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Abstract—In this paper, we propose a discriminative coun- to biological sequence classification [7] [24] with varying
terpart of the directed Markov Models of order &k — 1, or degrees of success (as estimated by standard measures of
MM( % — 1) for sequence classification. MMk —1) models capture  ¢|5ssifier performance - e.g., classification accuracyyvéier,

dependencies among neighboring elements of a sequence. Th ) ; . N
parameters of the classifiers are initialized to based on the ?he independence assumption ofitaBayes - which is tan-

maximum likelihood estimates for their generative counterparts. tamount to ignoring the sequential nature of the data - isnoft

We derive gradient based update equations for the parameters violated in practice. Hence, generative models of sequence
of the sequence classifiers in order to maximize the conditional data that relax the strong independence assumption of the
likelihood function. Results of our experiments with data sets Naive Bayes model, the associated sequence classifiers, and

drawn from biological sequence classification (specifically protein fficient alqorith for | - ¢ fiassi
function and subcellular localization) and text classification appli- efncient aigorithms 1or learning accurate sequence diassi

cations show that the discriminatively trained sequence classifiers from data are of significant interest.

outperform their generative counterparts, confirming the berefits The dependencies among the neighbouring elements of
of discriminative training when the primary objective is classi- a sequence can be modeled by usivgrams [6]. One
fication. Our experiments also show that the discriminatively might consider a Niwe Bayes classifier whose inputs consist

trained MM( k& — 1) sequence classifiers are competitive with the f L d to sinale lett H b
computationally much more expensive Support Vector Machines of k-grams as opposed 1o single letlers. However, because

trained using k-gram representations of sequences. successivek-gram in a sequence have — 1 elements in
common, the use ok-grams as input features for a Ne
l. INTRODUCTION Bayes classifier consistently and systematically violates

Sequence classification is an important problem that ariddaive Bayes assumption - that the inputs to the classifier are
in many real-world applications: protein function prediat independent given the class. By exploiting the well-known
text classification, speech recognition, intrusion dédect Hammersley-Clifford theorem [8], it is possible to constra
among others. Given a sequence (constructed from lettgenerative Markov Model of ordér—1, or Markov Model§—
drawn from a finite alphabet; for instance, 20-letter algtabl) (or MM(% — 1) for short) [16] or equivalently, the so-called
of amino acids in the case of protein function classificataon Naive Bayesk) (or NB(k) for short) [1] that models the de-
vocabulary of English words in the case of text classificgtio pendencies amonigneighboring elements of a sequence. This
the task of a sequence classifier is to assign a class lalmeldel was shown to have consistent improvement in accuracy
(typically drawn from a finite set of mutually exclusive dlasrelative to Ndve Bayes in sequence-based protein function
labels) to the sequence. Machine learning algorithms offier classification [1], as well as text classification [16] wittet
of the most cost effective approaches to designing sequempesformance of the classifier improving with increasinguesl
classifiers when a training set of labeled sequences isaéail of k£ (when sufficient training data are available).

Of particular interest are sequence classifiers based drapro Generative modelguch as Nive Bayes or Ni&ve Bayesk))
bilistic generative models of sequence data. Given a géneramodel the probability distribution of the process geneiathe
model, a new sequence can be assigned the most probalaita from each class. Classification is performed by exarini
class label. A Nive Bayes sequence classifier is based on otiee likelihood of each class producing the observed feature
of the simplest generative models of sequence data - namielythe data (e.g., letters in the sequence) and assigning the
one that assumes that each element (letter) of the sequesmguence to the most likely class (i.e., one with the laigest

is independenbf other elements of the sequeng&enthe lihood). In contrastdiscriminative modelgirectly compute
class. Training a Nae Bayes sequence classifier from datelass membership probabilities (or model class boundaries
simply involves estimating the probabilities for eachdetbf without modeling the underlying class feature densities. F
the alphabet conditioned on the classi\aBayes classifiers, example, classifiers trained using logistic regressionthee
because of their simplicity and low computation cost, aterof discriminative counterparts of the Na Bayes generative
used in applications ranging from text classification [l4hodels [21]. Discriminative models can often outperform



generative models on classification tasks [21] [15]. One @] [25] [1]. We start with a brief review of the basic ideas
the reasons for choosing discriminative models over géimera behind MM — 1).
models for classification was pointed out by Vapnik [23]: Let S be a sequence; be the value of an element ¢f at
“One should solve the [classification] problem directly anthe positioni, andX be the alphabet over which the sequence
never solve a more general problem as an intermediate steplues range.
(such as modeling the probability distribution of features A sequence can be modeled as a graph in which each
in the data for each class). Consequently, there has b&eguence element is represented by a node, and a direct
significant recent interest in the training of discriminati dependency between two neighboring elements is represente
counterparts of generative models for classification taBks by an edge in the graph. Generally, it is the case that
example, Ng and Jordan [15] have compareidv®ayes and two or more neighboring elements in the sequence will be
Logistic regression classifiers; Bouchard and Triggs [Sfehadependent on each other. Figure 1 shows several directed
explored the trade-offs between generative and discrimia dependency models for: a) N@ Bayes which corresponds
classifiers; Raina et. al. [18] have studied a hybrid classifito assuming no dependence between neighboring elements of
that combines generative and discriminative models fot tex sequence, b) a dependency model of the first order i.e.,
classification. one that considers dependencies between pairs of neigligbori
Against this background, in this paper, we explore thelements of a sequenck £ 2) and c) a dependency model of
discriminative counterpart of the Nee Bayesk) generative the second order i.e., one that considers dependenciesgamon
model for sequence classification. We derive a gradientdoashree adjacent elements of a sequence. More generallyadMark
learning algorithm for training sequence classifiers in & diModels of orderk — 1, capture the dependency between the
criminative setting. Results of our experiments on data se&furrent element;, and itsk— 1 preceding element{s;_1...s1]
drawn from biomolecular sequences and text classificationa sequence. MM{— 1) family of generative models offer
applications show that the discriminatively trained MM{1) the needed expressive power to model increasingly complex
classifiers outperform their generative counterparts and-c dependencies among neighboring elements of a sequence.
pete favorably with Support Vector Machines trained using

k-gram representations of sequences.

The rest of the paper is organized as follows: Section i @ @ @ @
describes the preliminaries of a generative Markov Modwd, a| + e g e @ &
shows how it can be trained discriminatively using gradient
ascent. Section 3 presents the algorithm for discrimieatiy ﬁ
training of MM(k —1) sequence classifiers. Section 4 describes’ e w& &
experimental set-up and results. Section 5 concludes with

discussion of related work and an outline of some directiorlglsg 1. Markov Model representation of dependencies of oide- 1

for further research on this topic. dependency. a) Nize Bayes model; b) Markov Model of order 1 c) Markov
Model of order 2

Il. GENERATIVE AND DISCRIMINATIVE MARKOV MODELS

We start by outlining the general classification strategy fo,. The joint probability.distribution for the MM(— 1) foIIovys_ .
the generative setup. We then present the Markov Mocﬂal[eCﬂy .fr.om the Juncppn Tree Theorem [8] and the definitio
of order k — 1 and apply the general strategy to build é’f conditional probability:
classifier from this model, and show how it can be trained [T, P(S = S -Sitk—1,¢5)
in a discriminative setting. P(S = s15..8n,¢j) = 1, P(S = si-8itk_2,¢;)

= P(S = 81...Sk_1,0j)

A. Generative Probabilistic Model

A model o for sequences defined over some alphabet Hp(s = 8i|8i—1.-8i—k+1,Cj)
specifies for any sequencg € X* the probability P, (S). i—k
Given a set of sequences, each instance is associated with
a class from the set of mutually disjoint class labels— ' he ProbabilitiesP(S = si|s;_1...si—r41,¢;) can be read-
{c1...ch,}. A classifier can be constructed in the followinglIy estimated from data using the counts OT t_he subs_eq_uences
fashion: First, a probabilistic model(c;) is trained for each f/i’/’.‘t'r‘]sia’]““’cj an(t:{ Si‘l"‘zi‘l’“fl’cfl' as suff|C|ent£§tlsEcs.
class using the sequences belonging;t@and second, in order ! € generalive model in place, a Sequerteo be

to predict a class for a novel sequengeBayes rule is used classified is assigned to the most likely class based on
Poe;)(S']e;)P(cy) the generative models for each class. Thatcigss(S =

Pae;)(57) 51...571,) = argmaxc,eC P(S = 81...8k—1, Cj) H;L:k P(S e
Si|Si—1...8i—k+1,¢;). Markov Models of ordert — 1 (where
B. MM(k — 1): Markov Model of orderk — 1 k > 1) have been shown to have consistent improvement in
Markov Models for sequence classification have been usaccuracy over N@e Bayes (which is equivalent to a Markov
with success by many researchers in a variety of applicatioModel of order 0), with the classification accuracy typigall

to obtainclass(S’) = arg max



increasing with the increase i (until we run out of data to where0 < « < 1 is the learning rate. Thus, all parameters in
reliably estimate the increased number of parameters) [1].P are iteratively updated until a desired termination cdaodit
C. DMM(k — 1): Discriminatively Trained Markov Models of IS sagsﬁed. ) , )
order k — 1 It is convenient to reparametriz&;, ;, ., in terms of
Wi, iy, DY SEINGP;, i\ o, = Zl eWirineq | where Z,,
82“62 e®i1-ix-<a is the normalization factor for each parame-
ter. This reparameterization is needed in order to mairiten
probabilities within the0, 1] interval. Note that since we are
normalizing over the first entry in the-gram, the normalized
result still corresponds to conditional probability of dareent
given itsk — 1 predecessor® (S = s;|$;—1...8i—k+1,¢q)- The

As noted earlier, when the primary objective is classific
tion, discriminatively trained classifiers often outpenfotheir
generative counterparts. Discriminative training of sifisrs
entails maximizing the conditional likelihood function 1]

In the case of MMk —1), the conditional likelihood function
for a sequence = s;...s, belonging to class = ¢, is given

by: second paramete®’,. i, , ., IS reparameterized in terms
Ple= oS = 51.50) = P(S = 51...8n,¢q) of wi,.iy 1,c, DY SEHINGP;, 5, (e, = Ziueuilv.,ikflyuq and
? e Yo ec P(S = s1.80,¢)) Zu = Y ireve.cc € -1 is the normalization

To minimize the notational clutter, we will usé;, . fatfo:;;/e(jr alltpotsh5|b1e vatlues @tfd?lk ﬂl’cgh eri
to denoteP(S — si|s;_1..5:k11,¢;) » and Py, e enote the counterpart @ after this reparameteri-

denote P(S — si,8:1...51_r,c;). Note that thékglg?lwents zation. NowCLL(d' : W) for a data point is given by:

of the sequence take values from the alphabetnd class
labels take values fromC. These parameters collectively
represent the corresponding model. We will u3¢o denote

this collection of parameters that specify the model. e“si---s’;ﬁ_m nl o kst _ige

Consider a data sé? = {d*...d™} of labeled strings where where »; = IT— Zy, » and Z, =
the strings consist of elements from a finite alphabeand Zc ec i corresponds to normalization over all classes
the class labels are drawn from a finite set of class labels The update equation for the resulting parameters after the
Thus,d' = (S!,d),1 <1 < m;n; = |S'| is length ofS! and above reparameterization is given by:

(VIVE < my) sfk eYandd e C. )

Let CL(d" : P) denote the conditional likelihood of thew;, ., c, (t + 1) «— wi,. i, .c, () + aw
sequencel’ under the modelP. Let CL(D : P) denote the OWis v lwwin
conditional likelihood of the data séd under the modelP.
Assuming independently identically distributed samplesg,
have:

ik,Cq

CLL(c;|S") = log ;4
Y

The parameters;, . ;,_, ., are updated in the similar fashion.
In what follows, we present the formula for the gradient
m of the conditional log-likelihood function for an indiviail
CL(D:P)=CL(D = {d"...d™} : P) = HCL(dl . P) instancepll in the data seD. Since the gradients commute with
summation, we can compute the gradient for the entire datase
D by simply summing up the gradients for the individual
samples fromD. Furthermore, if online update is used, we
can update the parameters based on individual samples from
D.
i CLL(d" : P) Let count[il....i;g : S!] be the number of times asubseqqence
s1..s; appears in the sequend®, and letd(c;,c,) be 1 if
m c; = cq and bed otherwise. The update equation foy, . ;, .,
= ) logP(C' ={[8" = .5}, is obtained by taking the derivative @fLL(d' : W) with
respect tow;, i, c,-
Training the model P in the discriminative setting is
equivalent to maximizing the conditional likelihood fuiust

LettingCLL(d" : P) denotelog CL(d' : P) andCLL(D : P)
denotelog CL(D : P) respectively, we can write:

CLL(D : P)

CL(D : P), with respect to the paramete® which in w = countliy,...,ix_1 : S']

turn is equivalent to maximizing the conditional log-likedod Wiy ...ikcq

CLL(D : P). We use gradient ascent to find parameters that countliy, ...,iy : S']  eiikea
maximizeCLL(D : P). We start with an initial estimat&(0) (count[zh i1 S Zy )

of P (more on this initialization in Section 3). Denoting by ’y(sl s o)
P(t) and P(t + 1) the estimates oP at iterationst andt + 1 (5(cj,cq) - W)
respectively, the update equation for each paraméter;, ., 2 (815 8m,)
at the iteratior¢ is given b - . . .
9 y Similarly, the update equation far;, ;. , ., is obtained
Piyiney (1) — Piy el () + aaCLL(D : P) by taking the derivative of th€’LL(d' : W) with respect to

af’q‘,l.uikcq P=P(t) uilmik717cq:



Training
Input: training dataD = {d*...d™}
Y (6([i1y ovorin_1], [sh, s st 1) model orderk, learning raten, momentumi
1.0k —1,Cq o Output: W (parameters of the trained model)
i1 ik_1-eq 1. Initialize w;, ..., ¢, < log count[iy...iy, ¢4
T 2. Initialize w;, . — log count[iy...ix—1, ¢4

OCLL(d : W)

~lk—1,Cq
1 _ 11
T CI N 3. For ea.cr‘d 7.(5 5C ) E.D. _
d(cj,cq) — Py e 4. do until termination criterion is met
Z(815 1 5p,)

A closer Io(oglf atglthep: ;deate equations reveals that the te§n For eachi;...i,_; € S
8(cj,cq) — 2" g the penalty for the parameterss.  For eachw €

Zy (81, ey S, ) For eache; € C
that are associated with a class that is not the true clagsof Z i € OCLL(d:W)
sequence, or the reward for the parameters associatedheith: Wosi i1, Wosdnikov,e T Qg0
true class. Since at the maxima or minima, the derivative of a FANWy iy gy e
function is 0, it follows that(c;, ¢,) — Z=nca)_ should 10.  For each; € C
o Z (51,0, snR o o 8CLL(d":W)
be 0, which is the case when the probability of a sequen?:(l,- Uiy.ig—1,e5 T Wig.in_1,c; +O‘aui1._,ik71,%
given its true class is 1. FAUiy iy ey

IIl. TRAINING PROCEDURE

Training of DMM(k — 1) (discriminative Markov Model of
orderk — 1) proceeds as follows.

The parameters of MM( - 1), i.e., eachw;, ., and
eachu;, i, _, ., is initialized with the logarithm of counts of
subsequences associated with the parameters. This camossp
to initializing P (equivalently?’), with the parameters of the
generative MMg — 1). The parameters are then iteratively Fig. 2. DMM(k — 1): Training and Classification
updated using the gradient ascent procedure until a desired
termination criterion is satisfied (more on this in the next
section). The momentum modification was used to speed u®) Subcellular Localization Data:In the subcellular lo-
convergence [17]. Once we have trained the model, we camlization task [19], the goal is to predict the subcellular
classify an input sequence by assigning it to the most plebakocalization of a protein from its sequence. The data sets
class under the model. The pseudocode for the algorithmused in our experiments are the same as those explored in
shown in Figure 2. the previous studies on predicting cellular localizatioh o

IV. EXPERIMENTAL SETUP AND RESULTS protiens by Bhasin et. al. [4] and Hua et. al. [11]. These
. . . _ data sets are based on localization data for prokaryotic and
This section describes the datasets, experimental se&"('ﬂ(aryotic proteins derived from Swiss-Prot databasedsa

used to test Ql;r. model an-d provides direct comparison" Of3§.0) [2]. The first dataset comprises a total of 997 prokiézyo
DMM(k—1) with its generative counterpart MM(-1), as we roteins. It includes the proteins from the following three

as with a Support Vector Machine using a data representatigg. .ant subcellular locations: cytoplasmic, periplasmand

with the same representational power as that of MMI) extracellular. The second data set consists of a total o¥ 242
models. eukaryotic proteins. It includes proteins from four diffat
A. Datasets subcellular locations: nuclear, cytoplasmic, mitochaagdand
The experiments were conducted on data sets drawn fr@pﬁracellular. Sequence identity within a class is belowo90
two app"ca’[ion domains: biomolecular sequence classifica No transmembrane prOteinS were included. Table | sumnwrize
and text classification. In the case of biomolecular seqeiergome characteristics of these two datasets.
classification, we have experimented with data sets usawint 3) Text Data: We used the Reuters-21578 Text Catego-
protein function and in the subcellular localization sesdiln rization datasetswith the 10 categories (acquisition, corn,
the case of text classification, we have experimented wih tbrude, earn, grain, interest, money-fx, ship, trade andatyhe
widely used Reuters Text Categorization data set. that have the highest number of positive training examples.
1) Protein Function Data:The first biomolecular sequenceHowever, because of the large size of the vocabulary, we
dataset is based on the families of human kinases. The Kingseformed feature selection based on mutual informatign [9
dataset contains a total of 290 protein sequences belongiageduce the vocabulary size to 300 words. Even with this
to four functional classes containing 1, 10, 69, 210 segeenceduced vocabulary, the estimation of parameters MM(l)
respectively. The goal is to assign a given kinase sequenceot SVM classifiers becomes infeasible for valuescajreater
one of the four kinase subfamilies. This dataset was prsijou
used in the protein function studies by Andorf et. al [1]. Lhitp://www.daviddlewis.com/resources/testcollectiomsters21578/

¥
Output(V)

Classification
Input: model ordet, sequence to be classifi¢d= s;ss...s,,

Ul k—1,c; 70 e trimkieg
2. outputc
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than 2 because of the sparsity of the data as well as mem
requirements unless additional steps are taken to redece =7~ 1"" %, ~=_1l,

size of the models. Hence, we limit the experiments reported

in this paper experiments to values/ofno greater than 2. Fig. 3. Negative Conditional Log-Likelihood versus acayran training
and validation set for Eukaryotic set for classes Cytoplastktracellular,

B. Experiments Exploring the Conditional-Log-Likelihoesl Mitochondrial and Nuclear for k=2; Cytoplasmic, Mitochoiedrand Nuclear
A s ot for k=3; Mitochondrial for k=4
ccuracy on Training and Validation Sets

Dicriminatively trained classifiers have been reporteddo b
more susceptible to overfitting than their generative oeunt the plots are not shown fdr = 3 because the negative CLL
parts [15]. It is therefore interesting to explore whethee t was found to be close to 0 at initialization. Finally, for= 4
DMM(k — 1) models suffer from overfitting. Hence, we startven though the negative CLL decreases from 50 to almost
with an examination of the behavior of the DMM{ 1) model 0, the accuracy on training and validation sets fail to show
by observing the relationship between maximizing condaio improvement as training progresses.
likelihood versus accuracy on a validation set (data notuse The observation that in a few instances, accuracy on the
in training of the classifier). We show the behavior of theraining data drops as the the conditional log likelihoodrec
class-conditional log-likelihood, accuracy on the tradata, continues to increase, at first glance, is somewhat puzzling
and accuracy on the previously unseen data in the case of théce possible explanation is that the conditional log iited
Eukaryotic subcellular localization datasets (Figure W)e tends to favor short sequences over longer sequences (by
datasets were split into training set and validation sethi tvirtue of the fact that probabilities associated witkgrams
ratio 90%-10%. The values of the negative conditional loget multiplied in computing likelihood) whereas classifica
likelihood function and the accuracies on the training $&t aaccuracy measures the percentage of sequences in the data
on the validation set were recorded at each iteration of tBet that are correctly labeled, regardless of their lengiiis
algorithm, and repeated for the values lof= 2,3,4. The suggests a possible direction for improving our currenbalg
values of the negative CLL are plotted on the right y-axigithm - normalizing the conditional likelihood score foroka
and the values of accuracy were plotted on the left y-axisequence by the length of the sequence
with the number of iterations plotted on the x-axis. It is clear that the gradient achieves the highest accuracy

In the case of the Eukaryotic dataset, whier2 for Cyto- on the validation data within several iterations, and mdst o
plasmic and Nuclear classes, accuracy on training data g@®s time with maximization of the likelihood function, the
from 80% to 89% and 82% to 92% respectively after whichccuracy on the unseen data drops, which suggests overfittin
the training accuracy begins to drop even though negatide CiTherefore, in our experiments we choose the parameters when
continutes to decrease. Accuracy on the validation datagyrothe accuracy on the validation set was at its highest value in
from 78% to 82% and 80% to 87% respectively in severghe first 30 iterations.
iterations and then starts to decrease suggesting thebpigsi ) ] _
that the model is overfitting the parameters. For Extraatdiu C: Experimental Comparison of DMM(— 1) model with
and Mitochondrial classes, the accuracy on the training ddfM(k — 1) and SVM
increases with the number of iterations of the algorithnd an For all the experiments we have used 10-fold cross-
so does the accuracy on the validation data for Extracellulalidation to evaluate our approach and to compare it with
class. For the Mitochondrial class we again observe inereageneratively trained model and the SVM. Furthermore, 10%
in accuracy after the first several iterations, followed by ef the training data during each round of cross-validati@s w
decrease in accuracy even though negative CLL continugghheld for the validation purposes. After 30 iteratiome t
to decrease. Fok = 3 in Cytoplasmic, Mitochondrial and parameters that yield the highest accuracy on the validatio
Nuclear classes, the accuracy on validation set decreaskes set were used in the resulting classifier. Note that the ifleiss
then increases to its starting value, even though accuracyis tested on the data not used for training or validation. The
the training set increases. In the case of the Extraceltldess, parametersy and A were set to those that yield the fastest




TABLE Il TABLE IV

ACCURACY ON KINASE DATASET OBTAINED BY 10-FOLD ACCURACY, SENSITIVITY, SPECIFICITY AND CORRELATION COEFFICIENT
CROSSVALIDATION , DMM(k — 1), MM(k — 1) k = 2,3,4, AND SVM ON EUKARYOTIC DATASET OBTAINED BY 10-FOLD CROSSVALIDATION ,
FORk = 2,3 (k = 4 1S COMPUTATIONALLY INFEASIBLE FOR SVM) OF THE DISCRIMINATIVE, GENERATIVE AND SVM APPROACHES
[ ] DMM [ MM [ SWM | Accuracy Specificity
2 89.01-5.89 87.117.2 90.7 Class | k DMM MM SVM DMM MM SVM
3 [ 91550587 | 9113555 | 903 Ctpl | 2| 7772 73.84] 81.87 | 77.22 | 69.76 | 90.99
3 86 859 | 88.01 | 91.28 | 90.76 | 93.2
4 78.48t6.5 | 78.32£8.8 X
4 | 89.29 | 88.96 X 97.76 | 97.41 X
Extr 2 | 9213 | 89.7 | 9245 | 98.76 | 93.82 | 98.47
TABLE I 3| 9419 | 94.15| 95.49 | 99.95 | 99.8 | 99.33
ACCURACY, SENSITIVITY, SPECIFICITY AND CORRELATION COEFFICIENT 4 | 9559 | 95.67 X 99.8 99.7 X
FORDMM(k — 1), MM(k — 1), AND SVM ON THE PROKARYOTIC Mit | 2 | 8237 | 7544 88.46 | 83.76 | 76.83 | 97.86
10 3 | 89.74 | 89.67 | 91.14 | 98.2 98.2 | 97.86
DATASET OBTAINED BY 10-FOLD CROSSVALIDATION 4| 9044 | 9056 N 08.6 08.6 N
ACCUTacy Specichy Nclr 2 | 80.55 | 8348 | 85.74| 71.88 | 90.45 | 90.45
3 | 8752 | 87.97| 89.25| 924 | 92.48 | 92.03
Peri | 21 82911 84.07| 90.17 | 87.77 | 87.67 | 92.7 Sencitivity Correlation Coefficient
3| 8678 | 87.2 | 88.26| 97.74 | 97.61 | 97.23
k | DMM MM SVM | DMM MM SVM
4] 8257|8213 x | 855 | 8.1 | x Cipl | 2 | 7894 | 8421 5863 | 052 | 049 | 053
Extr | 2 [ 95.05 [ 94.01 | 93.68 | 98.52 | 96.09 | 97.64
3| 7251 | 73.68 | 73.78 | 0.65 0.65 0.69
3 | 94.78 | 94.88 | 94.88 | 99.17 | 99.08 | 99.44
4 | 67.69 | 67.4 X 0.73 0.72 X
4 | 86.84 | 86.44 X 88.4 | 87.78 X
Extr | 2 | 49.23 [ 63.08 | 53.54 | 0.56 0.45 | 0.63
Ctpl 2| 90.01 | 90.59 | 90.17 | 70.61 | 76.89 | 81.55
3| 56.92 | 57.53 | 70.77| 0.72 0.72 0.79
3| 91.35 | 91.21 | 92.47 | 75.47 | 75.92 | 79.94
4 | 86.36 | 86.02 81.36 | 81.36 41 707716954] x | 081 ] 0B | X
. Sencitivity . Co.rrelation'COeﬁici);nt Mit 2 /3.2 1 66.36 1 26.791 045 0.32 1 0.37
3 | 34.27 | 33.01| 47.04| 0.46 045 | 0.56
_| k| DMM | MM _| SVM | DMM | MM | SVM 4| 36.76 | 3769 | «x 05 | 051 | x
Perl | 2| 63.76 | 69.991 94.041 05 | 054 | 0.76 Nclr | 2 | 91.07 | 75.23 | 80.04 | 0.63 | 067 | 0.71
34366146231 6297 054 | 055 06 3| 8159 | 825 | 8587 | 075 | 075 | 0.71
4 | 70.79 | 70.36 X 0.52 0.51 X 4 | 9033 | 88.61 X 0.77 0.76 X
Extr | 2 [ 66.17 [ 785 | 60.74] 0.72 0.71 | 0.64
3 | 58.32 60 57.01 0.7 0.7 0.7
4 | 73.84 | 75.33 X 0.5 0.5 X
ctl g gg'zg gg'gg g‘ll'tl)‘ll 8'% 8';; 8';; MM(k—1), and 1.5% gain in accuracy over the S\&Myrams.
4| 886 | 88.1 X 0.68 | 0.68 X In other cases the performance of DMb1) is similar to that

of the SVM with respect to different performance measures.

In the case of Eukaryotic data set, DMM{ 1) substantially
convergence of the gradient and were set (based on sopugperforms MMg—1): Fork = 2, DMM(k—1) has 4%, 2.5%
exploratory runs) to 0.01 and 0.5 respectively. When trginirand 7% higher accuracy (respectively) than MM{ 1) on
the SVM, we have used the counts of thegrams of the Cytoplasmic, Extracellular and Mitochondrial classesihe
sequences as the input featues and linear kernel, whichcése of the Cytoplasmic class, SVM outperforms DMM()
equivalent to using the sequence kernel proposed by Ledigabout 4% in accuracy. However the correlation coeffidgient
et. al. [12]. The results for SVM-grams are not presentedsimilar in both cases (0.52 and 0.53) and MM(1) has better
because in this case we need! input features leading to sensitivity than both DMM{—1) and SVM. In the case of Ex-

excessively slow run times. tracellular class, the accuracy and specificity of both S\fid a
1) Kinase dataset:The results for the Kinase dataset ar®MM(k — 1) are comparable, with MM(— 1) having higher
summarized in Table Il sensitivity and SVM higher correlation coefficient. On the

Fork = 2 there is a 2% gain in accuracy for the DMM{1) Mitochondrial class, the accuracy of SVM is 6% higher that
model over MM§ — 1), with neither outperforming the otherthat of the DMM{ — 1), however DMM¢ — 1) substantially
for k = 3,4. The performance of DMM{ — 1) in this case outperforms SVM in terms of correlation coefficient (0.45
is comparable with that of the SVM, and far = 3, both versus 0.37) and sensitivity (73.2% versus 26.79%). Binai
DMM(k—1) and MM — 1) outperform the SVM. the Nuclear class, SVM has higher accuracy by 2%, and higher
2) Subcellular Localization datasetln our experiments correlation coefficient (0.71 versus 0.63 for the DMM(1)
with the subcellular localization classification task, acifitate  model). In summary, on the subcellualr localization tasle, t
direct comparisons with previous studies [4] [11] the task PMM(%k — 1) model shows better overall performance relative
set up as that of learning a set of binary classifiers (one ffM(k — 1) and DMM(: — 1) is competitive with SVM.

each class). 3) Reuters data:The results of generative and discrimi-
Tables 1ll and IV summarize the performance of theative MM(: — 1) are presented in Table V fok = 2.

generative and discriminative models and the SVM. (We have not included the results for the SVM with= 2
With k& = 2, for DMM(k — 1), we observe a small since the number oR-gram counts needed to be input to

(1%) improvement in accuracy for Extracellular class ove8VM is 300? which makes both space and run time needs of



TABLE V
ACCURACY, SENSITIVITY, SPECIFICITY AND CORRELATION COEFFICIENT
ON REUTERS10 CATEGORIES FORMM(k — 1) AND DMM(k — 1)

in which MM(k — 1) outperforms DMMg — 1) (e.g., for
Nuclear class) or SVM outperforms DMM(— 1) (e.g., for
the Mitochondrial class). However, SVM is outperformed

Accuracy Sencitivity by DMM(k — 1) in terms of sensitivity by a wide margin
data DMM | MM | DMM MM on the Mitochondrial class. In summary, on the subcellualr
acq | 9527 | 9582 | 89.53 88.01 localization task, the DMM{ — 1) shows better overall per-
corn 98.21 | 98.21 | 64.29 67.86 f lati d . L
crude 19735 19713 90.86 8924 ormance relative MM — 1) an _ _DM_M(k —-1)is competitive
earn 96.59 | 97.86 | 97.87 95.83 with SVM. On the text classification task, generative and

_grain 9749 | 975 | 89.86 85.81 discriminative MM{ — 1) models had similar accuracy. But it

n'}gféisftx 9977 657 9977 ',;'4 8521'112 ‘7‘;'23 is worth noting that the discriminative model exhibited lrég
ship 98.86 | 980 | 8506 7931 sensitivity, whereas the generative model had higher speci
trade 975 | 98.01 | 80.17 75.86 ficity. In complex classification tasks, no single performan
wheat | 98.13 | 98.25] 7042 |  76.06 measure captures all relevant aspects of classifier peafuren

Specificity Correlation Coefficient H it i ful t id ltiol f itani
Taia VM T MV DMM VM ence it is useful to consider multiple performance criteén
acq 96.87 | 98 0.86 0.87 evaluating learning algorithms [3]. Furthermore, in sfieci
corn 9891 | 98.7 | 0.55 0.56 applications, there often arises a need to trade off some
Cer::’ne g;'gg 9987 '867 8;2 g';; performance measures against others.
gran | 97.85 | 981 | 0.76 075 . MM(% — 1) model has the gdvantage of training a clgssifier

interest | 99.4 | 995 | 0.63 0.61 in one pass through the training data. It also lends itself to

mOT:?V'fX g;-gi gg-ig 06784 06785 incremental update as new training data become available
ship . . . . . . . ..
trade 9513 988 T 069 077 - without the need to revisit pr_ewously processed training

wheat | 98.75 | 98.75| 0.62 0.65 data. In contrast, DMM{— 1) requires several passes through

the training data and is less amenable to incremental update
although in an online mode of training, incremental update
our current SVM implementation rather prohibitive). As iseeof parameters is feasible although optimality of the patame
from Table V, the accuracies of DMMI(— 1) and MM(k — 1)  estimates (with respect to correspondence with local marxim
are comparable, with the MM(— 1) slightly outperforming of the conditional likelihood function) cannot be guaraute
the DMM(k — 1). However, in terms of other performancewithout the ability to revisit previously processed traigi
measures e.g., sensitivity, we observe that for most of tdata. SVM algorithm relies on computationally expensive
categories DMME — 1) outperforms MMg—1), and that for optimization that does not lend itself to incremental updat
categories “interest” and “grain” DMM(— 1) has a higher without revisiting previously processed training data. Ba
correlation coefficient as well. other hand, SVM is more sophisticated than MM() model
in terms of controlling the complexity of the classifier taaV
_ overfitting. The results presented in this paper suggestaha
A. Summary and Conclusion relatively small number of iterations in discriminativaitring
In this paper, we have described a discriminative approachDMM(k — 1) model initialized with the parameters of the
to the training of sequence classifiers and provided engpiricorresponding MME — 1) can often result in performance
exploration of generative and discriminative approaches fthat is comparable to that of SVM on several sequence
classification in biological and text domains. The proposerfassification tasks.
classifier — DMM§ — 1) — is trained to maximize the condi-
tional likelihood function of the data based on the likebdo B- Related Work
function of Markov Model of ordek — 1. The algorithm for ~ The sequence classifiers introduced in this paper are the
training a DMM( — 1) classifier initializes the parameters ofdiscriminative counterparts of generative models - namely
the model based on the parameters of its generative coanterparkov Model§ — 1) introduced by Peng et. al. [16] which
— MM(k — 1) — and iteratively updates the parameters usiraye equivalent to N&e Bayesk) model introduced by Andorf
gradient ascent to maximize the conditional likelihood. Wet. al. [1] and shown to outperform Ne& Bayes in sequence-
compared the performance of DMK 1), MM(k — 1), and based protein function classification [1], as well as text
SVM sequence classifiers on protein function predictioi; suclassification [16], when sufficient training data are aafalib.
cellular localization prediction, and text categorizatiasks. Rubinstein and Hastie [21] presented a general approach
As the experimental results show, DMM{ 1) marginally for obtaining a discriminative model given a generative slod
outperforms MMg — 1) in the human kinase data set in term3hey have also analyzed Ne Bayes and its discriminative
of accuracy. On the Eukaryotic protein cellular localiaati counterpart Generalized Additive Model.
task, DMM{E — 1) outperforms MMg — 1) by a much Ng and Jordan [15] analyzed the dependence between the
wider margin (2.4% to 7%) in terms of accuracy on severpgerformance of generative and discriminative model and the
classes. In these cases, the performance of the DMM[) size of the data used for training. They usedidaBayes
is comparable to that of SVM. We have also observed case®d Linear Regression to support the results obtained by

V. SUMMARY AND DISCUSSION



theoretical analysis. They have observed that with limitath,
the discriminative models may have lower accuracy than thﬁ]
generative models.

McCallum  [13] described discriminative probabilistic
graphical models in the form of Conditional Random Fields{Z]
(CRFs) for speech recognition. Taskar et. al. [22] presknte
Discriminative Probabilistic Models for relational datay b ]
using conditional Markov network built over relational dat

Grossman and Domingos [10] have described an approa¢h
for learning parameters that maximize conditional liketd
function in Bayesian Networks instead of the likelihooddun 5
tion. They showed that the resulting model is more accurate
than its generative counterpart. They noted that optirgnat 6]
of the conditional likelihood function is computationalig-
feasible due to the complexity of structure search. [7]

Roose et. al. [20] have recently shown that for special cases
of network structures, the discriminative training of Baig® (g
Networks is equivalent to logistic regression problem. kéar
Model of orderk — 1 examined in this paper is a special casd®
of a Bayesian Network, with additional topological struetu
This eliminates the need for structure search, yieldingligre
based algorithm for optimizing the parameters of the remilt [10]
sequence classifier introduced in this paper. The discativia
sequence classifier is initialized with the parametersinbth [11]
from the generative model (which can be estimated in a sin 1(3]
pass through the training data). Further training tunes the
parameters to improve the conditional likelihood.

Finally, there is a growing interest in hybrid models. Hybri [13]
models are the models which combine generative and discrim-
inative learning. Bouchard and Triggs [5] have proposed[s]
Generative-Discriminative Trade-off method (GTD) as a way
of combining general classes of generative and discrimvimat ;5
classifiers. Raina et. al. [18] proposed a model that conshine
Naive Bayes Multinomial model and Logistic Regression, ard®!
showed that their hybrid model has lower error rate thareeith
Naive Bayes or Logistic Regression. [17]

C. Future Work
Ongoing research is aimed at:

1) Development of sophisticated regularization methods!
(e.g., maximizing the margin of separation between
classes) to avoid overfitting on the training data if®0]
discriminative training.

Exploration of ways to synergistically exploit thepg)
strengths of discriminative as well as generative models
for sequence classification. (22]
Exploration of extensions of the algorithms proposed in
this paper to higher dimensional dependency structuriés]
(e.g. 2-dimensional images as opposed to 1-dimensioml1
strings).

Applications of the resulting sequence classification
methods in bioinformatics and related applications.

(18]

2)

3)

4)
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