

 Int. J. Information and Computer Security, Vol. 1, No. 1/2, 2007 109

 Copyright © 2007 Inderscience Enterprises Ltd.

Software fault tree and coloured Petri net–based
specification, design and implementation
of agent-based intrusion detection systems

Guy Helmer†, Johnny Wong‡*, Mark Slagell‡,
Vasant Honavar‡, Les Miller‡, Yanxin Wang,
Xia Wang and Natalia Stakhanova
Department of Computer Science,
Iowa State University, Atanasoff Hall,
Ames, Iowa 50011
E-mail: ghelmer@cs.iastate.edu E-mail: wong@cs.iastate.edu
E-mail: slagell@cs.iastate.edu E-mail: honavar@cs.iastate.edu
E-mail: lmiller@cs.iastate.edu E-mail: wangyx@cs.iastate.edu
E-mail: jxiawang@cs.iastate.edu E-mail: ndubrov@cs.iastate.edu
*Corresponding author

†G. Helmer is with Palisade Systems, Inc. His research was funded in part by
the Department of Defence, the Boeing Company in the form of the Boeing
Dissertation Fellowship, and the Graduate College of Iowa State University.

‡Funded in part by the Department of Defence.

Abstract: The integration of Software Fault Tree (SFT), which describes
intrusions and Coloured Petri Nets (CPNs) that specifies design, is examined
for an Intrusion Detection System (IDS). The IDS under development is a
collection of mobile agents that detect, classify, and correlate the system and
network activities. SFTs, augmented with nodes that describe trust, temporal
and contextual relationships, are used to describe intrusions. CPNs for intrusion
detection are built using CPN templates created from the augmented SFTs.
Hierarchical CPNs are created to detect critical stages of intrusions. The agent-
based implementation of the IDS is then constructed from the CPNs. Examples
of intrusions and descriptions of the prototype implementation are used to
demonstrate how the CPN approach has been used in the development of the
IDS.

The main contribution of this paper is an approach to systematic specification,
design and implementation of an IDS; Innovations include (1) using stages of
intrusions to structure the specification and design of the IDS; (2) augmentation
of SFT with trust, temporal and contextual nodes to model intrusions; (3)
algorithmic construction of CPNs from augmented SFT; and (4) generation of
mobile agents from CPNs.

Keywords: coloured Petri nets; information and computer security; intrusion
detection systems; mobile agents; software fault tree analysis.

Reference to this paper should be made as follows: Helmer, G., Wong, J.,
Slagell, M., Honavar, V., Miller, L., Wang, Y., Wang, X. and Stakhanova, N.
(2007) ‘Software fault tree and coloured Petri net–based specification, design
and implementation of agent-based intrusion detection systems’, Int. J.
Information and Computer Security, Vol. 1, No. 1/2, pp.109–142.

 110 G. Helmer et al.

Biographical notes: Guy Helmer received his PhD in Computer Science at
Iowa State University and is the Chief Principal Architect at Palisade, Inc.

Johnny Wong is Professor and Associate Chair in the Computer Science
Department at Iowa State University.

Mark Slagell received his MS in Computer Science at Iowa State University
and is a System Administrator at Veterinary Medical College at Iowa State
University.

Vasant Honavar is a Professor in Computer Science and Bioinformatics and
Computational Biology at Iowa State University.

Les Miller is a Professor in the Computer Science Department at Iowa State
University.

Yanxin Wang received his PhD in Computer Science at Iowa State University
and is a Software Engineer at Microsoft.

Xia Wang is currently a PhD candidate in Computer Science at Iowa State
University, Ames, Iowa.

Natalia Stakhanova is currently a PhD candidate in Computer Science at Iowa
State University, Ames, Iowa.

1 Introduction

A secure computer system provides guarantees regarding the confidentiality, integrity
and availability of its objects (such as data, processes or services). However, systems
generally contain design and implementation flaws that result in security vulnerabilities.
An intrusion takes place when an attacker or group of attackers exploit security
vulnerabilities and thus violate the confidentiality, integrity, or availability guarantees of
a system or a network. Intrusion Detection Systems (IDSs) detect some set of intrusions
and execute some predetermined action when an intrusion is detected.

IDSs use audit information obtained from host systems and networks to determine
whether violations of a system’s security policy are occurring or have occurred
(Amoroso, 1999). Our Multi-Agents Intrusion Detection System (MAIDS) (Helmer,
2000; Helmer et al., 2002b, 2003) uses mobile agents (Bradshaw, 1997) in a distributed
system to obtain audit data, correlate events and discover intrusions.

The MAIDS system consists of:

1 stationary data cleaning agents that obtain information from system logs, audit data,
and operational statistics and convert the information into a common format

2 low-level agents that monitor and classify ongoing activities, classify events, and
pass on their information to mediators

3 data mining (Cabena et al., 1998) agents that use machine learning to acquire
predictive rules for intrusion detection from system logs and audit data.

 Software fault tree and coloured petri net–based specification 111

One of the challenges in designing an IDS involves defining exactly what data elements
should be correlated to determine whether an intrusion is taking place in a distributed
environment. It is also difficult to determine what data elements are necessary to discover
intrusions. A model of intrusion detection is essential to describe how the data should
flow through the system, determine whether the system would be able to detect intrusions
and suggest points at which countermeasures could be implemented.

Against this background, the paper presents a theoretical framework for modelling the
operation of IDSs such as MAIDS. We use Software Fault Trees (SFTs) to define
intrusions and develop the requirements model for the IDS. The SFT models of intrusions
are used to create Coloured Petri Net (CPN) designs for the detectors in the IDS. The
CPN detection model is then mapped into a set of software mobile agents that form the
distributed IDs. Finally, the SFT models provide test cases for the implementation.

The SFT analysis (SFTA) approach applies safety engineering techniques to the
intrusion detection domain for developing IDS requirements. Each part of these
development processes – SFTA, CPNs and software agent implementation – is distinct,
and each stage in the development process must correctly carry over the details of the
previous stages. The constructive approach helps ensure the correctness of the design
with respect to the requirements and correctness of the implementation with respect to the
design.

We present the process for developing a CPN design for the IDS using a requirement
specification based on a SFTA of intrusions, and we show the procedure for creating an
implementation of a distributed agent-based IDS from the CPN design (Wang et al.,
2006). These two procedures ensure that the design satisfies the requirements and that the
implementation matches the design.

The rest of this paper is organised as follows: Section 2 introduces temporal
organisation of stages of intrusions and presents the intrusions examined in our research.
Section 3 discusses SFTs as applied to modelling intrusions and the augmentations
needed to describe intrusions. Section 4 introduces CPNs and defines the translation from
augmented SFTs to CPNs. Section 5 defines the translation of CPNs to software mobile
agents. Section 6 presents the intrusion scenarios evaluated in our system. Section 7
relates our modelling solution to other graph-based intrusion detection models. Section 8
presents the conclusions and contributions of this work, discusses the generalisation of
the IDS design to intrusions other than those presented in this paper, and describes future
work.

2 Modelling intrusion detection

Our goal is to develop a software model for precisely describing abroad class of
intrusions as well as the process of detecting such intrusions. Any formalism used to
define the intrusions has to be relatively easy to use and at the same time be rich enough
to describe both single host and distributed attacks. SFTs provide the desired features.
When combined with SFTA, they provide an effective means for defining intrusions in a
way that exposes the critical aspects of determining an intrusion.

However, SFTs have several limitations with regard to their ability to modelling
intrusions. For example, in their simplest form, they cannot capture temporal
relationships between events. Hence, we extend the SFT formalism to obtain
augmented SFTs. By extending SFTs to augmented SFTs, SFTs with additional system

 112 G. Helmer et al.

information, it is possible to create a rigourous process that is capable of capturing
intrusions.

But, even the augmented SFTs do not describe intrusions at a level of detail needed to
automate the generation of software agents that implement an IDS. To bridge this gap, we
have developed a rigourous approach to convert the augmented SFTs to CPNs. While the
augmented SFTs provide a rigourous definition of the intrusions, the CPNs provide a
rigourous definition of the process of detecting the intrusion. Then a conversion of CPNs
to software mobile agents can be performed.

Each augmented SFT is seen as the specification of an individual intrusion. The set of
augmented SFTs is the model of intrusions that the IDS is able to detect and/or
determine. The set of CPNs that can be generated from the set of augmented SFTs is the
intrusion detection model.

2.1 Temporal stages of intrusions

Each successful intrusion can vary greatly from other intrusions. In addition, analysis of
complete intrusions is quite difficult. Therefore, a reasonable approach to intrusion
analysis is to divide attack into stages that achieve intermediate goals of the attacker and
develop intrusion detection components that identify each of the stages. Generally, the
following stages can be distinguished in intrusion analysis: reconnaissance, vulnerability
identification, penetration, control, embedding, data extraction and modification and
attack relay (Helmer, 2000).

We use these seven stages to analyse the intrusion example discussed in this paper
and reduce the complexity of each SFT. The CPNs examined in the paper generally
correspond to the first three stages, reconnaissance, vulnerability identification and
penetration, as the essential stages of intrusion (Helmer, 2000).

2.2 Intrusion example

We use the FTP bounce attack throughout the paper to illustrate our approach to
specification and implementation of IDS. The example was chosen based on the fact that
it is well-known and the possibility that more than one host in the victim’s network
would be involved in the attack. The ‘FTP Host’ provides an anonymous FTP service that
allows uploads and the ‘Target Host’ provides a remote shell service that trusts the users
on the ‘FTP Host’.

1 In preparation, the attacker creates a file containing a valid remote shell (rsh)
message such as \0root\0root\0xterm -display bad.hacker.org:0.0 which means ‘I am
the user root on the local computer, I wish to execute a command on the remote
computer as the user root, and the command I wish to execute will open a terminal
window from the remote computer on my screen’.

2 The attacker scans for valid hosts in the target’s network. For the purposes of our
spatially distributed attack, assume the attacker discovers at least two host systems in
the target’s networks (Reconnaissance).

3 The attackers cans for listening TCP ports on the target network’s valid hosts.
Assume the attacker discovers a vulnerable anonymous FTP server listening at TCP

 Software fault tree and coloured petri net–based specification 113

port 21 on the ‘FTP Host’, and a remote shell daemon (rshd) listening at port 514 on
the ‘Target Host’ (Vulnerability identification).

4 The attacker uploads the previously created file to the anonymous FTP server on the
‘FTP Host’.

5 The attacker uses a ‘feature’ of the FTP protocol to tell the FTP server to send the
next download to port 514 on the ‘Target Host’. Then the attacker issues a command
to the FTP server that initiates a ‘download’ of the file containing the rsh message. If
the ‘Target Host’ trusts the users on the ‘FTP Host’, the remote shell domain on the
‘Target Host’ accepts the message and executes it due to an authentication
vulnerability in the remote shell protocol (Penetration and Control).

6 The ‘Target Host’ opens a terminal window on the attacker’s X Window server that
provides the attacker with root-privileged shell. The attacker may proceed with any
number of activities including: changing passwords or adding users; reading or
changing any file on the system; erase traces of his/her presence; and install tools to
sniff passwords, provide backdoors for future access, and disguise his/her activities.
(embedding, data extraction and modification and attack relay).

3 Software fault trees

In this section, we briefly describe SFTs, discuss their use in specification of IDS and
introduce the augmented SFTs for modelling intrusions.

Fault trees have been used for security assessment, although not explicitly for IDS.
Cited advantages include their ‘organisation and preservation of informal discussions
about security ramifications of design alternatives’ [in argument trees (Kienzle and Wulf,
1998)] and the possibility for efficient reuse of subtrees [in attack trees (Schneier, 2000)].
However, fault trees suffer from several limitations with regard to modelling ‘multiple
attacker attempts, time dependencies or access controls’, as well as for non-modelling
cycles (Phillips and Swiler, 1998). Hence, we augment the fault-tree formalism to over
come some of these limitations. The resulting augmented fault trees provide a useful
frame work for modelling intrusions.

Two interesting aspects of the requirements phase of this prototype are as follows.
First, the intrusion SFT models have been interpreted as specifications of the
combinations of events that must be detected. That is, the IDS requirements are that each
of the intrusion sequences possible in the SFT should be detected as soon (as low in the
tree) as possible. The leaf events describe what components of a distributed system must
be monitored by the software mobile agent. The interpretation of the SFT serves as the
requirements specification.

Second, the intrusion SFTs have had to be extended with additional information
specific to a particular system prior to their mapping into CPNs. This information is of
three types:

 Trust indicates which members of a distributed system are trusted by other members.

Context shows which events must all involve the same host(s) or connection(s),
process(es) or session(s).

 114 G. Helmer et al.

Temporal orderings that give which events must be adjacent with no intervening
events, or follow within a specific interval of time.

Without this additional system-specific information the IDS yields many false positives,
detecting intrusions where, in a specific network, there is none. That is, the set of events
marked as intrusions by the SFT is a superset of the set of events that are actually
intrusions in any specific network and must be constrained by additional network-specific
knowledge. These topics are discussed in more detail later.

A fault tree is defined formally as a tree consisting of:

1 a hazard as the tree’s root node

2 basic events that contribute to the hazard as the tree’s leaves

3 either AND gates or OR gates (representing Boolean AND or OR operations,
respectively) as each of the intermediate nodes.

The intermediate nodes determine the combination of basic events necessary for the root
hazard to occur.

3.1 Software fault tree analysis

We adapt standard SFTA technique. The root node in afault tree represents a hazard
(here, the intrusion) being analysed. The necessary preconditions for the hazard are
specified in the next level of the tree and joined to the root with a logical AND or a
logical OR. Each precondition is similarly expanded until all leaves are primitive events.
SFTA investigates the ways in which the hazard (root node) might occur. If a credible
scenario (i.e. path through the tree or, more precisely, a cutset of the tree) exists, the
SFTA identifies the nodes (i.e. which events) that should be monitored in order to detect
intrusions.

SFTA (Leveson, 1995) is used first to model intrusions and develop requirements for
the IDS. SFTA is a natural fit as the IDS design resembles a tree where data is obtained at
the leaf nodes, travels up through the internal nodes as data is correlated with other
information, and rises to the root node when an intrusion is identified.

3.2 SFTA in the IDS development life cycle

The augmented SFT specification are mapped into CPNs (Jensen, 1992) that serve as the
design for the IDS. CPNs are a well-documented and frequently-used abstraction for
modelling complex distributed systems. They appear particularly suited for describing the
gathering, classification and correlation activities of an IDS.

The advantages of using SFT to model the specification, rather than using only CPNs,
are fourfold:

1 Usability. The system support personnel who will be using the system typically have
a great deal of knowledge about intrusions that must be elicited and represented
systematically, in order for the requirements for the IDS to be determined. Usually,
they are not experienced in, or interested in, formal modelling techniques such as
CPNs. SFTs, on the other hand, are perceived as familiar, easy to use and easy to
teach and learn. For an IDS to be effective, the specification must be readily

 Software fault tree and coloured petri net–based specification 115

updatable. The usability of SFT is an advantage in eliciting and capturing knowledge
about the requirements.

2 Support for gradual refinement for defining intrusions. SFT supports gradual
development of intrusion specifications with different subtrees being developed to
varying levels of detail, depending on the level of concern and the level of
knowledge regarding that subtree. CPNs, on the other hand, are better at modelling a
system at a uniform level of detail.

3 Modeling the attack. The augmented SFT defines the intrusion specification. It is
from this representation that the requirements for intrusion detection are derived. The
CPN models not the intrusion itself but the IDS, that is the design of the IDS.

4 Countermeasures analysis. The augmented SFT intrusion specification allows the
determination of countermeasures needed for an IDS to thwart attacks (Helmer et al.,
2002a).

3.3 Augmented SFT

We define an augmented SFT to be an SFT where leaf nodes may specify trust, ordering
and contextual constraints, in addition to the basic events of a SFT. Specifically,
constraint nodes are added to SFT to capture trust, order and contextual relationships
needed to develop satisfactory specification of intrusions.

The effect of adding constraint nodes may be demonstrated by considering the set E
of all combinations of events that make the root node of a plain (unenhanced) SFT ‘true’.
The set I E of combinations of events that are actual intrusions must also make the root
node of the augmented SFT ‘true’. (|I| ought to be much smaller than |E|.) The constraint
nodes added to an augmented SFT should exclude the vast majority of the combinations
of ‘false positive’ events E – I. Thus the augmented SFT, enhanced with the constraint
nodes described here, will more closely model the requirements for detecting the
intrusion being modelled.

3.3.1 Trust

Members of a distributed system trust other members of the system. An example of trust
currently used in our SFT is authorisation. The trust constraint will have to be enhanced
when additional intrusions are modelled that depend on other notions of trust.

As an example of trust, a Network File System (NFS) server using AUTH_UNIX
authentication usually trusts the source IP address and user ID in client requests. This
allows a user on a trusted client host to access files on the file server without having to
login to the server.

Explicitly stating a trust relationship that is required for an intrusion to succeed
provides the information to an IDS developer that will help derive an accurate matching
model for the intrusion. The syntax of this predicate is Trusts((destination), (source))
where destination is an ordered list of constants and variables describing the trusting
destination, such as the name of destination host, network or netgroup and application,
and source is an ordered list of constants and variables describing the trusted source, such
as the name of source host, network or netgroup and application.

 116 G. Helmer et al.

The Trusts predicate is true if the destination assigns some trust to the source.
Specifying trust relationships in this way allows matching relationships to be unified
(Russell and Norvig, 1995) with other trust relationships. A trust relationship is true if
one of the system’s trust relationships successfully unifies with the relationship specified
by the Trusts predicate. An example of such a trust relationship may be Trusts ((Rshd,
targetHost), (sourceHost)), which states that the remote shell daemon (Rshd) on a
targetHost trusts a sourceHost. By convention, elements beginning with upper-case
letters are constants, and elements beginning with lower-case letters are variables.

3.3.2 Context

Certain combinations of intrusive events must occur in some common context. For
example, a series of FTP commands and responses need to be grouped by a common
network connection to an FTP server.

In the following definitions of forms of context, each of the parameters (host,
connection, user or process) may be specified as a constant value or a variable. Network-
related events may be related by events involving a single host, a pair of hosts or a single
virtual network connection.

A single host that must be a common source or target for network events may be
specified as a common context for intrusive events. The syntax for this constraint is
Context ((:hostHostname) (FTNodeList)), where Hostname is the name or address of a
host or group of hosts and FTNodeList is the list of one or more SFT nodes to be included
in the context. The predicate is true when the host identified by Hostname is involved in
each node specified by the FTNodeList.

Similarly, a pair of hosts that must be the source and target for network events may be
specified as a common context for intrusive events using the syntax Context ((:hosts
Hostname1 Hostname2) (FTNodeList)), where Hostname1, Hostname2 are names or
addresses of hosts or groups of hosts. The predicate is true when hosts identified by
Hostname1, Hostname2 are involved in each node specified by the FTNodeList.

Finally, a pair of hosts communicating using a virtual network connection that must
be the source and target for network events may be specified as a common context for
intrusive events using the syntax

Context ((: conn Hostname1 P1 Hostname2 P2) (FT NodeList))

where P1 and P2 are the names or numbers of network ports. The Context predicate is
true when a network connection involving the endpoints identified by P1 on Hostname1
and P2 on Hostname2 are involved in each node specified by the FTNodeList.

An authenticated user session on a host, such as via telnet, ssh or ftp, may be a
context for related events using syntax

Context ((: user U App LH RH Term LT) (FTNodeList))

where U is the name of a single user or group of users, App is the name of the method of
access (e.g. telnet, ftp), LH is the name of the host to which the user is connected, RH is
the name of a remote host or group of hosts, Term is the name of a terminal used for
access (e.g. tty01), LT is the time of login and FTNodeList is a list of one or more SFT
nodes to be included in the context.

Events corresponding to a process (an instance of a program in execution) may be a
context for related events using the syntax

 Software fault tree and coloured petri net–based specification 117

Context ((: process PID PgU Host ST) (FTNodeList))

where PID is the identification number of the process, Pg is the program being executed,
U is the set of user permissions, Host is the host on which the process executed, and ST is
the time the process began executing. The context involves each node specified by the
FTNodeList.

3.3.3 Temporal ordering and intervals

Events and conditions involved in an intrusion must often occur in a particular order.
Explicitly specifying the event ordering excludes other non-intrusive permutations of
events from being considered as intrusive. We use Allen and Ferguson’s interval
temporal logic (Allen and Ferguson, 1994) to develop temporal predicates.

3.3.3.1 Occurs after. An event that takes place must make its node in the SFT true as
long as the existence of that event may be combined with other events to make aparent
node true. It seems an event’s period may last as long as the context exists in which it
may be evaluated. In this sense, ‘occurs after’ is concerned only with the relative start of
the event’s periods.

‘Occurs after’ is the condition where one event’s period is required to start after
another event’s period has started. The Starts(i, j) primitive is true when periods i and j
begin simultaneously. The Meets(i, j) primitive is true when period i ends adjacent to the
time where period j begins. Let Period (x) be the period in which node x is true. Let

OccursAfter : Node, Node Boolean

where Occurs After(i, j) m Starts(Period(i), m) Meets(m, Period(j)) meaning that the
event or Boolean expression indicated by the node i becomes true in the time prior to the
time that the event or Boolean expression indicated by the node j becomes true.

3.3.3.2 Adjacent events. Certain situations exist where an event must occur after
another event within the same context with no intervening events. Let

ImmediatelyAfter : Node, Node Boolean

where ImmediatelyAfter(i, j) OccursAfter(i, j) ¬

(n OccursAfter(i, n) OccursAfter(n, j)) meaning the event or Boolean expression
indicated by the node i becomes true in the time prior to the time that the event or
Boolean expression indicated by the node j becomes true. No intervening events become
true between i and j.

3.3.3.3 Interval. An event may be required to follow another event within some amount
of time. Let StartOf (i) be the start of discrete time period i. The Overlaps(i, j) primitive
is true when period i overlapsperiod j. Then

InInterval : Node, Node, R Boolean

where InInterval(i, j, t) OccursAfter(i, j)
Overlaps(StartOf (Period(i)), StartOf(Period(i))+ t , j) meaning the event or

Boolean expression indicated by node i becomes true in time prior to the time that the

 118 G. Helmer et al.

event or Boolean expression indicated by node j becomes true. Additionally, j must
become true during the period specified by t.

4 Coloured Petri nets

In this section we introduce CPNs and describe the transformation from augmented SFTs
for intrusions to CPN templates for IDSs.

4.1 Coloured Petri nets defined

CPNs are a powerful modelling technique for complex systems (Jensen, 1992). CPNs
model state and action through the use of coloured tokens (colours can be thought of as
data types) that reside in places (or states). Tokens move from one place to another
through transitions. Transitions allow tokens to pass if all input arcs are enabled
(meaning tokens are available for each input arc). Tokens entering from multiple places
may be merged (or unified) at transitions. Tokens leaving transitions may be duplicated
to multiple destination places. CPNs may be organised in hierarchical fashion to allow
reuse and top-down or bottom-up development.

In a graphical representation of a CPN, places are denoted by ovals or circles,
transitions are denoted by squares or rectangles and lines with arrows denote arcs. If a
predicate or tuple is written next to an arc, a token must satisfy the predicate or unify with
the tuple before it may pass through the arc. Token colours are defined at the entry point
of each CPN in terms of tuples of standard values, such as strings or integers (tokens may
also be defined as data structures). Places may be labelled with a particular colour by an
italicised label.

Formally, a CPN is a tuple CPN = (, P, T, A, N, C, G, E, I) satisfying the
requirements: is a finite set of non-empty types, called colour sets, P is a finite set of
places, T is a finite set of transitions. A is a finite set of arcs such that

0P T P A T A , N is a node function ,A P T T P C is a colour
function P , G is a guard function defined from T into expressions such that t T :
[Type(G(t)) = Boolean Type(Var (G(t)))], E is an arc expression function defined
from A into expressions such that a A : [Type (E(a)) = C(p(a))MS Type(Var(E(a)))

]
where p(a) is the place of N(a)I. I is an initialisation function defined from P into

closed expressions such that p P :[Type(I(p)) = C(p)MS] (Jensen, 1992).
A hierarchical CPN consists of a set of CPNs arranged in a hierarchical structure. The

two building blocks of hierarchical CPNs are substitution transitions and fusion places.
Substitution transitions and fusion places allow the construction of a hierarchical CPN by
combining a number of non-hierarchical CPNs. A hierarchical CPN may be translated
into a behaviourally equivalent non-hierarchical CPN, and vice versa. Hierarchical CPNs
are important to our design of the IDS, as they allow the construction of detectors for
components of attacks that can be composed into detectors for the complete intrusion.

CPNs have been applied to a variety of problems in security, networks, concurrent
systems, VLSI chip design and chemical manufacturing systems (Jensen, 1997). Petri
nets have also been applied to the safety domain (Leveson and Stolzy, 1987), which is

 Software fault tree and coloured petri net–based specification 119

closely related to the security domain (Rushby, 1994), and to IDSs (Kumar and Spafford,
1994; Kumar, 1995).

Our work with modelling intrusion detectors such as CPNs has shown that CPNs
provide a formal foundation for the agent-based distributed IDS and allow the analysis of
the IDS for discovering inconsistencies between components of the system, finding ideal
places in the monitored system for security improvements, and proving that certain
attacks cannot be successful if a system is changed so as to eliminate the identified
vulnerabilities.

4.2 From augmented SFT to CPN templates

CPN template intrusion detectors may be generated from augmented SFTs for intrusions
to ensure correctness and correspondence between a requirement specification based on
SFT and a design using CPNs. The constraints added to an augmented SFT to describe
the ordering relationships between nodes requires special handling to develop accurate
CPN templates from augmented SFT.

Leaf nodes in the augmented SFT for intrusions correspond to basic events in the
system that must be detected. Leaf nodes then correspond to token source places in
the CPN. The token source places produce a new token each time the basic event takes
place. Tokens generated by token source places must have su cient descriptive
information so that tokens may be matched and unified to satisfy any trust, context and
ordering constraints that exist in the augmented SFT.

AND nodes in the SFT are of special interest in intrusion models. Semantically, when
all child nodes of an AND node in a SFT are true, the AND node is true.

4.2.1 AND nodes without ordering constraints

An AND node unconstrained by an ordering in an SFT corresponds to a transition and
outgoing place pair in a CPN. An AND node with n inputs translates to a transition with n
incoming arcs. Each incoming arc comes from either a token source place of an SFT leaf
node or the outgoing place of an SFT gate node. Figure 1 illustrates the correspondence
between an AND node and its equivalent CPN transition/place pair, where:

1, if
0, otherwise

1, if

0, otherwise

1, if () ()

0, otherwise

x

y

x y

x D
X

y D
Y

x D y D
Z

X and Y are the binary inputs to the AND gate, and Z is the binary output of the AND
gate. x and y are the incoming tokens to the CPN transition, where Dx and Dy are the
domains of x and y, respectively. z is the output token from the CPN transition.

Tokens leaving the transition must be unified such that they satisfy any related trust
and context constraints that exist higher in the augmented SFT. An examination of the

 120 G. Helmer et al.

trust and context constraints that are connected to branches along the path to the root in
the minimum cut of the augmented SFT will identify the constraints for the events
described by the incoming tokens. The designer must construct the unifying expressions
so that the related elements in the output token(s) satisfy the constraints. For example, if a
constraint exists in the minimum cut that requires two augmented SFT nodes to be related
by a common TCP network connection context, the tokens must be unified using the
elements of the TCP quad (source host, source port destination host and destination port)
that uniquely identifies a TCP connection; this would satisfy the connection context
constraint node in the augmented SFT.

Figure 1 Unconstrained AND node with corresponding CPN

4.2.2 AND nodes with ordering constraints

Nodes connected to an AND node in an augmented SFT may have an attached constraint
that requires the nodes to become true in some particular order. Two cases exist: first,
nodes may be required to become true in order, but intervening events may occur;
second, nodes may be required to become true in order with no intervening events.

To support ordering, CPN tokens are required to contain times or sequence numbers.
If event a occurs before event b, the timestamp in the token representing event a must be
less than the timestamp in the token representing event b, and no two events may have
identical timestamps. Likewise, if event a occurs before event b, the sequence number in
the token representing event a must be less than the sequence number in the token
representing event b, and no two events may have identical sequence numbers.

Literal wall-clock times used for comparisons are a problem when the times are
obtained from di erent computers in a distributed system (Tanenbaum,1995). Each
computer has its own notion of the current time, and computer clocks tend to skew at
different rates. We assume that the clocks are kept synchronised and the skew between
a computer’s clock and the actual time is very small. As an implementation detail, the
IDS may itself synchronise the clocks and monitor the measured di erence m between
clocks. The IDS may have an established maximum skew MAX and may consider any m
> MAX to be an intrusion. In addition, the implementation may include in its
comparisons between timestamps. The comparison t1 + < t2 yields a tight bound on
two events, which may result in false negatives. The comparison t1 < t2 + yields a
loose bound on two events, which may result in false positives.

Sequence numbers are maintained per context and no comparison may be made
between sequence numbers across contexts.

 Software fault tree and coloured petri net–based specification 121

The addition of temporal ordering to augmented SFT and the associated
representation of time information in event tokens enables temporal reasoning.

4.2.2.1 Occurs after. The case ‘occurs after’ covers the situation where augmented SFT
nodes must become true in a particular order.

Figure 2 shows an example of an AND node constrained such that node y must occur
(become true) after node x becomes true, where:

1, if
0, otherwise

1, if

0, otherwise

1, () () (1 2)

0, otherwise

x

y

x y

x D
X

y D
Y

if x D y D time time
Z

Figure 2 AND node, constrained by ‘Y after X’, with corresponding CPN

In Figure 2, time1 and time2 denote the timestamps for events x and y, respectively. The
related CPN segment shows that a token for event x must have a smaller timestamp than
the token for event y. The significant differences between Figures 1 and 2 are the addition
of time information to the tokens and the guard on the transition that enforces the
ordering on the token’s time.

Timestamps in the ‘occurs after’ case may be either wall-clock time or sequence
numbers.

4.2.2.2 Immediately after. The case ‘occurs immediately after’ covers the situation
where augmented SFT nodes must become true in a particular order. Intervening events
may not occur.

Figure 3 shows an example of an AND node constrained such that node y must occur
(become true) immediately after node x becomes true, where:

 122 G. Helmer et al.

1, if
0, otherwise

1, if

0, otherwise

1, if () () (1 1 2)

0, otherwise

x

y

x y

x D
X

y D
Y

x D y D seq seq
Z

Figure 3 AND node, constrained by ‘Y immediately after X’, with corresponding CPN

In Figure 3, seq1 and seq2 denote the sequences numbers for events x and y, respectively.
The related CPN segment shows that a token for event y must have the timestamp
immediately following the timestamp for event x, implying that discrete timestamps
(sequence numbers) are necessary for the operation of this CPN segment.

4.2.3 OR Nodes

When any of the child nodes of an OR node in an augmented SFT is true, the OR node is
true.

An OR node in an augmented SFT corresponds to a set of transitions and outgoing
place pair in a CPN. An OR node with n inputs translates to n transitions, each having
one incoming arc. Each incoming arc originates in either a token source place based on
an augmented SFT leaf node or the outgoing place based on an augmented SFT gate
node. Figure 4 illustrates the correspondence between an OR node and its equivalent
CPN transitions and place, where

1, if
0, otherwise

1, if

0, otherwise

1, if () ()

0, otherwise

x

y

x y

x D
X

y D
Y

x D y D
Z

 Software fault tree and coloured petri net–based specification 123

Figure 4 OR node with corresponding CPN

As with constraints on events in an AND node, tokens leaving the transition for an OR
node must be unified such that they satisfy any trust and context constraints that exist
higher in the augmented SFT.

4.3 Generation of token definition

Defining token types in converting an augmented SFT into CPN is more difficult than the
generation of places and transition, since there is a fundamental di erence between
augmented SFT and CPN. Augmented SFTs describe what constitute a hazard at a
conceptual level and give less details to the events than in data level. But for CPNs,
especially for CPNs that are used to generate a program, more detailed description of
what constitutes an event is needed.

For a leaf node in an augmented SFT (which corresponds to a token source place), we
need to add some explanation to the event. When the augmented SFT is translated to
CPN, we then have the necessary information about what constitutes the event and what
kind of token should be fired by the corresponding event. For example, if the event is
FTP_PORT_OK, we may add an explanation in the representation of the augmented SFT
like type =‘RESPONSE’, src_port = ‘21’, value = ‘2xx’. Then when the token source
place is generated, we can specify enough information to describe the event in the token
and enable further token matching and unification.

4.4 Automatic translation from augmented SFT to CPN templates

Based on the translation rules given earlier, an automatic translation procedure has been
designed and implemented. The procedure makes use of XSL and XML definitions of
augmented SFTs and CPN templates. Document Type Definitions (DTDs) have been
developed for augmented SFTs and CPN templates.

The process has the following steps:

1 Convert an augmented SFT to its XML equivalent using the translation rules
described earlier.

2 Translate the augmented SFT XML to the XML of the corresponding CPN template
using an XSL transformer program, such as Visual XML Writer.

 124 G. Helmer et al.

3 View and validate the CPN corresponding to the resulting CPN template XML from
step 2 using a CPN tool, such as Design/CPN (CPN group, University of Aarhus,
Denmark, 2000). During this step, the CPN can be optimised to improve e ciency.

Figure 6 presents a CPN generated automatically from the augmented SFT in Figure 5 for
the FTP bounce attack using the XSL technique.

Figure 5 Fault tree for FTP bounce attack,with constraints

5 From CPNs to an agent-based implementation

Similar to the algorithmic approach for creating CPN templates from augmented SFT, an
algorithmic approach to creating an agent-based implementation from the set of CPN
templates has been developed.

By using the translation algorithm to convert CPN designs to code, we can be certain
that the code implements the CPN design. Also, if the translation algorithm preserves
CPN semantics, any analysis performed on the CPN design also applies to the
implementation. Finally, creating an implementation in code allows the developer to
improve the performance over the execution of a general CPN.

 Software fault tree and coloured petri net–based specification 125

Figure 6 FTP bounce attack penetration CPN generated automatically from augmented
SFT via XSL

A distributed implementation of the CPN model using software mobile agents can
provide a reliable, robust and e cient IDS (Jansen et al., 1999). Our implementation
provides useful information to the security analyst in the form of atrail of transitions

 126 G. Helmer et al.

through which CPNs passed. Slagell (2001) provides further details regarding the
MAIDS implementation.

The MAIDS prototype uses the Voyager agent platform, version 3.2, from
Objectspace (ObjectSpace, 1999)2. Anagent is an instance of a Java class, which may be
created either locally or remotely. Additionally, Voyager supports code mobility of two
types. One agent can move another agent between hosts, or an agent can request its own
migration. The use of Voyager is not central to the MAIDS design. Other agent platforms
that have been considered for use include Grasshopper from IKV++ (IKV GmbH
Informations und Kommunikationssysteme, 2001) and SMART (Wong et al., 2001).

5.1 Java-based conversion algorithm

Each CPN place maps to an agent in our implementation. The algorithm for translating a
distributed CPN to an implementation of software mobile agents in Java is as follows:

1 For each leaf place node in a CPN, instantiate an agent that extends the DataPlace
class.

2 For each internal place node, instantiate the Place class with a unique label.

3 For each leaf transition node, instantiate an agent that extends the MobileTransition
class.

4 For each internal transition node, instantiate an agent that extends the
StationaryTransition class.

5 Main console instantiates an AlertPlace agent for the root node. Refer to it with label
alert in all transitions that have an outgoing edge to it.

The CPN arcs, which constitute the structure of the agent network, are not maintained
centrally. Each transition knows about the places to which it is immediately connected,
and the places know nothing about the agent network structure.

The algorithm preserves the CPN semantics in the implementation and allows for
efficient execution. Performance can be increased over the execution of a general CPN by
optimising code segments to fit specific intrusion detection applications. For example,
matching and unifying tokens is computationally intensive, at least O(n2) in the general
case; but in cases where the number and types of tokens are known in advance, faster
algorithms can be used. If a place holds tokens of a single type, an implementation could
match tokens in O(n log2 n) time based on a binary search or O(n) time based on hash
tables. Such enhancements could be made to the Transition super class so that they would
not be a burden to the end user, but they are not part of the current MAIDS prototype.

Every agent must provide, strictly for debugging purposes, an agentName() method
returning an identifying string. Beyond this, the agents have specific requirements as
follows.

1 Required methods for data place agents: The responsibility of a data place is to
generate fresh tokens from what ever information is locally available. It must
implement a work() method, taking no arguments and returning a TokenBag. This
method will be called periodically from the DataPlace superclass code.

2 Required methods for transition agents: Transitions are much more complex,
embodying as they do all of the logic of the agent network. But most of the

 Software fault tree and coloured petri net–based specification 127

complexity is hidden in superclass code. Three additional methods must be
implemented: String[] sources(), String[] tokenSpec(), Token[] unify (Token[]
sourceTokens).

Of these, only the last is non-trivial to write. sources() should return an array of the labels
of the places that have arcs to this source; tokenSpec() should return an array of token
colours, and determines what kind of input the unify() method will see. For instance if
tokenSpec() returns the array {“blue”, “red”}, then whenever unify() is called it will be
given an array containing one blue token and one red token, in that order. unify() is then
responsible for deciding whether those tokens should be unified. If so, it returns a new
array of tokens; otherwise it returns null.

Notably, there is no explicit destinations() method. This information is placed in the
tokens themselves via an argument to the Token constructor. In the case where the token
is created by a data source place, there is no delivery, so the source place itself is given as
a destination; in the case where a transition is creating a new token, the destination is
determined by an outgoing arc on the CPN.

Behind the scenes, the Transition superclass is responsible for iterating through the
tokens available from the places given in sources(), retrieving from there sets of tokens
satisfying the description given in tokenSpec and presenting them to the agent class as an
argument to unify(). If it gets an array of tokens in return, it delivers them to their
designated places and deletes the source tokens; otherwise it leaves the tokens where they
were found.

5.2 Preservation of CPN semantics

The MAIDS representation of a CPN as a network of Java objects satisfies the CPN
properties listed in Section 4.1 as follows:

1 Each type is a colour in set .

2 Each instance of a Place is an element in set P.

3 Each instance of a Transition is an element in set T.

4 Arcs A between places and transitions are encoded in the transitions (when
proceeding from place to transition) and tokens (when proceeding from transition to
place); they are finite in number and satisfy the requirement as they are distinct from
places and transitions.

5 The encoding of arcs as described earlier defines the node function N.

6 The assignment of colour in the Token class constructor defines the colour function
C.

7 A unify() method implements the guard expressions in G for each transition in T.

8 The unify() method also implements the arc expression E for each arc a A.

9 A trivial initialisation function I makes each place begin with no tokens.

The implementation of transitions and places may impose additional constraints not
present in the CPNs so as to obtain the efficiencies for particular expected token colours;

 128 G. Helmer et al.

as long as only expected token colours exist in the places, the CPN semantics are satisfied
by the implementation.

5.3 Algorithm for translating CPN design templates to agent implementation

The MAIDS uses a distributed agent-based system to detect intrusions. If the CPN model
of intrusion detection is expanded to include multiple data source nodes (which are
simply duplicated places that provide the same token colours to transitions) and the
transitions are given the mobility, the result is a Distributed CPN (DCPN). In our design,
transitions are selected for mobility based on their need to visit di erent sites in the
distributed system to collect tokens from duplicated place nodes for matching. The places
visited by the transitions are defined dynamically through the user interface,
corresponding to the nodes that are being monitored by MAIDS.

The previous section examined the implementation of a CPN as Java code. This
section further details the implementation of a CPN as agents in a distributed system.

5.3.1 Node categories

The IDS CPN design resembles a tree where data is obtained at the leaf nodes, feeds up
through the internal nodes and finally reaches the root node when an intrusion is
identified. Tokens in the IDS CPN represent information that, as tokens ‘rise’ through the
tree, is correlated with other information to identify intrusions.

Source places (places that have no incoming arcs) are considered leaf places. The
transitions adjacent defined to leaf places are considered leaf transitions.

Sink places (places that have no outgoing arcs) are considered root places. The Alert
place is currently the single root place in the CPN IDS design.

Internal places and internal transitions are the remaining places and transitions,
respectively, in the CPN IDS design.

5.3.2 Leaf places and transitions

Raw audit data of various types and formats is obtained from monitored systems for the
IDS. Data cleaning agents have been developed to read and process the raw audit data for
use by the IDS. The data cleaning agents correspond to the leaf places and transitions in
the CPN design.

Leaf places and transitions are duplicated at each monitored system to manage the
constant process of data retrieval and cleaning.

The leaf places (data cleaners) are agents that remain in a single location to obtain
raw data, such as that available from log files. In the current MAIDS implementation, the
leaf places are instantiated separately on each host by the operator, where they will
remain stationary for the duration of their activity. Next generation of MAIDS would
allow the console to dispatch the leaf nodes to the monitored host and allow the console
to recall the agent to replace it with an updated agent or cease monitoring. The leaf places
perform minimal processing and do not place a substantial resource load on the
monitored systems.

Leaf places are an instance of places in the MAIDS DCPN implementation that
require customised coding to perform operating-system-specific data gathering and
cleaning tasks. Nearly all other places are generic, passive containers of tokens.

 Software fault tree and coloured petri net–based specification 129

Leaf transitions (data gatherers) are software mobile agents that travel between
monitored systems to obtain tokens. Currently, single instances of each leaf transition
perform the data gathering duties, but in the future, multiple instances of each leaf
transition could cooperate to gather data in a large distributed system.

Informally, the leaf transitions perform the first level of data gathering and filtering in
the IDS. Formally, the leaf transitions perform the token matching and unification
specified by the CPN IDS design.

5.3.3 Internal places and transitions

Internal places act as passive containers for tokens. Internal places are not duplicated; a
single instance exists and accepts tokens from all (possibly mobile) transitions connected
to it. Internal places currently reside at the machine running the console, but they could
be given mobility if it becomes advantageous.

Internal transitions are similar to leaf transitions in that they apply token matching
and unification rules to tokens, as they are obtained from incoming places and sent to
outgoing places. Like internal places, internal transitions are statically positioned at the
machine running the console. Internal transitions could be given mobility if advantages
are found.

5.3.4 Root place

The root of the CPN IDS design is the alert place. It acts as a passive container; but when
a token is added to the alert place, the IDS console interprets the token and displays it.
Transitions are required to set an urgency-level parameter in tokens for use by the IDS
console. Tokens are sorted on the IDS console display by their urgency and then by their
arrival time.

5.3.5 The IPlace interface

The IPlace interface specifies four methods: void storeToken(Token t), TokenBad
getTokens(), boolean lock() and void unlock().

All Place agents in the network, except the data source (leaf) places, are instances of final
classes. As a result, the end implementer is never responsible for any of these methods.
They are called by transition agents, but in superclass (Transition) code so that they are
invisible to the implementer. Additionally, DataPlace superclass code uses storeToken().
The lock() and unlock() methods allow a transition to atomically examine and either
replace or remove tokens from several places.

5.4 Testing CPN design

A set of use cases (positive and negative examples of intrusions, i.e. set of paths in CPN
leading to successful or unsuccessful intrusion) were developed to test the IDS
requirements. The CPN design was tested using the use cases to observe the behaviour of
the CPN and verify correct functionality. Equivalence classes may be used to test
representative samples from groups of intrusions to reduce the testing e ort (Puketza
et al., 1996).

 130 G. Helmer et al.

Since the requirements model is less detailed than the CPN and may not be as
expressive as a CPN model, the CPN design further constrains the sets of events that can
be identified as intrusions. Thus, some use cases that are identified by the requirements as
intrusions may not be considered intrusions by the CPN model and the IDS
implementation. Each use case must be annotated to describe whether the requirements
and/or design will identify the use case as an intrusion.

CPNs design was tested with the following methods:

1 Interactive simulation: Execute a CPN model in a way similar to interactively
debugging a program.

2 Automatic simulation: Investigate functional correctness and performance of a CPN
model by executing a CPN at full speed.

3 Creating occurrence graphs: Determine reachability of nodes in a CPN model.

4 Place invariants: Prove user-specified predicates to be satised for all reachable
system states to prove properties such as absence of deadlock.

Place invariants, in particular, may be useful for the intrusion detection CPN design, as
they may allow invariants to be derived from the requirements and verified in the CPN
design. For example, a place in an FTP bounce attack detector of Figure 6 may have an
‘FTP RESPONSE’ token only if there exists a matching ‘FTP COMMAND’ token in the
CPN, since a command must be issued to receive a response.

Interactive simulation has been performed by building CPNs and simulating their
execution in the Design/CPN tool (CPN group, University of Aarhus, Denmark, 2000)
using positive and negative examples of intrusions. Automatic simulation has been
performed indirectly by building an implementation of CPNs in Java and executing it.

5.5 Detecting FTP bounce intrusion

FTP bounce detection was tested using a script to launch the attack from a host outside
the local network. Because real intrusion data for this attack was not readily available in
the form of network traces, we mixed normal and malicious sessions to simulate the
attack under significant network traffic conditions. An upload of a one-line text file
followed by a download of the same file was our model of a ‘normal’ session, and was
chosen for its superficial similarity to an instance of an FTP bounce attack. The normal
session scenario, like the attack scenario, was made repeatable using our scripts. A Perl
script invoked these scripts to run 50 ftp sessions sequentially; the sessions numbered 2
and 49 were malicious, and the rest were normal.

Two monitored hosts were attacked, one as relay and the other as target. A third
machine served as the host console. The relay host was running a modified version of the
wu-ftp server. Changes were made to source code file ftpcmd.y to blindly enable PORT
commands, regardless of source or destination. Although this very vulnerable server was
active for testing, packet filtering was kept in place to discourage the real attacks from
outside our laboratory’s domain. Also, the target host’s RSH service was not made
vulnerable; instead, RSH service was disabled and a proxy was set up to watch port 514
and echo its tra c to a terminal window.

By these measures, all the essential events could appear as a real attack, but with
minimal danger of our test systems being compromised.

 Software fault tree and coloured petri net–based specification 131

When run in isolation, a scripted attack was detected typically between 2 and 5 sec of
its completion. This time disparity was to be expected because of the discrete actions of
the agents and the randomised delays that were artificially inserted.

In tests of the 50-session ftp sequence, the two malicious sessions were reliably
detected (i.e. no false negatives) with no false positives.

Details of the alert tokens from one such test are shown in Figure 7. These text
presentations appear at the analyst’s console when a token is selected from the alert list
panel and the ‘details’ button is pressed. The hierarchical indentation scheme reflects the
history of unifications that led to the creation of a token. (Note: the recorded creation
times of the RSH_PORT and FTP_BOUNCE_ATTACK tokens reflect a clock skew
between the monitored hosts, since token timestamps depend on the machine where
unification actually takes place.)

Figure 7 Alert tokens from node-reduced test

Although both attacks were correctly identified out of the scripted ftp sessions, the later
attack took significantly longer to detect. Studying the contents of the two tokens, it is
apparent that the bottleneck is in the creation of the FTP port & retr token, which is the
job of the complex transition that was created as a result of node reduction. After the first
attack, the FTP port & retr token appears at 20:26:24, 4 sec after all four contributing
tokens are available. But in the second attack this disparity is larger: the contributing
tokens are available by 20:29:14 and are not unified into a FTP port & retr token until 19
sec later, at 20:29:33. The difference in performance is accounted for by the fact that each
of the 48 intervening normal ftp sessions produced FTP_PORT_OK, FTP_RETR and
FTP_RETR_OK tokens, all of which had to be processed by the FTPB_relay_MT agent
in every possible combination.

The test conditions are such that the FTPB_relay_MT transition unifies in O(n4) time,
where n is the maximum number of tokens of any colour. It would seem that a small n is
required to prevent the FTPB_relay_MT transition from wasting agreat deal of the local

 132 G. Helmer et al.

host’s CPU time, even if the observed total detection times of under 30 sec were
otherwise deemed acceptable.

To correct this, the first impulse might be to test an agent system based on the
original CPN before node reduction. But to facilitate component reuse, it is desirable to
keep the FTP port & retr token intact. Therefore, the unreduced CPN is rearranged as in
Figure 8 for a second test with the same 50-session ftp script.

Figure 8 FTP bounce CPN, rearranged for later component reuse

As in the previous test, both attacks were detected and there were no false positives. The
attack token details are shown in Figure 9.

The first attack is detected more slowly than before, but the second is detected more
quickly (compare creation times ofthe FTP_RETR_OK and FTP port & retr tokens, to
witness that the bottleneck is relieved). Total detection times from these tests, calculated
from reception of the attack egg to the creation of final alert token, are summarised in
Figure 10.

 Software fault tree and coloured petri net–based specification 133

Figure 9 Alert tokens from test without node reduction

Figure 10 Detection times (in seconds) from Figures 7 and 9

 Low-traffic attack High-traffic attack

With node reduction 6 22
Without node reduction 13 16

We see that node reduction, in addition to simplifying the layout of the agent system,
decreases the constant agent communication and migration overhead, and hence
performance improves under light-traffic conditions. But when large numbers of tokens
accumulate in a short period of time, complex transitions perform poorly and the overall
performance suffers.

This performance analysis is by no means exhaustive but gives a general indication of
the effect of node reduction.

6 Other intrusion scenarios

FTP bounce attack example demonstrates all development stages of IDS (from
specification of intrusion to design and implementation of the intrusion detection agents)
and the final result of this process – actual detection of an attack. In addition to this

 134 G. Helmer et al.

intrusion, we have also tested several other attack scenarios in wired and wireless
settings. For brevity we include only the descriptions of those scenarios.

6.1 Denial-of-service attack

Denial-of-service (DOS) attack is an offline attack that was adapted from Ning, Cui and
Reeves (2002). The goal of this scenario is to ensure that MAIDS agents can gather and
correlate data from multiple hosts to find intrusions. It uses pre-conditions and post-
conditions to link events. As alerts are generated by an IDS, they are compared against
rules in a database to determine if a correlation can be made. If one is made, a hyper-alert
is generated to represent the alerts involved.

Test data for this scenario were taken from Ning, Cui and Reeves (2002) and
arbitrarily divided between multiple files in such a way that each file is similar in length
and no two of these files have data from the same line in the original file. The new files
are then placed on di erent hosts in the network. An agent, created to visit each node in
the network, collects alert data from these files and attempts to link events using pre-
conditions and post-conditions.

The correlation is done in a decentralised fashion. Using pre-condition and post-
condition rules (stored in arrays in the agent code), the events collected by the agent on
each host are compared against the rules to determine if a correlation can be made. If a
correlation is made, a hyper-alert is generated to represent the alerts involved. Once the
agent has visited all hosts in the network, it writes all hyper-alerts to the console machine
for analysis by an administrator.

6.2 Nmap scan

The second considered attack is a distributed Nmap scan (‘Fyodor’, 2004). Nmap is a
program that is capable of scanning large networks in order to determine which hosts are
up and what services are available on those hosts. Nmap scan is considered as an attack
as it is likely to be a first step in carrying out an intrusion. As such, hosts suspected of
executing these scans are often disconnected from the network.

The attack is performed by sending SYN packets to targeted hosts. RST packet
received from the target, instead of an ACK packet, is an indication that the port is not
active and cannot be used in a later intrusion attempt. To reduce the chance of being
detected, the attacker can scan the target machines at random time intervals and using
pseudo-random port numbers while also randomising thehosts.

In this scenario, the agent travels between three hosts. The attacker, on a third
machine, performs a randomised port scan on ports 20 to 150 on the other two hosts. The
job of the agent is to detect what appears to be completely random (and few in number)
port activity on each host, and to correlate the aggregated results to decide if an Nmap
port scan is being carried out on the network.

For this experiment, the agent correlated the events if similar alert patterns are found
on all hosts with the same source address as seen earlier. If enough of these events are
correlated, the agent takes a predefined action. In this scenario, once 100 unique ports
have been discovered coming from the same host, the agent raises its alert the level and
prints a message to the screen of each host it visits to alert the users of the scan.

 Software fault tree and coloured petri net–based specification 135

6.3 Distributed real-time attack

The third attack demonstrates a distributed attack resulting in a compromised system. It
was tested on the network of four hosts. Host A and T are the attacker and the target
machine, respectively. C1 and C2 are the nodes that have been compromised by an
attacker and are used to carry out the attack on T.

The first step of this attack is to perform a port scan from C1 on the target machine.
Following the port scan, the attacker attempts to obtain information about the services
running on the open ports of the target and launches a more intrusive attack from C2
against it. The intrusive attack that was implemented is the Nachi worm (‘Network
Associates’, 2004). This worm starts by sending an ICMP ping to the victim machine;
and if replyis received, it attempts to propagate.

In this scenario, agent is looking for three things: a port scan, a machine trying to
obtain banner information from a service and the virus signature. The port scan is
detected by the same method as described in Scenario 6.2. When the agent detects a
machine trying to obtain banner information from a local service on the current host, the
agent checks the service port against previously scanned ports. If the port has been
previously scanned, the agent correlates those two events.

As the agent moves from host to host, it also carries with it a signature for the Nachi
worm. This signature is a pattern for detecting the traffic from the worm. When the
pattern is found in the log file, agent also checks previously scanned ports for the
signature. If there is a match, the events are correlated. Once the worm has been detected,
the agent raises its alert-level status and prints the alert, along with the correlated events,
to the screen of each host.

7 Related models

An early intrusion detection approaches proposing the detection of intrusions through
anomalous user behaviour were introduced by Anderson (1980) and Denning (1987).
Since then substantial amount of research attention has been directed into intrusion
detection area (Crosbie and Spa ord,1994; Anderson et al.,1995; Balasubramaniyan et
al., 1998; Porras et al., 1999; Bowen et al., 2000; Joglekar and Tate, 2005). One of these
intrusion detection techniques is misuse detection approach; although widely employed
for detection of known attack patterns, it is also shown to have the potential of
recognising unknown intrusions (Lindqvist and Porras,1999).

In the past two decades a number of misuse techniques have been proposed. Among
these are the methods based on rule-based expert systems (Sebring et al.,1988; Garvey
and Lunt, 1991; Habra et al., 1992; Pouzol and Ducasse, 2002) and attack graph-
based approaches (Kumar and Spa ord, 1994; Kumar, 1995; Staniford-Chen et al., 1996;
Lin, Wang and Jajodia, 1998; Sheyner et al., 2002). Several works have focused on
languages for specifying attack signatures (Michel and Me, 2001; Kruegel and Toth,
2002; Totel, Vivinis and Me, 2004; Raihan and Zulkernine, 2005) and state-transition
analysis of anomalous system behaviour (Ilgun,1993; Ilgun, Kemmerer and Porras, 1995;
d’Auriol and Surapaneni, 2004).

An example of such system is STAT approach (Ilgun, Kemmerer and Porrras, 1995)
that graphically models intrusions as transitions in a state machine. Each state in the state
machine represents a snapshot of the monitored system as a set of assertions about the

 136 G. Helmer et al.

elements of the system. Each transition shows the actions that move the system closer to
the compromised state.

STAT can be considered as a high-level specification and, in that respect, compares
with our SFT approach to modelling intrusions. A detailed representation of STAT state
machine could be used as a design for an IDS or executed as an IDS, and in this respect,
corresponds to the use of CPNs and agents in our system. However, the separate tools
(SFTs, CPNs and agents) used for the different concerns (requirements, design and
implementation) in our approach provide a clearer distinction between the development
activities than it is done in an approach that uses state machines throughout the
development life cycle. Additionally, SFTs tend to be more understandable as a high-
level specification than state machines.

As our work is based on integration of SFT and CPN for intrusion detection, we will
primarily focus on the graph-based approaches.

One of the earlier misuse detection models, Intrusion Detection In Our Time (IDIOT),
was developed by Kumar and Spafford (1994) and Kumar (1995). The system employs
CPNs to represent intrusion signatures, patterns. Although, as authors suggested, CPN is
the most suitable technique for conditional matching of patterns, several modifications of
CPN were made (elimination of concurrency, removal of local condition variables at
transitions, addition of start and final states, etc.) to make IDIOT model generic and
applicable to any well-defined input.

Our proposed IDS is also based on CPNs; however, the concept is applied to design
specification rather than a direct execution of a CPN to allow the implementer to improve
performance. In addition, we define a transformation from the CPNs to the
implementation of the software agent IDS that preserves the CPN semantics. Another
benefit of our model is its ability to operate in a distributed environment using an agent-
based approach.

Another graph-based approach to misuse intrusion detection, called GrIDS, the
Graph-Based Intrusion Detection System (Staniford-Chen et al.,1996) was designed for
distributed attacks against networks. It dynamically builds the activity graphs describing
network traffic by applying user-defined rules to audit data. Nodes in the graphs represent
hosts or aggregations of hosts, while the edges represent network activity. Rather than
building a single graph including all system activities, individual graphs are maintained
by rule sets. Each rule set matches certain events from the network audit trail and either
builds a new graph or adjusts an existing graph.

The model also allows intuitive aggregation of nodes and edges into reduced graphs
that provide higher level of analysis and data sharing, resulting in a scalable design.
Although, this system is built to detect security policy violations, it should be possible to
extend the model to analyse for anomalies based on selected objects and events.

While GrIDS considers only communication patterns between hosts, our modelling
technique applies to all events in the monitored system. Also, rather than directly using
the graphical model, a mobile agent IDS is developed using the CPN model as the design
specification to improve performance and allow flexibility in implementation.

Similar to GrIDS approach, the Adaptable Real-time Misuse Detection system
(ARMD) represents misuses as directed acyclic graphs (DAGs) (Lin, Wang and Jajodia,
1998). Abstract events are represented by nodes in a graph, and edges show the ordering
of inter-event rules satisfied by the nodes. The intra-event rules determine the nodes
chosen for the graph. The inter- and intra-event rules together define misuse signatures

 Software fault tree and coloured petri net–based specification 137

(named MuSigs). If a graph is built such that a sink node has an edge to it, an intrusion is
detected.

Unlike the model used by GrIDS or by our approach that allows for aggregation
through unification of tokens, MuSig graphs are not amenable to aggregation. Edges in a
MuSig graph only mean that a predicate has been satisfied and they have no values or
attributes that can be aggregated. At the same time nodes in a MuSig graph correspond to
specific events, which can be hard to aggregate in the absence of structured methods to
aggregate the attributes associated with the events.

Finally, MuSig graphs cannot be used for anomaly detection, since by definition a
MuSig graph detects a misuse intrusion. Thus, the GrIDS-style object/event model seems
to be more powerful for general misuse and anomaly intrusion modelling. While our
proposed approach allows for anomaly detection, it has another advantage of not
requiring the matching of graphs, as CPN graphs are mainly used for the design
specification.

In recent years, several methods have been proposed to represent the intrusion
signatures through attack graphs that can be constructed from the alerts reported by IDS
(Sheyner et al., 2002; Ning et al., 2004; Noel, Robertson and Jajodia, 2004; Noel et al.,
2005). These graphs precisely model the attack paths in the network through nodes
representing host vulnerabilities and edges showing connectivity between these hosts
(Sheyner et al., 2002). Although the attack graphs are exhaustive and precise, their
manual construction is tedious and often error-prone. Recently, several projects have
focused on automatic generation of such graphs (Swiler et al., 2001; Sheyner et al.,
2002). Another concern related to attack graphs is their scalability. While it became
possible to build attack graphs for large networks using automatic tools, it is still quite
difficult to manage their complexity. Several visualisation techniques have been proposed
to cope with this problem (Noel and Jajodia, 2004; Noel et al., 2005). Our approach also
employs the attack graphs; however, graph representation of intrusion is required only for
the design of the IDS rather than actual intrusion detection.

8 Discussion and conclusions

This paper details the procedure by which a distributed, agent-based IDS was
implemented from a SFT-based requirements and a CPN-based design. Intrusions are
divided into temporal components that are modelled using SFT. Constraint nodes,
specifying trust, temporal and contextual relationships, are used to augment SFTs and
restrict the combinations of events that define intrusions. Algorithmic approaches are
used to create CPN templates from augmented SFT and agent implementations from the
CPN templates. The result is an IDS to detect intrusions, which were specified by the
original requirements.

Dividing components of intrusions into temporal stages allows the development of
CPNs that detect individual attacks3. Composition of the CPNs into a hierarchy models
the correlation of individual attacks to detect complete intrusions. Future work may
investigate how the attacks may fit together into complete intrusions and determine how
to further compose CPNs. For example, if detectors for individual attacks are developed,
data mining techniques such as frequent episodes (Lee, Stolfo and Mok, 1999) may
discover groups of attacks that occur in combination. A detector for the group of attacks
could be made by composing the individual detectors together.

 138 G. Helmer et al.

Constraint nodes were added to enable augmented SFT to model the temporal,
contextual and trust relationships between events. Such information is necessary to
distinguish actual intrusions from the events that bear similarity to intrusions and improve
the false-positive rate of the implemented system.

An algorithm is used to convert augmented SFT intrusion specifications into CPN
detector design templates. This conserves the relational constraints of the augmented SFT
and preserves the logic of the SFT. Likewise, an algorithm is used to convert CPNs into
agent implementation templates. The implementation preserves the properties of the CPN
design while providing agents for use as a distributed IDS.

The augmented SFT, conversion from augmented SFT to CPN template, and the
implementation of the IDS using the CPN design templates act together to preserve
the correctness from requirements to implementation. The requirements engineer must
refine the initial augmented SFT by adding constraints to specify the temporal, contextual
and trust relationships between events that take place as part of the intrusions. The
designer must complete the CPN design by adding the places to provide tokens to the
CPN and refining the tokens so that they unify to satisfy the contextual constraints.

Our use of SFT with trust, temporal and contextual constraints to model intrusions for
a requirement specification has assisted the development of CPNs for intrusion detection.
The use of CPNs to model IDS is novel. Likewise, agents can be used to implement IDS
Our requirements to use augmented SFT, CPNs and intrusion detection agents structures
the development of an IDS into a repeatable and verifiable process.

Agents in our prototype IDS function as CPN places and transitions. Places are
generally static agents, which either act as a source of information or hold information
until a transition requests it. Transition agents are the active components that accept
tokens from places, act on or unify the information in the tokens and pass the resulting
tokens, to other places. Viewing MAIDS agents and data as an implementation of a CPN
has conveniently generalised the system and enabled further development. Transition
agents are given a set of places to visit by the user interface. Future enhancement will
enable the transition agents to self-direct their travels. Such capability in an agent could
allow evasion of an attacker or faster response to important events.

We have implemented a prototype FTP bounce attack detector based on the CPNs
detailed in this paper, using the agent technology based on our MAIDS implementation.

Future work will include the investigation of the length of time tokens that should be
kept in places. Since performance of the IDS degrades significantly as meaningless
tokens accumulate, the current policy allows an uncollected token to expire after a fixed
timeout. One possible extension is to allow a timeout to be specified in the token
constructor, making it possible to script delays into an attack to evade detection. This
complicates the CPN model by adding work for the system designer (who would have to
specify the token lifetimes as part of the SFT). Furthermore, the development of an
algorithm for token garbage collection should be explored to address the underlying issue
of token lifetime management.

The augmented SFT and CPNs presented in this paper model the misuse intrusion
detection. Ongoing work is investigating the application of these techniques to anomaly
intrusion detection. One of our first steps was modelling the rules learned by a data
mining algorithm for anomaly intrusion detection with CPNs (Helmer et al., 1998). We
have created an algorithm to transform the learned rules into a CPN. Further work is
required to develop an augmented SFT that describes this data mining technique and

 Software fault tree and coloured petri net–based specification 139

other techniques for anomaly detection, and then leads to a CPN model of anomaly
detection.

Acknowledgement

We would like to thank Professor Robyn Lutz for her contributions to Section 3.

References
Allen, J.F. and Ferguson, G. (1994) ‘Actions and events in interval temporal logic’, Journal of

Logic and Computation, Vol. 4, pp.531–579.
Amoroso, E. (1999), Intrusion Detection. Sparta, NJ: Intrusion.Net Books.
Anderson, D., Lunt, T.F., Javitz, H., Tamaru, A. and Valdes, A. (1995). ‘Detecting unusual

program behavior using the statistical component of the next-generation intrusion detection
expert system (NIDES)’, Technical Report SRI-CSL-95-06, Stanford Research Institute,
Computer Science Laboratory.

Anderson, J.P. (1980) ‘Computer security threat monitoring and surveillance’, Technical report,
Fort Washington.

Balasubramaniyan, J., Garcia-Fernandez, J.O., Isaco , D., Spa ord, E.H. and Zamboni, D. (1998).
‘An architecture for intrusion detection using autonomous agents’, Technical Report COAST
TR 98-05, Department of Computer Sciences, Purdue University.

Bowen, T., Chee, D., Segal, M., Sekar, R., Shanbhag, T. and Uppuluri, P. (2000) ‘Building
survivable systems: an integrated approach based on intrusion detection and damage
containment’, Paper presented at the IEEE DARPA Information Survivability Conference and
Exposition (DISCEX I), Hilton Head Island, SC, p.1084. In proceedings.

Bradshaw, J.M. (Ed.) (1997) An Introduction to Software Agents. Cambridge, MA: MIT Press.
Cabena, P., Hadjinian, P., Stadler, R., Verhees, J. and Zanasi, A. (1998) Discovering Data Mining:

From Concept to Implementation. Upper Saddle River, NJ: Prentice-Hall PTR.
CPN group, University of Aarhus, Denmark (2000) Design/CPN online, Available at:

http://www.daimi.au.dk/designCPN/
Crosbie, M. and Spa ord, G. (1994) ‘Defending a computer system using autonomous agents’,

Technical Report 95-022, COAST Laboratory, Department of Computer Sciences, Purdue
University.

d’Auriol, B.J. and Surapaneni, K. (2004) ‘A state transition model case study for intrusion
detection systems’, Paper presented at the 2004 International Conference on Security and
Management (SAM’04), Las Vegas, NV, pp.186–192. In proceedings.

Denning, D.E. (1987). ‘An intrusion-detection model’, IEEE Transactions on Software
Engineering, Vol. SE-13, pp.222–232.

‘Fyodor’ (2004) ‘Nmap stealth port scanner for network security auditing, Online’, Available at:
http://www.insecure.org/nmap/

Garvey, T. and Lunt, T. (1991) ‘Model-based intrusion detection’, Paper presented at the 14th
National Computer Security Conference, Baltimore, MD, pp.372–385. In proceedings.

Habra, N., Charlier, B.L., Mounji, A. and Mathieu, I. (1992) ‘ASAX: software architecture and
rule-based language for universal audit trail analysis’, Paper presented at the European
Symposium on Research in Computer Security (ESORICS), Toulouse, France, pp.435–450. In
proceedings.

Helmer, G., Wong, J.S.K., Honavar, V. and Miller, L. (1998) ‘Intelligent agents for intrusion
detection’, Paper presented at the IEEE Information Technology Conference, Syracuse, NY,
pp.121–124. In proceedings.

 140 G. Helmer et al.

Helmer, G. (2000) ‘Intelligent multi-agent system for intrusion detection and counter measures’,
PhD thesis, Iowa State University, Ames, IA.

Helmer, G., Wong, J.S.K., Slagell, M., Honavar, V., Miller, L. and Lutz, R. (2002a) ‘A software
fault tree approach to requirements analysis of an intrusion detection system’, Paper presented
at the Symposium on Requirements Engineering for Information Security, Vol. 7, Springer,
pp.207–220. In proceedings.

Helmer, G., Wong, J.S.K., Honavar, V. and Miller, L. (2002b) ‘Automated discovery of concise
predictive rules for intrusion detection’, Journal of Systems and Software, Vol. 60,
pp.165–175.

Helmer, G., Wong, J.S.K., Honavar, V. and Miller, L. (2003) ‘Lightweight agents for intrusion
detection’, Journal of Systems and Software, Vol. 67, pp.109–122.

IKV GmbH Informations und Kommunikationssysteme (2001) ‘Grasshopper user’s guide’, release
2.2, Available at: http://www.grasshopper.de/index.html

Ilgun, K. (1993) ‘Ustat: a real-time intrusion detection system for unix’, Paper presented at the SP
’93: Proceedings of the 1993 IEEE Symposium on Security and Privacy, p.16. In proceedings.

Ilgun, K., Kemmerer, R.A. and Porras, P.A. (1995) ‘State transition analysis: a rule-based intrusion
detection approach’, IEEE Transactions on Software Engineering Vol. 21, pp.181–199.

Jansen, W., Mell, P., Karygiannis, T. and Marks, D. (1999) ‘Applying mobile agents to intrusion
detection and response’, Technical Report 6416, National Institute of Standards and
Technology.

Jensen, K. (1992) Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,
Vol. 1. Berlin: Springer-Verlag.

Jensen, K. (1997) Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use,
Vol. 3. Berlin: Springer-Verlag.

Joglekar, S.P. and Tate, S.R. (2005) ‘Protomon: embedded monitors for crypto-graphic protocol
intrusion detection and prevention’, Journal of Universal Computer Science, Vol. 11,
pp.83–103.

Kienzle, D.M. and Wulf, W.A. (1998) ‘A practical approach to security assessment’, Paper
presented at the 1997 Workshop on New Security Paradigms, Langdale, Cumbria,
pp.5–16. In proceedings.

Kruegel, C. and Toth, T. (2002) ‘Distributed pattern detection for intrusion detection’, Paper
presented at the Network and Distributed System Security Symposium Conference
Proceedings: 2002. In proceedings.

Kumar, S. (1995) ‘Classification and Detection of Computer Intrusions’, PhD thesis, Purdue
University, West Lafayette, IN.

Kumar, S. and Spafford, E.H. (1994) ‘A pattern matching model for misuse intrusion detection’,
Paper presented at the 17th National Computer Security Conference, Baltimore, MD,
pp.11–21. In proceedings.

Lee, W., Stolfo, S. and Mok, K. (1999) ‘Algorithms for Mining System Audit Data’, Data Retrieval
and Data Mining. Kluwer Academic Publishers, Boston, MA, T.Y. Lin and N. Cercone, eds.

Leveson, N.G. (1995) Safeware: System Safety and Computers. Reading, MA: Addison-Wesley.
Leveson, N.G. and Stolzy, J.L. (1987) ‘Safety analysis using petri-nets’, IEEE Transactions on

Software Engineering Vol. SE-13, pp.386–397.
Lin, J.-L., Wang, X.S. and Jajodia, S. (1998) ‘Abstraction-based misuse detection: high-level

specifications and adaptable strategies’, Paper presented at the IEEE Computer Security
Foundations Workshop, Rockport, MA, pp.190–201. In proceedings.

Lindqvist, U. and Porras, P.A. (1999) ‘Detecting computer and network misuse through the
production-based expert system toolset (p-BEST)’, Paper presented at the IEEE Symposium on
Security and Privacy, Oakland, CA, pp.146–161. In proceedings.

Michel, C. and Me, L. (2001) ‘ADeLe: an attack description language for knowledge-based
intrustion detection’, Paper presented at Sec ’01: Proceedings of the 16th international

 Software fault tree and coloured petri net–based specification 141

conference on Information security: Trusted information, Paris, France, pp.353–368. In
proceedings.

‘Network Associates’ (2004) ‘Nachi worm, Online’. Available at: http://vil.nai.com/vil/content/v-
100559.htm

Ning, P., Cui, Y. and Reeves, D. (2002) ‘Constructing attack scenarios through correlation of
intrusion alerts’, Paper presented at the 9th ACM Conference on Computer and
Communications Security, Washington, DC, pp.245–254. In proceedings.

Ning, P., Xu, D., Healey, C.G. and Amant, R.A.S. (2004) ‘Building attack scenarios through
integration of complementary alert correlation methods’, Paper presented at the 11th Annual
Network and Distributed System Security Symposium (NDSS’04), San Diego, pp.97–111. In
proceedings.

Noel, S. and Jajodia, S. (2004) ‘Managing attack graph complexity through visual hierarchical
aggregation’, VizSEC/DMSEC ’04: Paper presented at the 2004 ACM Workshop on
Visualization and Data Mining for Computer Security, Washington, DC, pp.109–118. In
proceedings.

Noel, S., Robertson, E. and Jajodia, S. (2004) ‘Correlating intrusion events and building attack
scenarios through attack graph distances’, Paper presented at the 20th Annual Computer
Security Applications Conference, Washington, DC, pp.350–359. In proceedings.

Noel, S., Jacobs, M., Kalapa, P. and Jajodia, S. (2005) ‘Multiple coordinated views for network
attack graphs’, Paper presented at the Workshop on Visualization for Computer Security,
Minneapolis, MN, p.12. In proceedings.

ObjectSpace (1999) Objectspace voyager core technology user guide. Version 3.0.0.
Phillips, C. and Swiler, L.P. (1998) ‘A graph-based system for network vulnerability analysis’,

Paper presented at the 1998 Workshop on New Security paradigms, Charlottesville, Virginia,
pp.71–79. In proceedings.

Porras, P., Schnackenberg, D., Staniford-Chen, S., Stillman, M. and Wu, F. (1999) ‘The common
intrusion detection framework architecture, Online’. Available at http://www.gidos.org/drafts/
architecture.txt

Pouzol, J-P. and Ducasse, M. (2002) ‘Formal specification of intrusion signatures and detection
rules’, Paper presented at the 15th IEEE Computer Security Foundations
Workshop(CSFW’02), p.64. In proceedings.

Puketza, N.J., Zhang, K., Chung, M., Mukherjee, B. and Olsson, R.A. (1996) ‘A methodology for
testing intrusion detection systems’, IEEE Transactions on Software Engineering Vol. 22,
pp.719–729.

Raihan, M.F. and Zulkernine, M. (2005) ‘Detecting intrusions specified in a software specification
language’, Paper presented at the 29th Annual International Computer Software and
Applications Conference, Edinburgh, Scotland, pp.143–148. In proceedings.

Roesch, M. (1999) ‘Snort: lightweight intrusion detection for networks’, Paper presented at the
Thirteenth Systems Administration Conference (LISA’99), USENIX, Seattle, WA, pp.229–238.
In proceedings.

Rushby, J. (1994) ‘Critical system properties: survey and taxonomy’, Reliability Engineering and
System Safety, Vol. 43, pp.189–219.

Russell, S. and Norvig, P. (1995) Artificial Intelligence: A Modern Approach. Englewood Cliffs,
NJ: Prentice-Hall.

Schneier, B. (2000) Secrets and Lies: Digital Security in a Networked World. Newyork: John
Wiley & Sons.

Sebring, M., Shellhouse, E., Hanna, M. and Whitehurst, R. (1988) ‘Expert systems in intrusion
detection: a case study’, Paper presented at the 11th National Computer Security Conference,
Baltimore, MD, pp.74–81. In proceedings.

Sheyner, O., Haines, J., Jha, S., Lippmann, R. and Wing, J.M. (2002) ‘Automated generation and
analysis of attack graphs’, Paper presented at the SP’02: IEEE Symposium on Security and
Privacy, Washington, DC, p.273. In proceedings.

 142 G. Helmer et al.

Slagell, M. (2001) ‘The design and implementation of MAIDS (mobile agent intrusion detection
system)’, Technical Report TR01-07, Department of Computer Science. Iowa State University,
Ames, IA.

Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoagland, J., Levitt, K., Wee,
C., Yip, R. and Zerkle, D. (1996) ‘GrIDS-a graph based intrusion detection system for large
networks’, Paper presented at the 19th National Information Systems Security Conference,
pp. 361–370. In proceedings.

Swiler, L.P., Phillips, C., Ellis, D. and Chakerian, S. (2001) ‘Computer-attack graph generation
tool’, Paper presented at the DISCEXII: DARPA’s Information Survivability Conference and
Exposition, pp.307–321. In proceedings.

Tanenbaum, A.S. (1995) Distributed Operating Systems. Englewood Cliffs, NJ: Prentice-Hall.
Totel, E., Vivinis, B. and Me, L. (2004) ‘A language driven intrusion detection system for events

and alerts correlation’, Paper presented at the 19th IFIP International Information Security
Conference, Toulouse, France, pp.209–224. In proceedings.

Wang, Y., Behera, S.R., Johnny, W., Helmer, G., Honavar, V., Miller, L., Lutz, R. and Slagell, M.
(2006) ‘Towards the automatic generation of mobile agents for distributed intrusion detection
systems’, Journal of Systems and Software, Vol. 79, pp.1–14.

Wong, J., Helmer, G., Naganathan, V., Polavarapu, S., Honavar, V. and Miller, L. (2001) ‘SMART
mobile agent facility’, Journal of Systems and Software, Vol. 56, pp.9–22.

Notes
 1

The subscript ‘MS’ indicates a multi-set, which Jensen defines as allowing ‘multiple appearances
of the same element.’ (Jensen, 1992, p.66).

2
Object Space spun off a new company called Recursion Software Inc. in 2001 to handle Voyager,
(http://www.recursionsw.com).

3
A number of highly-effective intrusions (e.g. CodeRed II and Nimda) are simple, scripted attacks
that do not follow the distinct temporal stages. Simpler IDSs that match single events, such as
SNORT (Roesch, 1999), tend to be effective at detecting these intrusions.

