES

We propose to model M(D) using a generative process that
incorporates the abstraction provided by subclass hierarchies.
In general, let us assume we are given a bayesian network
for M(D) without the consideration of subclass hierarchies,
also assume that an observed variable x can be asserted by a
subclass hierarchy R (see Fig. 1(a)). We introduce a hidden
(latent) variable a that takes a value from all nodes in the
subclass hierarchy R, then encode the subclass hierarchy by

1denotes RDF with subclass hierarchies. Further inclusion with subproperty
hierarchies would result in an expressivity of RDFS, however it is out of scope
of this paper and left as future work.
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(a) (b) (c) (d)
Fig. 1. A graphical model representation of the proposed approach to learn with subclass hierarchies. (a) Original bayesian network where x can be asserted
by some subclass hierarchy. (b-d) Examples of how the network can be augmented using the abstraction variable a.

placing the constraint: p (x | a) = 0 if x is not a descendent
of a in R. We interpret a as the abstraction that represents
the observed value x. In general, there are multiple ways to
incorporate the hidden variable a into the model (see Fig. 1(b-
d) for three examples).

To make our discussion more concrete, we focus on M(D)
using a simple relational naive Bayes of K attributes shown
in Fig. 2(a), which has the following joint distribution:

p (c,x) = p (c)
KY

k=1

NkY

n=1

p (x
kn

| c) (1)

Now we can apply the three extensions shown in Fig. 1(b-
d) to yield corresponding models shown in Fig. 2(b-d). For
example, the joint distribution for Fig. 2(b) reads:

p (c,a,x) = p (c)
KY

k=1

NkY

n=1

p (a
kn

| c) p (x
kn

| a
kn

) (2)

Recall that we intend to interpret a
kn

as the abstrac-
tion that represents the observed value x

kn

, hence, al-
ternatively for Eq. 2 we can write p (a

kn

| c, x
kn

) /
p (c) p (a

kn

| c) p (x
kn

| a
kn

) to describe the distribution of
abstractions that best represent a value x

kn

given class.
To learn the parameters for the abstraction-augmented

graphical models, we take the variational bayesian approach
as in [21] where we wish to approximate the log marginal
likelihoods given by:

ln p (c,x | m) = ln

Z
d✓ p (✓ | m)

IY

i=1

X

ai

p (c
i

,a
i

,x
i

| ✓)

(3)

We derive the lower bound by applying Jensen’s inequality
via variational distributions q✓ (✓) and {qai (ai)}

I

i=1.

ln p (c,x | m) �
Z

d✓ q✓ (✓) ln
p (✓ | m)

q✓ (✓)

+
IX

i=1

Z
d✓ q✓ (✓)

X

a

qai (ai) ln
p (c

i

,a
i

,x
i

| ✓,m)

qai (ai)
(4)

We will demonstrate the corresponding EM steps using the
model specified by Fig. 2(b), where the corresponding steps

for the other models can be derived analogously. Let N
ca

be
the expected total number of times variable A = a when its
parent C = c, similarly let N

ax

be the expected total number
of times variable X = x when its parent A = a. We also
let N

cx

be the number of times C = c and X = x. The
corresponding variational E-step and M-step can be derived
as follows [21].

Variational E-step:

qai (ai) / p
⇣
c
i

,a
i

,x
i

| ✓̃
⌘

(5)

Variational M-step:

ln ✓̃
ca

=  (�
ca

+N
ca

)�  

 
X

a

0

�
ca

0 +N
ca

0

!
(6)

ln ✓̃
ax

=  (�
ax

+N
ax

)�  

 
X

x

0

�
ax

0 +N
ax

0

!
(7)

A. Obtaining Sufficient Statistics for EM
To construct the model shown in Fig. 2(b), we need to obtain

only the relevant counts from data, e.g., N
cax

, the count of
instances where C = c, A = a, and X = x for the E-
steps. In the M-steps, both N

ca

and N
ax

can be derived from
N

cax

. In general, the sufficient statistics are equivalent to the
statistics needed to learn the original model, and the statistics
for bayesian networks for instance can be obtained by querying
the RDF data source using an RDF query language such as
SPARQL [6].

IV. EXPERIMENTS

We present three sets of experimental results using datasets
with subclass hierarchy information: one using datasets from
UCI repository; one using RDFS data; and a synthetic data
set with subclass hierarchies of variable size (to assess the
scalability of the approach as a function of the size of the
hierarchy).

A. UCI datasets with Subclass Hierarchy
We use three datasets (with only discrete attributes) from

UCI repository (i.e., Mushroom, Soybean, and Nursery) where
the subclass hierarchies are supplied by domain experts. These
datasets correspond to a special case for Fig. 2(b-d) where
N

k

= 1 for all k, and the goal of this set of experiments
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(a) (b) (c) (d)
Fig. 2. A naive Bayes instantiation of the proposed model to learn with subclass hierarchies.

Dataset NB NB-AVT ProbAVT(best)
Mushroom 95.83% *99.85% 99.40%
Soybean 92.09% *94.73% *94.29%
Nursery 90.32% 90.32% 90.25%

ProbAVT(b) ProbAVT(c) ProbAVT(d)
99.40% 99.14% 99.18%
93.85% 92.83% 94.29%
90.25% 90.19% 90.22%

TABLE I
ACCURACY RESULTS OF THREE UCI DATASETS.

is to compare the proposed method (denoted by ProbAVT)
against an alternative model proposed by [19] that extends
naive Bayes with subclass hierarchies (denoted by NB-AVT),
as well as the naive Bayes without subclass hierarchies as a
baseline (denoted by NB).

Table I shows the accuracy results of 10-fold cross val-
idation. Starred numbers represent best performing methods
under t-test with ↵ = 0.05. We observe that ProbAVT com-
pares favorably against other methods, with the exception of
Mushroom dataset, while in Nursery dataset all three methods
do not display significant differences. In terms of their run
time performance, we observe that both NB and ProbAVT are
relatively fast while NB-AVT is significantly slower than the
former. We conduct a detailed scalability analysis in Sec. IV-C.

B. RDF datasets with Subclass Hierarchy
1) Web Service Dataset: We use an RDF benchmark dataset

from OWLS-TC v2.12 service retrieval test collection that
contains 578 OWL-S Semantic Web service descriptions. The
attributes are input and output concepts described by various
subclass hierarchies (and even richer ontologies) consisting
over 5000 concepts, and the dataset corresponds to the general
case where N

k

� 1, hence we compare our method against
two other relational methods: a relational Bayesian classi-
fier [9] (denoted RBC) and a modified relational probability
tree [22] that incorporates subclass hierarchies (introduced as
part of SPARQL-ML toolkit [8] and hence we denote it by
SML). Table II shows the accuracy results of 10-fold cross
validation, and that ProbAVT significantly outperforms other
methods. In terms of their run time performance, both RBC
and ProbAVT completed under 5 minutes (SML run time was
not reported in [8]).

2) Social Network Dataset: We crawled the Last.fm3

dataset, a real-world music social network. We manually

2http://projects.semwebcentral.org/projects/owls-tc/
3http://www.last.fm

Fig. 3. RDF schema representation of Last.fm dataset.

identified 11 disjoint groups (categories of users who share
similar interests in music e.g., http://www.last.fm/group/Metal
in the case of users who enjoy Heavy Metal) that contain
approximately equal number of users in the network; we then
crawled users, items, and the links that denote the relations
among the objects in the network, which can be naturally
represented as an RDF graph (see Fig. 3 for an example
RDF schema representation). In particular, the subset of the
Last.fm data that we use consists of 25471 objects. These
objects belong to one of 4 types: 10197 users, 8188 tracks,
1651 artists, and 5435 tags. A user listens to a track which
is sung by some artist, and users can add tags to tracks as
well as artists. We aggregate three attributes for each user:
track, artist, and tags. Since there are no natural subclass
hierarchies available for this dataset, we used AVT-Learner
[23] to build a subclass hierarchy based on class distribution
for each attribute, independently for each fold in the cross
validation. Our task on this dataset is to classify users where
each of them belong to one of 11 categories (groups). Table
III shows the accuracy results of 10-fold cross validation.
While we observe that ProbAVT significantly outperforms
RBC, we also observe significant variation in performance
among the three considered ProbAVT models (b-d). In addition
all ProbAVT models perform significantly slower than RBC
for this dataset (see the next section for further analysis).
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RBC SML ProbAVT(best)
90.83% 82.88% *94.29%

ProbAVT(b) ProbAVT(c) ProbAVT(d)
94.29% 90.83% 92.21%

TABLE II
ACCURACY RESULTS OF THE WEB SERVICE DATASET.

RBC ProbAVT(best)
48.57% *51.33%

ProbAVT(b) ProbAVT(c) ProbAVT(d)
46.31% 51.33% 43.65%
TABLE III

ACCURACY RESULTS OF THE LAST.FM DATASET.

C. Scalability Evaluation

We generated a synthetic dataset to evaluate the scalability
of our proposed approach, specifically over the size of the
subclass hierarchy. We generate balanced binary class datasets
with a single attribute. We also generated subclass hierarchies
as fully balanced binary trees with levels ranging from 2 to
14, and for each dataset, we randomly assign a probability
distribution over the leaves of the hierarchy independently
for each class. For each hierarchy size, we then generated
4 datasets consisting of N instances per class where N 2
{100, 500, 1000, 10000}. Finally we generated 5 sets with
different random seeds for each dataset configuration, then
run NB-AVT and our proposed ProbAVT learner on a machine
with 2.8GHz CPU with 16 cores. We report the average of run
times for all 5 sets.

Fig. 4 shows the results of this experiment. First we observe
that the run time for both methods depends on the size of
hierarchy, but both methods scales well when the number of
instances is small (100 per class), this is the case even up
to hierarchy sizes over 10000 nodes. However, the run times
begin to differ significantly when the number of instances
increases. When there are 10000 instances per class, we
can see that NB-AVT is an order of magnitude slower than
ProbAVT. This degradation can be attributed to the NB-AVT
method that performs a search over the cut space on the
subclass hierarchy, which uses the conditional log likelihood
to define the cut refinement criterion that requires computation
performed on each individual instance.

On the other hand, when the hierarchy size increases over
10000, we still observe an exponential time increase for
ProbAVT especially for larger instance size over 10000. This
could be explained by an exponential increase on the number
of variational Bayesian E-steps and M-steps taken to converge
to a solution. It is of interest to investigate methods to achieve
a faster convergence time for VBEM.

We also implemented ML/MAP EM to compute a point
estimate of the parameters, and as in [21] we observe that the
ML/MAP alternative can easily get trapped in a local minimum
depending on the initial conditions. Variational Bayesian EM
on the other hand computes a distribution over parameters
and naturally incorporates a model complexity penalty, hence
offers an explanation of superior and more stable performance.

V. SUMMARY AND DISCUSSION

A. Summary
Rapid growth of RDF data in the Linked Open Data (LOD)

cloud offers unprecedented opportunities for analyzing such
data using machine learning algorithms. The massive size
and distributed nature of LOD cloud present a challenging
machine learning problem where the data can only be accessed
remotely, i.e. through a query interface such as the SPARQL
endpoint of the data store. Existing approaches to learning
classifiers from RDF data in such a setting fail to take advan-
tage of RDF schema (RDFS) associated with the data store
that asserts subclass hierarchies which provide information
that can potentially be exploited by the learner. Against this
background, we present ProbAVT, an algorithm for learning
classifier from RDF data and the associated schema. ProbAVT
encodes the constraints specified in a subclass hierarchy using
hidden variables in a directed graphical model, and adopts
the variational Bayesian EM approach to efficiently learn
parameters. Our experiments with several real world datasets
show that: (i) ProbAVT matches or outperforms its counterpart
that does not incorporate background knowledge in the form
of subclass hierarchies; (ii) ProbAVT remains competitive
compared to other state-of-art models that incorporate subclass
hierarchies, and is able to scale up to large hierarchies over
tens of thousands of nodes.

B. Related Work
ProbAVT introduced in this paper extends RBC-Learner [6]

to exploit background knowledge in the form of RDFS sub-
class hierarchies, and yet still learns without direct access to
RDF data.

Other approaches to exploiting abstraction hierarchies to
learn from data have serious limitations in settings where
the learner does not have direct access to data: (i) Propo-
sitionalization techniques that use background knowledge to
preprocess the data to obtain a flattened encoding of data
[11], [12], [13], [14] using a fixed number of attributes and
then use standard supervised learning techniques to build
predictive models from such data; (ii) Adaptations of kernel
methods such as support vector machines that encode prior
knowledge to constrain kernel classifiers [15], [16], [17] which
rely on computing a pairwise similarity between data instances
(typically in the kernel-induced feature space); (iii) Variants of
standard learning algorithms e.g., decision tree learner, naive
Bayes learner designed to directly exploit prior knowledge
in the form of attribute value taxonomies in a principled
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Fig. 4. Run time results with varying hierarchy size and instance size.

fashion to trade off the compactness of the classifiers against
their predictive accuracy [18], [19]. However, these approaches
assume that the learner has direct access to all RDF data (both
TBox and ABox). In contrast, our approach only assumes that
the learner has direct access to the ontology (TBox) associated
with the data which is usually much smaller than ABox, and
relies on SPARQL queries to access the instance data (ABox).
ProbAVT can be seen as a kind of topic model [24], [25]
or a directed graphical model with hidden variables [21]. In
fact, it is also a special case of Infinite Semantic Hidden
Models [26] which incorporate expressive ontologies (i.e.
SHOIN (D)) to learn predictive models by encoding logic
rules as constraints in the variables of Hidden Markov Models.
In our case we only encode subclass hierarchies using the
constraint p (x

kn

| a
kn

) = 0 if x
kn

is not a descendent of a
kn

.
This allows the model to be learned from statistical queries and
scale to large hierarchies.

C. Discussion
Our approach of using hidden variables to encode subclass

hierarchies provides an alternative to the global cut framework
proposed by [18], [19] and used in [27]. A cut on a hierarchy
is a subset of nodes such that every leaf of the hierarchy is a
descendant of some member in the cut. Loosely speaking, a
cut defines a hard abstraction over a hierarchy, whereas our
proposed method defines a soft and more general abstraction
using hidden variables, recall that we write p (a

kn

| c, x
kn

) to
describe the distribution of abstractions that best represent a
value x

kn

given class. Another major difference between these
two methods is that a cut is seen as a model structure where as
hidden variables introduce parameters within the model, and
they present different learning challenges. Structure learning
for the cut framework requires a search over the cut space,
which [19] uses the conditional log likelihood to define the
cut refinement criterion; however, introducing hidden variables
can make it intractable to estimate the marginal likelihood of
parameters (since they are not directly observed from data and
their values need to be inferred). Despite these challenges, our
experimental results show that the variational Bayesian EM
approach [21] can be scaled to large hierarchies over tens of

thousands of nodes. Furthermore, with the proposed simple
dependency structure (Figure 1), variational Bayesian EM can
be executed using only a set of statistical queries from data,
which can be obtained from a remote data set through a query
interface that supports such queries, which makes the approach
useful in settings in which the learning algorithm does not have
direct (in memory) access to data.

D. Future Work
In this work we only considered three examples of depen-

dency structures for the new abstraction variables (Fig. 1(b-
d)), where we observe differing predictive performances in our
experiments. Thus, it would be interesting to investigate model
selection in this setting to learn the appropriate model structure
from data. It is also interesting to model dependencies between
multiple attributes, perhaps using adaptations of a multi-modal
topic model [28], [29], [30] in our setting. Specifically, it
would be interesting to show that such models or their approx-
imations can be learned using statistical queries against RDF
data stores. It would also be interesting to consider extensions
of our approach that would allow the use of subproperty
hierarchies permitted by RDFS.
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