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Abstract

Cost-effective equipment maintenance for electric
power transmission systems requires ongoing integra-
tion of information from multiple, highly distributed,
and heterogeneous data sources storing various infor-
mation about equipment. This paper describes a fed-
erated, query-centric data integration and knowledge
acquisition framework for condition monitoring and
failure rate prediction of power transformers. Specif-
ically, the system uses substation equipment condition
data collected from distributed data resources, some of
which may be local to the substation, to develop Hidden
Markov Models (HMMs) which transform the condition
data into failure probabilities. These probabilities pro-
vide the most current knowledge of equipment deteri-
oration, which can be used in system-level simulation
and decision tools. The system is illustrated using dis-
solved gas-in-oil field data for assessing the deteriora-
tion level of power transformer insulating oil.

Keywords: Data Integration, Hidden Markov Models,
Transformer Failure Mode Estimation.

1 Introduction

The advancements in electric power systems, power
transmission and distribution grids are critical for a
nation’s growth and development. However, they are
comprised of a large number of highly distributed and
capital-intensive physical assets that can fail in catas-
trophic ways. The reliability and proper functioning of
these assets are dependent on effective approaches for
problems related to their operation and maintenance.
Quality of these solutions depend not only on the qual-
ity of the information used for assessment, but also on
how it is processed. Central, and essential, are infor-
mation characterizing the health or condition of the

assets. For example, equipment age and time since
the last inspection and maintenance are widely used
asset condition indicators. As a result, ‘nameplate’
data and maintenance histories are often used in the
decision-making process. Until recently, the coordina-
tion of this information was human-driven, which is
not only tedious and time-consuming, but also costly.
However, due to the recent developments in sensing,
communications, distributed computing and database
technologies, it has become feasible for decision-makers
to access operating histories and asset-specific real-
time monitoring of data. Creative use of this data via
processing, integration, assessment, and decision algo-
rithms can significantly enhance the quality of the final
actions taken, and result in very large national impact
in terms of more economic and reliable system perfor-
mance.

Against this background, in this paper we investi-
gate a federated, query-centric approach to informa-
tion integration and knowledge acquisition from au-
tonomous, distributed, and heterogeneous data sources
for condition monitoring and failure mode estimation
of power transformers. These data sources may in-
clude intelligent electronic devices (IEDs) local to the
equipment or data repositories in corporate servers.
Unavoidably in real life situations, the related data
sources maintained by different institutions often differ
in structure, organization, query capabilities, and more
importantly ontological commitments [17] - assump-
tions concerning the objects that exist in the world, the
properties of the objects and their possible values, re-
lationships between them, and their intended meaning.
In other words, data sources often do not agree on using
a shared vocabulary of terms and concepts in a coher-
ent and consistent manner. As a result, it becomes
increasingly difficult for individuals and autonomous
software entities to seamlessly query the data sources
or assert facts about them. Our approach to this prob-
lem has resulted in the adaptation of a system called
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INDUS (Intelligent Data Understanding System) [26].
INDUS1 imposes a clear separation between the data
and semantics (or intended meaning) of data, which al-
lows the users to reconcile semantic differences between
multiple heterogeneous data sources from their own
point of view. With the help of specific software wrap-
pers, the system exposes autonomous data sources (re-
gardless of their location, internal structure, and query
interfaces) as though they were relational databases
(i.e., a collection of inter-related tables), structured ac-
cording to an ontology supplied by the user. INDUS
when equipped with data mining and decision-making
algorithms for ontology-driven knowledge acquisition
can accelerate the pace of discovery in many data-rich
domains. Specifically for this paper, we used INDUS to
integrate power transformer condition data for train-
ing Hidden Markov Models [25], a model effective in
characterizing discrete state random processes where
the mapping between states (deterioration levels in this
case) and observations is uncertain.

The rest of the paper is structured as follows: Sec-
tion 2 describes the data integration component of
INDUS, whereas a detailed description of failure rate
probability estimation using HMM is given in Section
3. In Section 4 we describe the implementation de-
tails of our framework and show how transformer fail-
ure rate can be estimated from condition monitoring
data. Finally, we summarize our work and provide a
brief discussion about future work in Section 5.

2 Data Integration in INDUS

The estimation of the state of an asset (e.g., trans-
former, circuit breaker, underground cable, insulator,
etc.), is typically made using a variety of data. In gen-
eral, there may be up to four classes of this data: equip-
ment data, operating histories, maintenance histories,
and condition histories. The equipment data com-
prises the so-called ‘nameplate’ information including
manufacturer, make, model, rated currents, voltages,
and powers, equipment’s age, and manufacturer’s rec-
ommended maintenance schedule. The operating his-
tories capture the electrical and environmental con-
ditions to which the equipment has been subjected
in the past, e.g., temperatures, loading histories and
through faults for transformers, and operations and I2t
for circuit breakers. The maintenance histories con-
tain records of all inspections and maintenance activi-
ties performed on each piece of equipment. Condition
histories are comprised of measurements providing in-

1The acronym INDUS should not be confused with a suite
of commercial service delivery and asset management solutions
provided by Indus (www.indus.com).

formation about the state of the equipment with re-
spect to one or more failure modes. Common condi-
tion data information for a transformer includes that
coming from tests on: oil (dissolved gas, moisture, hy-
drogen, and furan), power factor, winding resistance,
partial discharge (acoustic emissions, spectral decom-
position of currents), and infrared emissions. All of
this data can be collected either manually via inspec-
tions/laboratory testings or using continuous monitor-
ing sensors. Usually, these four classes of informa-
tion are maintained in multiple database systems dis-
tributed between the substation and corporate head-
quarters using various commercially available storage
technologies (e.g., Oracle) together with a variety of
data standards and proprietary systems. Effective use
of this data demands for versatile data integration and
management systems for efficiently extracting relevant
information.

In practice, data integration systems [3,13,16,20,21,
23] attempt to provide users with seamless and flexible
access to information from autonomous, distributed,
and heterogeneous data sources through a unified query
interface. Ideally, such systems should allow the users
to specify what information is needed instead of how
it can be obtained. In other words, it should provide
mechanisms for:

• Specification of a query expressed in terms of a
user-specified vocabulary (ontology).

• Specifying mappings between user ontology and
data-source ontologies.

• Automatically transforming user queries into
queries that can be answered/understood by the
respective data sources.

• Hiding the complexity of communication and in-
teraction with heterogeneous, distributed data
sources.

• Mapping the results obtained into the form ex-
pected by the user and storing them for future
analysis.

• Allowing effortless incorporation of new data
sources as needed, and supporting sharing of on-
tologies between different users.

In general, there are two broad approaches to data
integration: Data Warehousing and Database Federa-
tion. In the data warehousing approach, data from het-
erogeneous information sources is gathered, mapped to
a common structure and stored in a central location.
Periodic updates are required to ensure that the infor-
mation contained in the warehouse is up-to-date with
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the contents of the individual sources. However, the
data replication/updating process can be quite expen-
sive in case of large information repositories. Also, this
approach relies on a single common ontology for all
users which is specified as part of the warehouse de-
sign. As a result, the system tends to be less flexible.
On the other hand, in case of database federation, the
information needed to answer a query is gathered di-
rectly from the data sources in response to the posted
query. Hence, the results are up-to-date with respect to
the contents of the data sources at the time the query is
posted. More importantly, this approach is being more
readily adapted to applications where users are able to
impose their own ontologies and specify queries using
the various concepts in those ontologies. Because our
focus is on data integration for scientific applications,
which requires users to be able to flexibly interpret and
integrate data from multiple autonomous sources, we
adopt the federated architecture for our system.

Typically, a query posted by the user must be de-
composed into a set of operations corresponding to the
information that needs to be gathered from each data
source and the form in which this information must be
returned to the system. These operations should be
capable of dealing with syntactic (or structural) and
semantic (or intended meaning) mismatches by trans-
forming the queries expressed in terms of the user on-
tology into data source-specific execution plans. These
plans describe what information to extract from each
data source and how to combine the results. In general,
there are two basic approaches for dealing with seman-
tic mismatches for query answering: Source-Centric
approach and Query-Centric approach. In the case
of the source-centric approach, each individual data
source determines how the terms in a data source on-
tology (or vocabulary) are mapped to terms in the user
(or global) ontology. Thus, the user has little control
on the true meaning of concepts, and hence the re-
sults of a query. In other words, this approach puts
the information sources in control of the semantics. In
contrast, in the query-centric approach to information
integration, concepts in the user ontology are defined
in terms of concepts in data source-specific ontologies.
Thus, the query-centric approach is better suited for
data integration applications in which the users need
the ability to impose the ontologies (and semantics) of
their choice to flexibly interpret and analyze informa-
tion from autonomous sources. However, this requires
the user or administrator of the integration system to
specify precisely how concepts in the user ontology are
mapped to data source ontologies. As a result, the user
controls/specifies the semantics because of of which we
adopt the query-centric approach to data integration

in INDUS.

Figure 1. Simplified INDUS Architecture

A simplified architecture of INDUS is shown in Fig-
ure 1. Typically, several related distributed and seman-
tically heterogeneous data sources can be available to
users who may want to query the data sources of in-
terest via a query interface. Each user has the ability
to impose his or her semantics by defining user on-
tologies. The system provides an user-friendly ontology
and mapping editor [6] via which the users of the sys-
tem can specify mappings between the concepts in the
user ontology and data source ontologies. These on-
tologies and mappings are stored in the mapping repos-
itory. Once a query is posed by the user, it is handled
by the query answering engine which acts as a middle-
ware between the users (or clients) and data sources
(or servers). This engine has access to the data sources
as well as the set of user-specified mappings. Thus,
when the engine receives an user query, it decomposes
the query into distributed sources, maps the individual
queries into data source-specific semantics, and finally
composes the partial answers of each sub-query into
final result which is sent back to the user.

There are several features that distinguish INDUS
from various other data integration systems:

• INDUS imposes a clear separation between data
and the semantics of data. Such an approach al-
lows users to specify mappings from the concepts
in their ontologies to the data source ontologies.

• Instead of having a single global ontology (com-
mon to all users), INDUS allows users to specify
their ontologies and mappings to the data source
ontologies.
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• INDUS can be hooked up with various knowl-
edge acquisition and decision-making algorithms
(e.g., data mining algorithms) whose informa-
tion requirements can be formulated as statistical2

queries [9].

We discuss these features in the remainder of this
section.

2.1 Ontology-Extended Data Sources

Assume that we have a set of physically distributed
data sources, D1, · · · , Dn, such that each data source
Di contains only a fragment of the whole data D. In
general, two common types of data fragmentation are
defined [11]: horizontal fragmentation, where each data
fragment contains a subset of data tuples, and verti-
cal fragmentation, where each data fragment contains
subtuples of data tuples. However, one can envision
a combination of the two types of data fragmentation,
and also more general relational data fragmentations.

Formally, an ontology can be defined as a specifica-
tion of objects, categories, properties and relationships
used to conceptualize some domain of interest [17]. Let
Di be a distributed data source described by the set of
attributes {Ai

1, · · · , Ai
m} and Oi = {Γi

1, · · · , Γi
m} an

ontology associated with the data source. The element
Γi

j ∈ Oi corresponds to the attribute Ai
j and defines

the type of that particular attribute. These types can
be either linear (e.g., String, Integer etc.), or an order-
ing (or hierarchy [9]) of a set of terms (e.g., attribute
value taxonomies). The schema Si of a data source
Di is given by the set of attributes {Ai

1, · · · , Ai
m} used

to describe the data, together with their respective at-
tribute types {Γi

1, · · · , Γi
m}, defined by the ontology Oi,

i.e., Si = {Ai
1 : Γi

1, · · · , Ai
n : Γi

n}.
We define an ontology-extended data source as a tu-

ple Di = < Di, Si, Oi >, where Di refers to the data
contained in the data source, Si is the schema of the
data source, and Oi is the ontology associated with
Di. In addition, the following condition also needs to
be satisfied: Di ⊆ Γi

1 ×· · ·×Γi
m, which means that the

set of values each attribute Ai
j can have is determined

by its type Γi
j defined in the ontology Oi.

2.2 User Perspective and Ontology Mapping

Suppose D1, · · · , Dn be an ordered set of ontology-
extended data sources and U an user who wants
to query D1, · · · , Dn semantically heterogeneous data

2A statistic is simply a function of data and any kind of query
that returns such a statistic is called a statistical query. Exam-
ples of statistic include counts of instances that have specified
values from a subset of attributes.

sources. A user perspective is given by the user on-
tology OU and a set of interoperation constraints that
define the correspondences between the terms and con-
cepts in O1, · · · , On respectively, with the user ontology
OU . These interoperation constraints can take one of
the following forms [5]: x : Oi v y : OU (x is seman-
tically subsumed by y), x : Oi w y : OU (x semanti-
cally subsumes y), x : Oi ≡ y : OU (x is semantically
equivalent to y), x : Oi 6= y : OU (x is semantically
incompatible to y), x : Oi ≈ y : OU (x is semanti-
cally compatible with y). As shown in [9], the set of
mappings can be semi-automatically inferred from the
set of interoperation constraints. INDUS also provides
a graphical user interface to specify the interoperation
constraints [6].

2.3 Knowledge Acquisition algorithms

It has been shown in [9] that the functioning of
various knowledge acquisition and decision-making al-
gorithms (e.g., classifier learning algorithms) can be
reduced to answering queries from distributed data
sources by decomposing it into two sub-tasks: infor-
mation extraction and hypothesis generation. The in-
formation extraction component identifies the required
sufficient statistics3 information, whereas, the hypoth-
esis generation component uses this information to gen-
erate a predictive model (Figure 2).
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Figure 2. Learning from Distributed, Semanti-
cally Heterogeneous Data Sources [9]

The information extraction component typically in-
volves a procedure for determining the sufficient statis-
tics as a query and a procedure for answering these
queries from the distributed data sources.

3A statistic s(D) is called a sufficient statistic for a parameter
θ if s(D) (loosely speaking) provides all the information needed
for estimating θ from data D [10]. For example, sample mean is
a sufficient statistic for mean of a Gaussian distribution.
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The process of answering queries from distributed
data requires decomposition of the original query into
sub-queries, for which the individual data sources can
respond. These responses are then composed into a
final answer for the original query. In case of semanti-
cally heterogeneous, distributed data sources, the map-
pings between the user ontology and data source on-
tologies also need to be applied. Thus, through the
means of a query answering engine, this process can be
made transparent to the functioning of the knowledge
acquisition algorithms, and hence such algorithms can
be regarded as pseudo-users in INDUS.

Designing models for estimating probabilistic fail-
ure indices of power system equipment by capturing
the uncertainty relationship between the observations
and actual deterioration states is important for rep-
resenting equipment state in system-level decision al-
gorithms. The procedure for generating such models
can be similarly decomposed into information extrac-
tion and hypothesis generation components. As a re-
sult, such algorithms can be easily connected to INDUS
for efficient knowledge acquisition from distributed, se-
mantically heterogeneous data sources. In what fol-
lows, we will show how we have used Hidden Markov
Models with INDUS for failure rate probability deter-
mination for power transformers.

3 HMM for Failure Mode Estimation

The average age of transmission equipment has in-
creased significantly during the past 20 years. As a
result, the amount of condition monitoring has also
increased, and many utilities are now maintaining ex-
tended condition histories. There has also been signifi-
cant work in developing diagnostics, mainly in the form
of rules that we call deterioration functions, used to op-
erate on condition measurements and identify the state
of a piece of equipment with respect to a particular fail-
ure mode. But there has not been corresponding efforts
to transform condition data into a form that can be
used in system-level decision tools. Such tools include,
for example, maintenance selection and scheduling and
transmission reliability evaluation. The standard rep-
resentation for equipment state in such tools is via a
probabilistic failure index such as failure rate, failure
probability, or time to failure. Therefore, to utilize the
rich information that is embedded in the increasingly
available condition histories, it is necessary to trans-
form the condition histories into such probabilistic fail-
ure indices. The limited amount of work towards this
end includes [8, 14, 15].

We introduce in this section Hidden Markov Model
(HMM), which is very well suited for this task. Al-

though it has been used most heavily in speech pro-
cessing [24], it has also been used for failure pattern
reorganization and condition monitoring using current
data [18] and acoustic vibration data [4]. Our appli-
cation of HMM is extended from application of multi-
state Markov models to the same problem [19], which
were adapted from models presented in [14]. Markov-
based models are desirable because they are inherently
suited to modeling multi-state processes such as equip-
ment deterioration. Condition of equipment is divided
into states corresponding to intervals of deterioration
as computed from deterioration functions operating on
condition measurements (Figure 3). IEEE has devel-

Figure 3. Computing Contingency Probability
Reductions

oped a standard to interpret the insulation conditions
of oil-immersed power transformer based on Dissolved
Gas Analysis (DGA) [1]. This standard classifies trans-
former conditions into 4 discrete deteriorating states,
with the criteria of combustible gases as by-product of
insulation deterioration, as listed in Table 1. We set
up our Markov model based on this standard.

However, standard Markov model assumes that the
deterioration function provides perfect identification of
the state. HHM improves on this approach because
it accounts for uncertainty in state identification, en-
abling representation of uncertainties in the mappings
between observations and states. HMM’s appropriate
models for discrete-time, discrete-space dynamical sys-
tems governed by a Markov chain, is a statistical model
that uses probability measures to represent sequence of
observation vectors. It is a composition of two stochas-
tic processes, a hidden Markov chain, which accounts
for real status of the deterioration, and an observable
process, which accounts for observation obtained from
monitoring and tests. When the component is in a
particular state, we characterize the probability that a
particular measurement can be generated according to
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Dissolved Key Gas Concentration Limits (ppm)
Status H2 CH4 C2H2 C2H4 C2H6 CO CO2 Total Dissolved

Combustible Gas
Condition 1 <100 <120 <35 <50 <65 <350 <2500 <720
Condition 2 101-700 121-400 36-50 51-100 66-100 351-570 2500-4000 721-1920
Condition 3 701-1800 401-1000 51-80 101-200 101-150 571-1400 4001-10000 1921-4630
Condition 4 >1800 >1000 >80 >200 >150 >1400 >10000 >4630

Table 1. Determine Transformer Condition based on DGA [1]

an assumed probability distribution. It is only the out-
come, and not the state that is visible to an external
observer, and therefore states are ‘hidden’.

A HMM is characterized with the following param-
eters:

1. Markov transition matrix: state transition prob-
abilities A = {aij}, aij = p(qt+1 = j|qt = i),
1 ≤ i ≤ N , where qt denotes the current state.

2. Probability of getting an observation with a sym-
bol under specific state B = {bj(k)}, bj(k) =
p{ot = vk|qt = j}, 1 ≤ j ≤ N , 1 ≤ k ≤ M ,
where ot denotes the current observation.

3. Initial state distribution Π = {πi}, where πi =
p{q1 = i}, 1 ≤ i ≤ N .

This is a learning problem, where we adjust the
HMM parameters so that the given set of observations
are represented by the model in the sense of maximum
likelihood, which means to get the optimal parameter,
λ = {A, B, Π}, by maximizing the likelihood of obser-
vation, Ltot = p(O|λ). There have been well-developed
methods for doing this, like Baum-Welch Algorithm
(also known as forward-backward algorithm) [7]. The
algorithm includes two parts: 1) Transforming the ob-
jective function p(O|λ) into a new function, F (λ, λ

′

),
that measures a divergence between the initial model
λ and upgraded model λ

′

; 2) Maximizing the function
F (λ, λ

′

) over λ
′

to improve λ in the sense of increas-
ing the likelihood p(O|λ). The algorithm continues by
replacing λ with λ

′

, and repeating the two steps until
some stopping criteria is met. In this way, the method
is used to fit the test data in the sense of maximum
likelihood estimation.

After the HMM transition intensities are deter-
mined, the transition probability matrix for the model
of Figure 3 can be obtained by Equation (1). The
state probability vector gives the probability that a
component is in any particular deterioration level at
a given time, and is denoted by: p(hT ) = [p1(hT ) ·
p2(hT ) · p3(hT ) · p4(hT )], where h = 1, 2, 3, · · · , and T

is the time increment. If at time t = 0, the component

resides in deterioration level 1, then the initial state
probability vector is p(0) = [1 0 0 0]. The probability
of finding the component in any deterioration level at
the time hT is then given by p(hT ) = p(0) ·Ph, where
the last number of each probability vector p(hT ) cor-
responds to the probability that the component is in
the state of failure before time hT , or the CDF (cumu-
lative density function) of failure. The time to failure
may be obtained as first passage times [12].

P =









1 − λ12 λ12 0 0
0 1 − λ23 λ23 0
0 0 1 − λ34 λ34

0 0 0 1









(1)

In Section 4.2, we illustrate use of HMM to investi-
gate the failure rate corresponding to the deterioration
of oil in transformer, with the data of dissolved gas
analysis (DGA).

4 System Design and Experimentation

4.1 INDUS Implementation

INDUS comprises of five principle modules (Fig-
ure 4): graphical user interface, ontology & mapping
repository, query answering engine, data mining algo-
rithms & code repository and data source & wrappers
registry. The modular design of INDUS ensures that
each module can be updated and alternative implemen-
tation easily explored.

The graphical user interface allows the users to in-
teract with the system. It provides an editor [6] for
specifying the ontologies and mappings. It also al-
lows the users to register data sources (and their cor-
responding wrappers) and various data mining algo-
rithms with INDUS. Using the interface, the users can
specify queries over distributed, semantically heteroge-
neous data sources.

The ontology & mapping repository stores the vari-
ous data source ontologies and user-defined ontologies.
It also contains the set of mappings between the terms
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Figure 4. INDUS Implementation Modules

and concepts in the user ontology and data source on-
tologies. These mappings are accessed during query
processing and execution.

The data source & wrapper registry allows the users
to register various data sources and wrappers with the
system. These wrappers provide a set of functions to
interact with the individual data sources. Each wrap-
per is implemented by a Java class. During the reg-
istration of the data sources, the users also provide a
capability description of the data sources. Such de-
scriptions provide information about the structure of
the data source (e.g., relational, XML), querying capa-
bilities (e.g., different types of functionalities the data
source provides), querying restrictions (e.g., various
constraints on the usage of data by external applica-
tions), infrastructure (e.g., CPU speed, RAM size of
the server hosting the data source) etc. These infor-
mations are used during query execution.

The data mining algorithms & code repository allows
users to register various data mining and knowledge ac-
quisition algorithms. These algorithms act as pseudo-
users in INDUS. This repository also allows users to
store application-specific functionalities that might be
used in querying the registered data sources.

Finally, the query answering engine accepts a query
either from an user or from data mining algorithms
(i.e., the information extraction component). This en-
gine acts as a middleware between the users and data
sources, and utilizes the functionalities of the data
source wrappers for query processing. There are two
main aspects of the engine. Firstly, it translates the
user queries (which are specified using the concepts
in the user ontology) into data-source specific queries
via the interoperation constraints (or ontology map-
pings), hence allowing the users to view the data source
from their own point of view. Secondly, the engine

adopts a hybrid query answering approach, which al-
lows it to choose to perform some query execution at
the data source server, and some portion of the ex-
ecution at the client location. The rationale behind
this design choice is that, this approach allows the en-
gine to decide whether to ship executable code (for
query answering) to the data source server location, or
ship raw data to the client location for local process-
ing based on the dynamics of the query and various
querying capabilities of the data source (as specified
in the data source description). The engine comprises
of 4 sub-components: Query Decomposition, Query
Translation, Query Execution and Answer Composi-
tion. Upon receiving a query Q (based on concepts in
user ontology OU ) from the user/application, the query
decomposition component identifies the data sources,
D1, · · · , Dn, that need to be queried, and decomposes
the original query into sub-queries, QD1

, · · · , QDn
, that

are sent to the query translation component. For each
sub-query, QDi

, received by this component, it is trans-
lated (or re-written) in terms of the concepts speci-
fied in the data source ontology, Oi. The translated
sub-query is then sent to the query execution compo-
nent which enumerates alternate plans for processing
the query, and executes the one which is most efficient.
Finally, the result of the sub-query is sent to the an-
swer composition component. This component com-
poses the partial answers (i.e., the results of all the
sub-queries) into a final answer for the original query
Q, and sends it back to the user.

In what follows, we demonstrate an application of
INDUS for failure rate estimation using condition mon-
itoring data.

4.2 Transformer Failure Rate Estimation based
on Condition Monitoring Data

Condition monitoring is an important method in
maintenance asset management of components in the
transmission system. Relative to the conservative time-
based maintenance, which utilizes the fixed mainte-
nance intervals, condition monitoring based mainte-
nance only triggers maintenance when an incipient fail-
ure is identified with the information characterizing the
equipment conditions. Thus, it typically extends the
interval between successive maintenances and there-
fore incurs less cost. However, it requires a signifi-
cant amount of infrastructure investment (e.g. sen-
sors, diagnostic technology, communication channels,
data repositories and processing software) to measure,
communicate, store and utilize the necessary informa-
tion characterizing the state of the equipment. There
have been many condition monitoring techniques cor-
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responding to different failure modes of transformers,
including dissolved gas analysis (DGA) results on main
tank oil (insulation deterioration, deterioration of cool-
ing system, oil pump failure) and load tap changer oil
(oil dielectric weakening), thermography testing (mag-
netic circuit overheating, bushing overheating), ultra-
sonic testing (oil pump failure), partial discharge test-
ing (magnetic circuit overheating), winding and oil
temperature (deterioration of cooling system), etc. In
this paper, we use DGA data to estimate the failure
rate of deterioration of insulation oil in transformer.

Mineral oils are used in the transformer tank for in-
sulation and also, as a media for heat transfer. The oils
are mixtures of many different hydrocarbon molecules,
which decompose under high thermal and electrical
stress within the transformer during the period of ser-
vice. The critical changes are the breaking of carbon-
hydrogen and carbon-carbon bonds, as a result of
which different gases are formed due to the presence
of individual hydrocarbons, and the distribution of en-
ergy and temperature in the neighborhood of the fault.
IEEE has provided the interpretation of the gases gen-
erated in the transformer and corresponding standards
for evaluating the condition of transformer oil insula-
tion based on DGA results [1]. In transformer oil anal-
ysis, TDCG (total dissolved combustible gases, which is
the summation of concentration of hydrogen, ethylene,
acetylene, methane, ethane and carbon-monoxide) has
been utilized as an important indicator of condition of
transformer oil and is used as a principle factor for de-
termining the operating procedures for inspection and
maintenance intervals [1].

Sample Date H2 C2H4 C2H2 CH4 C2H6 CO TDCG

15-Sep-95 3 9 0 19 4 539 574
18-Sep-96 0 13 0 20 9 467 509
09-May-97 0 9 0 30 3 578 620
27-Aug-98 26 22 0 54 10 942 1054
12-Apr-99 21 28 0 60 6 731 846
10-Sep-02 305 691 0 648 192 657 2493
15-Oct-02 569 1703 7 1364 451 552 4646
22-Oct-02 573 1965 6 1637 520 643 5344
28-Oct-02 557 2002 7 1616 535 599 5316
10-Dec-02 1 22 0 7 6 5 41

Table 2. DGA Test Data for a Transformer

Such information can be gathered from the condition
monitoring data sources using INDUS. Specifically, we
determine a transformer we want to analyze, and send
a query request to INDUS for accumulation of TDCG
information by using the ID (an unique identifier) of
the transformer and the data period we want to exam-

ine. Table 2 shows results to a query for gathering DGA
analysis information for one transformer between two
maintenance periods of oil filtering, which is the main-
tenance activity corresponding to the failure mode oil
deterioration. As can be seen from Table 2, there is a
sharp decline in the concentration of various gases in
the last record. This indicates a maintenance activity,
confirmed by the maintenance history data, and as a
result, we use all the records, except the last one, to
simulate the deterioration process using a HMM. We
achieve this by incorporating the generation of HMM
with INDUS. This would allow the HMM (i.e., pseudo-
user) to ask queries for gathering DGA analysis infor-
mation over physically distributed, autonomous, and
semantically heterogeneous data sources. Once the rel-
evant information is extracted, the algorithm can esti-
mate transition intensities for the Markov model (Table
3).

TransitionRate 1 2 3 4
λ i, i 0.9917 0.9915 0.9807 1.000

λ i, i+1 0.0083 0.0085 0.0193 0.000

Table 3. Estimated Transition Intensities for
Markov Model

To validate our results, we compare the observations
with the results obtained from HMM. In Table 4, Es
is the status of the components with observation data
(interpreted using a deterioration function based the
IEEE Standards [1]), and Eu is the forecasted states
that the component will be at different time, with our
HMM model. We observe that they match very well,
suggesting that the HMM can be effectively used to
simulate the deterioration process.

Time (week) 1 54 87 155 187 366 371 372 372
Es 1 1 1 2 2 3 4 4 4
Eu 1 1 1 2 2 3 4 4 4

Table 4. Comparison of Observation and Fore-
cast

The probability that we need to calculate is failure
rate, or hazard function [22], which is the instantaneous
probability of the component to fail during the period
of [(h+1)T, hT ], given the condition that it survives to
time hT . This probability can be calculated as follows:

Pr(hT ≤ x ≤ (h+1)T | x > hT ) =
p((h + 1)T )− p(hT )

1 − p(hT )
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Figure 5 shows the distribution of calculated failure
rate vs. time. This graph can be used to calculate the
change of failure probability after the maintenance. In
Table 2, the last records show that maintenance was
performed 377 weeks after the first record (the date of
previous maintenance). This information can then be
used to check the failure probability for the time period
without maintenance. For example, from Figure 5, we
can determine Pr(377) = 0.004354. Since the record
after maintenance shows that the oil is in very good
condition, we can infer that maintenance renews the
oil, as a result of which, the failure probability returns
to 0. Thus, we can calculate ∆Pr, the change of failure
probability after maintenance, will be 0.004354.

Figure 5. Failure Rate of Transformer Oil De-
terioration

We can also calculate the expected time to failure
with the results from HMM (Table 5). It is captured
by computing first passage times, which is the expected
value of the amount of time it will take to transit from
a given state j to another state i, under the assumption
that the process begins in state j. From this compu-
tation, then, we may estimate the remaining life of the
component. We utilize the method introduced in [2,12]
to calculate the first passage time to failure as follows:

Tf = p(0) × T × (1 − Pr(T ))−1

where, p(0) is the initial state of the Markov process,
T is the time unit of each step, Tf is the vector of time
to failure from different states, Pr(T ) is a partition
of the transition matrix P corresponding to the non-
failure states. Table 5 gives the results for components
in each state, the average time to next state, and the
estimated time to failure.

State 1 2 3
Time to next state (weeks) 120.5 155.4 91.9

Time to failure (weeks) 367.8 247.3 91.9

Table 5. First Passage Time for each State

5 Summary and Discussion

This paper addresses a highly complex dynamic
data-driven decision problem associated with a criti-
cal national infrastructure - asset management for the
electric power system. Solution to this problem in-
volves six main issues: 1.) Sensing and diagnostics;
2.) Data accessibility, communication, and integration;
3.) Data transformation; 4.) System simulation across
multiple decision horizons; 5.) Decision making; and,
6.) Information valuation and sensor deployment or
re-deployment.

There are four different kinds of decisions to be
made. Operational decisions are made within the hour
to week time frame and require trading off risk associ-
ated with potential equipment failure with the short-
term economics of generation dispatch. Maintenance
decisions are made within the week to year time frame
and require allocating financial and human resources
to maximize benefits in terms of operational reliabil-
ity and equipment life. Planning decisions are made
withing the 1-10 year time period and require deter-
mining the necessary and most effective capital im-
provements in terms of facility investments to continue
supply of the growing load from expanding energy re-
sources. Each of these decisions affect others, and so
the capability to capture the interaction of different
policies in one decision-horizon with those of another
decision-horizon is essential. Fourth, it is through the
simulation and inter-related first three decision prob-
lems that one may be able to determine where addi-
tional information would be valuable. This informa-
tion valuation problem, #6 on the above list, deter-
mines where to deploy new sensors and associated in-
frastructure to collect additional information. In a real
sense, then, this dynamic data-driven decision problem
is closed, i.e., it feedbacks on itself.

In this paper, we have addressed two of the issues
listed above: #2 (data integration) and item #3 (data
transformation). The data federation approach of the
INDUS platform provides a rich alternative to the data
warehousing approach used in industry today, with
important benefits being that data need not be moved
except at the instant it is needed, and as a result,
simulation models are always making use of the very
latest equipment condition measurements. The HMM
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provides an essential bridge between condition data
and the probabilistic failure indices required by the
system simulation tools of issue #4 above. It is quite
natural that the data integration tools would interface
closely with the data transformation applications, as
illustrated by the design presented in this paper. We
intend to continue expanding this prototype to include
application software associated with the other issues
listed above.
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