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Abstract— In this paper, we propose a discriminative coun-
terpart of the directed Markov Models of order k − 1, or
MM( k−1) for sequence classification. MM(k−1) models capture
dependencies among neighboring elements of a sequence. The
parameters of the classifiers are initialized to based on the
maximum likelihood estimates for their generative counterparts.
We derive gradient based update equations for the parameters
of the sequence classifiers in order to maximize the conditional
likelihood function. Results of our experiments with data sets
drawn from biological sequence classification (specifically protein
function and subcellular localization) and text classification appli-
cations show that the discriminatively trained sequence classifiers
outperform their generative counterparts, confirming the benefits
of discriminative training when the primary objective is classi-
fication. Our experiments also show that the discriminatively
trained MM( k − 1) sequence classifiers are competitive with the
computationally much more expensive Support Vector Machines
trained using k-gram representations of sequences.

I. I NTRODUCTION

Sequence classification is an important problem that arises
in many real-world applications: protein function prediction,
text classification, speech recognition, intrusion detection,
among others. Given a sequence (constructed from letters
drawn from a finite alphabet; for instance, 20-letter alphabet
of amino acids in the case of protein function classification; a
vocabulary of English words in the case of text classification),
the task of a sequence classifier is to assign a class label
(typically drawn from a finite set of mutually exclusive class
labels) to the sequence. Machine learning algorithms offerone
of the most cost effective approaches to designing sequence
classifiers when a training set of labeled sequences is available.
Of particular interest are sequence classifiers based on proba-
bilistic generative models of sequence data. Given a generative
model, a new sequence can be assigned the most probable
class label. A Näıve Bayes sequence classifier is based on one
of the simplest generative models of sequence data - namely
one that assumes that each element (letter) of the sequence
is independentof other elements of the sequencegiven the
class. Training a Näıve Bayes sequence classifier from data
simply involves estimating the probabilities for each letter of
the alphabet conditioned on the class. Naı̈ve Bayes classifiers,
because of their simplicity and low computation cost, are often
used in applications ranging from text classification [14]

to biological sequence classification [7] [24] with varying
degrees of success (as estimated by standard measures of
classifier performance - e.g., classification accuracy). However,
the independence assumption of Naı̈ve Bayes - which is tan-
tamount to ignoring the sequential nature of the data - is often
violated in practice. Hence, generative models of sequence
data that relax the strong independence assumption of the
Näıve Bayes model, the associated sequence classifiers, and
efficient algorithms for learning accurate sequence classifiers
from data are of significant interest.

The dependencies among the neighbouring elements of
a sequence can be modeled by usingk-grams [6]. One
might consider a Näıve Bayes classifier whose inputs consist
of k-grams as opposed to single letters. However, because
successivek-gram in a sequence havek − 1 elements in
common, the use ofk-grams as input features for a Naı̈ve
Bayes classifier consistently and systematically violatesthe
Näıve Bayes assumption - that the inputs to the classifier are
independent given the class. By exploiting the well-known
Hammersley-Clifford theorem [8], it is possible to construct a
generative Markov Model of orderk−1, or Markov Model(k−
1) (or MM(k−1) for short) [16] or equivalently, the so-called
Näıve Bayes(k) (or NB(k) for short) [1] that models the de-
pendencies amongk neighboring elements of a sequence. This
model was shown to have consistent improvement in accuracy
relative to Näıve Bayes in sequence-based protein function
classification [1], as well as text classification [16] with the
performance of the classifier improving with increasing values
of k (when sufficient training data are available).

Generative models(such as Näıve Bayes or Näıve Bayes(k))
model the probability distribution of the process generating the
data from each class. Classification is performed by examining
the likelihood of each class producing the observed features
in the data (e.g., letters in the sequence) and assigning the
sequence to the most likely class (i.e., one with the largestlike-
lihood). In contrast,discriminative modelsdirectly compute
class membership probabilities (or model class boundaries),
without modeling the underlying class feature densities. For
example, classifiers trained using logistic regression arethe
discriminative counterparts of the Naı̈ve Bayes generative
models [21]. Discriminative models can often outperform



generative models on classification tasks [21] [15]. One of
the reasons for choosing discriminative models over generative
models for classification was pointed out by Vapnik [23]:
“One should solve the [classification] problem directly and
never solve a more general problem as an intermediate step”
(such as modeling the probability distribution of features
in the data for each class). Consequently, there has been
significant recent interest in the training of discriminative
counterparts of generative models for classification tasks. For
example, Ng and Jordan [15] have compared Naı̈ve Bayes and
Logistic regression classifiers; Bouchard and Triggs [5] have
explored the trade-offs between generative and discriminative
classifiers; Raina et. al. [18] have studied a hybrid classifier
that combines generative and discriminative models for text
classification.

Against this background, in this paper, we explore the
discriminative counterpart of the Naı̈ve Bayes(k) generative
model for sequence classification. We derive a gradient based
learning algorithm for training sequence classifiers in a dis-
criminative setting. Results of our experiments on data sets
drawn from biomolecular sequences and text classification
applications show that the discriminatively trained MM(k−1)
classifiers outperform their generative counterparts and com-
pete favorably with Support Vector Machines trained using
k-gram representations of sequences.

The rest of the paper is organized as follows: Section 2
describes the preliminaries of a generative Markov Model, and
shows how it can be trained discriminatively using gradient
ascent. Section 3 presents the algorithm for discriminative
training of MM(k−1) sequence classifiers. Section 4 describes
experimental set-up and results. Section 5 concludes with
discussion of related work and an outline of some directions
for further research on this topic.

II. GENERATIVE AND DISCRIMINATIVE MARKOV MODELS

We start by outlining the general classification strategy for
the generative setup. We then present the Markov Model
of order k − 1 and apply the general strategy to build a
classifier from this model, and show how it can be trained
in a discriminative setting.

A. Generative Probabilistic Model

A model α for sequences defined over some alphabetΣ
specifies for any sequenceS ∈ Σ∗ the probabilityPα(S).
Given a set of sequences, each instance is associated with
a class from the set of mutually disjoint class labelsC =
{c1...cn}. A classifier can be constructed in the following
fashion: First, a probabilistic modelα(cj) is trained for each
class using the sequences belonging tocj ; and second, in order
to predict a class for a novel sequenceS′ Bayes rule is used

to obtainclass(S′) = arg max
Pα(cj)(S

′|cj)P (cj)

Pα(cj)(S′)

B. MM(k − 1): Markov Model of orderk − 1

Markov Models for sequence classification have been used
with success by many researchers in a variety of applications

[6] [25] [1]. We start with a brief review of the basic ideas
behind MM(k − 1).

Let S be a sequence,si be the value of an element ofS at
the positioni, andΣ be the alphabet over which the sequence
values range.

A sequence can be modeled as a graph in which each
sequence element is represented by a node, and a direct
dependency between two neighboring elements is represented
by an edge in the graph. Generally, it is the case that
two or more neighboring elements in the sequence will be
dependent on each other. Figure 1 shows several directed
dependency models for: a) Naı̈ve Bayes which corresponds
to assuming no dependence between neighboring elements of
a sequence, b) a dependency model of the first order i.e.,
one that considers dependencies between pairs of neighboring
elements of a sequence (k = 2) and c) a dependency model of
the second order i.e., one that considers dependencies among
three adjacent elements of a sequence. More generally, Markov
Models of orderk − 1, capture the dependency between the
current elementsk and itsk−1 preceding elements[sk−1...s1]
in a sequence. MM(k − 1) family of generative models offer
the needed expressive power to model increasingly complex
dependencies among neighboring elements of a sequence.

S1 S2 S3 S4 S5a)

S1 S2 S3 S4 S5b)

S1 S2 S3 S4 S5c)

Fig. 1. Markov Model representation of dependencies of order k − 1

dependency. a) Naı̈ve Bayes model; b) Markov Model of order 1 c) Markov
Model of order 2

The joint probability distribution for the MM(k−1) follows
directly from the Junction Tree Theorem [8] and the definition
of conditional probability:

P (S = s1s2...sn, cj) =

∏n
i=1 P (S = si...si+k−1, cj)

∏n
i=1 P (S = si...si+k−2, cj)

= P (S = s1...sk−1, cj)
n
∏

i=k

P (S = si|si−1...si−k+1, cj)

The probabilitiesP (S = si|si−1...si−k+1, cj) can be read-
ily estimated from data using the counts of the subsequences
si...si−k+1, cj and si−1...si−k+1, cj as sufficient statistics.
With the generative model in place, a sequenceS to be
classified is assigned to the most likely class based on
the generative models for each class. That is,class(S =
s1...sn) = arg maxcj∈C P (S = s1...sk−1, cj)

∏n
i=k P (S =

si|si−1...si−k+1, cj). Markov Models of orderk − 1 (where
k > 1) have been shown to have consistent improvement in
accuracy over Näıve Bayes (which is equivalent to a Markov
Model of order 0), with the classification accuracy typically



increasing with the increase ink (until we run out of data to
reliably estimate the increased number of parameters) [1].

C. DMM(k− 1): Discriminatively Trained Markov Models of
order k − 1

As noted earlier, when the primary objective is classifica-
tion, discriminatively trained classifiers often outperform their
generative counterparts. Discriminative training of classifiers
entails maximizing the conditional likelihood function [21].

In the case of MM(k−1), the conditional likelihood function
for a sequenceS = s1...sn belonging to classc = cq is given
by:

P (c = cq|S = s1...sn) =
P (S = s1...sn, cq)

∑

cj∈C P (S = s1...sn, cj)

To minimize the notational clutter, we will usePi1...ik,cq

to denoteP (S = si|si−1...si−k+1, cj) , and Pi1...ik−1,cq
to

denoteP (S = si, si−1...si−k, cj). Note that the elements
of the sequence take values from the alphabetΣ and class
labels take values fromC. These parameters collectively
represent the corresponding model. We will useP to denote
this collection of parameters that specify the model.

Consider a data setD = {d1...dm} of labeled strings where
the strings consist of elements from a finite alphabetΣ and
the class labels are drawn from a finite set of class labelsC.
Thus,dl = (Sl, cl), 1 ≤ l ≤ m;nl = |Sl| is length ofSl and
(∀l∀k ≤ nl) sl

k ∈ Σ andcl ∈ C.
Let CL(dl : P ) denote the conditional likelihood of the

sequencedl under the modelP . Let CL(D : P ) denote the
conditional likelihood of the data setD under the modelP .
Assuming independently identically distributed samples,we
have:

CL(D : P ) = CL(D = {d1...dm} : P ) =
m
∏

l=1

CL(dl : P )

LettingCLL(dl : P ) denotelog CL(dl : P ) andCLL(D : P )
denotelog CL(D : P ) respectively, we can write:

CLL(D : P ) =

m
∑

l=1

CLL(dl : P )

=
m
∑

l=1

log P (Cl = cl|Sl = sl
1...s

l
nl

)

Training the modelP in the discriminative setting is
equivalent to maximizing the conditional likelihood function
CL(D : P ), with respect to the parametersP which in
turn is equivalent to maximizing the conditional log-likelihood
CLL(D : P ). We use gradient ascent to find parameters that
maximizeCLL(D : P ). We start with an initial estimateP (0)
of P (more on this initialization in Section 3). Denoting by
P (t) andP (t + 1) the estimates ofP at iterationst andt + 1
respectively, the update equation for each parameterPi1...ikcq

at the iterationt is given by

Pi1...ikcq
(t + 1)← Pi1...ikcq

(t) + α
∂CLL(D : P )

∂Pi1...ikcq

∣

∣

∣

∣

P=P (t)

where0 < α ≤ 1 is the learning rate. Thus, all parameters in
P are iteratively updated until a desired termination condition
is satisfied.

It is convenient to reparametrizePi1...ik,cq
in terms of

wi1...ik,cq
by settingPi1...ik,cq

= 1
Zw

ewi1...ik,cq , whereZw =
∑

i1∈Σ ewi1...ik,cq is the normalization factor for each parame-
ter. This reparameterization is needed in order to maintainthe
probabilities within the[0, 1] interval. Note that since we are
normalizing over the first entry in thek-gram, the normalized
result still corresponds to conditional probability of an element
given itsk−1 predecessorsP (S = si|si−1...si−k+1, cq). The
second parameter,Pi1...ik−1,cq

, is reparameterized in terms
of ui1...ik−1,cq

by settingPi1...ik−1,cq
= 1

Zu
e
ui1...ik−1,cq and

Zu =
∑

i1...ik−1∈Σ;cq∈C e
ui1...ik−1,cq is the normalization

factor over all possible values ofi1...ik−1, cq.
Let W denote the counterpart ofP after this reparameteri-

zation. NowCLL(dl : W ) for a data point is given by:

CLL(cj |S
l) = log

γj

Zγ

where γj = e

u
sl
1

...sl
k−1

,cj

Zu

∏nl

r=k
e

w
sl

r...sl
r−k+1

,cj

Zw
, and Zγ =

∑

cj∈C γj corresponds to normalization over all classes.
The update equation for the resulting parameters after the

above reparameterization is given by:

wi1...ik,cq
(t + 1)← wi1...ik,cq

(t) + α
∂CLL(D : P )

∂wi1...ik,cq

∣

∣

∣

∣

W=W (t)

The parametersui1...ik−1,cq
are updated in the similar fashion.

In what follows, we present the formula for the gradient
of the conditional log-likelihood function for an individual
instancedl in the data setD. Since the gradients commute with
summation, we can compute the gradient for the entire dataset
D by simply summing up the gradients for the individual
samples fromD. Furthermore, if online update is used, we
can update the parameters based on individual samples from
D.

Let count[i1...ik : Sl] be the number of times a subsequence
s1..sk appears in the sequenceSl, and let δ(cj , cq) be 1 if
cj = cq and be0 otherwise. The update equation forwi1...ik,cq

is obtained by taking the derivative ofCLL(dl : W ) with
respect towi1...ik,cq

:

∂CLL(dl : W )

∂wi1...ik,cq

= count[i1, ..., ik−1 : Sl]

(

count[i1, ..., ik : Sl]

count[i1, ..., ik−1 : Sl]
−

ewi1...ik,cq

Zw

)

(

δ(cj , cq)−
γ(sl

1, ..., s
l
nl

, cq)

Zγ(sl
1, ..., s

l
nl

)

)

Similarly, the update equation forui1...ik−1,cq
is obtained

by taking the derivative of theCLL(dl : W ) with respect to
ui1...ik−1,cq

:



∂CLL(dl : W )

∂ui1...ik−1,cq

= (δ([i1, ..., ik−1], [s
l
1, ..., s

l
k−1])

−
eui1...ik−1,cq

Zu

)
(

δ(cj , cq)−
γ(sl

1, ..., s
l
nl

, cq)

Zγ(sl
1, ..., s

l
nl

)

)

A closer look at the update equations reveals that the term

δ(cj , cq) −
γ(sl

1,...,sl
nl

,cq)

Zγ(sl
1, ..., s

l
nl

)
is the penalty for the parameters

that are associated with a class that is not the true class of the
sequence, or the reward for the parameters associated with the
true class. Since at the maxima or minima, the derivative of a
function is 0, it follows thatδ(cj , cq)−

γ(s1,...,sn,cq)

Zγ(s1, ..., sn)
should

be 0, which is the case when the probability of a sequence
given its true class is 1.

III. T RAINING PROCEDURE

Training of DMM(k− 1) (discriminative Markov Model of
orderk − 1) proceeds as follows.

The parameters of MM(k − 1), i.e., eachwi1...ik,cj
and

eachui1...ik−1,cj
is initialized with the logarithm of counts of

subsequences associated with the parameters. This corresponds
to initializing P (equivalentlyW ), with the parameters of the
generative MM(k − 1). The parameters are then iteratively
updated using the gradient ascent procedure until a desired
termination criterion is satisfied (more on this in the next
section). The momentum modification was used to speed up
convergence [17]. Once we have trained the model, we can
classify an input sequence by assigning it to the most probable
class under the model. The pseudocode for the algorithm is
shown in Figure 2.

IV. EXPERIMENTAL SETUP AND RESULTS

This section describes the datasets, experimental setup
used to test our model and provides direct comparison of a
DMM(k−1) with its generative counterpart MM(k−1), as well
as with a Support Vector Machine using a data representation
with the same representational power as that of MM(k−1)
models.

A. Datasets

The experiments were conducted on data sets drawn from
two application domains: biomolecular sequence classification
and text classification. In the case of biomolecular sequence
classification, we have experimented with data sets used in the
protein function and in the subcellular localization studies. In
the case of text classification, we have experimented with the
widely used Reuters Text Categorization data set.

1) Protein Function Data:The first biomolecular sequence
dataset is based on the families of human kinases. The Kinase
dataset contains a total of 290 protein sequences belonging
to four functional classes containing 1, 10, 69, 210 sequences
respectively. The goal is to assign a given kinase sequence to
one of the four kinase subfamilies. This dataset was previously
used in the protein function studies by Andorf et. al [1].

Training
Input: training dataD = {d1...dm}

model orderk, learning rateα, momentumλ

Output:W (parameters of the trained model)
1. Initialize wi1...ik,cq

← log count[i1...ik, cq]
2. Initialize ui1...ik−1,cq

← log count[i1...ik−1, cq]
3. For eachdl = (Sl, cl) ∈ D

4. do until termination criterion is met
{

5. For eachi1...ik−1 ∈ Sl

6. For eachv ∈ Σ
7. For eachcj ∈ C

8. wv,i1...ik−1,cj
← wv,i1...ik−1,cj

+ α
∂CLL(dl:W )

∂wv,i1...ik−1,cj

+λwv,i1...ik−1,cj

10. For eachcj ∈ C

11. ui1...ik−1,cj
← ui1...ik−1,cj

+ α
∂CLL(dl:W )
∂ui1...ik−1,cj

+λui1...ik−1,cj

}
Output(W )

Classification
Input: model orderk, sequence to be classifiedS = s1s2...sn

1. c← arg maxcj∈C

u1..k−1,cj

Zu

∏n
i=k

e
wi...i−k,cj

Zw

2. outputc

Fig. 2. DMM(k − 1): Training and Classification

2) Subcellular Localization Data:In the subcellular lo-
calization task [19], the goal is to predict the subcellular
localization of a protein from its sequence. The data sets
used in our experiments are the same as those explored in
the previous studies on predicting cellular localization of
protiens by Bhasin et. al. [4] and Hua et. al. [11]. These
data sets are based on localization data for prokaryotic and
eukaryotic proteins derived from Swiss-Prot database (release
33.0) [2]. The first dataset comprises a total of 997 prokaryotic
proteins. It includes the proteins from the following three
different subcellular locations: cytoplasmic, periplasmic, and
extracellular. The second data set consists of a total of 2427
eukaryotic proteins. It includes proteins from four different
subcellular locations: nuclear, cytoplasmic, mitochondrial, and
extracellular. Sequence identity within a class is below 90%.
No transmembrane proteins were included. Table I summarizes
some characteristics of these two datasets.

3) Text Data: We used the Reuters-21578 Text Catego-
rization datasets1 with the 10 categories (acquisition, corn,
crude, earn, grain, interest, money-fx, ship, trade and wheat)
that have the highest number of positive training examples.
However, because of the large size of the vocabulary, we
performed feature selection based on mutual information [9]
to reduce the vocabulary size to 300 words. Even with this
reduced vocabulary, the estimation of parameters MM(k − 1)
or SVM classifiers becomes infeasible for values ofk greater

1http://www.daviddlewis.com/resources/testcollections/reuters21578/



TABLE I

NUMBER OF SEQUENCES FOR EACH SUBCELLULAR LOCALIZATION

CATEGORIES OF THE DATASETS

Species Subcellural Number
localization of sequences

Prokaryotic Cytoplasmic 688
Periplasmic 202
Extracellular 107

Eukaryotic Nuclear 1097
Cytoplasmic 684

Mitochondrial 321
Extracellular 325

than 2 because of the sparsity of the data as well as memory
requirements unless additional steps are taken to reduce the
size of the models. Hence, we limit the experiments reported
in this paper experiments to values ofk no greater than 2.

B. Experiments Exploring the Conditional-Log-Likelihoodvs.
Accuracy on Training and Validation Sets

Dicriminatively trained classifiers have been reported to be
more susceptible to overfitting than their generative counter-
parts [15]. It is therefore interesting to explore whether the
DMM(k − 1) models suffer from overfitting. Hence, we start
with an examination of the behavior of the DMM(k−1) model
by observing the relationship between maximizing conditional
likelihood versus accuracy on a validation set (data not used
in training of the classifier). We show the behavior of the
class-conditional log-likelihood, accuracy on the training data,
and accuracy on the previously unseen data in the case of the
Eukaryotic subcellular localization datasets (Figure 3).The
datasets were split into training set and validation set in the
ratio 90%-10%. The values of the negative conditional log-
likelihood function and the accuracies on the training set and
on the validation set were recorded at each iteration of the
algorithm, and repeated for the values ofk = 2, 3, 4. The
values of the negative CLL are plotted on the right y-axis,
and the values of accuracy were plotted on the left y-axis,
with the number of iterations plotted on the x-axis.

In the case of the Eukaryotic dataset, whenk=2 for Cyto-
plasmic and Nuclear classes, accuracy on training data goes
from 80% to 89% and 82% to 92% respectively after which
the training accuracy begins to drop even though negative CLL
continutes to decrease. Accuracy on the validation data grows
from 78% to 82% and 80% to 87% respectively in several
iterations and then starts to decrease suggesting the possibility
that the model is overfitting the parameters. For Extracellualar
and Mitochondrial classes, the accuracy on the training data
increases with the number of iterations of the algorithm, and
so does the accuracy on the validation data for Extracellular
class. For the Mitochondrial class we again observe increase
in accuracy after the first several iterations, followed by a
decrease in accuracy even though negative CLL continues
to decrease. Fork = 3 in Cytoplasmic, Mitochondrial and
Nuclear classes, the accuracy on validation set decreases and
then increases to its starting value, even though accuracy on
the training set increases. In the case of the Extracellularclass,

Fig. 3. Negative Conditional Log-Likelihood versus accuracy on training
and validation set for Eukaryotic set for classes Cytoplasmic, Extracellular,
Mitochondrial and Nuclear for k=2; Cytoplasmic, Mitochondrial and Nuclear
for k=3; Mitochondrial for k=4

the plots are not shown fork = 3 because the negative CLL
was found to be close to 0 at initialization. Finally, fork = 4
even though the negative CLL decreases from 50 to almost
0, the accuracy on training and validation sets fail to show
improvement as training progresses.

The observation that in a few instances, accuracy on the
training data drops as the the conditional log likelihood score
continues to increase, at first glance, is somewhat puzzling.
Once possible explanation is that the conditional log likelihood
tends to favor short sequences over longer sequences (by
virtue of the fact that probabilities associated withk-grams
get multiplied in computing likelihood) whereas classification
accuracy measures the percentage of sequences in the data
set that are correctly labeled, regardless of their length.This
suggests a possible direction for improving our current algo-
rithm - normalizing the conditional likelihood score for each
sequence by the length of the sequence

It is clear that the gradient achieves the highest accuracy
on the validation data within several iterations, and most of
the time with maximization of the likelihood function, the
accuracy on the unseen data drops, which suggests overfitting.
Therefore, in our experiments we choose the parameters when
the accuracy on the validation set was at its highest value in
the first 30 iterations.

C. Experimental Comparison of DMM(k − 1) model with
MM(k − 1) and SVM

For all the experiments we have used 10-fold cross-
validation to evaluate our approach and to compare it with
generatively trained model and the SVM. Furthermore, 10%
of the training data during each round of cross-validation was
withheld for the validation purposes. After 30 iterations the
parameters that yield the highest accuracy on the validation
set were used in the resulting classifier. Note that the classifier
is tested on the data not used for training or validation. The
parametersα and λ were set to those that yield the fastest



TABLE II

ACCURACY ON K INASE DATASET OBTAINED BY 10-FOLD

CROSS-VALIDATION , DMM(k − 1), MM(k − 1) k = 2, 3, 4, AND SVM

FOR k = 2, 3 (k = 4 IS COMPUTATIONALLY INFEASIBLE FOR SVM)

k DMM MM SVM

2 89.01±5.89 87.11±7.2 90.7
3 91.55±5.82 91.13±5.5 90.3
4 78.48±6.5 78.32±8.8 x

TABLE III

ACCURACY, SENSITIVITY, SPECIFICITY AND CORRELATION COEFFICIENT

FOR DMM(k − 1), MM(k − 1), AND SVM ON THE PROKARYOTIC

DATASET OBTAINED BY 10-FOLD CROSS-VALIDATION

Accuracy Specificity
Class k DMM MM SVM DMM MM SVM
Peri 2 82.91 84.07 90.17 87.77 87.67 92.7

3 86.78 87.2 88.26 97.74 97.61 97.23
4 82.57 82.13 x 85.56 85.1 x

Extr 2 95.05 94.01 93.68 98.52 96.09 97.64
3 94.78 94.88 94.88 99.17 99.08 99.44
4 86.84 86.44 x 88.4 87.78 x

Ctpl 2 90.01 90.59 90.17 70.61 76.89 81.55
3 91.35 91.21 92.47 75.47 75.92 79.94
4 86.36 86.02 x 81.36 81.36 x

Sencitivity Correlation Coefficient
k DMM MM SVM DMM MM SVM

Peri 2 63.76 69.99 94.04 0.5 0.54 0.76
3 43.66 46.23 62.97 0.54 0.55 0.6
4 70.79 70.36 x 0.52 0.51 x

Extr 2 66.17 78.5 60.74 0.72 0.71 0.64
3 58.32 60 57.01 0.7 0.7 0.7
4 73.84 75.33 x 0.5 0.5 x

Ctpl 2 98.78 96.74 94.04 0.77 0.77 0.77
3 98.49 98.08 91.11 0.79 0.79 0.82
4 88.6 88.1 x 0.68 0.68 x

convergence of the gradient and were set (based on some
exploratory runs) to 0.01 and 0.5 respectively. When training
the SVM, we have used the counts of thek-grams of the
sequences as the input featues and linear kernel, which is
equivalent to using the sequence kernel proposed by Leslie
et. al. [12]. The results for SVM4-grams are not presented
because in this case we need204 input features leading to
excessively slow run times.

1) Kinase dataset:The results for the Kinase dataset are
summarized in Table II.

Fork = 2 there is a 2% gain in accuracy for the DMM(k−1)
model over MM(k − 1), with neither outperforming the other
for k = 3, 4. The performance of DMM(k − 1) in this case
is comparable with that of the SVM, and fork = 3, both
DMM(k−1) and MM(k − 1) outperform the SVM.

2) Subcellular Localization dataset:In our experiments
with the subcellular localization classification task, to facilitate
direct comparisons with previous studies [4] [11] the task is
set up as that of learning a set of binary classifiers (one for
each class).

Tables III and IV summarize the performance of the
generative and discriminative models and the SVM.

With k = 2, for DMM(k − 1), we observe a small
(1%) improvement in accuracy for Extracellular class over

TABLE IV

ACCURACY, SENSITIVITY, SPECIFICITY AND CORRELATION COEFFICIENT

ON EUKARYOTIC DATASET OBTAINED BY 10-FOLD CROSS-VALIDATION ,

OF THE DISCRIMINATIVE, GENERATIVE AND SVM APPROACHES

Accuracy Specificity
Class k DMM MM SVM DMM MM SVM
Ctpl 2 77.72 73.84 81.87 77.22 69.76 90.99

3 86 85.9 88.01 91.28 90.76 93.2
4 89.29 88.96 x 97.76 97.41 x

Extr 2 92.13 89.7 92.45 98.76 93.82 98.47
3 94.19 94.15 95.49 99.95 99.8 99.33
4 95.59 95.67 x 99.8 99.7 x

Mit 2 82.37 75.44 88.46 83.76 76.83 97.86
3 89.74 89.67 91.14 98.2 98.2 97.86
4 90.44 90.56 x 98.6 98.6 x

Nclr 2 80.55 83.48 85.74 71.88 90.45 90.45
3 87.52 87.97 89.25 92.4 92.48 92.03
4 88.55 88.13 x 87.07 87.7 x

Sencitivity Correlation Coefficient
k DMM MM SVM DMM MM SVM

Ctpl 2 78.94 84.21 58.63 0.52 0.49 0.53
3 72.51 73.68 73.78 0.65 0.65 0.69
4 67.69 67.4 x 0.73 0.72 x

Extr 2 49.23 63.08 53.54 0.56 0.45 0.63
3 56.92 57.53 70.77 0.72 0.72 0.79
4 70.77 69.54 x 0.81 0.8 x

Mit 2 73.2 66.36 26.79 0.45 0.32 0.37
3 34.27 33.01 47.04 0.46 0.45 0.56
4 36.76 37.69 x 0.5 0.51 x

Nclr 2 91.07 75.23 80.04 0.63 0.67 0.71
3 81.59 82.5 85.87 0.75 0.75 0.71
4 90.33 88.61 x 0.77 0.76 x

MM(k−1), and 1.5% gain in accuracy over the SVM2-grams.
In other cases the performance of DMM(k−1) is similar to that
of the SVM with respect to different performance measures.
In the case of Eukaryotic data set, DMM(k − 1) substantially
outperforms MM(k−1): Fork = 2, DMM(k−1) has 4%, 2.5%
and 7% higher accuracy (respectively) than MM(k − 1) on
Cytoplasmic, Extracellular and Mitochondrial classes. Inthe
case of the Cytoplasmic class, SVM outperforms DMM(k−1)
by about 4% in accuracy. However the correlation coefficientis
similar in both cases (0.52 and 0.53) and MM(k−1) has better
sensitivity than both DMM(k−1) and SVM. In the case of Ex-
tracellular class, the accuracy and specificity of both SVM and
DMM(k− 1) are comparable, with MM(k− 1) having higher
sensitivity and SVM higher correlation coefficient. On the
Mitochondrial class, the accuracy of SVM is 6% higher that
that of the DMM(k − 1), however DMM(k − 1) substantially
outperforms SVM in terms of correlation coefficient (0.45
versus 0.37) and sensitivity (73.2% versus 26.79%). Finally, on
the Nuclear class, SVM has higher accuracy by 2%, and higher
correlation coefficient (0.71 versus 0.63 for the DMM(k−1)
model). In summary, on the subcellualr localization task, the
DMM(k− 1) model shows better overall performance relative
MM(k − 1) and DMM(k − 1) is competitive with SVM.

3) Reuters data:The results of generative and discrimi-
native MM(k − 1) are presented in Table V fork = 2.
(We have not included the results for the SVM withk = 2
since the number of2-gram counts needed to be input to
SVM is 3002 which makes both space and run time needs of



TABLE V

ACCURACY, SENSITIVITY, SPECIFICITY AND CORRELATION COEFFICIENT

ON REUTERS10 CATEGORIES FORMM(k − 1) AND DMM(k − 1)

Accuracy Sencitivity
data DMM MM DMM MM
acq 95.27 95.82 89.53 88.01
corn 98.21 98.21 64.29 67.86
crude 97.35 97.13 90.86 89.24
earn 96.59 97.86 97.87 95.83
grain 97.49 97.5 89.86 85.81

interest 97.5 97.4 51.1 47.32
money-fx 97.07 97.34 82.12 79.89

ship 98.86 98.9 85.06 79.31
trade 97.5 98.01 80.17 75.86
wheat 98.13 98.25 70.42 76.06

Specificity Correlation Coefficient
data DMM MM DMM MM
acq 96.87 98 0.86 0.87
corn 98.91 98.7 0.55 0.56
crude 97.75 97.6 0.79 0.77
earn 95.96 98.87 0.92 0.95
grain 97.85 98.1 0.76 0.75

interest 99.4 99.5 0.63 0.61
money-fx 97.93 98.35 0.74 0.75

ship 99.24 99.49 0.8 0.8
trade 98.13 98.8 0.69 0.72
wheat 98.75 98.75 0.62 0.65

our current SVM implementation rather prohibitive). As seen
from Table V, the accuracies of DMM(k− 1) and MM(k− 1)
are comparable, with the MM(k − 1) slightly outperforming
the DMM(k − 1). However, in terms of other performance
measures e.g., sensitivity, we observe that for most of the
categories DMM(k − 1) outperforms MM(k−1), and that for
categories “interest” and “grain” DMM(k − 1) has a higher
correlation coefficient as well.

V. SUMMARY AND DISCUSSION

A. Summary and Conclusion

In this paper, we have described a discriminative approach
to the training of sequence classifiers and provided empirical
exploration of generative and discriminative approaches for
classification in biological and text domains. The proposed
classifier – DMM(k − 1) – is trained to maximize the condi-
tional likelihood function of the data based on the likelihood
function of Markov Model of orderk − 1. The algorithm for
training a DMM(k− 1) classifier initializes the parameters of
the model based on the parameters of its generative counterpart
– MM(k − 1) – and iteratively updates the parameters using
gradient ascent to maximize the conditional likelihood. We
compared the performance of DMM(k − 1), MM(k − 1), and
SVM sequence classifiers on protein function prediction, sub-
cellular localization prediction, and text categorization tasks.

As the experimental results show, DMM(k − 1) marginally
outperforms MM(k−1) in the human kinase data set in terms
of accuracy. On the Eukaryotic protein cellular localization
task, DMM(k − 1) outperforms MM(k − 1) by a much
wider margin (2.4% to 7%) in terms of accuracy on several
classes. In these cases, the performance of the DMM(k − 1)
is comparable to that of SVM. We have also observed cases

in which MM(k − 1) outperforms DMM(k − 1) (e.g., for
Nuclear class) or SVM outperforms DMM(k − 1) (e.g., for
the Mitochondrial class). However, SVM is outperformed
by DMM(k − 1) in terms of sensitivity by a wide margin
on the Mitochondrial class. In summary, on the subcellualr
localization task, the DMM(k − 1) shows better overall per-
formance relative MM(k−1) and DMM(k−1) is competitive
with SVM. On the text classification task, generative and
discriminative MM(k−1) models had similar accuracy. But it
is worth noting that the discriminative model exhibited higher
sensitivity, whereas the generative model had higher speci-
ficity. In complex classification tasks, no single performance
measure captures all relevant aspects of classifier performance.
Hence it is useful to consider multiple performance criteria in
evaluating learning algorithms [3]. Furthermore, in specific
applications, there often arises a need to trade off some
performance measures against others.

MM(k− 1) model has the advantage of training a classifier
in one pass through the training data. It also lends itself to
incremental update as new training data become available
- without the need to revisit previously processed training
data. In contrast, DMM(k−1) requires several passes through
the training data and is less amenable to incremental update
although in an online mode of training, incremental update
of parameters is feasible although optimality of the parameter
estimates (with respect to correspondence with local maximum
of the conditional likelihood function) cannot be guaranteed
without the ability to revisit previously processed training
data. SVM algorithm relies on computationally expensive
optimization that does not lend itself to incremental update
without revisiting previously processed training data. Onthe
other hand, SVM is more sophisticated than MM(k−1) model
in terms of controlling the complexity of the classifier to avoid
overfitting. The results presented in this paper suggest that a
relatively small number of iterations in discriminative training
of DMM(k − 1) model initialized with the parameters of the
corresponding MM(k − 1) can often result in performance
that is comparable to that of SVM on several sequence
classification tasks.

B. Related Work

The sequence classifiers introduced in this paper are the
discriminative counterparts of generative models - namely,
Markov Model(k − 1) introduced by Peng et. al. [16] which
are equivalent to Naı̈ve Bayes(k) model introduced by Andorf
et. al. [1] and shown to outperform Naı̈ve Bayes in sequence-
based protein function classification [1], as well as text
classification [16], when sufficient training data are available.

Rubinstein and Hastie [21] presented a general approach
for obtaining a discriminative model given a generative model.
They have also analyzed Naı̈ve Bayes and its discriminative
counterpart Generalized Additive Model.

Ng and Jordan [15] analyzed the dependence between the
performance of generative and discriminative model and the
size of the data used for training. They used Naı̈ve Bayes
and Linear Regression to support the results obtained by



theoretical analysis. They have observed that with limiteddata,
the discriminative models may have lower accuracy than the
generative models.

McCallum [13] described discriminative probabilistic
graphical models in the form of Conditional Random Fields
(CRFs) for speech recognition. Taskar et. al. [22] presented
Discriminative Probabilistic Models for relational data by
using conditional Markov network built over relational data.

Grossman and Domingos [10] have described an approach
for learning parameters that maximize conditional likelihood
function in Bayesian Networks instead of the likelihood func-
tion. They showed that the resulting model is more accurate
than its generative counterpart. They noted that optimization
of the conditional likelihood function is computationallyin-
feasible due to the complexity of structure search.

Roose et. al. [20] have recently shown that for special cases
of network structures, the discriminative training of Bayesian
Networks is equivalent to logistic regression problem. Markov
Model of orderk− 1 examined in this paper is a special case
of a Bayesian Network, with additional topological structure.
This eliminates the need for structure search, yielding gradient
based algorithm for optimizing the parameters of the resulting
sequence classifier introduced in this paper. The discriminative
sequence classifier is initialized with the parameters obtained
from the generative model (which can be estimated in a single
pass through the training data). Further training tunes the
parameters to improve the conditional likelihood.

Finally, there is a growing interest in hybrid models. Hybrid
models are the models which combine generative and discrim-
inative learning. Bouchard and Triggs [5] have proposed a
Generative-Discriminative Trade-off method (GTD) as a way
of combining general classes of generative and discriminative
classifiers. Raina et. al. [18] proposed a model that combines
Näıve Bayes Multinomial model and Logistic Regression, and
showed that their hybrid model has lower error rate than either
Näıve Bayes or Logistic Regression.

C. Future Work

Ongoing research is aimed at:

1) Development of sophisticated regularization methods
(e.g., maximizing the margin of separation between
classes) to avoid overfitting on the training data in
discriminative training.

2) Exploration of ways to synergistically exploit the
strengths of discriminative as well as generative models
for sequence classification.

3) Exploration of extensions of the algorithms proposed in
this paper to higher dimensional dependency structures
(e.g. 2-dimensional images as opposed to 1-dimensional
strings).

4) Applications of the resulting sequence classification
methods in bioinformatics and related applications.
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