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Abstract. Networks that change over time, e.g. functional brain networks that
change their structure due to processes such as development or aging, are nat-
urally modeled by time-evolving networks. In this paper we present PATENet, a
novel method for aligning time-evolving networks. PATENet offers a
mathematically-sound approach to aligning time evolving networks. PATENet
leverages existing similarity measures for networks with fixed topologies to
define well-behaved similarity measures for time evolving networks. We
empirically explore the behavior of PATENet through synthetic time evolving
networks under a variety of conditions.
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1 Introduction

Network science has provided a variety of powerful tools for describing, representing,
and analyzing a variety of real-world systems including social networks, the internet,
functional brain networks, and biomolecular networks [9, 10]. While many of the tools
and techniques of network science, e.g. topological analyses and network alignment,
focus on networks with fixed topologies, the structure of networks that represent
real-world systems change over time. Such networks are naturally modeled as
time-evolving networks (TENs) [11, 14]. TENs can display dynamics on networks
(where the network structure does not change over time, but the activity of the nodes
does); dynamics of networks (where the activity of nodes does not change but the
structure does); and dynamics of and on networks (where both the structure and activity
change over time) [3]. The relatively young sub-field of TENs [9] has already yielded a
substantial body of work, focusing primarily on models of time-evolving networks and
the characterization of network dynamics [14]. However, there is limited work on
methods for comparative analyses of TENs.

To motivate the underlying problem, consider experimental subjects who undergo
functional magnetic imaging (fMRI) recordings of resting state brain activation at
different points in time, e.g. in the context of a longitudinal study of changes in
functional connectivity as a function of development, aging, or disease progression
[16]. The resulting data from each subject are naturally represented as a temporally
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ordered sequence of functional connectivity networks. To complicate matters, it may
not be straightforward to establish one-to-one correspondence between the recording
times across subjects because of differences in the timing of recordings, missed
recording sessions, etc. Furthermore, even in the case of subjects with recordings
obtained at what appears to be matching time points e.g. age in years, because of
differences in the onset and progression of development, aging, or disease, and the
trajectories across subjects, the networks at the respective time points may not be
comparable. With the exception of [15], which focuses on temporal registration of
deforming meshes, to the best of our knowledge, there is no work on aligning (tem-
porally) ordered sequences of networks (OSN). The most closely related body of work
focuses on aligning ordered sequences of letters over a finite alphabet e.g. DNA or
protein sequences [17], video frames [4], and clinical histories [13]. However, with the
exception of methods for aligning sequences of letters [17], the methods used are ad
hoc and are not supported by a sound mathematical rationale and hence lack precise
mathematical characterization and are not amenable to generalization to other related
problem domains.

Against this background, we focus on the problem of aligning a pair of OSNs.
Specifically, we describe PATENet, a mathematically sound family of algorithms for
aligning a pair of OSNs. PATENet requires as input, in addition to a pair of OSNs to be
aligned, a measure of pairwise similarity of fixed topology networks, a monotonically
increasing function, and a match threshold. It produces as output an optimal alignment
of the given pair of OSNs. Specifically, PATENet generalizes the Smith-Waterman
(SW) algorithm [17], a dynamic programming algorithm for aligning two ordered
sequences of letters, given a pairwise measure of substitutability of letters and gap
penalties. SW produces an optimal local alignment, i.e. aligned segments of the given
pair of sequences with the largest cumulative similarity. Conceptually, adapting the SW
algorithm to yield a mathematically sound algorithm for aligning a pair of OSNs is
straightforward; we replace letters by networks, and replace pairwise substitutability of
letters by a well-behaved measure of pairwise similarity of (fixed topology) networks.
However, in order for this approach to yield both mathematically sound and practically
useful algorithms for aligning OSNs, several challenges need to be addressed; there are
a variety of measures of similarity or distance between networks that are tailored [6] to
meet the needs of specific applications [7]. We need to adjust such measures so as to
ensure that the algorithms that use them for aligning OSNs are mathematically
well-behaved. In the current work we also show that the PATENet family of algorithms
can be readily extended to align ordered sequences of elements other than networks,
provided suitable and well-behaved measures of similarity between elements are
available.

2 Preliminaries

We use G ¼ G V; EGð Þ to denote a network, where V is its set of nodes and EG is its set
of edges. We define OSN G to be a sequence of n networks, G ¼ G1;G2; . . .;Gnf g,
where 81� i� n 2 N; Gi ¼ V; EGið Þ denotes the i th element of G, which is a snapshot
of a TEN at time ti, and 81\i� n 2 N; ti�1\ti. We use upper case letters, e.g. H, to
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denote matrices or networks, lower case letters, e.g. n, to denote scalars, and script
letters, e.g. V; to denote sets.

Definition 1. Let G ¼ V; Eð Þ and G0 ¼ V; E0ð Þ be two networks with the same set of
nodes V, and respective sets of edges E and E0 (either identical or different). A function
s G;G0ð Þ, mapping two graphs to 0; 1½ �, is said to be a well-defined unsigned normalized
network similarity measure (UNNSM) if it satisfies the following properties (adapted
from [12]):

1. Identity property: s G;G0ð Þ � s G;Gð Þ ¼ 1 8G;G0.
2. Symmetry property: s G;G0ð Þ ¼ s G0;Gð Þ 8G;G0.

3. Minimum property: s G;G0ð Þ !Vj j!1
0 where WLOG G is the complete network, and

G0 is the empty network (i.e. EC ¼ E0).

Definition 2. Similarly, a function s0 G;G0ð Þ, mapping two graphs to �1; 1½ �, is said to
be a well-defined signed normalized network similarity measure (SNNSM) if it satis-
fied the properties described in definition 1, with the minimum property adjusted to the

signed range: s0 G;G0ð Þ !Vj j!1�1 (rather than 0).
For simplification purposes we assumed G and G0 to have the same set of nodes V.

However, if VG 6¼ VG0 , where VG and VG0 denote the set of nodes of G and G0,
respectively, then V ¼ VG

SVG0 for the definitions above.

2.1 The Smith-Waterman (SW) Sequence Alignment Algorithm

The SW algorithm is a local sequence alignment algorithm, designed to find pairs of
segments with high cumulative degree of similarity between two sequences of amino
acids (AAs), A ¼ a1; a2; . . .; anf g and B ¼ b1; b2; . . .; bmf g. There are 22 AAs, and the
similarity between every pair of AAs is specified by the entries of a ‘substitution
matrix’ SM 2 R

22�22. The SW algorithm uses dynamic programming to generate a
‘scoring matrix’ H ¼ H A;Bð Þ 2 R

nþ 1ð Þ� mþ 1ð Þ, which is defined as follows:

80� i� n 2 N 8 0� j�m 2 N; Hi;0 ¼ H0;j ¼ 0
80\i� n 2 N 8 0\j�m 2 N;
Hi;j ¼ max Hi�1;j�1 þ s ai; bj

� �
;max1� k� i Hi�k;j � wk

� �
;max1� l� j Hi;j�l � wl

� �
; 0

� � ð1Þ

Where s ai; bj
� �

is the similarity score between the two AAs ai 2 A and bj 2 B,
according to SM, and wk is a value assigned to deletions or insertions of length k.
Insertions and deletions refer to cases where an element (or a few) within one sequence
is not aligned with an element (or a sequence of elements) within the paired sequence.
The length of insertions and deletions is the number of consecutive insertions and/or
deletions. w1 2 R is referred to as ‘gap penalty’ and is the value assigned to a gap of
length 1, and wk ¼ f w1; kð Þ 2 R is the penalty for a gap of length k, where f w1; kð Þ can
be affine or linear, for example, in relation to w1.
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Let v denote the maximum value in H, then v : A� B ! R is the local alignment
score between the two sequences A and B, and is used to reveal the best local align-
ment, by way of backtracing on H. Starting at a cell holding v, backtracing is
performed on H until a cell holding 0 is reached according to the following logic:

1. If Hi;j ¼ Hi�1;j�1 þ s ai; bj
� �

, then ai is aligned with bj and the process continues
from Hi�1;j�1.

2. Else if Hi;j ¼ Hi�1;j � w, then ai has no alignment in B, and the process continues
from Hi�1;j.

3. Else if Hi;j ¼ Hi;j�l � w, then bj has no alignment in A, and the process continues
from Hi;j�1.

The solution is not guaranteed to be unique; there could be multiple cells in H
holding v, in which case the backtracing process can be initiated at any of these cells,
resulting in different, yet equally good, local alignments.

3 PATENet

In this paper we focus on aligning a pair of OSNs. To accommodate OSNs resulting
from longitudinal recordings from subjects, we impose the following natural desiderata
on the alignments returned by PATENet:

1. Preservation in the alignment of the relative order of elements within the sequences.
E.g., if element 3 of the first sequence is aligned with element 5 of the second
sequence, element 4 of the first sequence can be aligned only with elements in
positions 6 or greater in the second sequence.

2. Accommodation of unaligned elements in both sequences (i.e. aligning two
sequences of length n and m, respectively, should not force the alignment of
min n;mð Þ elements).

3. Accommodation of longitudinal gaps (e.g. time points existing in one sequence but
missing in the other).

3.1 Alternative Substitution Matrix Construction

The SW algorithm requires a well-defined SM, holding both positive values for pos-
sible matches and negative values for non-matches. Furthermore, unlike in the case of
AA sequences, where the sequence elements are drawn from a fixed alphabet, OSNs
can contain arbitrary networks defined over a given set of vertices and edges. Hence,
we will adapt existing network similarity measures to define pairwise similarity of
elements (networks) in OSNs.

LetG and G0 be twoOSNswith n andm elements, respectively. Let s be a well-defined

UNNSM. Finally, let 0\u\1 2 R be a threshold on s, where match Gi;G0
j

� �
¼

1; if u� s Gi;G0
j

� �
0; if u[ s Gi;G0

j

� �
8<
: 8Gi 2 G; 8G0

j 2 G0, and let ‘ xð Þ; ‘ : 0; 1½ � ! �1; 1½ � be a
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signed normalized monotonically increasing transform, with ‘ uð Þ ¼ 0, ‘ 0ð Þ ¼ �1, and
‘ 1ð Þ ¼ 1. We propose

SMi;j ¼ ‘ s Gi;G
0
j

� �� �
81� i� n 2 N 81� j�m 2 N ð2Þ

to construct an ‘alternative substitution matrix’ SM ¼ SM G;G0ð Þ 2 �1; 1½ �n�m.
For example, for a ¼ u

1�u and 0:5\u\1, ‘ xð Þ ¼ 1� loga a
2 þ 1� a2ð Þ � x½ � is

such a signed normalized monotonically increasing transform (proof omitted), and

along with DeltaCon Gi;G
0
j

� �
[12] as the well-defined UNNSM (by definition), can be

used to construct an alternative SM. Another example includes ~s G;G0ð Þ ¼
1� NSSD G;G0ð Þð Þ as the well-defined UNNSM (proof omitted), where NSSD G;G0ð Þ

is the normalized sum squared difference, and ~‘ ~xð Þ ¼
~x�u
1�u ; if ~x�u
~x�u
u ; if ~x\u

(
as the signed

normalized monotonically increasing transform (proof omitted).

Lemma 1. Let G and G0 be two OSNs with n and m elements, respectively, and let s be
a well-defined UNNSM, and ‘ : 0; 1½ � ! �1; 1½ � be a signed normalized monotonically
increasing transform, as described above. Then ‘ s G;G0ð Þð Þ, mapping two graphs to
�1; 1½ �, satisfies the properties of a well-defined SNNSM.

Proof
Identity: ‘ s G;G0ð Þð Þ� ‘ s G;Gð Þð Þ ¼ ‘ 1ð Þ ¼ ‘ max s G;G0ð Þf gð Þ ¼ max ‘ s G;G'ð Þð Þf g ¼ 1 ∎

Symmetry: ‘ s G;G
0� �� � ¼ ‘ s G

0
;G

� �� �
∎

Minimum: ‘ s G;G
0� �� � !Vj j!1

‘ 0ð Þ ¼ ‘ min s G;G
0� �� �� � ¼ min ‘ s G;G

0� �� �� � ¼ �1 ∎

3.2 From SW to PATENet

The SW algorithm meets the first two desiderata of PATENet (preservation of temporal
order and accommodation of possible unaligned elements in both sequences). To
satisfy the third desideratum (accommodation of longitudinal gaps), we set the gap
penalty to zero. Therefore, for an alternative SM, following the construction described

above, the scoring matrix of PATENet ~H ¼ ~H G;G0� �
2 R

nþ 1ð Þ� mþ 1ð Þ, hereafter

referred to as ‘OSN scoring matrix’, is specified as follows:

80� i� n 2 N 8 0� j�m 2 N; ~Hi;0 ¼ ~H0;j ¼ 0
80\i� n 2 N 8 0\j�m 2 N;
~Hi;j ¼ max ~Hi�1;j�1 þ SMi;j;max1� k� i ~Hi�k;j

� �
;max1� l� j ~Hi;j�l

� �
; 0

� � ð3Þ

Lemma 2. Let G and G0
be two OSNs with n and m elements, respectively. Let

~H 2 R
nþ 1ð Þ� mþ 1ð Þ be their OSN scoring matrix, then:
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(2:1) 81� i� n 2 N and 81� j�m 2 N, ~Hi�1;j � ~Hi;j

(2:2) 81� i� n 2 N and 81� j�m 2 N, ~Hi;j�1 � ~Hi;j

Proof

(2:1) ~Hi;j ¼ max ~Hi�1;j�1 þ SMi;j;max1� k� i ~Hi�k;j
� �

;max1� l� j ~Hi;j�l
� �

; 0
� ��

max1� k� i ~Hi�k;j
� �� ~Hi�1;j ∎

(2:2) ~Hi;j ¼ max ~Hi�1;j�1 þ SMi;j;max1� k� i ~Hi�k;j
� �

;max1� l� j ~Hi;j�l
� �

; 0
� �� max1� l� j

~Hi;j�l
� �� ~Hi;j�1 ∎

Lemma 3. Let G and G0
be two OSNs with n and m elements, respectively. Let

~H 2 R
nþ 1ð Þ� mþ 1ð Þ be their OSN scoring matrix, then:

(3:1) 81� i� n 2 N and 81� j�m 2 N, max
1� k� i

~Hi�k;j
� � ¼ ~Hi�1;j

(3:2) 81� i� n 2 N and 81� j�m 2 N, max
1� l� j

~Hi;j�l
� � ¼ ~Hi;j�1

Proof
Intuitive based on Lemma 2 ∎

Therefore, the OSN scoring matrix ~H of PATENet is equivalent to:

80� i� n 2 N 80� j�m 2 N; ~Hi;0 ¼ ~H0;j ¼ 0
80\i� n 2 N 80\j�m 2 N;
~Hi;j ¼ max ~Hi�1;j�1 þ SMi;j; ~Hi�1;j; ~Hi;j�1; 0

� � ð4Þ

Lemma 4. Let G and G0 be two OSNs with n and m elements, respectively. Let
~H ¼ ~H G;G0� �

2 R
nþ 1ð Þ� mþ 1ð Þ and ~H

0 ¼ ~H G0
;G

� �
2 R

mþ 1ð Þ� nþ 1ð Þ be their OSN

scoring matrices, and let SM and SM0 be the alternative substitution matrices of ~H and
~H

0
, repectively. Then 81� i� n 2 N and 81� j�m 2 N: (4.1) SMi;j ¼ SM0

j;i and (4.2)
~Hi;j ¼ ~H

0
j;i.

Proof

(4:1) 81� i� n 2 N; 81� j�m 2 N : SMi;j ¼ ‘ s Gi;G0
j

� �� �
¼ ‘ s G0

j;Gi

� �� �
¼

SM0
j;i ∎

(4:2) For j ¼ i ¼ 1: ~H1;1 ¼ max ~H0;0 þ SM1;1; ~H0;1; ~H1;0; 0
� � ¼ max SM1;1; 0

� �
¼ max SM0

1;1; 0
n o

¼ ~H
0
1;1.

For j ¼ 1, 82� i� n 2 N, we can safely assume ~Hi�1;1 ¼ ~H
0
1;i�1 for induc

tion: ~Hi;1 ¼ max ~Hi�1;0 þ SMi;1; ~Hi�1;1; ~Hi;0; 0
� � ¼ max SMi;1; ~Hi�1;1; 0

� � ¼ max SM0
1;i;

n
~H

0
1;i�1; 0g ¼ ~H

0
1;i.
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For 2� j ¼ k 2 N and i ¼ 1: ~H1;k ¼ max ~H0;k�1 þ SM1;k; ~H0;k; ~H1;k�1; 0
� � ¼

max SM1;k; ~H1;k�1; 0
� � ¼ max SM1; k; max SM1; k�1; ~H1;k�2; 0

� �
; 0

� � ¼ max SM1;k;
�

SM1; k�1; ~H1; k�2; 0g ¼ � � � ¼ max SM1; k; SM1; k�1 ; . . .; SM1; 2; SM1; 1; 0
� �

. . . ¼
max SM0

k;1; SM
0
k�1;1; . . .; SM

0
2;1; SM

0
1;1; 0

n o
¼ ~H0

k;1.

For 2� j ¼ k 2 N, 81� i� n 2 N, we can safely assume ~Hi;k�1 ¼ ~H0
k�1;i as well as

~Hi�1;k ¼ ~H0
k;i�1 and therefore also ~Hi�1;k�1 ¼ ~H0

k�1;i�1 for induction:

~Hi;k ¼ max ~Hi�1;k�1 þ SMi;k; ~Hi�1;k; ~Hi;k�1; 0
� � ¼ max ~H0

k�1;i�1 þ SM0
k;i; ~H

0
k;i�1; ~H

0
k�1;i; 0

n o
¼ ~H0

k;i ∎

Lemma 5. Let G and G0
be two OSNs with n and m elements, respectively. Let ~H ¼

~H G;G0� �
2 R

nþ 1ð Þ� mþ 1ð Þ be their OSN scoring matrix, and let SM be its alternative

substitution matrix. Then the alignment score ~v ¼ max ~H
� �1 is equivalent toPn

i¼1

Pm
j¼1

q Gi;G0
j

� �
� SMi;j

h i
, where q Gi;G0

j

� �
¼ 1; if Gi;G0

j

� �
are aligned with each other

0; otherwise

(
.

Proof
By definition of the SW algorithm, 81� i� n 2 N; 81� j�m 2 N, ~Hi;j ¼ the maximum
similarity of two segments ending in Gi and G0

j. The similarity score of the alignment is
the sum of similarity scores between every pair of aligned elements and weights of all
insertions and deletions in the alignment. Since w1 ¼ 0 in PATENet, the weights of all
insertions and deletions is always 0, leaving only the sum of similarity scores between
every pair of aligned elements, which can be written as: ~v ¼ Pn

i¼1

Pm
j¼1

q Gi;G0
j

� �
� SMi;j

h i
, where q Gi;G0

j

� �
¼ 1; if Gi;G0

j

� �
are aligned with each other

0; otherwise

(
∎

3.3 OSN Alignment Score

Alignment of elements across a pair of OSNs may be informative by itself and reveal
temporally-preserved similarities between the two OSNs. However, another concept
worth borrowing from sequence alignment is that of the alignment score ~v ¼ max ~H

� �
.

Lemma 6. An OSN alignment score ~v ¼ max ~H
� �

satisfies properties that are similar
to those of a well-defined UNNSM, except for the normalization-related upper bound.

Identity property2: ~v G;G0� �
� ~v G;Gð Þ 8G;G0

; Symmetry property: ~v G;G0� �
¼

~v G0
;G

� �
8G;G0

; Minimum property: ~v G;G0
� �

!Vj j!1
0 where WLOG G is the complete

OSN, and G0
is the empty OSN (i.e. 81� i� n 2 N; 81� j�m 2 N; EC

Gi
¼ EG0

j
).

1 Notice that ~v : G � G0 ! R.
2 Notice that ~v G;Gð Þ ¼ 1 is not required, as the alignment score has no upper bound.
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Proof

Based on Lemma 5, ~v G;G0ð Þ ¼ max ~H
� � ¼ Pn

i¼1

Pm
j¼1 q Gi;G0

j

� �
� SMi;j

h i
, where

q Gi;G0
j

� �
¼ 1; if Gi;G0

j

� �
are aligned with each other

0; otherwise

(
. Identity: ~v G;Gð Þ ¼ Pn

i¼1

Pn
j¼1 q Gi;Gj

� � � SMi;j
� 	 ¼ Pn

i¼1 1 � 1½ � ¼ n and ~v G;G0� �
¼ Pn

i¼1

Pm
j¼1 q Gi;G0

j

� �
�

h
SMi;j� �

Pn
i¼1 1 � 1½ � ¼ n ¼ ~v G;Gð Þ ∎

Based on Lemma 4, if ~H ¼ ~H G;G0� �
2 R

nþ 1ð Þ� mþ 1ð Þ and ~H
0 ¼ ~H G0

;G
� �

2
R

mþ 1ð Þ� nþ 1ð Þ, then 81� i� n 2 N; 81� j�m 2 N; ~Hi;j ¼ ~H0
j;i. Symmetry:

~v G;G0� �
¼ max ~H

� � ¼ max1� i� n;1� j�m ~Hi;j
� � ¼ max1� j�m;1� i� n ~H0

j;i

n o
¼

max ~H0� � ¼ ~v G0
;G

� �
∎

Minimum: 81� i� n 2 N; 81� j�m 2 N, s Gi;G0
j

� �
!Vj j!1

0 ) q Gi;G0
j

� �
!Vj j!1

0 ) ~v G;G0ð Þ ¼ Pn
i¼1

Pm
j¼1 q Gi;G0

j

� �
� SMi;j

h i
!Vj j!1Pn

i¼1

Pm
j¼1 0½ � ¼ 0 ∎

We observe that PATENet can be used to extend the UNNSM used for constructing
SM, into an unsigned normalized order-aware OSN similarity measure. Let G and G0

be

two OSNs with n and m elements, respectively. Let ~H ¼ ~H G;G0� �
2 R

nþ 1ð Þ� mþ 1ð Þ be

the corresponding OSN scoring matrix, and let SM be its alternative substitution
matrix. Let s be the well-defined UNNSM used for constructing SM, and

q Gi;G0
j

� �
¼ 1; if Gi;G0

j

� �
are aligned with each other

0; otherwise

(
.

Then can be defined as

ð5Þ

which is hereafter referred to as an ‘OSN similarity score’.3

Lemma 7. An OSN similarity score satisfies identity, symmetry and minimum
properties, similar to those that hold for UNNSM. Identity property:

; Symmetry property: ;

Minimum property: where WLOG G is the complete OSN, and G0 is

the empty OSN (i.e. 81� i� n 2 N; 81� j�m 2 N; EC
Gi

¼ EG0
j
).

3 Notice that the OSN similarity score measures similarity in the context of the locally aligned
segments of the sequences. That is, if OSNs G and G0

have k elements aligned with average
element-wise similarity of h, whether k ¼ min n;mð Þ or k\min n;mð Þ, . Addition-
ally, if OSNs G and G0

have one element aligned with element-wise similarity of 1.0, while OSNs
G and G00

have four elements aligned with each element-wise similarity being 0.9,
(but ~v G;G0ð Þ\~v G;G00ð Þ).
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Proof
WLOG, we assume n�m. Identity:

and

∎
Symmetry:

∎
Minimum: 81� i� n 2 N; 81� j�m 2 N,

∎

4 Experiments

We now proceed to describe a set of experiments that explore the behavior of PATENet
under a variety of conditions. Because “ground truth” alignments for real-world OSNs
are unavailable, we generated synthetic OSNs for this purpose. Although PATENet has
three user-defined parameters, we experimented with different match thresholds, while
keeping the other two parameters (a well-defined UNNSM and a signed normalized
monotonically increasing transform) constant, as they are more application- and
domain-specific.

4.1 Empirical Design

We experimented with PATENet with a substitution matrix based on DeltaCon [12]
and a logarithmic signed normalized monotonically increasing transform function
(‘ xð Þ ¼ 1� loga a

2 þ 1� a2ð Þ � x½ � where a ¼ u
1�u for 0:5\u\1). DeltaCon assesses

node affinities similarity between two undirected networks with known node corre-
spondence. It is a well-defined UNNSM (by definition).

To examine the robustness of PATENet to noise in the data, we corrupted one of
the OSNs - containing otherwise identical subset of (in our experiments with synthetic
data, six) elements in the OSNs to be aligned - with different levels of Gaussian noise
added to the edge weights. Since PATENet uses a static match threshold, we also
examined the interaction between the effect of noise on PATENet’s performance and
the choice of match threshold u. We experimented with u ¼ 0:51; 0:55; 0:60;f
0:65; 0:70; 0:75; 0:80; 0:85; 0:90g and Gaussian noise with l ¼ 0 and r ¼ 0:1; 0:3;f
0:5; � � � ; 3:9g.
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Performance of alignment was evaluated using ‘goodness of alignment’, defined as
the percentage of elements with known ground-truth match (based on the construction
of the OSNs) that were aligned with their ground-truth matches.

4.2 Synthetic Data Generation

We constructed three sets of synthetic data: (1) random dynamic OSNs,
(2) Barabasi-Albert (BA) [1] dynamic OSNs, and (3) Dorogovtsev-Mendes (DM) [5]
dynamic OSNs. The BA and DM models describe evolving, rather than dynamic,
networks, hence we adapted only the edge addition/removal portions of these models.
For each dataset we examined three temporal conditions: linear, a single change in
trend, and two changes in trend. The resulting OSNs consisted of 25 elements each,
starting from an undirected random network with 50 nodes and a connectivity rate of
*0.12 (141 edges out of possible 1225). We use O to denote such a 25-element OSN.
We further experimented with the percent of edges added/removed from one element to
the next in O, using one of four percentages: 1%, 2%, 4% or 8%.

Random dynamic OSNs were generated as follows: element 1 was generated using
the Erdos-Renyi (ER) model [8]. In case of linear Os, edges were added at random to
generate elements 2–25 (see Fig. 1A). Single trend change Os were generated by
adding edges at random to generate elements 2–13, and then removing edges at random
to generate elements 14–25 (see Fig. 1B). For Os with two trend changes, elements 2–9
were generated by adding edges at random, elements 10–17 were generated by
removing edges at random, and elements 18–25 were generated by adding edges at
random (see Fig. 1C).

BA and DM dynamic OSNs were generated in a manner similar to random dynamic
OSNs, with the following changes: the BA model [2] with 50 nodes and n ¼ 3 (re-
sulting in 141 edges out of a possible 1225, similarly to the ER-based element 1) was
used to generate element 1, and edges to be added were selected based on the corre-
sponding model. Edge removal is done at random according to both models.

In any OSN O, 12 (roughly half) of the elements were selected at random and kept
in order to make up a new OSN, denoted by M. Half (six) of the elements selected for
M were then removed from O to generate a new OSN with 19 elements, denoted by O0.
Consequently, any pair of OSNs O0;Mð Þ constructed according to the preceding pro-
cedure, shares six random elements, and and (see Fig. 1D). Gaussian
noise (see Sect. 4.1) was added only to M prior to alignment.

4.3 Results

In all three synthetic datasets experiments revealed a similar relationship between the
performance of PATENet, user-specified threshold u and the added Gaussian noise
(see Fig. 2). For lower values of u, PATENet showed a high degree of noise tolerance,
significantly outperforming random alignment over a broad range of Gaussian noise
levels. As u increased, so did PATENet’s susceptibility to noise, but for tolerable
levels of noise, its performance was similar or better, as compared to PATENet with
lower u for the same noise level. We conclude that the choice of u affects multiple
aspects of the performance of PATENet in the presence of noise.
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5 Discussion

5.1 Additional Considerations and Future Directions

In real world OSN data, e.g. those derived from longitudinal studies of functional brain
connectivity networks, at present, there are no effective approaches to estimating the
noise level in the data. Our results demonstrate a tradeoff between PATENet’s resis-
tance to noise and performance with low levels of noise as a function of the choice of
match threshold. Hence, in practical settings, it might be worth exploring a probabilistic
combination of different match thresholds.

Fig. 1. Synthetic data generation. (A–C) Generation of a linear OSN (A), a single trend change
OSN (B) and an OSN with 2 trend changes (C). All OSNs Os (A–C) consist of 25 elements, the
first element (white) being a random graph (ER for random dynamics OSNs and BA for BA and
DM OSNs). Rectangles represent elements, with light gray indicating increase trend (edges
added between elements) and dark gray indicating decrease trend (edges removed between
elements); + edges are added between elements; - edges are removed between elements.
(D) Generation of OSNsM and O0 from OSN O. In dark gray are the elements selected according
to the corresponding description in the text. Starting from 25 elements in O, 12 elements are
selected at random to create M, six of which are removed from the copy of O to O0 (resulting in
19 elements in O0).
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Some natural directions include PATENet as an OSN kernel, to use in classification
and regression problems where the input to the classifier is an OSN. Possible appli-
cations include assigning subjects to different categories (e.g. normal development,
accelerated development, retarded development) based on the observed development
from longitudinal studies. Another natural direction for future work is to extend
PATENet to align multiple OSNs (as opposed to a pair of OSNs). The resulting
multi-sequence variant of PATENet can also be used to cluster OSNs.

5.2 Generalizations

The empirically-demonstrated version of PATENet is limited to the case where the
elements of the OSNs are undirected networks with pre-specified correspondence
between nodes in each element of one OSN and nodes in each element of any other
OSN to be aligned with it. It would be interesting to explore variants of PATENet that
can work with OSNs consisting of directed graphs, graphs with both directed and
undirected edges, or colored graphs (with multiple types of nodes and/or edges), etc. It

Fig. 2. Effect of noise and match threshold on PATENet’s performance. Goodness of alignment
of PATENet with the synthetic data as a function of added Gaussian noise (vertical axis) and
match threshold u (horizontal axis). Goodness of alignment was normalized and averaged across
all four percentages and three temporal conditions (12 conditions overall), as their patterns were
comparable. Top: random dynamic OSNs, starting from RE network. Bottom left: BA dynamic
OSNs. Bottom right: DM dynamic OSNs. The same color bar is used in all three plots, ranging
from the average performance of random alignment (comparable in all three datasets) to perfect
alignment (1.0).
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would also be interesting to consider variants of PATENet that can work in settings
where the correspondence between nodes in each element of one OSN and nodes in
each element of any other OSN to be aligned with it is not specified, but instead needs
to be established based on some node similarity criteria [18].

Furthermore, while in this paper we have focused on the pairwise alignment of
OSNs, the PATENet algorithm can be further generalized to work with ordered
sequences of arbitrary elements (instead of networks) so long as we can specify a
well-behaved unsigned normalized similarity measure between such elements.

6 Conclusion

Networks that change over time, e.g. functional brain networks that change their
structure due to processes such as development or aging, are naturally modeled by
TENs. Longitudinal measurements of such TENs are naturally represented as OSNs,
where each network in the sequence represents a static snapshot of the TEN at a
specific time of observation. In this paper we proposed PATENet, a novel algorithm for
optimal local alignment of a pair of OSNs. The algorithm requires three user-defined
inputs in addition to a pair of OSNs to be aligned: a well-defined UNSSM, a signed
normalized monotonically increasing transform, and a match threshold. We showed
how PATENet can be used to compute an alignment score, as well as a similarity score,
for a pair of aligned OSNs.

Our experiments using PATENet to align synthetic OSNs produced using different
generative models of OSNs with their noise corrupted counterparts show that: at lower
match thresholds, PATENet displays a high degree of noise tolerance, significantly
outperforming random alignment over a broad range of noise levels; at higher match
thresholds (more stringent match criteria), PATENet shows increased susceptibility to
noise.

PATENet offers a mathematically sound approach to aligning OSNs, which is
amenable to being generalized along a number of dimensions, e.g. OSNs consisting of
directed networks, labeled networks, or even ordered sequences of other types of
elements.
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