
On Context-Specific Substitutability of Web Services

Jyotishman Pathak Samik Basu Vasant Honavar
Department of Computer Science

Iowa State University, Ames, IA 50011-1040, USA
{jpathak,sbasu,honavar}@cs.iastate.edu

Abstract

Web service substitution refers to the problem of iden-
tifying a service that can replace another service in the
context of a composition with a specified functionality. Ex-
isting solutions to this problem rely on detecting the func-
tional and behavioral equivalence of a particular service
to be replaced and candidate services that could replace
it. We introduce the notion of context-specific substitutabil-
ity, where context refers to the overall functionality of the
composition that is required to be maintained after re-
placement of its constituents. Using the context informa-
tion, we investigate two variants of the substitution prob-
lem, namely environment-independent and environment-
dependent, where environment refers to the constituents of a
composition and show how the substitutability criteria can
be relaxed within this model. We provide a logical formula-
tion of the resulting criteria based on model checking tech-
niques as well as prove the soundness and completeness of
the proposed approach.

Keywords. Web services, Composition, Substitution, La-
beled Transition Systems, Mu-Calculus, Model Checking

1 Introduction
Service-oriented computing offers a powerful approach

for the construction of complex applications from au-
tonomously developed, distributed software components in
multiple domains including e-Science, e-Business and e-
Government. Consequently, there is a growing body of
work focused on various aspects of specification, verifica-
tion and composition of Web services.1

However, assembling a composite service that satisfy a
desired set of requirements is only the first step. Ensur-
ing that a composite service, once assembled, can be suc-
cessfully deployed presents additional challenges that need
to be addressed. Suppose a composite service Q relies
on component/pre-existing services Q1 · · ·Qn. Consider a
scenario wherein one of the component services, say Q1,
becomes unavailable either because the service provider for
Q1 chooses not to offer it any more or updates it (e.g., by
adding/removing some of Q1’s features), thereby altering

1In this paper, we use the terms “service” and “Web service” inter-
changeably.

its behavior. Consequently, the behavior of the composite
service Q that relies on Q1 is also altered. Because as-
sembly of composite services in general is computationally
costly, it is desirable to replace only the affected compo-
nent(s) e.g. Q1, with an alternative, say Q

′
1, while ensuring

that the resulting composite service Q
′

obtained by replac-
ing Q1 with Q

′
1 can support (minimally) all of the function-

ality that was originally offered by Q.
As a result, identifying a component service that can sub-

stitute for another service has become an important prob-
lem in service-oriented computing. Of particular interest
is the problem of determining whether a service can be re-
placed by another service in a specific context (or property)
ϕ, which essentially refers to the functionality of the com-
position that must be preserved after the substitution. Pre-
vious solutions [4, 6, 11, 12] to this problem have relied on
establishing functional or behavioral equivalence between
the service that is being replaced and the replacement ser-
vice (refer to section 6 for details).

We note that the requirement of functional/behavioral
equivalence is stronger than that is often needed in prac-
tice for substituting one service with another. Hence, we
introduce two variants of the context-specific service sub-
stitutability problem that are based on weaker and flexible
requirements than those assumed by previous approaches.
The solution makes it possible to safely replace a service
Q1 withQ

′
1 within the context of a given composition, even

though Q
′
1 may not meet the stronger requirement of being

functionally or behaviorally equivalent to Q1. More pre-
cisely, we represent a composition (denoted by ||) of two
services Q1 and Q2 that realizes a specific functionality or
property (denoted by ϕ and expressed in temporal logic) by
Q1 || Q2 |= ϕ. In the event Q1 becomes unavailable, the
goal is to identify candidates (Q′

1) that can be used as re-
placement for Q1 in the environment Q2 and property ϕ.
We represent services in our setting as labeled transition
systems [14] and properties by mu-calculus [8] formulas,
and introduce the notion of quotienting such formulas. In-
formally, quotienting can be regarded as “factoring” an ex-
isting property ϕ by a system (Web services in our case),
to yield another property ψ (in the same logic as ϕ). We
show how the quotienting technique can be used to identify
a substitute for another service within the specific environ-
ment and context of a particular composition.

1

The main contributions of this paper are as follows:

1. We introduce two variants of the problem of
context-specific substitution of Web services, namely
environment-dependent and environment-independent,
that relaxes the stronger requirements (e.g., simula-
tion/bisimulation equivalences) for replacing services
prevalent in existing approaches.

2. We present an algorithm to determine whether a ser-
vice can be replaced by another in a much more flex-
ible setting using a technique called quotienting. The
quotienting operation is defined in a manner that allows
us to seamlessly take into consideration possible non-
determinism in the service behavior.

3. We establish the soundness and completeness of the
proposed solution to determine context-specific substi-
tutability of Web services.

Organization. The rest of the paper is organized as fol-
lows: Section 2 gives an overview of our approach and
provides an example to illustrate the main ideas. Section 3
briefly introduces the relevant concepts from labeled transi-
tion systems and mu-calculus needed in the rest of the paper.
Section 4 describes the quotienting rules for mu-calculus.
Section 5 shows how the problems of determining context-
specific substitutability of a service can be reduced to satis-
fiability of the quotiented mu-calculus formulae. The paper
concludes with a discussion of related work in Section 6 fol-
lowed by a summary of the main results and a brief outline
of some directions for further research in Section 7.

2 Overview of our approach

2.1 Problem Definition
The problem of determining whether a service can be

substituted by another can have two different variants and
can be stated as follows.

Environment-Independent Substitutability: Given a
property ϕ, and services Q1 and Q′

1, can Q′
1 substitute Q1

regardless of the environment of Q1? Formally, for specific
Q1, Q

′
1 and ϕ:

∀Q2 : (Q1 || Q2 |= ϕ) ?⇒ (Q′
1 || Q2 |= ϕ) (1)

i.e. canQ′
1 replaceQ1 such that, whenQ′

1 is composed with
anyQ2,

2 the resulting composition realizes ϕ? Observe that
we only consider the Q2s where Q1 || Q2 |= ϕ. Composi-
tions with Q2s for which Q1 || Q2 �|= ϕ (i.e., compositions
that do not satisfy a desired property) are not interesting; the
antecedent of the implication is false leading to satisfiability
of the formula in equation 1.

Note that this notion of substitutability is applicable in
the setting where it is unknown apriori the services with
whom the substitute (Q′

1) is going to interact, and hence
it is useful to guarantee that the substitute can minimally

2In this case, Q2 becomes the environment.

interact with any service (i.e., the environment) that can in-
teract with the original (Q1) [6]. A relaxed version of the
above problem is where we consider the substitution only
for a particular environment that is known apriori; a prob-
lem that we refer to as environment-dependent substitutabil-
ity.

Environment-Dependent Substitutability: Given a
property ϕ, and services Q1 and Q′

1, can Q′
1 substitute

Q1 for a specific environment of Q1? I.e., for a par-
ticular Q1, Q

′
1, Q2 and ϕ, does Q1 || Q2 |= ϕ imply

Q′
1 || Q2 |= ϕ? Notationally,

(Q1 || Q2 |= ϕ) ?⇒ (Q′
1 || Q2 |= ϕ) (2)

Note that environment-independent substitutability im-
plies environment-dependent substitutability, but not the
other way around. Thus, the solution set for the latter is
a superset of the solution set for the former.

2.2 Proposed Solution
To address the problems defined in equations 1 and 2,

we will use the technique of quotienting. As outlined above,
quotienting of a propertyϕ byQ, denoted by (ϕ/Q), results
in a property ψ (in the same logic as ϕ) which if satisfied by
Q′ leads to Q || Q′ |= ϕ. Formally:

∀Q′ : (Q || Q′ |= ϕ) ⇔ (Q′ |= (ϕ/Q))

Quotienting operation, therefore, captures the (temporal)
obligation imposed by Q on its environment (Q′) in order
to satisfy ϕ.

Going back to equation 1, the result of (ϕ/Q1) denotes
the property that must be satisfied by all the possible Q2s
such that Q1 || Q2 |= ϕ. Similarly, (ϕ/Q′

1) must be satis-
fied by all the services (say Q′

2) such that Q′
1 || Q′

2 |= ϕ.
Proceeding further, if the set of Q2s is a subset of set Q′

2s,
then in all environments of Q1 where ϕ is satisfied, Q′

1

when placed in those environments also satisfies ϕ. There-
fore, the problem in equation 1 can be reduced to satisfia-
bility (model checking [8]) of (ϕ/Q1) ⇒ (ϕ/Q′

1).
Next consider the problem in equation 2. Here, (ϕ/Q2)

is the property that Q1 satisfies when Q1 || Q2 |= ϕ. In
other words, Q′

1 must also satisfy (ϕ/Q2) in order to be
able to substituteQ1 in the context ofQ2 and ϕ. The substi-
tutability problem, therefore, can be reduced to satisfiability
of (ϕ/Q2) by Q′

1. I.e. Solution to equation 2 holds if and
only if Q′

1 |= (ϕ/Q2).

2.3 Illustrative Example
Consider a setting wherein a traveler is interested in get-

ting information about airline reservations by interacting
with an existing Web service called FunTravel. This
service is composed of two component services namely,
TravelSearch (denoted by Q1) and ProfileInfo
(denoted by Q2). Q1 allows its clients to search for flight
tickets as well as hotel rooms, whereas Q2 stores and pro-
vides personal profile information (e.g., airline/hotel pref-

2

0
t

1
t

3
t

2
t

4
t

5
t

6
t

a?

h?

c?

d?

i!

b!

c?

0
t

1
t

3
t

2
t b!a? c?

0
t

1
t

3
t

2
t

4
t

5
t

6
t

a?

f?

c?

g!

b!

c?

e?

d?

(a) (b) (c)

0
s

1
sc!

0
s

1
sd!

0
s

1
sd!

e!

c!

Actions Name

a flightInfo
b flightResult
c userPreference
d frequentFlyerNum
e seatingClass
f rentalCarInfo
g rentalCarResult
h hotelInfo
i hotelResult

(d) (e) (f) (g)

Figure 1: Sample Services. (a) Q1. (b) Q′
1. (c) Q′′

1 . (d) Q2. (e) Q′
2. (f) Q′′

2 . (g) Action-Name mapping.

erences) of its clients. An interaction between the client
and FunTravel (and the two component services) can be
described as follows: (i) First the client sends a message
to Q1 to search for a flight with required inputs (e.g., email
address, departure/arrival cities); (ii) On receipt of the mes-
sage, Q1 interacts with Q2 to retrieve client’s profile infor-
mation (e.g., airline preference); (iii) Once this informa-
tion is received,Q1 searches for available flight options, and
sends the search results back to the client. Thus, the func-
tionality (or property denoted by ϕ) realized by this com-
position is: given an input for searching flight reservations,
the composite service provides a list of available options (if
any). We will show later (section 3.2) how to represent such
properties in temporal logic using mu-calculus formulas.

The services in our model are represented using Labeled
Transition Systems3 (LTS, see section 3.1) where the states
of the LTS correspond to various configurations of the ser-
vice, whereas transitions between the states correspond to
how the service evolves by updating its configuration. The
transitions are labeled by input (denoted by “?”) and out-
put (“!”) actions over which a service can synchronize, and
corresponds to an event in which the service receives and
sends a message, respectively. Figures 1(a) & 1(d) shows
the LTS representation of Q1 and Q2, respectively, whereas
Figure 2 show their composition. Note that, it is possible to
compose Q1 with Q′

2 (Figure 1(e)) and Q′′
2 (Figure 1(f)) as

well because both Q1 || Q′
2 |= ϕ and Q1 || Q′′

2 |= ϕ.
Now, assume that Q1 becomes unavailable and needs to

be substituted. As per equation 2, Q′
1 (Figure 1(b)) which

allows only to search for flight reservations, can act as a
candidate replacement and can be composed with Q2 (i.e.,
the environment) to satisfy the property ϕ. However, it
cannot be replaced for all possible Q2s (equation 1) be-

3We rely on translators similar to the ones proposed in [17] to trans-
late existing Web service specifications (e.g., BPEL) to their corresponding
LTS representations.

cause, for example, composition of Q′
1 and Q′

2 does not
satisfy the required property (since Q′

2 does not provide
the user airline preference required by Q′

1). Typically, to
identify a candidate replacement of Q1 for all possible Q2s,
it is required that the candidate exhibits more functional-
ity than Q1. However, if the property ϕ is considered,
the condition of substitutability can be relaxed. For ex-
ample, Q′′

1 (Figure 1(c)) can act as a replacement for Q1

for all possible Q2s since ϕ is satisfied in all the cases.
It is worth mentioning that Q1 and Q′′

1 are not function-
ally/observationally/simulation equivalent.

3 Modeling Web Services & Properties
We describe services using labeled transition systems

(LTS) [14] and properties using mu-calculus [8] formulae.
LTS and mu-calculus are expressive enough to represent
any event-driven systems (such as Web services) and tem-
poral logic properties (e.g., CTL, LTL, CTL∗), respectively.
The choice of LTS and mu-calculus formalisms in our set-
ting enables us to draw on a large body of existing results
in our approach to address the service substitutability prob-
lem.

3.1 Labeled Transition System

An LTS is defined by the tuple Q = (S, s0, A,∆) where
S is the set of states, s0 ∈ S is the start state and A is the
set of actions of the form {m?,m!,m, τ}. An action of the
form m? denotes an input, m! denotes an output, m is an
atomic action, and τ is an internal action. The transition
relation is ∆ ⊆ S × A × S. We will write s

a−→ s′ to
denote the relation (s, a, s′) ∈ ∆. We will say that an action
a is inverse of action b, denoted by inv(a, b), if and only if
a = m? and b = m!, or vice versa.

Definition 1 (LTS composition) Given Q1 = (S1, s0,1,
A1, ∆1) and Q2 = (S2, s0,2, A2, ∆2), their composition

3

0
s

0
t

0
s

2
t

1
s

4
t

1
s

6
t

1
s

3
t

1
s

5
t

0
s

1
t

(c?c!)τ

i! b!

h? a?

τ(c?c!)

Figure 2: Composition of Q1 and Q2 (Q1 || Q2)

under a set of “restrictions” R, denoted by (Q1 || Q2)\R,
is a tuple Q = (S, s0, A,∆) where S ⊆ S1 × S2, s0 =
(s01, s02), and A ⊆ A1 ∪A2 ∪ {τ}. The transition relation
∆ is defined as:

1.(s1, s2)
τ−→ (t1, t2) if there exists s1

a−→ t1, s2
b−→ t2,

inv(a, b) and a, b ∈ R

2.(s1, s2)
a−→ (t1, t2) if a �∈ R and there exists (i) s1

a−→
t1, s2 = t2, or (ii) s2

a−→ t2, s1 = t1

In the above, the restriction R defines the set of actions on
which Q1 and Q2 must make synchronized moves and gen-
erate a τ -transition in the composition. This is similar in fla-
vor to CCS processes (whose semantics is given in terms of
LTS) and their composition [14]. In Figure 1, the services
synchronize only on input/output actions c?, c!, d?,
d!, e? and e! since rest of the actions are input/output
action from/to the client. Figure 2 presents the composition
of LTSs Q1 and Q2.

3.2 Mu-Calculus
Mu-Calculus is an expressive logic with explicit least

and greatest fixed point operators for representing tempo-
ral properties. It is more general than logics like LTL (lin-
ear temporal logic), CTL (computation tree logic), CTL∗—
properties expressed in these logics can be represented us-
ing mu-calculus.

The syntax of mu-calculus formulas is defined over a set
of fixed point variables X and actions A as follows:

φ→ tt | ff | φ ∧ φ | φ ∨ φ | 〈a〉φ | [a]φ | X | σX.φ

where a ∈ A, X ∈ X and σ ∈ {µ, ν}. The 〈.〉 and [.] are
modal operators referred to as diamond and box modalities,
respectively. The operator µ is the least fixed point opera-
tor while ν is greatest fixed point operator. The formula of
the form σX.ϕ is a fixed point formula where X is said to
be bound by the fixed point operator σ. We will consider
formulas that contain only bound variables. We will write
def(X) = σX.ϕ for σX.ϕ.

The semantics of mu-calculus formula ϕ, denoted by
[[ϕ]]

e
is given by the set of states of an LTS M =

(S, s0, A,∆) which satisfies the formula. Here e is a map-
ping of the form e : X → 2S . Figure 3 presents the seman-
tics of mu-calculus formulas using M and e. In the figure,

1. [[tt]]e = S

2. [[ff]]e = ∅
3. [[X]]e = e(X)

4. [[ϕ1 ∧ ϕ2]]e = [[ϕ1]]e ∩ [[ϕ2]]e

5. [[ϕ1 ∨ ϕ2]]e = [[ϕ1]]e ∪ [[ϕ2]]e

6. [[〈a〉ϕ]]e = {s | ∃s
a−→ s′ ∧ s′ ∈ [[ϕ]]e}

7. [[[a]ϕ]]e = {s | ∀s
a−→ s′ ⇒ s′ ∈ [[ϕ]]e}

8. [[µX.ϕ]]e = fn
X,e

(∅)
9. [[νX.ϕ]]e = fn

X,e
(S)

Figure 3: Semantics of mu-calculus formula

the propositional constant tt is a satisfied by all states while
ff is not satisfied by any state. The semantics of conjunctive
and disjunctive formula expressions are the intersection and
the union of the semantics of the conjuncts and disjuncts,
respectively. 〈a〉ϕ is satisfied by states which have at least
one a-successor that satisfies ϕ. The dual [a]ϕ is satisfied
by the states whose all a-successors satisfy ϕ. The seman-
tics of fixed point variable X is defined by the mapping
function e. Finally, semantics of least and greatest fixed
point formula expressions are defined using the function
f

X,e
(Ŝ) = [[ϕ]]

e[X �→Ŝ]
where def(X) = σX.ϕ and Ŝ ⊆ S.

Here, e[X
→ S′] denotes an update to the mapping function
such that e[X
→ S′](Y) = S′ if X = Y and e(Y) other-
wise. It can be immediately shown that f

X,e
: 2S → 2S is

monotonic over the lattice of subsets of state-set S, i.e. for
all S1 ⊆ S2 ⊆ S: f

X,e
(S1) ⊆ f

X,e
(S2). Following Tarski-

Knaster theorem [20], the fixed point semantics as n appli-
cations of the function f

X,e
where n = |S|. The semantic-

computation of least fixed point starts from the bottom of
the subset-lattice ∅ while that of the greatest fixed point pro-
ceeds from the top element in the lattice S. We will use the
above semantic definition in the subsequent sections.

We say that an LTS M = (S, s0, A,∆) satisfies a fixed
point formula ϕ (M |= ϕ) if and only if s0 ∈ [[ϕ]]

e
. Note

that, if ϕ only contains bounded fixed point variables then
its semantics is independent of e. We will use s ∈ [[ϕ]] and
s |= ϕ interchangeably.

Example 1 Consider the LTS Q2 shown in Figure 1(d)
where s0 is the start state. We want to verify whether the
M |= ϕ where ϕ is defined as µX.〈c!〉tt ∨ 〈−〉X . We use
“-” as a short-hand to “any” action. The semantic compu-
tation proceeds as follows:

f
X,e

(∅) = [[〈c!〉tt ∨ 〈−〉X]]
e[X �→∅] = {s0}

f2
X,e

(∅) = f
X,e

(f
X,e

(∅)) = [[〈c!〉tt ∨ 〈−〉X]]
e[X �→f

X,e
(∅)]

= [[〈c!〉tt ∨ 〈−〉X]]
e[X �→{s0}] = {s0}

The computation can be terminated as fixed point is reached
and the semantics is {s0}. The formula is satisfied by states
which eventually reach a state that has an “c!” transition.
Therefore, M |= ϕ as s0 |= ϕ.

4

The preceding example contains one fixed point variable,
although in general multiple fixed point variables may ap-
pear in a formula resulting in a nested fixed point formula.
The nesting depth of the formula is defined by the number
of nestings of fixed point formula expressions present in the
formula. We will use nd(ϕ) to denote nesting depth of the
formula ϕ.

Going back to the example in Figure 1, composition of
Q1 and Q2 realizes the functionality or the property where
after the client sends an input message for searching flight
reservations (a?), the composite service eventually pro-
vides an output message (b!) with the list of available op-
tions. No other input/output is demanded/provided from/to
the client. We will refer to the required functionality as ϕ
which can be represented as:

〈a?〉µX. (〈b!〉tt ∨ 〈τ〉X) (3)

The formula represents the behavior where an a? action
is followed by a b! action after finitely many τ steps, where
a? corresponds to flight input information to be used for
search and b! corresponds to the search results.

4 Quotienting Mu-Calculus Properties
We now proceed to describe the quotienting of a mu-

calculus property (or formula) against an LTS. Given a for-
mula ϕ and an LTS Q, quotienting (ϕ/Q) results in a for-
mula ψ which must be satisfied by the environment of Q
such that the overall composition satisfies ϕ. Quotienting
of ϕ against Q is equivalent to the quotienting of ϕ against
s0, the start state of Q. Such techniques have been used
to solve problems in (a) model checking ring protocols [1],
(b) verification of parameterized systems [21] and (c) con-
troller synthesis of discrete event systems [3]. Each of these
techniques define quotienting on the basis of the definition
of composition of two components and with respect to the
specific domain being considered.

We will define the quotienting function (ϕ/
T,R

s) as / :
Φ × S × R × T → Φ where ϕ ∈ Φ, s ∈ S of an LTS Q,
R ∈ R is the restricted action set (the actions on which Q
must synchronize with its environment) and T ∈ T is a tag
set. The tag set contains elements of the form Xs

i where X
is a fixed point variable in ϕ, s ∈ S and i is an integer. The
tag set is necessary to ensure termination of the recursive
quotienting. The result of (ϕ/

T,R
s) is another mu-calculus

formula that must be satisfied by the environment state t
such that (s, t) |= ϕ under the restriction R.

Figure 4 presents the quotienting function. Each rule fol-
lows from the semantics of mu-calculus formula expression
described in Figure 3. Rule 1 states that any environment
state when composed with s can satisfy tt while Rule 2
states that there is no environment state that can be com-
posed with s to satisfy ff.

Rules 3 and 4 follow from the fact that semantics of con-
junctive and disjunctive formulas are intersection and union
of the semantics of conjuncts and disjuncts, respectively.

Rule 5 handles quotienting of diamond modal formula

1. (tt/T,Rs) = tt

2. (ff/T,Rs) = ff.

3. (ϕ1 ∧ ϕ2/T,Rs) = (ϕ1/T,Rs) ∧ (ϕ2/T,Rs).

4. (ϕ1 ∨ ϕ2/T,Rs) = (ϕ1/T,Rs) ∨ (ϕ2/T,Rs).

5. (〈a〉ϕ/T,Rs) = 〈a〉(ϕ/T,Rs)

∨




(∨
s′:s c−→s′ 〈b〉(ϕ/T s′)

)

if a = τ ∧ ∃s′ : s
c−→ s′

∧ inv(b, c) ∧ b, c ∈ R
ff otherwise

∨




(∨
s′:s a−→s′ (ϕ/T s′)

)

if ∃s′ : s
a−→ s′ ∧ a
∈ R

ff otherwise

6. ([a]ϕ/T,Rs) = [a](ϕ/T,Rs)

∧




(∧
s′:s c−→s′ [b](ϕ/T s′)

)

if a = τ ∧ ∃s′ : s
c−→ s′

∧ inv(b, c) ∧ b, c ∈ R
tt otherwise

∧




(∧
s′:s a−→s′ (ϕ/T s′)

)

if ∃s′ : s
a−→ s′ ∧ a
∈ R

tt otherwise

7. (σX.ϕx/T,Rs) =




σXs
i .(ϕx/

T∪{Xs
i
},R

s) if Xs
i
∈ T

σXs
i+1.(ϕx/

T [Xs
i

/Xs
i+1],Rs)

otherwise

8. (X/T,Rs) =




Xs
i if Xs

i ∈ T

(σX.ϕx/T,Rs) otherwise
where def(X) = σX.ϕx

Figure 4: Quotienting Rules

expressions. There are three possible cases by which (s, t),
where t is the environment state composed with s, can sat-
isfy 〈a〉ϕ. Each case leads a separate disjunct in the result
of quotienting:

• t can make a move on a to t′ such that (s, t′) satisfies ϕ.
This is represented by the first disjunct where the envi-
ronment state (in this case t) is left with the obligation
to satisfy the diamond modality 〈a〉 and at least one its
a-successor must satisfy the result of (ϕ/

T,R
s).

• The second case corresponds to the case when a = τ and
there exists transitions from s and t on which they can
synchronize and move to s′ and t′, respectively, such that
(s′, t′) satisfiesϕ. This case represents the situation when
both s and tmakes a synchronous move. As such the sec-
ond disjunct in quotienting imposes on the environment
to satisfy at least one diamond modal obligation 〈b〉 when
s has a c-successor and b and c are inverse of each other.
Further, b and c must be present in the restricted set.

• Finally, the state s can satisfy the diamond obligation 〈a〉.
This case corresponds to the situation when s makes a
move on a while t remains idle.

Note that quotienting automatically handles the possible

5

non-determinism at the state s by considering disjunction
over the all the relevant outgoing transitions. The Rule 6 is
the dual of Rule 5 and can be similarly explained.

Rules 7 and 8 represent the quotienting of fixed point
formula expressions and fixed point formula variables. The
rules closely follow the fixed point semantics as presented
in Section 3.2. Consider (σX.ϕ/

T,R
s). Recall that (s, t)

belongs to the semantics of σX.ϕ if it belongs to the seman-
tics of ϕ. Quotienting σX.ϕ results in a new formula over
fixed point variableXs

i (case 1 of Rule 7). The new variable
Xs

i is added to the tag set T . Case 2 in Rule 7 states that if
Xs

i is already present in the tag set denoting that σX.ϕ has
already been quotiented against s (i times), then a new for-
mula variable Xs

i+1 is used and the tag set is appropriately
updated; T [Xs

i /X
s
i+1] means that Xs

i is replaced by Xs
i+1

in T .
The new formula generated from quotienting ϕ against

s may lead to quotienting X against s. The situation cor-
responds to the case where (s, t) ∈ [[σX.ϕ]]e when (s, t) ∈
e(X). As such, quotienting of X against s is equal to Xs

i

(the last fixed point variable resulting from quotienting of
σX.ϕ against s). This is shown in Rule 8, case 1. On the
other hand, if quotienting ϕ against s leads to quotientingX
against s′ where s′ has not be used to quotient σX.ϕ before,
the situation corresponds to the case where (s, t) ∈ [[σX.ϕ]]

e

when (s′, t′) ∈ e(X). Furthermore, since s′ has not been
used to quotient σX.ϕ, it implies that (s′, t′) ∈ e(X) can
only occur if (s, t) ∈ fk

X,e
(Ŝ) and (s′, t′) ∈ fk−1

X,e
(Ŝ). This

leads to case 2 in Rule 8 where X is replaced by its defini-
tion and quotiented against the state (s′ in the above exam-
ple case) under consideration.

It can be proved that the number of times a fixed point
expression in ϕ is quotiented by a state has an upper bound
of |S|nd(ϕ), where nd(ϕ) is the nesting depth of formula
ϕ. For nd(ϕ) = 1, the proof of the above statement is triv-
ial since for a formula expression of the form σX.ϕx, ϕ is
quotiented at most |S| times (see Rules 7 and 8).

For the general case, let g(n) be the number of times a
fixed point expression in ϕ is quotiented by any state when
nd(ϕ) = n. Now, let us construct a new formula expres-
sion σZ.ϕz such that ϕ is a subformula of ϕz and Z is a
subformula in ϕ. That is, the nesting depth of σZ.ϕz is
n + 1 and σZ.ϕz can be quotiented by every state in the
LTS such that, for each such quotienting operation, the in-
ner formula ϕ will be quotiented g(n) times (induction hy-
pothesis). Therefore, the total number of times a formula
in σZ.ϕz is quotiented against any state is |S| × g(n), i.e.
g(n+ 1) = |S| × g(n). Proceeding further, ∀i ≥ 1.g(i) =
|S|i.

The following theorem which asserts the soundness and
completeness of the quotienting rules follows from the
above discussion.

Theorem 1 (Soundness & Completeness of Quotenting
Rules) Given Q1 = (S1, s01, A1, ∆1), Q2 = (S2, s02, A2,
∆2), restriction set R and a mu-calculus formula ϕ, the

(ϕ/∅,R
Q1)

= (〈a?〉µX.(〈b!〉tt ∨ 〈τ〉X))/t0
= (〈a?〉µXt0

1 .(〈b!〉tt ∨ 〈τ〉Xt0
1)) ∨ ϕ

X
t1
1

Rules 5, 1

ϕ
X

t1
1

= µXt1
1 .(〈b!〉tt ∨ 〈c!〉ϕ

X
t3
1

∨ 〈d!〉ϕ
X

t3
1

∨ 〈τ〉Xt1
1) Rules 7, 5, 4, 1

ϕ
X

t3
1

= µXt3
1 .(tt) Rules 7, 5, 1

(i)
(ϕ/∅,R

Q′′
1)

= (〈a?〉µX.(〈b!〉tt ∨ 〈τ〉X))/t0
= (〈a?〉µXt0

1 .(〈b!〉tt ∨ 〈τ〉Xt0
1)) ∨ ϕ

X
t1
1

Rules 5, 1

ϕ
X

t1
1

= µXt1
1 .(〈b!〉tt ∨ 〈c!〉ϕ

X
t3
1

∨ 〈d!〉ϕ
X

t3
1

∨ 〈e!〉ϕ
X

t3
1

Rules 7, 5, 4, 1

∨〈τ〉Xt1
1)

ϕ
X

t3
1

= µXt3
1 .(tt) Rules 7, 5, 1

(ii)

Figure 5: Results of quotienting ϕ (equation 3 in section 3) by:
(i) Q1 (Figure 1(a)) and (ii) Q′′

1 (Figure 1(c))

following holds:

((Q1 || Q2)\R |= ϕ) ⇔ (Q2 |= (ϕ/∅,R
Q1))

Example 2 Consider the sample services Q1 and Q′′
1 in

Figure 1(a, c) and the mu-calculus formula ϕ in Equation 3.
The goal is to verify whether Q′′

1 can substitute Q1 for all
possible Q2s in Figure 1(d, e, f) in the context of ϕ. The
results, ψ = (ϕ/∅,R

Q1) and ψ′′ = (ϕ/∅,R
Q′′

1), are shown
in Figure 5 where R = {c?, c!, d?, d!}.

4.1 Complexity of Quotienting
The complexity of quotienting operation can be derived

from the size of the result of the quotient. Given a formula
ϕ and the set of states S against which it is quotiented, the
number of times each subformula in ϕ is quotiented by each
state in S is |S|nd(ϕ) (see above) which is also the nest-
ing depth of the resultant quotient. Next, observe that the
Rules 5 and 6 considers all (matching) outgoing transitions
of the participating state and generates modal obligation fol-
lowing the transitions. As such, the size of the quotient is
amplified by a factor ofB whereB is the maximum branch-
ing factor of the LTS. The overall size of the quotient is
O(|ϕ| × |S|nd(ϕ) ×B), where |ϕ| is the size of ϕ.

5 Substitutability of Web Services
We now proceed to show that the environment-

independent and environment-dependent variants of the ser-
vice substitutability problem introduced in section 1 (equa-
tions 1 and 2) can be reduced to mu-calculus satisfiability
using the notion of quotienting presented above.

5.1 Environment-Independent Substi-
tutability

In this case, the problem is to determine whether Q′
1

can replace Q1 for all possible environments Q2s for which

6

Q1 || Q2 |= ϕ (Equation 1).
From Theorem 1, the property to be satisfied by all Q2s,

such that Q1 || Q2 |= ϕ, is (ϕ/∅,R
Q1). Similarly, the

obligation on possible environments of Q′
1 (say Q′

2s) is
(ϕ/∅,R

Q′
1).

If the set of Q2s is a subset of Q′
2s, then the following

holds:

∀Q2 : (Q1 || Q2)\R |= ϕ ⇔ Q2 |= (ϕ/∅,R
Q1)

⇒ Q2 |= (ϕ/∅,R
Q′

1)
⇔ (Q′

1 || Q2)\R |= ϕ

The environment-independent substitutability is, therefore,
reduced to satisfiability of (ϕ/∅,R

Q1) ⇒ (ϕ/∅,R
Q′

1).

5.2 Environment-Dependent Substi-
tutability

Assume that the composition of services Q1 and Q2 un-
der the restriction R realizes the functionality described by
the mu-calculus formula ϕ: (Q1 || Q2)\R |= ϕ. In the
event it is required to replace Q1 by Q′

1, it suffices to ver-
ify whether Q′

1 satisfies (ϕ/∅,R
Q2). The verification of

Q′
1 |= (ϕ/∅,R

Q2) can be done using mu-calculus model
checkers which takes as input the mu-calculus formula, LTS
and returns true or false depending on whether the LTS sat-
isfies the formula or not (using semantics of mu-calculus as
described in Section 3.2). If the Q′

1 satisfies (ϕ/∅,R
Q2), it

follows from Theorem 1 that (Q′
1 || Q2)\R |= ϕ. There-

fore, Q′
1 can replace Q1 in the environment in which Q1 is

composed with Q2 to satisfy ϕ (Equation 2).

5.3 Mu-calculus Satisfiability

Satisfiability of mu-calculus formula is performed by re-
ducing the problem to emptiness problem of alternating tree
automata [9] or identifying the winning strategy in a parity
game [2, 3, 18]. Details of the technique are beyond the
scope of this paper. At a high-level, these techniques deter-
mines the satisfiability of mu-calculus formula on the basis
of satisfiability of its subformulas and take special care to
handle fixed point satisfiability. The complexity of satisfi-
ability checking, is therefore, exponential to the number of
subformulas of the formula under consideration.

5.4 Complexity of Substitutability

Recall that, quotienting ϕ against an LTS containing set
of states S results in a formula (say ψ) of size O(|ϕ| ×
|S|nd(ϕ) ×B) and nesting depth |S|nd(ϕ) (see Section 4.1).
Complexity of satisfiability of ψ is exponential to the num-
ber of subformulas in ψ. Note that at each nesting depth in
ψ the number of subformulas is O(|ϕ| × B); therefore the
complexity for satisfiability checking isO(|S|nd×2|ϕ|×B).

For Q1, ϕ, determining whether Q′
1 can replace Q1

in an environment independent fashion in the context
of ϕ, has the complexity O(max(|S1|nd(ϕ), |S′

1|nd(ϕ)) ×
2|ϕ|×max(B1,B′

1)) where S1, B1 and S′
1, B

′
1 are set of states

and maximum branching factors of Q1 and Q′
1, respec-

tively.

Environment- Environment-
Dependent Independent

Context-Dependent This paper This paper, [4]
Context-Independent [4, 6] [4–6, 10–13, 19]

Figure 6: Classification of Web Service Substitutability

6 Related Work

Compatibility and substitutability of Web services has
received significant attention in the literature and we clas-
sify a representative set of such work into different cate-
gories in Figure 6. Bordeaux et al. [6] introduce three dif-
ferent notions of compatibility of Web services (namely,
observation indistinguishability, unspecified receptions, and
deadlock freeness) and use them as basis to define context-
dependent and independent substitution of Web services,
which are described using labeled transition systems. [11]
extends [6] to handle non-determinism in service behav-
iors. Mecella et al. [13] also introduce a formal model for
substitutability of Web services that are represented using
state machines. Substitution is considered in the context of
a composition where replaceability analysis is done based
on trace equivalence [14]. The idea of simulation equiv-
alence is applied by Benatallah et al. [4] for determining
compatibility and substitutability of Web services. The au-
thors define different notions of compatibility and replace-
ability of Web services (and their interaction protocols) and
provide various operators (e.g., intersection, projection) to
determine replacement of services.

On a somewhat different note, Beyer et al. [5] pro-
vide three different languages (namely, signatures, consis-
tency interfaces and protocol interfaces) for specifying Web
service interfaces, and consider subsumption equivalence
and subsumption ordering to ascertain replaceability of ser-
vices. Martens et al. [12] devise an approach for determin-
ing behavioral and syntactical compatibility between Web
services that are modeled as petri nets. Here also, the au-
thors adopt trace equivalence and bisimulation equivalence
to determine similarity between two petri net models. How-
ever, their approach also ensures that there are no deadlocks
between the compatible processes. Taher et al. [19] also de-
termine similarity between two services based on the inter-
face descriptions (specified in WSDL). This work assumes
the formation of communities of services that provide simi-
lar functionality, and hence can be substituted by analyzing
syntactical and semantical similarity between service de-
scriptions. Another interesting approach is reported by Li
and Jagadish [10] where the authors adopt graph-matching
techniques for substitutability analysis. Their work rep-
resents service interfaces using graphs, where nodes and
edges correspond to states and transitions of a service re-
spectively, and applies graph-similarity heuristics to deter-
mine compatibility between services.

The focus of this paper is on two variants of context-
specific service substitutability, namely environment-
dependent and environment-independent service substi-

7

tutability. In light of the results presented in section 5, the
(context-specific) simulation equivalence requirement ex-
plored in [4,5,12] corresponds to checking the satisfiability
of (ϕ/∅,R

Q1) ⇔ (ϕ/∅,R
Q′

1). This will force Q1 and Q′
1 to

be behaviorally identical with respect to the context ϕ and
will correspond to a stronger requirement for substitutabil-
ity.

7 Summary and Discussion
Determining substitutability of a service with another is

an important problem in service-oriented computing. In
this paper, we focus on the problem of context-specific ser-
vice substitution which requires that some desired prop-
erty ϕ of the component being replaced is maintained
despite its substitution by another component. We in-
troduce two variants of the context-specific service sub-
stitutability problem, namely, environment-dependent and
environment-independent substitutability that relax the re-
quirements for substitutability relative to simulation or ob-
servational equivalence between services. The proposed
solution to these two problems is based on the well-
studied notion of “quotienting” which is used to identify
the obligation of the environment of a service being re-
placed in a specific context. We demonstrate that both
environment-dependent and environment-independent ser-
vice substitutability problems can be reduced to quotienting
of ϕ against the service being replaced and the replacement
service and hence, to satisfiability of the corresponding mu-
calculus formulae. The correctness of our technique follows
from the correctness of the individual steps of quotienting
and satisfiability.

In the current setting, we did not take into considera-
tion the data parameters, i.e. messages being exchanged
by the services. In our prior work, [15, 16] we have dis-
cussed equivalence between services where the commu-
nication paradigm includes messages that can potentially
have an infinite domain. We plan to explore the applica-
tion of quotienting-based approach to context-specific sub-
stitutability to the setting of message-based communica-
tion. In particular, we plan to investigate the possible use of
value-passing LTS/CCS and more powerful value-passing
mu-calculus [21]. Furthermore, we assumed synchronous
communication between the services. Hence, considera-
tion of services which communicate asynchronously [7] and
analysis for substitutability in such a setting are of interest.
In addition to the above, we plan to work on adopting this
work into a more dynamic setting where services can be
replaced at runtime by automatic re-composition that takes
into consideration not only the functional, but also the non-
functional requirements for substitution. Finally, an inter-
esting aspect that deserves further research is analyzing fail-
ure of substitution, i.e., what action can be taken when an
existing service cannot be replaced by another.

Acknowledgment. This research has been supported in
part by the Iowa State University Center for Computa-
tional Intelligence, Learning & Discovery (http://www.

cild.iastate.edu), NSF grant 0509340 to Samik
Basu and NSF-ITR grant 0219699 to Vasant Honavar.

References
[1] H. Andersen. Partial Model Checking (extended abstract). In Logic

in Computer Science, 1995.
[2] A. Arnold, A. Vincent, and I. Walukiewicz. Games for Synthesis

of Controllers with Partial Observation. Theoretical Computer Sci-
ence, pages 7–34, 2003.

[3] S. Basu and R. Kumar. Quotient-based Control Synthesis for Non-
Deterministic Plants with Mu-Calculus Specifications. In 45th IEEE
Conference on Decision and Control, 2006.

[4] B. Benatallah, F. Casati, and F. Toumani. Representing, Analysing
and Managing Web Service Protocols. Data and Knowledge Engi-
neering, 58(3):327–357, 2006.

[5] D. Beyer, A. Chakrabarti, and T. Henzinger. Web Services Inter-
faces. In 15th World Wide Web Conference, pages 148–159. ACM
Press, 2005.

[6] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella. When are
Two Web Services Compatible? In 5th International Workshop on
Technologies for E-Services, pages 15–28. LNCS 3324, Springer-
Verlag, 2004.

[7] T. Bultan, J. Su, and X. Fu. Analyzing Conversations of Web Ser-
vices. IEEE Internet Computing, 10(1):18–25, 2006.

[8] E. A. Emerson. Model Checking and the Mu-Calculus. In Sympo-
sium on Descriptive Complexity and Finite Model, pages 185–214.
American Mathematical Society Press, 1997.

[9] E. A. Emerson and C. S. Jutla. The Complexity of Tree Automata
and Logics of Programs. SIAM Journal of Computing, 29(1):132–
158, 1999.

[10] Y. Li and H. Jagadish. Compatibility Determination in Web Ser-
vices. In ICEC Workshop on Workshop on E-Government and Web
Services, 2003.

[11] F. Liu, L. Zhang, Y. Shi, L. Lin, and B. Shi. Formal Analysis of
Compatibility of Web Services via CCS. In 1st International Con-
ference on Next Generation Web Services Practices, pages 143–148.
IEEE Computer Society, 2005.

[12] A. Martens, S. Moser, A. Gerhardt, and K. Funk. Analyzing Com-
patibility of BPEL Processes. In International Conference on Inter-
net and Web Applications and Services, pages 147–155. IEEE CS
Press, 2006.

[13] M. Mecella, B. Pernici, and P. Craca. Compatibility of e-Services
in a Cooperative Multi-platform Environment. In 1st International
Workshop on Technologies for e-Services, pages 44–57. LNCS
2193, 2001.

[14] R. Milner. Communication and Concurrency. Prentice Hall, New
York, 1989.

[15] J. Pathak, S. Basu, and V. Honavar. Modeling Web Services by
Iterative Reformulation of Functional and Non-Functional Require-
ments. In 4th International Conference on Service Oriented Com-
puting, pages 314–326. LNCS 4294, Springer-Verlag, 2006.

[16] J. Pathak, S. Basu, R. Lutz, and V. Honavar. Parallel Web Service
Composition in MoSCoE: A Choreography-based Approach. In 4th
IEEE European Conference on Web Services, pages 3–12. IEEE CS
Press, 2006.

[17] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Automated
Synthesis of Composite BPEL4WS Web Services. In 3rd Intl. Con-
ference on Web Services, pages 293–301. IEEE Press, 2005.

[18] C. Stirling. Games and Modal Mu-Calculus. In Second Interna-
tional Workshop Tools and Algorithms for Construction and Analy-
sis of Systems, pages 298–312, 1996.

[19] Y. Taher, D. Benslimane, M.-C. Fauvet, and Z. Maamar. Towards
an Approach for Web services Substitution. In 10th Intl. Database
Engineering and Applications Symposium, pages 166–173. IEEE
CS Press, 2006.

[20] A. Tarski. A Lattice-Theoretical Fixpoint Theorem and Its Applica-
tions. Pacific Journal of Mathematics, 5(2):285–309, 1955.

[21] P. Yang, S. Basu, and C. Ramakrishnan. Parameterized Verification
of Pi-Calculus Systems. In 12th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, pages
42–57. LNCS 3920, Springer-Verlag, 2006.

8

