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Abstract: The integration of Software Fault Tree (SFT), which describes 
intrusions and Coloured Petri Nets (CPNs) that specifies design, is examined 
for an Intrusion Detection System (IDS). The IDS under development is a 
collection of mobile agents that detect, classify, and correlate the system and 
network activities. SFTs, augmented with nodes that describe trust, temporal 
and contextual relationships, are used to describe intrusions. CPNs for intrusion 
detection are built using CPN templates created from the augmented SFTs. 
Hierarchical CPNs are created to detect critical stages of intrusions. The agent-
based implementation of the IDS is then constructed from the CPNs. Examples 
of intrusions and descriptions of the prototype implementation are used to 
demonstrate how the CPN approach has been used in the development of the 
IDS.

The main contribution of this paper is an approach to systematic specification, 
design and implementation of an IDS; Innovations include (1) using stages of 
intrusions to structure the specification and design of the IDS; (2) augmentation 
of SFT with trust, temporal and contextual nodes to model intrusions; (3) 
algorithmic construction of CPNs from augmented SFT; and (4) generation of 
mobile agents from CPNs.  
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1 Introduction  

A secure computer system provides guarantees regarding the confidentiality, integrity 
and availability of its objects (such as data, processes or services). However, systems 
generally contain design and implementation flaws that result in security vulnerabilities. 
An intrusion takes place when an attacker or group of attackers exploit security 
vulnerabilities and thus violate the confidentiality, integrity, or availability guarantees of 
a system or a network. Intrusion Detection Systems (IDSs) detect some set of intrusions 
and execute some predetermined action when an intrusion is detected. 

IDSs use audit information obtained from host systems and networks to determine 
whether violations of a system’s security policy are occurring or have occurred 
(Amoroso, 1999). Our Multi-Agents Intrusion Detection System (MAIDS) (Helmer, 
2000; Helmer et al., 2002b, 2003) uses mobile agents (Bradshaw, 1997) in a distributed 
system to obtain audit data, correlate events and discover intrusions.  

The MAIDS system consists of: 

1 stationary data cleaning agents that obtain information from system logs, audit data, 
and operational statistics and convert the information into a common format 

2 low-level agents that monitor and classify ongoing activities, classify events, and 
pass on their information to mediators 

3 data mining (Cabena et al., 1998) agents that use machine learning to acquire 
predictive rules for intrusion detection from system logs and audit data. 
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One of the challenges in designing an IDS involves defining exactly what data elements 
should be correlated to determine whether an intrusion is taking place in a distributed 
environment. It is also difficult to determine what data elements are necessary to discover 
intrusions. A model of intrusion detection is essential to describe how the data should 
flow through the system, determine whether the system would be able to detect intrusions 
and suggest points at which countermeasures could be implemented. 

Against this background, the paper presents a theoretical framework for modelling the 
operation of IDSs such as MAIDS. We use Software Fault Trees (SFTs) to define 
intrusions and develop the requirements model for the IDS. The SFT models of intrusions 
are used to create Coloured Petri Net (CPN) designs for the detectors in the IDS. The 
CPN detection model is then mapped into a set of software mobile agents that form the 
distributed IDs. Finally, the SFT models provide test cases for the implementation.  

The SFT analysis (SFTA) approach applies safety engineering techniques to the 
intrusion detection domain for developing IDS requirements. Each part of these 
development processes – SFTA, CPNs and software agent implementation – is distinct, 
and each stage in the development process must correctly carry over the details of the 
previous stages. The constructive approach helps ensure the correctness of the design 
with respect to the requirements and correctness of the implementation with respect to the 
design.  

We present the process for developing a CPN design for the IDS using a requirement 
specification based on a SFTA of intrusions, and we show the procedure for creating an 
implementation of a distributed agent-based IDS from the CPN design (Wang et al., 
2006). These two procedures ensure that the design satisfies the requirements and that the 
implementation matches the design.  

The rest of this paper is organised as follows: Section 2 introduces temporal 
organisation of stages of intrusions and presents the intrusions examined in our research. 
Section 3 discusses SFTs as applied to modelling intrusions and the augmentations 
needed to describe intrusions. Section 4 introduces CPNs and defines the translation from 
augmented SFTs to CPNs. Section 5 defines the translation of CPNs to software mobile 
agents. Section 6 presents the intrusion scenarios evaluated in our system. Section 7 
relates our modelling solution to other graph-based intrusion detection models. Section 8 
presents the conclusions and contributions of this work, discusses the generalisation of 
the IDS design to intrusions other than those presented in this paper, and describes future 
work.  

2 Modelling intrusion detection  

Our goal is to develop a software model for precisely describing abroad class of 
intrusions as well as the process of detecting such intrusions. Any formalism used to 
define the intrusions has to be relatively easy to use and at the same time be rich enough 
to describe both single host and distributed attacks. SFTs provide the desired features. 
When combined with SFTA, they provide an effective means for defining intrusions in a 
way that exposes the critical aspects of determining an intrusion.  

However, SFTs have several limitations with regard to their ability to modelling 
intrusions. For example, in their simplest form, they cannot capture temporal 
relationships between events. Hence, we extend the SFT formalism to obtain  
augmented SFTs. By extending SFTs to augmented SFTs, SFTs with additional system 
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information, it is possible to create a rigourous process that is capable of capturing 
intrusions.  

But, even the augmented SFTs do not describe intrusions at a level of detail needed to 
automate the generation of software agents that implement an IDS. To bridge this gap, we 
have developed a rigourous approach to convert the augmented SFTs to CPNs. While the 
augmented SFTs provide a rigourous definition of the intrusions, the CPNs provide a 
rigourous definition of the process of detecting the intrusion. Then a conversion of CPNs 
to software mobile agents can be performed.  

Each augmented SFT is seen as the specification of an individual intrusion. The set of 
augmented SFTs is the model of intrusions that the IDS is able to detect and/or 
determine. The set of CPNs that can be generated from the set of augmented SFTs is the 
intrusion detection model.  

2.1 Temporal stages of intrusions  

Each successful intrusion can vary greatly from other intrusions. In addition, analysis of 
complete intrusions is quite difficult. Therefore, a reasonable approach to intrusion 
analysis is to divide attack into stages that achieve intermediate goals of the attacker and 
develop intrusion detection components that identify each of the stages. Generally, the 
following stages can be distinguished in intrusion analysis: reconnaissance, vulnerability 
identification, penetration, control, embedding, data extraction and modification and 
attack relay (Helmer, 2000). 

We use these seven stages to analyse the intrusion example discussed in this paper 
and reduce the complexity of each SFT. The CPNs examined in the paper generally 
correspond to the first three stages, reconnaissance, vulnerability identification and 
penetration, as the essential stages of intrusion (Helmer, 2000).  

2.2 Intrusion example  

We use the FTP bounce attack throughout the paper to illustrate our approach to 
specification and implementation of IDS. The example was chosen based on the fact that 
it is well-known and the possibility that more than one host in the victim’s network 
would be involved in the attack. The ‘FTP Host’ provides an anonymous FTP service that 
allows uploads and the ‘Target Host’ provides a remote shell service that trusts the users 
on the ‘FTP Host’. 

1 In preparation, the attacker creates a file containing a valid remote shell (rsh) 
message such as \0root\0root\0xterm -display bad.hacker.org:0.0 which means ‘I am 
the user root on the local computer, I wish to execute a command on the remote 
computer as the user root, and the command I wish to execute will open a terminal 
window from the remote computer on my screen’. 

2 The attacker scans for valid hosts in the target’s network. For the purposes of our 
spatially distributed attack, assume the attacker discovers at least two host systems in 
the target’s networks (Reconnaissance).  

3 The attackers cans for listening TCP ports on the target network’s valid hosts. 
Assume the attacker discovers a vulnerable anonymous FTP server listening at TCP 
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port 21 on the ‘FTP Host’, and a remote shell daemon (rshd) listening at port 514 on 
the ‘Target Host’ (Vulnerability identification). 

4 The attacker uploads the previously created file to the anonymous FTP server on the 
‘FTP Host’. 

5 The attacker uses a ‘feature’ of the FTP protocol to tell the FTP server to send the 
next download to port 514 on the ‘Target Host’. Then the attacker issues a command 
to the FTP server that initiates a ‘download’ of the file containing the rsh message. If 
the ‘Target Host’ trusts the users on the ‘FTP Host’, the remote shell domain on the 
‘Target Host’ accepts the message and executes it due to an authentication 
vulnerability in the remote shell protocol (Penetration and Control). 

6 The ‘Target Host’ opens a terminal window on the attacker’s X Window server that 
provides the attacker with root-privileged shell. The attacker may proceed with any 
number of activities including: changing passwords or adding users; reading or 
changing any file on the system; erase traces of his/her presence; and install tools to 
sniff passwords, provide backdoors for future access, and disguise his/her activities. 
(embedding, data extraction and modification and attack relay).  

3 Software fault trees  

In this section, we briefly describe SFTs, discuss their use in specification of IDS and 
introduce the augmented SFTs for modelling intrusions.  

Fault trees have been used for security assessment, although not explicitly for IDS. 
Cited advantages include their ‘organisation and preservation of informal discussions 
about security ramifications of design alternatives’ [in argument trees (Kienzle and Wulf, 
1998)] and the possibility for efficient reuse of subtrees [in attack trees (Schneier, 2000)]. 
However, fault trees suffer from several limitations with regard to modelling ‘multiple 
attacker attempts, time dependencies or access controls’, as well as for non-modelling 
cycles (Phillips and Swiler, 1998). Hence, we augment the fault-tree formalism to over 
come some of these limitations. The resulting augmented fault trees provide a useful 
frame work for modelling intrusions. 

Two interesting aspects of the requirements phase of this prototype are as follows. 
First, the intrusion SFT models have been interpreted as specifications of the 
combinations of events that must be detected. That is, the IDS requirements are that each 
of the intrusion sequences possible in the SFT should be detected as soon (as low in the 
tree) as possible. The leaf events describe what components of a distributed system must 
be monitored by the software mobile agent. The interpretation of the SFT serves as the 
requirements specification. 

Second, the intrusion SFTs have had to be extended with additional information 
specific to a particular system prior to their mapping into CPNs. This information is of 
three types:  

 Trust indicates which members of a distributed system are trusted by other members. 

Context shows which events must all involve the same host(s) or connection(s), 
process(es) or session(s). 
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Temporal orderings that give which events must be adjacent with no intervening 
events, or follow within a specific interval of time. 

Without this additional system-specific information the IDS yields many false positives, 
detecting intrusions where, in a specific network, there is none. That is, the set of events 
marked as intrusions by the SFT is a superset of the set of events that are actually 
intrusions in any specific network and must be constrained by additional network-specific 
knowledge. These topics are discussed in more detail later. 

A fault tree is defined formally as a tree consisting of: 

1 a hazard as the tree’s root node 

2 basic events that contribute to the hazard as the tree’s leaves 

3 either AND gates or OR gates (representing Boolean AND or OR operations, 
respectively) as each of the intermediate nodes.  

The intermediate nodes determine the combination of basic events necessary for the root 
hazard to occur.  

3.1 Software fault tree analysis 

We adapt standard SFTA technique. The root node in afault tree represents a hazard 
(here, the intrusion) being analysed. The necessary preconditions for the hazard are 
specified in the next level of the tree and joined to the root with a logical AND or a 
logical OR. Each precondition is similarly expanded until all leaves are primitive events. 
SFTA investigates the ways in which the hazard (root node) might occur. If a credible 
scenario (i.e. path through the tree or, more precisely, a cutset of the tree) exists, the 
SFTA identifies the nodes (i.e. which events) that should be monitored in order to detect 
intrusions.  

SFTA (Leveson, 1995) is used first to model intrusions and develop requirements for 
the IDS. SFTA is a natural fit as the IDS design resembles a tree where data is obtained at 
the leaf nodes, travels up through the internal nodes as data is correlated with other 
information, and rises to the root node when an intrusion is identified. 

3.2 SFTA in the IDS development life cycle 

The augmented SFT specification are mapped into CPNs (Jensen, 1992) that serve as the 
design for the IDS. CPNs are a well-documented and frequently-used abstraction for 
modelling complex distributed systems. They appear particularly suited for describing the 
gathering, classification and correlation activities of an IDS. 

The advantages of using SFT to model the specification, rather than using only CPNs, 
are fourfold: 

1 Usability. The system support personnel who will be using the system typically have 
a great deal of knowledge about intrusions that must be elicited and represented 
systematically, in order for the requirements for the IDS to be determined. Usually, 
they are not experienced in, or interested in, formal modelling techniques such as 
CPNs. SFTs, on the other hand, are perceived as familiar, easy to use and easy to 
teach and learn. For an IDS to be effective, the specification must be readily 



      

      

   Software fault tree and coloured petri net–based specification 115    

      

      

      

updatable. The usability of SFT is an advantage in eliciting and capturing knowledge 
about the requirements. 

2 Support for gradual refinement for defining intrusions. SFT supports gradual 
development of intrusion specifications with different subtrees being developed to 
varying levels of detail, depending on the level of concern and the level of 
knowledge regarding that subtree. CPNs, on the other hand, are better at modelling a 
system at a uniform level of detail. 

3 Modeling the attack. The augmented SFT defines the intrusion specification. It is 
from this representation that the requirements for intrusion detection are derived. The 
CPN models not the intrusion itself but the IDS, that is the design of the IDS. 

4 Countermeasures analysis. The augmented SFT intrusion specification allows the 
determination of countermeasures needed for an IDS to thwart attacks (Helmer et al., 
2002a).  

3.3 Augmented SFT 

We define an augmented SFT to be an SFT where leaf nodes may specify trust, ordering 
and contextual constraints, in addition to the basic events of a SFT. Specifically, 
constraint nodes are added to SFT to capture trust, order and contextual relationships 
needed to develop satisfactory specification of intrusions. 

The effect of adding constraint nodes may be demonstrated by considering the set E
of all combinations of events that make the root node of a plain (unenhanced) SFT ‘true’. 
The set I  E of combinations of events that are actual intrusions must also make the root 
node of the augmented SFT ‘true’. (|I| ought to be much smaller than |E|.) The constraint 
nodes added to an augmented SFT should exclude the vast majority of the combinations 
of ‘false positive’ events E – I. Thus the augmented SFT, enhanced with the constraint 
nodes described here, will more closely model the requirements for detecting the 
intrusion being modelled. 

3.3.1 Trust 

Members of a distributed system trust other members of the system. An example of trust 
currently used in our SFT is authorisation. The trust constraint will have to be enhanced 
when additional intrusions are modelled that depend on other notions of trust. 

As an example of trust, a Network File System (NFS) server using AUTH_UNIX 
authentication usually trusts the source IP address and user ID in client requests. This 
allows a user on a trusted client host to access files on the file server without having to 
login to the server. 

Explicitly stating a trust relationship that is required for an intrusion to succeed 
provides the information to an IDS developer that will help derive an accurate matching 
model for the intrusion. The syntax of this predicate is Trusts((destination), (source)) 
where destination is an ordered list of constants and variables describing the trusting 
destination, such as the name of destination host, network or netgroup and application, 
and source is an ordered list of constants and variables describing the trusted source, such 
as the name of source host, network or netgroup and application. 
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The Trusts predicate is true if the destination assigns some trust to the source.
Specifying trust relationships in this way allows matching relationships to be unified 
(Russell and Norvig, 1995) with other trust relationships. A trust relationship is true if 
one of the system’s trust relationships successfully unifies with the relationship specified 
by the Trusts predicate. An example of such a trust relationship may be Trusts ((Rshd, 
targetHost), (sourceHost)), which states that the remote shell daemon (Rshd) on a 
targetHost trusts a sourceHost. By convention, elements beginning with upper-case 
letters are constants, and elements beginning with lower-case letters are variables. 

3.3.2 Context 

Certain combinations of intrusive events must occur in some common context. For 
example, a series of FTP commands and responses need to be grouped by a common 
network connection to an FTP server. 

In the following definitions of forms of context, each of the parameters (host, 
connection, user or process) may be specified as a constant value or a variable. Network-
related events may be related by events involving a single host, a pair of hosts or a single 
virtual network connection. 

A single host that must be a common source or target for network events may be 
specified as a common context for intrusive events. The syntax for this constraint is 
Context ((:hostHostname) (FTNodeList)), where Hostname is the name or address of a 
host or group of hosts and FTNodeList is the list of one or more SFT nodes to be included 
in the context. The predicate is true when the host identified by Hostname is involved in 
each node specified by the FTNodeList.

Similarly, a pair of hosts that must be the source and target for network events may be 
specified as a common context for intrusive events using the syntax Context ((:hosts 
Hostname1 Hostname2) (FTNodeList)), where Hostname1, Hostname2 are names or 
addresses of hosts or groups of hosts. The predicate is true when hosts identified by 
Hostname1, Hostname2 are involved in each node specified by the FTNodeList.

Finally, a pair of hosts communicating using a virtual network connection that must 
be the source and target for network events may be specified as a common context for 
intrusive events using the syntax  

Context ((: conn Hostname1 P1 Hostname2 P2) (FT NodeList))

where P1 and P2 are the names or numbers of network ports. The Context predicate is 
true when a network connection involving the endpoints identified by P1 on Hostname1
and P2 on Hostname2 are involved in each node specified by the FTNodeList.

An authenticated user session on a host, such as via telnet, ssh or ftp, may be a 
context for related events using syntax  

Context ((: user U App LH RH Term LT) (FTNodeList))

where U is the name of a single user or group of users, App is the name of the method of 
access (e.g. telnet, ftp), LH is the name of the host to which the user is connected, RH is 
the name of a remote host or group of hosts, Term is the name of a terminal used for 
access (e.g. tty01), LT is the time of login and FTNodeList is a list of one or more SFT 
nodes to be included in the context. 

Events corresponding to a process (an instance of a program in execution) may be a 
context for related events using the syntax 
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Context ((: process PID PgU Host ST) (FTNodeList))

where PID is the identification number of the process, Pg is the program being executed, 
U is the set of user permissions, Host is the host on which the process executed, and ST is 
the time the process began executing. The context involves each node specified by the 
FTNodeList.

3.3.3 Temporal ordering and intervals 

Events and conditions involved in an intrusion must often occur in a particular order. 
Explicitly specifying the event ordering excludes other non-intrusive permutations of 
events from being considered as intrusive. We use Allen and Ferguson’s interval 
temporal logic (Allen and Ferguson, 1994) to develop temporal predicates. 

3.3.3.1 Occurs after. An event that takes place must make its node in the SFT true as 
long as the existence of that event may be combined with other events to make aparent 
node true. It seems an event’s period may last as long as the context exists in which it 
may be evaluated. In this sense, ‘occurs after’ is concerned only with the relative start of 
the event’s periods. 

‘Occurs after’ is the condition where one event’s period is required to start after 
another event’s period has started. The Starts(i, j) primitive is true when periods i and j
begin simultaneously. The Meets(i, j) primitive is true when period i ends adjacent to the 
time where period j begins. Let Period (x) be the period in which node x is true. Let  

OccursAfter : Node, Node Boolean

where Occurs After(i, j) m Starts(Period(i), m) Meets(m, Period(j)) meaning that the 
event or Boolean expression indicated by the node i becomes true in the time prior to the 
time that the event or Boolean expression indicated by the node j becomes true. 

3.3.3.2 Adjacent events. Certain situations exist where an event must occur after 
another event within the same context with no intervening events. Let  

ImmediatelyAfter : Node, Node Boolean  

where ImmediatelyAfter(i, j)  OccursAfter(i, j) ¬

( n OccursAfter(i, n) OccursAfter(n, j)) meaning the event or Boolean expression 
indicated by the node i becomes true in the time prior to the time that the event or 
Boolean expression indicated by the node j becomes true. No intervening events become 
true between i and j.

3.3.3.3 Interval. An event may be required to follow another event within some amount 
of time. Let StartOf (i) be the start of discrete time period i. The Overlaps(i, j) primitive 
is true when period i overlapsperiod j. Then  

InInterval : Node, Node, R Boolean

where InInterval(i, j, t) OccursAfter(i, j)
Overlaps( StartOf (Period(i)), StartOf(Period(i))+ t , j) meaning the event or 

Boolean expression indicated by node i becomes true in time prior to the time that the 
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event or Boolean expression indicated by node j becomes true. Additionally, j must 
become true during the period specified by t.

4 Coloured Petri nets  

In this section we introduce CPNs and describe the transformation from augmented SFTs 
for intrusions to CPN templates for IDSs. 

4.1 Coloured Petri nets defined 

CPNs are a powerful modelling technique for complex systems (Jensen, 1992). CPNs 
model state and action through the use of coloured tokens (colours can be thought of as 
data types) that reside in places (or states). Tokens move from one place to another 
through transitions. Transitions allow tokens to pass if all input arcs are enabled
(meaning tokens are available for each input arc). Tokens entering from multiple places 
may be merged (or unified) at transitions. Tokens leaving transitions may be duplicated 
to multiple destination places. CPNs may be organised in hierarchical fashion to allow 
reuse and top-down or bottom-up development. 

In a graphical representation of a CPN, places are denoted by ovals or circles, 
transitions are denoted by squares or rectangles and lines with arrows denote arcs. If a 
predicate or tuple is written next to an arc, a token must satisfy the predicate or unify with 
the tuple before it may pass through the arc. Token colours are defined at the entry point 
of each CPN in terms of tuples of standard values, such as strings or integers (tokens may 
also be defined as data structures). Places may be labelled with a particular colour by an 
italicised label.  

Formally, a CPN is a tuple CPN = ( , P, T, A, N, C, G, E, I) satisfying the 
requirements:  is a finite set of non-empty types, called colour sets, P is a finite set of 
places, T is a finite set of transitions. A is a finite set of arcs such that 

0P T P A T A , N is a node function ,A P T T P C  is a colour 
function P , G is a guard function defined from T into expressions such that t T : 
[Type(G(t)) = Boolean Type(Var (G(t))) ], E is an arc expression function defined 
from A into expressions such that a A : [Type (E(a)) = C(p(a))MS Type(Var(E(a))) 

]
where p(a) is the place of N(a)I. I is an initialisation function defined from P into 

closed expressions such that p P :[Type(I(p)) = C(p)MS ] (Jensen, 1992).  
A hierarchical CPN consists of a set of CPNs arranged in a hierarchical structure. The 

two building blocks of hierarchical CPNs are substitution transitions and fusion places. 
Substitution transitions and fusion places allow the construction of a hierarchical CPN by 
combining a number of non-hierarchical CPNs. A hierarchical CPN may be translated 
into a behaviourally equivalent non-hierarchical CPN, and vice versa. Hierarchical CPNs 
are important to our design of the IDS, as they allow the construction of detectors for 
components of attacks that can be composed into detectors for the complete intrusion. 

CPNs have been applied to a variety of problems in security, networks, concurrent 
systems, VLSI chip design and chemical manufacturing systems (Jensen, 1997). Petri 
nets have also been applied to the safety domain (Leveson and Stolzy, 1987), which is 
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closely related to the security domain (Rushby, 1994), and to IDSs (Kumar and Spafford, 
1994; Kumar, 1995).  

Our work with modelling intrusion detectors such as CPNs has shown that CPNs 
provide a formal foundation for the agent-based distributed IDS and allow the analysis of 
the IDS for discovering inconsistencies between components of the system, finding ideal 
places in the monitored system for security improvements, and proving that certain 
attacks cannot be successful if a system is changed so as to eliminate the identified 
vulnerabilities.  

4.2 From augmented SFT to CPN templates  

CPN template intrusion detectors may be generated from augmented SFTs for intrusions 
to ensure correctness and correspondence between a requirement specification based on 
SFT and a design using CPNs. The constraints added to an augmented SFT to describe 
the ordering relationships between nodes requires special handling to develop accurate 
CPN templates from augmented SFT.  

Leaf nodes in the augmented SFT for intrusions correspond to basic events in the 
system that must be detected. Leaf nodes then correspond to token source places in  
the CPN. The token source places produce a new token each time the basic event takes 
place. Tokens generated by token source places must have su cient descriptive 
information so that tokens may be matched and unified to satisfy any trust, context and 
ordering constraints that exist in the augmented SFT. 

AND nodes in the SFT are of special interest in intrusion models. Semantically, when 
all child nodes of an AND node in a SFT are true, the AND node is true.  

4.2.1 AND nodes without ordering constraints 

An AND node unconstrained by an ordering in an SFT corresponds to a transition and 
outgoing place pair in a CPN. An AND node with n inputs translates to a transition with n
incoming arcs. Each incoming arc comes from either a token source place of an SFT leaf 
node or the outgoing place of an SFT gate node. Figure 1 illustrates the correspondence 
between an AND node and its equivalent CPN transition/place pair, where:  

1, if
0, otherwise

1, if

0, otherwise

1, if ( ) ( )

0, otherwise

x

y

x y

x D
X

y D
Y

x D y D
Z

X and Y are the binary inputs to the AND gate, and Z is the binary output of the AND 
gate. x and y are the incoming tokens to the CPN transition, where Dx and Dy are the 
domains of x and y, respectively. z is the output token from the CPN transition.  

Tokens leaving the transition must be unified such that they satisfy any related trust 
and context constraints that exist higher in the augmented SFT. An examination of the 
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trust and context constraints that are connected to branches along the path to the root in 
the minimum cut of the augmented SFT will identify the constraints for the events 
described by the incoming tokens. The designer must construct the unifying expressions 
so that the related elements in the output token(s) satisfy the constraints. For example, if a 
constraint exists in the minimum cut that requires two augmented SFT nodes to be related 
by a common TCP network connection context, the tokens must be unified using the 
elements of the TCP quad (source host, source port destination host and destination port) 
that uniquely identifies a TCP connection; this would satisfy the connection context 
constraint node in the augmented SFT.  

Figure 1 Unconstrained AND node with corresponding CPN  

4.2.2  AND nodes with ordering constraints 

Nodes connected to an AND node in an augmented SFT may have an attached constraint 
that requires the nodes to become true in some particular order. Two cases exist: first, 
nodes may be required to become true in order, but intervening events may occur; 
second, nodes may be required to become true in order with no intervening events. 

To support ordering, CPN tokens are required to contain times or sequence numbers. 
If event a occurs before event b, the timestamp in the token representing event a must be 
less than the timestamp in the token representing event b, and no two events may have 
identical timestamps. Likewise, if event a occurs before event b, the sequence number in 
the token representing event a must be less than the sequence number in the token 
representing event b, and no two events may have identical sequence numbers.  

Literal wall-clock times used for comparisons are a problem when the times are 
obtained from di erent computers in a distributed system (Tanenbaum,1995). Each 
computer has its own notion of the current time, and computer clocks tend to skew at 
different rates. We assume that the clocks are kept synchronised and the skew  between 
a computer’s clock and the actual time is very small. As an implementation detail, the 
IDS may itself synchronise the clocks and monitor the measured di erence m between 
clocks. The IDS may have an established maximum skew MAX and may consider any m
> MAX to be an intrusion. In addition, the implementation may include  in its 
comparisons between timestamps. The comparison t1 +  < t2  yields a tight bound on 
two events, which may result in false negatives. The comparison t1  < t2 +  yields a 
loose bound on two events, which may result in false positives. 

Sequence numbers are maintained per context and no comparison may be made 
between sequence numbers across contexts.  



      

      

   Software fault tree and coloured petri net–based specification 121    

      

      

      

The addition of temporal ordering to augmented SFT and the associated 
representation of time information in event tokens enables temporal reasoning. 

4.2.2.1 Occurs after. The case ‘occurs after’ covers the situation where augmented SFT 
nodes must become true in a particular order.  

Figure 2 shows an example of an AND node constrained such that node y must occur 
(become true) after node x becomes true, where:  

1, if
0, otherwise

1, if

0, otherwise

1, ( ) ( ) ( 1 2)

0, otherwise

x

y

x y

x D
X

y D
Y

if x D y D time time
Z

Figure 2 AND node, constrained by ‘Y after X’, with corresponding CPN  

In Figure 2, time1 and time2 denote the timestamps for events x and y, respectively. The 
related CPN segment shows that a token for event x must have a smaller timestamp than 
the token for event y. The significant differences between Figures 1 and 2 are the addition 
of time information to the tokens and the guard on the transition that enforces the 
ordering on the token’s time.  

Timestamps in the ‘occurs after’ case may be either wall-clock time or sequence 
numbers. 

4.2.2.2 Immediately after. The case ‘occurs immediately after’ covers the situation 
where augmented SFT nodes must become true in a particular order. Intervening events 
may not occur.

Figure 3 shows an example of an AND node constrained such that node y must occur 
(become true) immediately after node x becomes true, where: 
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Figure 3 AND node, constrained by ‘Y immediately after X’, with corresponding CPN  

In Figure 3, seq1 and seq2 denote the sequences numbers for events x and y, respectively. 
The related CPN segment shows that a token for event y must have the timestamp 
immediately following the timestamp for event x, implying that discrete timestamps 
(sequence numbers) are necessary for the operation of this CPN segment. 

4.2.3 OR Nodes 

When any of the child nodes of an OR node in an augmented SFT is true, the OR node is 
true.  

An OR node in an augmented SFT corresponds to a set of transitions and outgoing 
place pair in a CPN. An OR node with n inputs translates to n transitions, each having 
one incoming arc. Each incoming arc originates in either a token source place based on 
an augmented SFT leaf node or the outgoing place based on an augmented SFT gate 
node. Figure 4 illustrates the correspondence between an OR node and its equivalent 
CPN transitions and place, where 
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Figure 4 OR node with corresponding CPN  

As with constraints on events in an AND node, tokens leaving the transition for an OR 
node must be unified such that they satisfy any trust and context constraints that exist 
higher in the augmented SFT. 

4.3 Generation of token definition  

Defining token types in converting an augmented SFT into CPN is more difficult than the 
generation of places and transition, since there is a fundamental di erence between 
augmented SFT and CPN. Augmented SFTs describe what constitute a hazard at a 
conceptual level and give less details to the events than in data level. But for CPNs, 
especially for CPNs that are used to generate a program, more detailed description of 
what constitutes an event is needed.  

For a leaf node in an augmented SFT (which corresponds to a token source place), we 
need to add some explanation to the event. When the augmented SFT is translated to 
CPN, we then have the necessary information about what constitutes the event and what 
kind of token should be fired by the corresponding event. For example, if the event is 
FTP_PORT_OK, we may add an explanation in the representation of the augmented SFT 
like type =‘RESPONSE’, src_port = ‘21’, value = ‘2xx’. Then when the token source 
place is generated, we can specify enough information to describe the event in the token 
and enable further token matching and unification.  

4.4 Automatic translation from augmented SFT to CPN templates  

Based on the translation rules given earlier, an automatic translation procedure has been 
designed and implemented. The procedure makes use of XSL and XML definitions of 
augmented SFTs and CPN templates. Document Type Definitions (DTDs) have been 
developed for augmented SFTs and CPN templates. 

The process has the following steps:  

1 Convert an augmented SFT to its XML equivalent using the translation rules 
described earlier. 

2 Translate the augmented SFT XML to the XML of the corresponding CPN template 
using an XSL transformer program, such as Visual XML Writer.  
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3 View and validate the CPN corresponding to the resulting CPN template XML from 
step 2 using a CPN tool, such as Design/CPN (CPN group, University of Aarhus, 
Denmark, 2000). During this step, the CPN can be optimised to improve e ciency. 

Figure 6 presents a CPN generated automatically from the augmented SFT in Figure 5 for 
the FTP bounce attack using the XSL technique.  

Figure 5 Fault tree for FTP bounce attack,with constraints  

5 From CPNs to an agent-based implementation  

Similar to the algorithmic approach for creating CPN templates from augmented SFT, an 
algorithmic approach to creating an agent-based implementation from the set of CPN 
templates has been developed. 

By using the translation algorithm to convert CPN designs to code, we can be certain 
that the code implements the CPN design. Also, if the translation algorithm preserves 
CPN semantics, any analysis performed on the CPN design also applies to the 
implementation. Finally, creating an implementation in code allows the developer to 
improve the performance over the execution of a general CPN.  
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Figure 6 FTP bounce attack penetration CPN generated automatically from augmented  
SFT via XSL  

A distributed implementation of the CPN model using software mobile agents can 
provide a reliable, robust and e cient IDS (Jansen et al., 1999). Our implementation 
provides useful information to the security analyst in the form of atrail of transitions 
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through which CPNs passed. Slagell (2001) provides further details regarding the 
MAIDS implementation.  

The MAIDS prototype uses the Voyager agent platform, version 3.2, from 
Objectspace (ObjectSpace, 1999)2. Anagent is an instance of a Java class, which may be 
created either locally or remotely. Additionally, Voyager supports code mobility of two 
types. One agent can move another agent between hosts, or an agent can request its own 
migration. The use of Voyager is not central to the MAIDS design. Other agent platforms 
that have been considered for use include Grasshopper from IKV++ (IKV GmbH 
Informations und Kommunikationssysteme, 2001) and SMART (Wong et al., 2001). 

5.1 Java-based conversion algorithm 

Each CPN place maps to an agent in our implementation. The algorithm for translating a 
distributed CPN to an implementation of software mobile agents in Java is as follows:  

1 For each leaf place node in a CPN, instantiate an agent that extends the DataPlace 
class. 

2 For each internal place node, instantiate the Place class with a unique label. 

3 For each leaf transition node, instantiate an agent that extends the MobileTransition 
class. 

4 For each internal transition node, instantiate an agent that extends the 
StationaryTransition class. 

5 Main console instantiates an AlertPlace agent for the root node. Refer to it with label 
alert in all transitions that have an outgoing edge to it. 

The CPN arcs, which constitute the structure of the agent network, are not maintained 
centrally. Each transition knows about the places to which it is immediately connected, 
and the places know nothing about the agent network structure.  

The algorithm preserves the CPN semantics in the implementation and allows for 
efficient execution. Performance can be increased over the execution of a general CPN by 
optimising code segments to fit specific intrusion detection applications. For example, 
matching and unifying tokens is computationally intensive, at least O(n2 ) in the general 
case; but in cases where the number and types of tokens are known in advance, faster 
algorithms can be used. If a place holds tokens of a single type, an implementation could 
match tokens in O(n log2 n) time based on a binary search or O(n) time based on hash 
tables. Such enhancements could be made to the Transition super class so that they would 
not be a burden to the end user, but they are not part of the current MAIDS prototype.  

Every agent must provide, strictly for debugging purposes, an agentName() method 
returning an identifying string. Beyond this, the agents have specific requirements as 
follows.  

1 Required methods for data place agents: The responsibility of a data place is to 
generate fresh tokens from what ever information is locally available. It must 
implement a work() method, taking no arguments and returning a TokenBag. This 
method will be called periodically from the DataPlace superclass code.  

2 Required methods for transition agents: Transitions are much more complex, 
embodying as they do all of the logic of the agent network. But most of the 
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complexity is hidden in superclass code. Three additional methods must be 
implemented: String[] sources(), String[] tokenSpec(), Token[] unify (Token[]
sourceTokens).

Of these, only the last is non-trivial to write. sources() should return an array of the labels 
of the places that have arcs to this source; tokenSpec() should return an array of token 
colours, and determines what kind of input the unify() method will see. For instance if 
tokenSpec() returns the array {“blue”, “red”}, then whenever unify() is called it will be 
given an array containing one blue token and one red token, in that order. unify() is then 
responsible for deciding whether those tokens should be unified. If so, it returns a new 
array of tokens; otherwise it returns null. 

Notably, there is no explicit destinations() method. This information is placed in the 
tokens themselves via an argument to the Token constructor. In the case where the token 
is created by a data source place, there is no delivery, so the source place itself is given as 
a destination; in the case where a transition is creating a new token, the destination is 
determined by an outgoing arc on the CPN. 

Behind the scenes, the Transition superclass is responsible for iterating through the 
tokens available from the places given in sources(), retrieving from there sets of tokens 
satisfying the description given in tokenSpec and presenting them to the agent class as an 
argument to unify(). If it gets an array of tokens in return, it delivers them to their 
designated places and deletes the source tokens; otherwise it leaves the tokens where they 
were found. 

5.2 Preservation of CPN semantics  

The MAIDS representation of a CPN as a network of Java objects satisfies the CPN 
properties listed in Section 4.1 as follows:  

1 Each type is a colour in set .

2 Each instance of a Place is an element in set P.

3 Each instance of a Transition is an element in set T.

4 Arcs A between places and transitions are encoded in the transitions (when 
proceeding from place to transition) and tokens (when proceeding from transition to 
place); they are finite in number and satisfy the requirement as they are distinct from 
places and transitions. 

5 The encoding of arcs as described earlier defines the node function N.

6 The assignment of colour in the Token class constructor defines the colour function 
C.

7 A unify() method implements the guard expressions in G for each transition in T.

8 The unify() method also implements the arc expression E for each arc a A.

9 A trivial initialisation function I makes each place begin with no tokens. 

The implementation of transitions and places may impose additional constraints not 
present in the CPNs so as to obtain the efficiencies for particular expected token colours; 
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as long as only expected token colours exist in the places, the CPN semantics are satisfied 
by the implementation.  

5.3 Algorithm for translating CPN design templates to agent implementation 

The MAIDS uses a distributed agent-based system to detect intrusions. If the CPN model 
of intrusion detection is expanded to include multiple data source nodes (which are 
simply duplicated places that provide the same token colours to transitions) and the 
transitions are given the mobility, the result is a Distributed CPN (DCPN). In our design, 
transitions are selected for mobility based on their need to visit di erent sites in the 
distributed system to collect tokens from duplicated place nodes for matching. The places 
visited by the transitions are defined dynamically through the user interface, 
corresponding to the nodes that are being monitored by MAIDS. 

The previous section examined the implementation of a CPN as Java code. This 
section further details the implementation of a CPN as agents in a distributed system.  

5.3.1 Node categories 

The IDS CPN design resembles a tree where data is obtained at the leaf nodes, feeds up 
through the internal nodes and finally reaches the root node when an intrusion is 
identified. Tokens in the IDS CPN represent information that, as tokens ‘rise’ through the 
tree, is correlated with other information to identify intrusions. 

Source places (places that have no incoming arcs) are considered leaf places. The 
transitions adjacent defined to leaf places are considered leaf transitions.

Sink places (places that have no outgoing arcs) are considered root places. The Alert 
place is currently the single root place in the CPN IDS design.  

Internal places and internal transitions are the remaining places and transitions, 
respectively, in the CPN IDS design. 

5.3.2 Leaf places and transitions

Raw audit data of various types and formats is obtained from monitored systems for the 
IDS. Data cleaning agents have been developed to read and process the raw audit data for 
use by the IDS. The data cleaning agents correspond to the leaf places and transitions in 
the CPN design. 

Leaf places and transitions are duplicated at each monitored system to manage the 
constant process of data retrieval and cleaning. 

The leaf places (data cleaners) are agents that remain in a single location to obtain 
raw data, such as that available from log files. In the current MAIDS implementation, the 
leaf places are instantiated separately on each host by the operator, where they will 
remain stationary for the duration of their activity. Next generation of MAIDS would 
allow the console to dispatch the leaf nodes to the monitored host and allow the console 
to recall the agent to replace it with an updated agent or cease monitoring. The leaf places 
perform minimal processing and do not place a substantial resource load on the 
monitored systems.  

Leaf places are an instance of places in the MAIDS DCPN implementation that 
require customised coding to perform operating-system-specific data gathering and 
cleaning tasks. Nearly all other places are generic, passive containers of tokens.  
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Leaf transitions (data gatherers) are software mobile agents that travel between 
monitored systems to obtain tokens. Currently, single instances of each leaf transition 
perform the data gathering duties, but in the future, multiple instances of each leaf 
transition could cooperate to gather data in a large distributed system.  

Informally, the leaf transitions perform the first level of data gathering and filtering in 
the IDS. Formally, the leaf transitions perform the token matching and unification 
specified by the CPN IDS design. 

5.3.3 Internal places and transitions  

Internal places act as passive containers for tokens. Internal places are not duplicated; a 
single instance exists and accepts tokens from all (possibly mobile) transitions connected 
to it. Internal places currently reside at the machine running the console, but they could 
be given mobility if it becomes advantageous.  

Internal transitions are similar to leaf transitions in that they apply token matching 
and unification rules to tokens, as they are obtained from incoming places and sent to 
outgoing places. Like internal places, internal transitions are statically positioned at the 
machine running the console. Internal transitions could be given mobility if advantages 
are found.  

5.3.4 Root place 

The root of the CPN IDS design is the alert place. It acts as a passive container; but when 
a token is added to the alert place, the IDS console interprets the token and displays it. 
Transitions are required to set an urgency-level parameter in tokens for use by the IDS 
console. Tokens are sorted on the IDS console display by their urgency and then by their 
arrival time. 

5.3.5 The IPlace interface  

The IPlace interface specifies four methods: void storeToken(Token t), TokenBad 
getTokens(), boolean lock() and void unlock(). 

All Place agents in the network, except the data source (leaf) places, are instances of final 
classes. As a result, the end implementer is never responsible for any of these methods. 
They are called by transition agents, but in superclass (Transition) code so that they are 
invisible to the implementer. Additionally, DataPlace superclass code uses storeToken(). 
The lock() and unlock() methods allow a transition to atomically examine and either 
replace or remove tokens from several places.  

5.4 Testing CPN design  

A set of use cases (positive and negative examples of intrusions, i.e. set of paths in CPN 
leading to successful or unsuccessful intrusion) were developed to test the IDS 
requirements. The CPN design was tested using the use cases to observe the behaviour of 
the CPN and verify correct functionality. Equivalence classes may be used to test 
representative samples from groups of intrusions to reduce the testing e ort (Puketza  
et al., 1996).  
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Since the requirements model is less detailed than the CPN and may not be as 
expressive as a CPN model, the CPN design further constrains the sets of events that can 
be identified as intrusions. Thus, some use cases that are identified by the requirements as 
intrusions may not be considered intrusions by the CPN model and the IDS 
implementation. Each use case must be annotated to describe whether the requirements 
and/or design will identify the use case as an intrusion.  

CPNs design was tested with the following methods: 

1 Interactive simulation: Execute a CPN model in a way similar to interactively 
debugging a program. 

2 Automatic simulation: Investigate functional correctness and performance of a CPN 
model by executing a CPN at full speed. 

3 Creating occurrence graphs: Determine reachability of nodes in a CPN model. 

4 Place invariants: Prove user-specified predicates to be satised for all reachable 
system states to prove properties such as absence of deadlock. 

Place invariants, in particular, may be useful for the intrusion detection CPN design, as 
they may allow invariants to be derived from the requirements and verified in the CPN 
design. For example, a place in an FTP bounce attack detector of Figure 6 may have an 
‘FTP RESPONSE’ token only if there exists a matching ‘FTP COMMAND’ token in the 
CPN, since a command must be issued to receive a response.  

Interactive simulation has been performed by building CPNs and simulating their 
execution in the Design/CPN tool (CPN group, University of Aarhus, Denmark, 2000) 
using positive and negative examples of intrusions. Automatic simulation has been 
performed indirectly by building an implementation of CPNs in Java and executing it. 

5.5 Detecting FTP bounce intrusion 

FTP bounce detection was tested using a script to launch the attack from a host outside 
the local network. Because real intrusion data for this attack was not readily available in 
the form of network traces, we mixed normal and malicious sessions to simulate the 
attack under significant network traffic conditions. An upload of a one-line text file 
followed by a download of the same file was our model of a ‘normal’ session, and was 
chosen for its superficial similarity to an instance of an FTP bounce attack. The normal 
session scenario, like the attack scenario, was made repeatable using our scripts. A Perl 
script invoked these scripts to run 50 ftp sessions sequentially; the sessions numbered 2 
and 49 were malicious, and the rest were normal.  

Two monitored hosts were attacked, one as relay and the other as target. A third 
machine served as the host console. The relay host was running a modified version of the 
wu-ftp server. Changes were made to source code file ftpcmd.y to blindly enable PORT
commands, regardless of source or destination. Although this very vulnerable server was 
active for testing, packet filtering was kept in place to discourage the real attacks from 
outside our laboratory’s domain. Also, the target host’s RSH service was not made 
vulnerable; instead, RSH service was disabled and a proxy was set up to watch port 514 
and echo its tra c to a terminal window.  

By these measures, all the essential events could appear as a real attack, but with 
minimal danger of our test systems being compromised. 
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When run in isolation, a scripted attack was detected typically between 2 and 5 sec of 
its completion. This time disparity was to be expected because of the discrete actions of 
the agents and the randomised delays that were artificially inserted.  

In tests of the 50-session ftp sequence, the two malicious sessions were reliably 
detected (i.e. no false negatives) with no false positives.  

Details of the alert tokens from one such test are shown in Figure 7. These text 
presentations appear at the analyst’s console when a token is selected from the alert list 
panel and the ‘details’ button is pressed. The hierarchical indentation scheme reflects the 
history of unifications that led to the creation of a token. (Note: the recorded creation 
times of the RSH_PORT and FTP_BOUNCE_ATTACK tokens reflect a clock skew 
between the monitored hosts, since token timestamps depend on the machine where 
unification actually takes place.) 

Figure 7 Alert tokens from node-reduced test  

Although both attacks were correctly identified out of the scripted ftp sessions, the later 
attack took significantly longer to detect. Studying the contents of the two tokens, it is 
apparent that the bottleneck is in the creation of the FTP port & retr token, which is the 
job of the complex transition that was created as a result of node reduction. After the first 
attack, the FTP port & retr token appears at 20:26:24, 4 sec after all four contributing 
tokens are available. But in the second attack this disparity is larger: the contributing 
tokens are available by 20:29:14 and are not unified into a FTP port & retr token until 19 
sec later, at 20:29:33. The difference in performance is accounted for by the fact that each 
of the 48 intervening normal ftp sessions produced FTP_PORT_OK, FTP_RETR and 
FTP_RETR_OK tokens, all of which had to be processed by the FTPB_relay_MT agent 
in every possible combination. 

The test conditions are such that the FTPB_relay_MT transition unifies in O(n4 ) time, 
where n is the maximum number of tokens of any colour. It would seem that a small n is 
required to prevent the FTPB_relay_MT transition from wasting agreat deal of the local 
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host’s CPU time, even if the observed total detection times of under 30 sec were 
otherwise deemed acceptable. 

To correct this, the first impulse might be to test an agent system based on the 
original CPN before node reduction. But to facilitate component reuse, it is desirable to 
keep the FTP port & retr token intact. Therefore, the unreduced CPN is rearranged as in 
Figure 8 for a second test with the same 50-session ftp script. 

Figure 8 FTP bounce CPN, rearranged for later component reuse  

As in the previous test, both attacks were detected and there were no false positives. The 
attack token details are shown in Figure 9. 

The first attack is detected more slowly than before, but the second is detected more 
quickly (compare creation times ofthe FTP_RETR_OK and FTP port & retr tokens, to 
witness that the bottleneck is relieved). Total detection times from these tests, calculated 
from reception of the attack egg to the creation of final alert token, are summarised in 
Figure 10.  
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Figure 9 Alert tokens from test without node reduction  

Figure 10 Detection times (in seconds) from Figures 7 and 9  

 Low-traffic attack High-traffic attack 

With node reduction 6 22 
Without node reduction 13 16 

We see that node reduction, in addition to simplifying the layout of the agent system, 
decreases the constant agent communication and migration overhead, and hence 
performance improves under light-traffic conditions. But when large numbers of tokens 
accumulate in a short period of time, complex transitions perform poorly and the overall 
performance suffers. 

This performance analysis is by no means exhaustive but gives a general indication of 
the effect of node reduction.  

6 Other intrusion scenarios 

FTP bounce attack example demonstrates all development stages of IDS (from 
specification of intrusion to design and implementation of the intrusion detection agents) 
and the final result of this process – actual detection of an attack. In addition to this 
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intrusion, we have also tested several other attack scenarios in wired and wireless 
settings. For brevity we include only the descriptions of those scenarios.  

6.1 Denial-of-service attack 

Denial-of-service (DOS) attack is an offline attack that was adapted from Ning, Cui and 
Reeves (2002). The goal of this scenario is to ensure that MAIDS agents can gather and 
correlate data from multiple hosts to find intrusions. It uses pre-conditions and post-
conditions to link events. As alerts are generated by an IDS, they are compared against 
rules in a database to determine if a correlation can be made. If one is made, a hyper-alert 
is generated to represent the alerts involved. 

Test data for this scenario were taken from Ning, Cui and Reeves (2002) and 
arbitrarily divided between multiple files in such a way that each file is similar in length 
and no two of these files have data from the same line in the original file. The new files 
are then placed on di erent hosts in the network. An agent, created to visit each node in 
the network, collects alert data from these files and attempts to link events using pre-
conditions and post-conditions. 

The correlation is done in a decentralised fashion. Using pre-condition and post-
condition rules (stored in arrays in the agent code), the events collected by the agent on 
each host are compared against the rules to determine if a correlation can be made. If a 
correlation is made, a hyper-alert is generated to represent the alerts involved. Once the 
agent has visited all hosts in the network, it writes all hyper-alerts to the console machine 
for analysis by an administrator. 

6.2 Nmap scan 

The second considered attack is a distributed Nmap scan (‘Fyodor’, 2004). Nmap is a 
program that is capable of scanning large networks in order to determine which hosts are 
up and what services are available on those hosts. Nmap scan is considered as an attack 
as it is likely to be a first step in carrying out an intrusion. As such, hosts suspected of 
executing these scans are often disconnected from the network. 

The attack is performed by sending SYN packets to targeted hosts. RST packet 
received from the target, instead of an ACK packet, is an indication that the port is not 
active and cannot be used in a later intrusion attempt. To reduce the chance of being 
detected, the attacker can scan the target machines at random time intervals and using 
pseudo-random port numbers while also randomising thehosts.  

In this scenario, the agent travels between three hosts. The attacker, on a third 
machine, performs a randomised port scan on ports 20 to 150 on the other two hosts. The 
job of the agent is to detect what appears to be completely random (and few in number) 
port activity on each host, and to correlate the aggregated results to decide if an Nmap 
port scan is being carried out on the network. 

For this experiment, the agent correlated the events if similar alert patterns are found 
on all hosts with the same source address as seen earlier. If enough of these events are 
correlated, the agent takes a predefined action. In this scenario, once 100 unique ports 
have been discovered coming from the same host, the agent raises its alert the level and 
prints a message to the screen of each host it visits to alert the users of the scan.  
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6.3 Distributed real-time attack 

The third attack demonstrates a distributed attack resulting in a compromised system. It 
was tested on the network of four hosts. Host A and T are the attacker and the target 
machine, respectively. C1 and C2 are the nodes that have been compromised by an 
attacker and are used to carry out the attack on T. 

The first step of this attack is to perform a port scan from C1 on the target machine. 
Following the port scan, the attacker attempts to obtain information about the services 
running on the open ports of the target and launches a more intrusive attack from C2 
against it. The intrusive attack that was implemented is the Nachi worm (‘Network 
Associates’, 2004). This worm starts by sending an ICMP ping to the victim machine; 
and if replyis received, it attempts to propagate. 

In this scenario, agent is looking for three things: a port scan, a machine trying to 
obtain banner information from a service and the virus signature. The port scan is 
detected by the same method as described in Scenario 6.2. When the agent detects a 
machine trying to obtain banner information from a local service on the current host, the 
agent checks the service port against previously scanned ports. If the port has been 
previously scanned, the agent correlates those two events. 

As the agent moves from host to host, it also carries with it a signature for the Nachi 
worm. This signature is a pattern for detecting the traffic from the worm. When the 
pattern is found in the log file, agent also checks previously scanned ports for the 
signature. If there is a match, the events are correlated. Once the worm has been detected, 
the agent raises its alert-level status and prints the alert, along with the correlated events, 
to the screen of each host.  

7 Related models 

An early intrusion detection approaches proposing the detection of intrusions through 
anomalous user behaviour were introduced by Anderson (1980) and Denning (1987). 
Since then substantial amount of research attention has been directed into intrusion 
detection area (Crosbie and Spa ord,1994; Anderson et al.,1995; Balasubramaniyan et 
al., 1998; Porras et al., 1999; Bowen et al., 2000; Joglekar and Tate, 2005). One of these 
intrusion detection techniques is misuse detection approach; although widely employed 
for detection of known attack patterns, it is also shown to have the potential of 
recognising unknown intrusions (Lindqvist and Porras,1999).  

In the past two decades a number of misuse techniques have been proposed. Among 
these are the methods based on rule-based expert systems (Sebring et al.,1988; Garvey 
and Lunt, 1991; Habra et al., 1992; Pouzol and Ducasse, 2002) and attack graph- 
based approaches (Kumar and Spa ord, 1994; Kumar, 1995; Staniford-Chen et al., 1996; 
Lin, Wang and Jajodia, 1998; Sheyner et al., 2002). Several works have focused on 
languages for specifying attack signatures (Michel and Me, 2001; Kruegel and Toth, 
2002; Totel, Vivinis and Me, 2004; Raihan and Zulkernine, 2005) and state-transition 
analysis of anomalous system behaviour (Ilgun,1993; Ilgun, Kemmerer and Porras, 1995; 
d’Auriol and Surapaneni, 2004). 

An example of such system is STAT approach (Ilgun, Kemmerer and Porrras, 1995) 
that graphically models intrusions as transitions in a state machine. Each state in the state 
machine represents a snapshot of the monitored system as a set of assertions about the 
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elements of the system. Each transition shows the actions that move the system closer to 
the compromised state. 

STAT can be considered as a high-level specification and, in that respect, compares 
with our SFT approach to modelling intrusions. A detailed representation of STAT state 
machine could be used as a design for an IDS or executed as an IDS, and in this respect, 
corresponds to the use of CPNs and agents in our system. However, the separate tools 
(SFTs, CPNs and agents) used for the different concerns (requirements, design and 
implementation) in our approach provide a clearer distinction between the development 
activities than it is done in an approach that uses state machines throughout the 
development life cycle. Additionally, SFTs tend to be more understandable as a high-
level specification than state machines. 

As our work is based on integration of SFT and CPN for intrusion detection, we will 
primarily focus on the graph-based approaches. 

One of the earlier misuse detection models, Intrusion Detection In Our Time (IDIOT),
was developed by Kumar and Spafford (1994) and Kumar (1995). The system employs 
CPNs to represent intrusion signatures, patterns. Although, as authors suggested, CPN is 
the most suitable technique for conditional matching of patterns, several modifications of 
CPN were made (elimination of concurrency, removal of local condition variables at 
transitions, addition of start and final states, etc.) to make IDIOT model generic and 
applicable to any well-defined input.  

Our proposed IDS is also based on CPNs; however, the concept is applied to design 
specification rather than a direct execution of a CPN to allow the implementer to improve 
performance. In addition, we define a transformation from the CPNs to the 
implementation of the software agent IDS that preserves the CPN semantics. Another 
benefit of our model is its ability to operate in a distributed environment using an agent-
based approach.  

Another graph-based approach to misuse intrusion detection, called GrIDS, the
Graph-Based Intrusion Detection System (Staniford-Chen et al.,1996) was designed for 
distributed attacks against networks. It dynamically builds the activity graphs describing 
network traffic by applying user-defined rules to audit data. Nodes in the graphs represent 
hosts or aggregations of hosts, while the edges represent network activity. Rather than 
building a single graph including all system activities, individual graphs are maintained 
by rule sets. Each rule set matches certain events from the network audit trail and either 
builds a new graph or adjusts an existing graph.  

The model also allows intuitive aggregation of nodes and edges into reduced graphs 
that provide higher level of analysis and data sharing, resulting in a scalable design. 
Although, this system is built to detect security policy violations, it should be possible to 
extend the model to analyse for anomalies based on selected objects and events.  

While GrIDS considers only communication patterns between hosts, our modelling 
technique applies to all events in the monitored system. Also, rather than directly using 
the graphical model, a mobile agent IDS is developed using the CPN model as the design 
specification to improve performance and allow flexibility in implementation.  

Similar to GrIDS approach, the Adaptable Real-time Misuse Detection system 
(ARMD) represents misuses as directed acyclic graphs (DAGs) (Lin, Wang and Jajodia, 
1998). Abstract events are represented by nodes in a graph, and edges show the ordering 
of inter-event rules satisfied by the nodes. The intra-event rules determine the nodes 
chosen for the graph. The inter- and intra-event rules together define misuse signatures 
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(named MuSigs). If a graph is built such that a sink node has an edge to it, an intrusion is 
detected.

Unlike the model used by GrIDS or by our approach that allows for aggregation 
through unification of tokens, MuSig graphs are not amenable to aggregation. Edges in a 
MuSig graph only mean that a predicate has been satisfied and they have no values or 
attributes that can be aggregated. At the same time nodes in a MuSig graph correspond to 
specific events, which can be hard to aggregate in the absence of structured methods to 
aggregate the attributes associated with the events.  

Finally, MuSig graphs cannot be used for anomaly detection, since by definition a 
MuSig graph detects a misuse intrusion. Thus, the GrIDS-style object/event model seems 
to be more powerful for general misuse and anomaly intrusion modelling. While our 
proposed approach allows for anomaly detection, it has another advantage of not 
requiring the matching of graphs, as CPN graphs are mainly used for the design 
specification. 

In recent years, several methods have been proposed to represent the intrusion 
signatures through attack graphs that can be constructed from the alerts reported by IDS 
(Sheyner et al., 2002; Ning et al., 2004; Noel, Robertson and Jajodia, 2004; Noel et al., 
2005). These graphs precisely model the attack paths in the network through nodes 
representing host vulnerabilities and edges showing connectivity between these hosts 
(Sheyner et al., 2002). Although the attack graphs are exhaustive and precise, their 
manual construction is tedious and often error-prone. Recently, several projects have 
focused on automatic generation of such graphs (Swiler et al., 2001; Sheyner et al., 
2002). Another concern related to attack graphs is their scalability. While it became 
possible to build attack graphs for large networks using automatic tools, it is still quite 
difficult to manage their complexity. Several visualisation techniques have been proposed 
to cope with this problem (Noel and Jajodia, 2004; Noel et al., 2005). Our approach also 
employs the attack graphs; however, graph representation of intrusion is required only for 
the design of the IDS rather than actual intrusion detection. 

8 Discussion and conclusions 

This paper details the procedure by which a distributed, agent-based IDS was 
implemented from a SFT-based requirements and a CPN-based design. Intrusions are 
divided into temporal components that are modelled using SFT. Constraint nodes, 
specifying trust, temporal and contextual relationships, are used to augment SFTs and 
restrict the combinations of events that define intrusions. Algorithmic approaches are 
used to create CPN templates from augmented SFT and agent implementations from the 
CPN templates. The result is an IDS to detect intrusions, which were specified by the 
original requirements. 

Dividing components of intrusions into temporal stages allows the development of 
CPNs that detect individual attacks3. Composition of the CPNs into a hierarchy models 
the correlation of individual attacks to detect complete intrusions. Future work may 
investigate how the attacks may fit together into complete intrusions and determine how 
to further compose CPNs. For example, if detectors for individual attacks are developed, 
data mining techniques such as frequent episodes (Lee, Stolfo and Mok, 1999) may 
discover groups of attacks that occur in combination. A detector for the group of attacks 
could be made by composing the individual detectors together. 
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Constraint nodes were added to enable augmented SFT to model the temporal, 
contextual and trust relationships between events. Such information is necessary to 
distinguish actual intrusions from the events that bear similarity to intrusions and improve 
the false-positive rate of the implemented system. 

An algorithm is used to convert augmented SFT intrusion specifications into CPN 
detector design templates. This conserves the relational constraints of the augmented SFT 
and preserves the logic of the SFT. Likewise, an algorithm is used to convert CPNs into 
agent implementation templates. The implementation preserves the properties of the CPN 
design while providing agents for use as a distributed IDS. 

The augmented SFT, conversion from augmented SFT to CPN template, and the 
implementation of the IDS using the CPN design templates act together to preserve  
the correctness from requirements to implementation. The requirements engineer must 
refine the initial augmented SFT by adding constraints to specify the temporal, contextual 
and trust relationships between events that take place as part of the intrusions. The 
designer must complete the CPN design by adding the places to provide tokens to the 
CPN and refining the tokens so that they unify to satisfy the contextual constraints.  

Our use of SFT with trust, temporal and contextual constraints to model intrusions for 
a requirement specification has assisted the development of CPNs for intrusion detection. 
The use of CPNs to model IDS is novel. Likewise, agents can be used to implement IDS 
Our requirements to use augmented SFT, CPNs and intrusion detection agents structures 
the development of an IDS into a repeatable and verifiable process.  

Agents in our prototype IDS function as CPN places and transitions. Places are 
generally static agents, which either act as a source of information or hold information 
until a transition requests it. Transition agents are the active components that accept 
tokens from places, act on or unify the information in the tokens and pass the resulting 
tokens, to other places. Viewing MAIDS agents and data as an implementation of a CPN 
has conveniently generalised the system and enabled further development. Transition 
agents are given a set of places to visit by the user interface. Future enhancement will 
enable the transition agents to self-direct their travels. Such capability in an agent could 
allow evasion of an attacker or faster response to important events.  

We have implemented a prototype FTP bounce attack detector based on the CPNs 
detailed in this paper, using the agent technology based on our MAIDS implementation.  

Future work will include the investigation of the length of time tokens that should be 
kept in places. Since performance of the IDS degrades significantly as meaningless 
tokens accumulate, the current policy allows an uncollected token to expire after a fixed 
timeout. One possible extension is to allow a timeout to be specified in the token 
constructor, making it possible to script delays into an attack to evade detection. This 
complicates the CPN model by adding work for the system designer (who would have to 
specify the token lifetimes as part of the SFT). Furthermore, the development of an 
algorithm for token garbage collection should be explored to address the underlying issue 
of token lifetime management.  

The augmented SFT and CPNs presented in this paper model the misuse intrusion 
detection. Ongoing work is investigating the application of these techniques to anomaly 
intrusion detection. One of our first steps was modelling the rules learned by a data 
mining algorithm for anomaly intrusion detection with CPNs (Helmer et al., 1998). We 
have created an algorithm to transform the learned rules into a CPN. Further work is 
required to develop an augmented SFT that describes this data mining technique and 
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other techniques for anomaly detection, and then leads to a CPN model of anomaly 
detection.  
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Notes 
 1

The subscript ‘MS’ indicates a multi-set, which Jensen defines as allowing ‘multiple appearances 
of the same element.’ (Jensen, 1992, p.66). 

2
Object Space spun off a new company called Recursion Software Inc. in 2001 to handle Voyager, 
(http://www.recursionsw.com). 

3
A number of highly-effective intrusions (e.g. CodeRed II and Nimda) are simple, scripted attacks 
that do not follow the distinct temporal stages. Simpler IDSs that match single events, such as 
SNORT (Roesch, 1999), tend to be effective at detecting these intrusions.


