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Abstract

The initiation of B-cell ligand recognition is a critical step for the generation of an immune response against foreign bodies. We sought to
identify the biochemical pathways involved in the B-cell ligand recognition cascade and sets of ligands that trigger similar immunological
responses. We utilized several comparative approaches to analyze the gene coexpression networks generated from a set of microarray
experiments spanning 33 different ligands. First, we compared the degree distributions of the generated networks. Second, we utilized
a pairwise network alignment algorithm, BiNA, to align the networks based on the hubs in the networks. Third, we aligned the networks
based on a set of KEGG pathways. We summarized our results by constructing a consensus hierarchy of pathways that are involved in B
cell ligand recognition. The resulting pathways were further validated through literature for their common physiological responses. Col-
lectively, the results based on our comparative analyses of degree distributions, alignment of hubs, and alignment based on KEGG path-
ways provide a basis for molecular characterization of the immune response states of B-cells and demonstrate the power of comparative
approaches (e.g., gene coexpression network alignment algorithms) in elucidating biochemical pathways involved in complex signaling
events in cells.
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Introduction

B-cell ligand recognition plays a large role in various
immune responses ranging from the recognition of foreign
invaders such as viruses and bacteria to the recognition of
cancerous cells. B-cells act as the body’s most effective line
of defense to invaders [1]. Several types of responses may
be induced in naı̈ve mature B-cells through the activation
of different receptors (e.g., cytokine and chemokine recep-
tors) [2,3]. Recognition of ligands by the B-cell Ag receptor
(BCR) begins with the activation of an array of intracellu-
lar effector molecules and ends with phenotypic modifica-
tions that define the cell’s response to the stimulus [3]. As
more and more players in this process are uncovered, the
current schematic of BCR signal transduction has become
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a “labyrinth” of interconnecting pathways [4]. Despite the
complicated events that occur during this process, the
resultant reaction is very ordered and precise. The activa-
tion of various signal transduction pathways in mature B
cells is influenced by the combination of ligands presented
to the B-cells. The presence of different ligands may trigger
cell-proliferation, activation, differentiation, migration, iso-
type switching and apoptosis [1,5,6]. Of particular interest
in this area is the elucidation of the regulatory mechanisms
that are involved in B-cell recognition of various ligands.
These data provide a detailed look at the finite states that
B-cells can enter upon exposure to ligands. Understanding
the genetic interactions that are required for this process
allows the design of drugs that are capable of triggering a
specific immune response at a given time point, identifying
the mechanisms that underly different auto-immune dis-
eases, and allowing for the detection of key molecules
involved in the regulation of B-cell function.
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Several studies [7–9] have examined the changes in
expression patterns of B-cells in response to exposure to
different ligands. These studies used differential gene
expression analysis of microarray data, such as Significance
Analysis of Microarrays (SAM) [10] and Gene Ontology
(GO) [11] terms, to detect genes that were significantly dif-
ferentially expressed and whose pathway annotations
shared significant GO terms. This approach, although well
developed and widely used, suffers from an important lim-
itation: it focuses on differences in expression patterns of
individual genes across the different treatments or time
points rather than differences between specific pathways/
modules based on prior information of pathway relation-
ships. It is of note that although software such as Gene
Set Enrichment Analysis (GSEA) [12] conducts analysis
based on pathways or selected groups of genes of interest,
such methods do not account for the topology of networks
or connectivity/relationships within the genes of interest.

Gene coexpression networks in which the nodes repre-
sent genes and the weighted links between pairs of nodes
encode the correlations in expression patterns of the corre-
sponding genes offer a useful way to represent cellular
responses to each of the different treatments (e.g., exposure
to different ligands). Network alignment methods are avail-
able to overcome the limitation of differentially expressed
gene analysis and GO enrichment analysis [13–20]. The
advantage of using these methods is that they account for
the connectivity of genes rather than focusing on single
gene regulation. Hence, we utilized a pairwise network
alignment algorithm, BiNA [21], to align 33 gene coexpres-
sion networks generated from a set of microarray experi-
ments spanning 33 different ligands (see Table 1 for a
complete list of the ligands) [8]. A network alignment (anal-
ogous to a sequence alignment) compares two input net-
works and returns a set of common pathways across the
networks with a score denoting the similarity between the
networks being compared. By constructing a symmetric
33 � 33 distance matrix using the alignment scores across
the 33 networks, a hierarchical cluster was constructed
based on the distance matrix to visualize relationships
across the networks representing the gene expression
changes due to exposure to different ligands. The common
pathways detected across the most similar networks were
examined and the pathways were annotated according to
KEGG [22]. Using this approach, we examined the regula-
tion mechanisms specific to certain groups of ligands.
Based on this method, we identified a set of specific genes
and pathways that appear to be involved in BCR-mediated
ligand capture, vesicle function and vesicle trafficking dur-
ing B-cell antigen processing and presentation for the set of
33 ligands we examined.

Results and discussion

Cells respond to stimuli through a myriad of pathways.
However, they deploy similar modules in their response
to distinct ligands. The major objective of this study was
to explore the space of signaling responses of B-cells to
naturally occurring stimuli and identify the commonality
and differences in the ligand response. Such analysis will
provide an insight into the space of responses of B-cells
in native physiology and provide pathway motifs that can
be explored through further experimentation.

We utilized several different approaches for comparing
and aligning gene coexpression networks constructed from
microarray data obtained from B-cells treated with differ-
ent ligands. These include comparison of degree distribu-
tions of networks using Kolmogorov-Smirnoff statistic,
and alignment of the networks based on the top 2000
highly connected nodes and based on KEGG pathways
that were enriched with high intensity probes.

Clustering based on degree distribution

In order to determine the relationships of the ligand net-
works based on the network topology, we computed the
degree distribution (Figure S1) for each of the 33 ligand
networks. The degree distribution plots show the relation-
ship between the degree of a node and the frequency of
nodes with that degree (P(Degree)). We show that it is
possible to get a reasonable estimate of the relationships
between networks by utilizing only the degree distributions
of the networks.

We compared the resulting 33 distributions using the
two-sample Kolmogorov–Smirnov statistic [23]. Specifi-
cally, we used the Kolmogorov–Smirnov statistic to com-
pute the 33 � 33 pairwise distances from the 33 degree
distributions. Thus, we constructed a 33 � 33 matrix
Dtoplogical where the entry in the i-th row and j-th column
in the matrix corresponds to the distance between the
degree distributions of the i-th and j-th networks as deter-
mined by the Kolmogorov–Smirnov statistic. The Dtoplogical

matrix was then fed into a hierarchical neighbor-joining
algorithm to construct the hierarchical cluster. Figure 1

shows the relationships between the ligand networks
obtained by the topological comparison of the networks
based on their degree distributions. Ligand networks with
high number of (at least 100) differentially expressed genes
at the 4 h time point relative to untreated samples, based
on the classification of Lee et al. [7] using the SAM [10] tool,
have been highlighted in the figure. As shown in Figure 1,
ligand networks with a high number of differentially
expressed genes relative to untreated samples share the
same subtree/clade in the hierarchical network (P = 0.032,
see “Hierarchical clustering” section in Methods). This
result indicates that the network structure that was
measured by the degree distribution and compared by
the Kolmogorov–Smirnov statistic (similarly utilized in
[24–26]) can be used to detect ligands that elicit similar
responses upon exposure to B-cells.

Although topological comparison of gene coexpression
networks based on their degree distributions is simple, intu-
itive, and computationally inexpensive, it fails to take into
account the node labels or the biological annotation for the



Table 1 Full list of the ligands and their abbreviations examined in the

current study

Ligand
abbreviation

Ligand name

2MA 2-Methyl-thio-ATP
AIG Antigen (Anti-Ig)
BAF BAFF (B-cell activating factor)
BLC BLC (B-lymphocyte chemoattractant)
BOM Bombesin
40L CD40 ligand
70L CD70/CD27 ligand
CGS CGS-21680 hydrochloride (2-p-[2-

Carboxyethyl]phenethylamino-50-N-
ethylcarboxamidoadenosine)

CPG CpG-containing oligonucleotide
DIM Dimaprit
ELC ELC (Epstein Barr Virus-induced molecule-1 ligand

chemokine)
FML fMLP (formyl-Met-Leu-Phe)
GRH Growth hormone-releasing hormone
IGF Insulin-like growth factor 1
IFB Interferon-beta
IFG Interferon-gamma
I10 Interleukin 10
IL4 Interleukin 4
LPS Lipopolysaccharide
LB4 Leukotriene B4 (LTB4)
LPA Lysophosphatidic acid
M3A MIP3-alpha (Macrophage inflammatory protein-3)
NEB Neurokinin B
NPY Neuropeptide Y
NGF Nerve growth factor
PAF Platelet activating factor
PGE Prostaglandin E2
SDF SDF1 alpha (Stromal cell derived factor-1)
SLC Secondary lymphoid-organ chemokine
S1P Sphingosine-1-phosphate
TER Terbutaline
TNF Tumor necrosis factor-alpha
TGF Transforming growth factor-beta 1

Note: This list was adapted from Lee et al. [7].
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nodes in the networks. In order to compare the networks
based on both the network topology and the node labels/
biological annotation (e.g., signaling pathways, metabolic
pathways. . .etc.) for the nodes, we utilized a network align-
ment algorithm implemented in the Biomolecular Network
Alignment (BiNA) toolkit [21,27].
Clustering based on alignment of high degree nodes in ligand

networks

The network alignment algorithm implemented in BiNA
allows the comparison of gene coexpression networks
based on not only the extent to which they share similar
topologies, but also the weights on the links (e.g., similari-
ties in gene coexpression patterns) and the similarities of
node and/or edge labels (biological annotations). We used
the BiNA toolkit to run all-vs-all comparisons between all
33 ligand networks and construct a 33 � 33 distance matrix
Dhubs whose entries signify the similarity score between
ligands. Initially, we reduced the comparison to an
alignment of the neighborhood around the top 2000 highly
connected nodes (hubs) between all 33 ligand networks.
Although we started aligning all nodes in the network,
we quickly noticed that the total alignment score between
two networks saturated after 2000 hubs (Figure S4).
Specifically, to construct Dhubs, the output of a pairwise
alignment between two networks (e.g., between ligand
network 1, L1(V1, E1) and ligand network 2, L2(V2, E2))
is considered as a set of matched nodes S1 (for ligand
network 1, where S1 � V 1) and S2 (for ligand network 2,
where S2 � V 2) with a corresponding score set M. The
corresponding entries S1

i , S2
i and Mi signify matching

k-hop neighborhoods around the nodes S1
i and S2

i with a
similarity score Mi (where 1 6 i 6 2000 since we are consid-
ering 2000 hubs). The overall pairwise similarity score
between the two ligand networks is calculated by summing
the scores across all matched neighborhoods

P
m2M m (see

Alignment subsection in Methods for more information
on how neighborhood scores are calculated). The overall
similarity scores between all 33 ligand networks were
assembled into a similarity matrix Dhubs with each entry
in the matrix signifying the similarity score between the
ligand networks (e.g., entry dhubs

1;2 in Dhubs contains the sim-
ilarity score between ligand network 1 and ligand network
2 as determined by BiNA). The Dhubs matrix was then fed
into a hierarchical neighbor-joining algorithm to construct
the hierarchical cluster representing the similarity between
the ligand networks.

Finally, in order to calculate confidence measures on the
branches of the hierarchical clusters produced by the align-
ment, the tree produced by hierarchical clustering was
bootstrapped [28,29] by sampling randomly (with replace-
ment) from the top 2000 hubs 100 times. This random
resampling on the M set, followed by summing the scores
of the resampled set for each cell in Dhubs results in 100
distance matrices Dbootstrappedhubs

1...100 which are fed into the same
hierarchical neighbor-joining algorithm to construct 100
hierarchical similarity trees. The consensus tree of the
hierarchical clusters based on the bootstrapped trees is
produced using the Phylip [30] “consense” tool. Figure 2

shows the bootstrapped tree resulting from this method.
Figure 2 shows that ligands with a similar induced reac-

tion (e.g., LPS and SDF, both affect pathways involved in
cell migration) are clustered together. It is important to
note that the pathways necessary for migration would still
be activated regardless of whether migration was the end
point phenotypic response of B-cells to migratory ligands
such as LPS and SDF, thus clustered together in our anal-
ysis. Such an analysis yields not only general similarity
relationships between the ligand networks, but also pro-
vides specific gene and pathway information as seen from
clustering based on signaling pathways (see below). The
cluster shown in Figure 2 describes the similarity of expres-
sion based on node labels as well as correlation between the
genes in the ligand networks. However, the hierarchical
cluster from Figure 2 does not provide specific information
as to which sets of pathways are shared/similarly regulated



Figure 1 Network clustering based on degree distribution

The figure shows the result of hierarchically clustering of the networks
based on Kolmogorov–Smirnov test statisitic between degree distributions
of the networks as distance measure of network similarity. Ligand
networks with a high number of differentially expressed genes relative to
untreated samples (as indicated in [7] have been highlighted in the figure
(LPS, I04, BOM, 2MA, AIG, GRH, IFB, CGS, 40L, CPG). The clade
with an asterisk (�) is highly enriched (P = 0.032 in ligand-response
networks that induced a high number of differentially expressed genes).
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across ligand networks that fall under the same clade/sub-
tree in the hierarchical cluster. KEGG [22] annotation of
pathways was used to link the node labels in the networks
to biological pathways (such as metabolism or signal pro-
cessing). The additional pathway annotation can be used
to determine the specific biological pathways that are
involved in B-cell ligand recognition, and how those path-
ways are regulated based on exposure to each ligand. This
procedure is described in detail in the next section.
Clustering based on ligand similarity across signaling

pathways

We wanted to choose pathways based on the highly regu-
lated genes in the microarray dataset rather than relying
on a priori knowledge from the literature. The reasons
for this choice are: (i) a choice of pathways that is unbiased
by what is currently known in the literature can help iden-
tify novel pathways involved in B-cell ligand recognition
(ii) if the list of pathways determined to be highly regulated
based on the microarray data happens to share a high
degree of overlap with the list generated based on literature
surveys, it helps establish the utility of the approach in set-
tings where prior knowledge available in the literature is
quite sparse.

We choose pathways according to the following proce-
dure. Firstly (step 1), in the fully normalized dataset (all
422 microarray samples), we search for genes that meet
the following criteria (referred to as “high intensity” genes
in what follows). Briefly, we wanted to maximize the sensi-
tivity of detection of genes that are differentially regulated
upon exposure of B-cells to ligands compared to untreated
B-cells. This procedure maximizes sensitivity at the cost of
specificity. The list of genes generated by this approach will
be further reduced by comparing the neighborhoods in the
ligand networks using network alignments. To do this, we
(a) calculate the fold difference between the average probe
expression level and the expression level for all probes in
each sample (see Methods section); (b) select probes whose
fold-difference is higher than 1 in at least one of the 422
samples and (c) of the probes selected in step (b), find
probes that are expressed at least 1-fold higher compared
to the same probes from the untreated samples. Secondly
(step 2), once the high intensity probes are selected from
(c), the probe IDs are mapped back to their respective gene
IDs. Lastly (step 3), among all the pathways in KEGG, we
count the number of genes from step 2 that show up in each
KEGG pathway.

The results of the preceding steps are summarized in
Table 2. As shown in Table 2, many of the pathways
enriched in high-intensity genes are known to be implicated
in the development of the immune system and processing
of ligands. It should be noted that although KEGG consid-
ers the immune system pathways (KEGG category 5.1) to
be a part of organismal system (KEGG category 5), we
considered the immune system pathways separately
(Table 2) since we wanted to specifically examine the
immune system pathways.

After considering all pathways of each of the seven gen-
eral KEGG categories summarized in Table 2, we con-
structed a clustering tree for each pathway across each of
the subcategories, a consensus network across each of the
subcategories (Figures 3, 4 and 6 and S3) and a consensus
network based on all the networks in Table 2 (shown in
Figure 5).

Figures 3 and 4 present examples of the alignment based
on the KEGG metabolism and Genetic Information Pro-
cessing pathways. The numbers on the branches signify
the number of similarly regulated subpathways between
any two ligands. It was shown that some ligand networks
(e.g., TER/BAF and FML/GRH) fall under the same
clade/subtree in the two pathways, signifying general simi-
larity in the regulation/signaling of pathways by such
ligands. Differences between the trees show that the ligands



Figure 2 Bootstrapped tree showing the relationship between all 33 ligand

networks

The tree was constructed using the network alignment score to measure
the distance between networks. This tree shows that ligands with similar
induced reaction (e.g., LPS and SDF, both affect pathways involved in cell
migration) are clustered together.
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may have different effects depending on the pathway being
observed.

Figure 5 shows a consensus tree based on all seven gen-
eral pathway categories highlighted in Table 2. GRH and
FML, for example, fall under the same clade/subtree in
the consensus tree in Figure 2 and the consensus tree con-
structed based on differentially expressed pathways
(Table 2) shown in Figure 5. Overall, this shows that the
results of the alignment is consistent across the different
pathways chosen to ascertain the similarity hierarchy
between the overall networks. The numbers on the
branches can also serve as confidence measures for group-
ing certain leaves/networks with each other.

We also utilized specific signaling pathways highlighted
in the literature [7,8] (Table S1) to align the networks
and constructed a cladogram (Figure S2) describing the
relationship between the ligands. The results from the
alignments showed that some ligands tend to have similar
expression patterns based on the KEGG pathways used
to anchor the pairwise all-vs-all alignments for the 33
ligand networks. Table 3 presents a detailed list of ligands
that induce similar expression cascades in the KEGG
pathways highlighted in Table 2. Several of the matched
ligands (Figure 5) are actually known to induce similar
reactions in B-cells based on a literature search we con-
ducted. It is important to point out that the algorithm is
detecting expression patterns that are similar in B-cells
across different ligands, though not all such patterns may
necessarily be important for cell function.

For example, lipopolysaccharide (LPS) and stromal cell
derived factor-1 (SDF) are known to affect cellular migra-
tion, interferon-gamma (IFG) and lysophosphatidic acid
(LPA) are known to trigger changes in isotype switching
[7,8]. Macrophage inflammatory protein-3 (M3A)/dimaprit
(DIM)/transforming growth factor-beta 1 (TGF) have
several effects: M3A is strongly chemotactic for lympho-
cytes, DIM, an analog to histamine, activates immune
response, while TGF provides a chemotactic gradient for
leukocytes and down-regulates the activity of immune cells
[31]. Neurokinin B (NEB) and nerve growth factor (NGF)
have both been shown to be involved in the growth and
development of neurons [32,33]. Furthermore, tumor
necrosis factor-alpha (TNF) has been shown to be highly
involved in mediating inflammatory and immune responses
[34], similar to what has been recently observed using CGS
(CGS-21680 hydrochloride) [35].

In addition, the relationship between each of the above
ligands as to exactly which ligands trigger similar expres-
sion patterns in the selected KEGG subpathways is also
shown (Tables 3 and S3, the expanded version of Table 3).
We can see that several major pathways are regulated in
B-cells in response to the exposure to the 33 ligands shown
in Table 1. First, human disease pathways (e.g., cancer and
asthma) are the most prevalent pathways triggered by over
half the ligands: 70L, AIG, SLC, LPA, IFG, GRH, FML,
IFB, S1P, BOM, LB4, NEB, NGF, TNF, CGS, DIM and
TGF. Those ligands constitute a set of molecules that trig-
ger a wide variety of responses in B-cells and can be used to
further ascertain the conditions under which B-cells acti-
vate under certain situations in human diseases. Second,
cellular process pathways (e.g., endocytosis and apoptosis)
seem to be also over-represented among the pathways that
significantly change in expression across upon exposure to
ligands. Some of the ligands (70L, AIG, SLC, LPA, IFG,
GRH, FML, IFB, S1P, TNF and CGS) seem to trigger
both human disease and cellular process pathways, while
other ligands (PGE, NPY, TER and BAF) only trigger
cellular pathways. Such ligands constitute a set of mole-
cules that trigger changes in B-cells that may affect their
growth and proliferation. The third major pathway com-
monly regulated in B-cells upon ligand exposure is metab-
olism with a sizable number of ligands (GRH, FML, PGE,
NPY, TNF, CGS, PAF, CPG, TER, BAF, DIM and TGF)
triggering pathways in that category. Ligands that only
triggered pathways in B-cells related to metabolism but
not “human diseases” or “cellular processes” are PGE,
NPY, PAF, CPG. Since those ligands are known to affect



Table 2 List of pathways detected based on high-intensity probes from the microarray data

KEGG pathway category No. of
subpathways

KEGG subpathway ID

Cellular processes 10 mmu04142, mmu04144, mmu04145, mmu04520, mmu04540, mmu04810, mmu04110, mmu04114,
mmu04115, mmu04140

Environmental information
processing

2 mmu04150, mmu04310

Organismal system 6 mmu04962, mmu04964, mmu04966, mmu04260, mmu04722, mmu04910
Genetic information

processing
15 mmu03020, mmu03022, mmu03030, mmu03040, mmu03050, mmu03060, mmu03410, mmu03420,

mmu03430, mmu03440, mmu04120, mmu04130, mmu00970, mmu03010, mmu03018
Human diseases 12 mmu05100, mmu05210, mmu05212, mmu05214, mmu05215, mmu05216, mmu05219, mmu05222,

mmu05010, mmu05012, mmu05014, mmu05016
Immune system 4 mmu04623, mmu04662, mmu04666, mmu04622
Metabolism 19 mmu00020, mmu00030, mmu00051, mmu00072, mmu00100, mmu00130, mmu00190, mmu00230,

mmu00240, mmu00260, mmu00290, mmu00460, mmu00510, mmu00511, mmu00563, mmu00630,
mmu00670, mmu00740, mmu00900

Note: This table with pathway names and relative number of genes enriched in the pathway based on the data. Please see Table S1 for more detail.

Figure 3 Consensus tree constructed based on all metabolism pathways in

Table 2

The tree was constructed using the network alignment score to measure
the distance between networks. The values on the branches indicate the
total number of times that the branch appeared across all networks (total
of 19). If no value is indicated, the branch appeared only once.

Figure 4 Consensus tree constructed based on all Genetic Information

Processing Pathways in Table 2

The tree was constructed using the network alignment score to measure
the distance between networks. The values on the branches indicate the
total number of times that the branch appeared across all networks (total
of 15). If no value is indicated, the branch appeared only once.
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inflammation and antibody production, the metabolic
pathways expressed as a result of B-cell exposure to those
ligands may be important indicators of B-cell immune
response.
Conclusion

Identifying sets of ligands that trigger similar B-cell
responses provides a basis for elucidating the specific



Figure 5 Consensus of all pathway categories in Table 2

The values on the branches indicate the total number of times that the
branch appeared across all networks (total of 7). If no value is indicated,
the branch appeared only once.
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genetic interactions that play a role in the recognition of
ligands by B-cells. To achieve this goal, we constructed
33 gene coexpression networks that represented the
genetic interactions in B-cells after exposure to each of
the 33 ligands. Each network represents the response of
normal splenic B-cells to a specific ligand across four dif-
ferent time points with three replicates per time point. We
then utilized several comparative approaches to identify
shared subnetworks/pathways among the 33 networks.
Based on those pathways (Table 2), we were able to iden-
tify ligands that trigger similar expression changes in each
of the pathways (Table 3, Figures 5 and 6, and Supple-
mentary materials).

Aligning the 33 ligand networks allowed the detection of
the specific relationships between the ligands in terms of
the pathways that they regulate in B-cells. Additionally,
the alignment pointed out specific pathways that share
expression patterns across ligands and are involved in
BCR activation. We have been able to validate some of
the relationships we uncovered based on the immune
responses described in the literature in the case of some
of the ligands in our dataset. The computation tools and
methods we utilized for constructing the alignments and
analyzing the results are available online as part of the
BiNA (Biomolecular Network Alignment) toolkit http://
www.cs.iastate.edu/~ftowfic. An analysis pipeline based
on network alignment such as the one used in this study
may also serve as a general template for identifying path-
ways with conserved expression patterns across different
conditions in other types of experiments. Some promising
directions for further work include integrating additional
types of information (e.g., protein–protein interaction
networks) in our analyses and overlaying our pathways
with already known protein–protein interactions to detect
specific proteins that are responsible for triggering the
signaling cascades for each ligand. Such information can
aid in narrowing down the list of pathways to their core
protein interactions.

Materials and methods

Microarray data

The microarray data [7,8] were collected from the Alliance
for Cell Signaling (AfCS) site (http://www.signaling-gate-
way. org/) [36]. Briefly, the experiments were designed to
examine gene expression changes induced by the 33 single
ligands.

Mouse splenic B-cells were cultured with ligands in
serum-free medium for 0.5, 1, 2, and 4 h. cDNA synthe-
sized from the RNA of B-cells was labeled with Cy5 and
hybridized onto custom-made two-color Agilent cDNA
arrays (Containing 16273 probes) with a Cy3-labeled
cDNA prepared from the RNA of total splenocytes. There
were a total of 424 Agilent chips hybridized in this study
[7,8].

The data was processed using MatLab� Bioinformatics
toolbox. The background corrected intensity values were
used for each chip. Some of the background corrected
intensities were negative and made it difficult to take the
logarithm of the data. To circumvent this problem, a very
low positive value (10, a value that was 500 times below the
mean intensity of all chips) was assigned to these probes.
Each chip was also normalized to its mean intensity.
Chip-to-chip normalization was performed via the LOW-
ESS normalization method to allow for adequate analysis
between chips [37]. After the normalization, the replicate
chips were averaged. To remove the outliers each replicated
probe was subjected to an outlier test. The outlier test was
as follows: First, we calculate the mean and standard devi-
ation (SD) for all replicates of each probe. Second, select
the probes in the range of mean ± 1.2 SD for the calcula-
tion of a new mean and SD. Third, we discard the probes
out of the range of the new mean ± 2 new SD. Finally,
we calculate the fold change as ligand treated divided by
control (untreated) samples for each probe on the chip.
The log fold-change was calculated using R’s [38] BioCon-
ductor [39] package.

http://www.cs.iastate.edu/~ftowfic
http://www.cs.iastate.edu/~ftowfic
http://www.signaling-gateway.org/
http://www.signaling-gateway.org/


Table 3 Top matched ligands based on expression patterns in the consensus tree shown in Figure 5

Matched ligands Conserved KEGG pathway categories Conserved KEGG subpathways

70L/AIG/SLC Cellular processes, human diseases, organismal system Cell cycle, p53 signaling pathway, phagosome, Parkinson’s disease,
Huntington’s disease

LPA/IFG Cellular processes, human diseases p53 signaling pathway, bacterial invasion of epithelial cells
GRH/FML Cellular processes, environmental information processing,

genetic information processing, Human diseases, metabolism,
organismal system

Cell cycle, regulation of autophagy, Aminoacyl-tRNA biosynthesis,
ribosome, RNA degradation, RNA polymerase, DNA replication,
ubiquitin mediated proteolysis, Parkinson’s disease, Huntington’s
disease, thyroid cancer, TCA cycle, oxidative phosphorylation,
pyrimidine metabolism, glyoxylate and dicarboxylate metabolism

PGE/NPY Cellular processes, immune system, metabolism, organismal
system

Oocyte meiosis, cytosolic DNA-sensing pathway, Fc gamma R-
mediated phagocytosis, TCA cycle, ubiquinone and other
terpenoid-quinone biosynthesis, oxidative phosphorylation,
pyrimidine metabolism, riboflavin metabolism, terpenoid backbone
biosynthesis

IFB/S1P Cellular processes, human diseases, immune system,
organismal system

Cell cycle, oocyte meiosis, p53 signaling pathway, Parkinson’s
disease, Huntington’s disease, bacterial invasion of epithelial cells,
Fc gamma R-mediated phagocytosis

BOM/LB4 Human diseases, organismal system Colorectal cancer, Glioma, Cardiac muscle contraction
NEB/NGF Environmental information processing, human diseases,

organismal system
mTOR signaling pathway, Parkinson’s disease, Amyotrophic lateral
sclerosis, Colorectal cancer, Glioma, Neurotrophin signaling
pathway

TNF/CGS Cellular processes, genetic information processing, human
diseases, metabolism

Cell cycle, p53 signaling pathway, ribosome, DNA replication,
mismatch repair, SNARE interactions in vesicular transport,
Parkinson’s disease, bacterial invasion of epithelial cells, steroid
biosynthesis, oxidative phosphorylation, glyoxylate and
dicarboxylate metabolism

PAF/CPG Environmental information processing, immune system,
metabolism

RIG-I-like receptor signaling pathway, cytosolic DNA-sensing
pathway, pyrimidine metabolism, cyanoamino acid metabolism,
one carbon pool by folate, riboflavin metabolism

TER/BAF Cellular processes, environmental information processing,
genetic information processing, metabolism

Cell cycle, oocyte meiosis, p53 signaling pathway, endocytosis,
aminoacyl-tRNA biosynthesis, RNA degradation, spliceosome,
ubiquitin mediated proteolysis, TCA cycle, pentose phosphate
pathway, cyanoamino acid metabolism

DIM/TGF Environmental information processing, genetic information
processing, human diseases, immune system, metabolism,
organismal system

Aminoacyl-tRNA biosynthesis, ribosome, RNA polymerase, basal
transcription factors, spliceosome, protein export, mismatch repair,
bacterial invasion of epithelial cells, colorectal cancer, RIG-I-like
receptor signaling pathway, cytosolic DNA-sensing pathway, B-cell
receptor signaling pathway, TCA cycle, pentose phosphate
pathway, steroid biosynthesis, oxidative phosphorylation

Note: The KEGG pathway categories correspond to the pathway categories highlighted in Table 2. Please see Table S3 for an expanded version.
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Construction of gene coexpression networks

After obtaining the expression matrices for each of the 33
ligands (33 expression matrices total), we merged expres-
sion levels from probesets that mapped onto the same gene.
This was done by averaging the log(FC) values across the
probesets that mapped to the same gene as indicated by
the microarray chip annotation information provided by
Agilent. After obtaining a single expression matrix per
ligand (where rows in the matrix are genes and columns
are the replicates/timepoints for that particular ligand),
Pearson correlation was used to obtain the gene coexpres-
sion matrices. We obtained 33 gene coexpression matrices
(E1. . .33), one for each ligand, then applied a correlation
cutoff of P0.8 to sparsify the matrices. Entries ek

i;j in the

matrix Ek were set to 0 whenever jek
i;jj < 0:8 for

1 6 k 6 33 and 1 6 i,j 6 n where n is the number of
genes/rows in the matrix Ek. Remaining entries jek

i;jj > 0

signified edges in the networks that connected genes whose
expression patterns were correlated above our chosen
cutoff. It is important to note that when a gene does not
change in treatment samples (distribution of expression
follows a normal distribution) relative to control (also a
normal distribution due to normalization), the correlation
is 0. As such, the edge does not exist in the graph. Addi-
tionally, we did not disregard any nodes in the networks
explicitly based on a strict cutoff of differential expression
since we did not want to bias the network analysis based
on network size. As a result, all genes were considered in
our analysis. The resulting networks were treated as
undirected, weighted graphs with an average of 10,000

nodes (genes) and 1 million edges (
10; 000

2

� �
� 50 million

possible edges in a fully connected graph). We varied the
threshold cutoff around our chosen value (0.8) from
[0.78, 0.82] in 0.01 increments and the distances between
the degree distributions (see Figure S1 for example) of
the ligand networks did not significantly (P < 0.01) differ



Figure 6 Consensus trees constructed based on other pathways in Table 2

Consensus tree was constructed based on other pathways in Table 2 including all cellular processes pathways (A), all environmental information
processing pathways (B), all human diseases pathways (C) and all immune system pathways (D), respectively. The values on the branches indicate the total
number of times that the branch appeared across all networks (totals of 10, 2, 12, and 4 for A, B, C, and D, respectively). If no value is indicated, the
branch appeared only once.
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as measured by the Friedman test. We also removed edges
whose P value (calculated using Student’s t-distribution for
a transformation of the correlation as implemented in Mat-
lab) did not pass a significance threshold of P < 0.05. The
percentage of edges removed using the correlation signifi-
cance procedure is indicated in Table S4. Removing such
edges did not influence the results as measured by compar-
ing the degree distributions of the networks with and with-
out such edges using the Friedman test.

Gene coexpression network alignment

Given two gene coexpression networks (graphs 1 and 2),
the graphs are treated as weighted (where the weights on
the edges denote the pairwise correlation in the expression
of the corresponding genes). A k-hop neighborhood-based
approach to alignment is used [21,27]. The k-hop neighbor-
hood of a vertex v1

x 2 V 1 of the graph G1(V1, E1) is simply a
subgraph of G1 that connects v1

x with the vertices in V1 that
are reachable in k-hops from v1

x using the edges in E1.
Given two graphs G1(V1, E1) and G2(V2, E2), a mapping
matrix P that associates each vertex in V1 with zero or more
vertices in V2 (the matrix P can be constructed based on
BLAST matches or gene IDs. In our analysis, using a 1-
to-1 mapping between expression networks based on gene
IDs and a user-specified parameter k, we construct for each
vertex v1

x 2 V 1 its corresponding k-hop neighborhood Cx in
G1. We then use the mapping matrix P to obtain the set of
matches for vertex v1

x among the vertices in V2 and
construct the k-hop neighborhood Zy for each matching
vertex v2
y in G2 and P v1

x v2
y
¼ 1. Let Sðv1

x ;G2Þ be the
resulting collection of k-hop neighborhoods in G2 associ-
ated with the vertex v1

x in G1. We compare each k-hop sub-
graph Cx in G1 with each member of the corresponding
collection Sðv1

x ;G2Þ to identify the k-hop subgraph of G2

that is the best match for Cx (based on a chosen similarity
measure). We utilized a k-hop value of 1 for the analysis we
discussed in this paper. The analysis was conducted on
eight nodes from the San Diego Supercomputer Center’s
Triton cluster with eight cores and 24 GB of memory per
node.
Shortest path graph kernel score

The shortest path graph kernel was first described by
Borgwardt and Kriegel [40]. The kernel acts as a scoring
function that compares the length of the shortest paths
between any two nodes in a graph based on a pre-com-
puted shortest-path distance. The shortest path distances
for each graph may be computed using the Floyd–Warshall
algorithm. We modified the Shortest-Path Graph Kernel to
take into account the labels of the nodes being compared as
computed by BLAST [41] or as a mapping in the mapping
matrix P. The shortest path graph kernel for subgraphs ZG1

and ZG2
(e.g., k-hop subgraphs) is given by:

S ¼
X

v1
i ;v

1
j2ZG1

X
v2

k ;v
2
p2ZG2

P v1
i v2

k
� P v1

j v2
p
� dðv1

i ; v
1
j Þ � dðv2

k ; v
2
pÞ



Towfic F et al / Network Comparison Reveals B-cell Pathways 151
KðZG1
; ZG2
Þ ¼

0 S ¼ 0

Log½S� otherwise

�

where dðv1
i ; v

1
j Þ and dðv2

k ; v
2
pÞ are the lengths of the shortest

paths between v1
i ; v

1
j and v2

k ; v
2
p computed by the Floyd–

Warshall algorithm. For gene coexpression networks, the
Floyd–Warshall algorithm takes into account the weight
of the edges (correlations) in the graphs. The runtime of
the Floyd–Warshall Algorithm is O(n3). The shortest path
graph kernel has a runtime of O(n4) (where n is the maxi-
mum number of nodes in the larger of the two graphs being
compared).
Hierarchical clustering

A set of symmetric 33 � 33 distance matrices using the
alignment scores across the 33 networks was constructed.
Each matrix was constructed based on a specific subset
of genes on the microarray chip (e.g., all genes involved
in Calcium Signaling Pathway, all genes involved in Notch
Signaling Pathway. . .etc. Please see Table 2, S1 and S2 for
a full list of pathways utilized for comparing the networks).
For each matrix, the diagonals contained the sum of the
rows in the matrix and the off diagonals contained the
alignment score comparing the network from row i with
the network in column j where 1 6 i,j 6 33. The hierarchi-
cal cluster was constructed using a neighbor-joining
method based on the distance matrix in Matlab. The hier-
archical cluster can be used to visualize the relationship
across the networks representing the gene expression
changes due to exposure to different ligands. TreeView
[42] was used to visualize the hierarchical clusters and the
“consense” program of Phylip [30] was used to merge hier-
archical clusters and to compute majority-rule consensus
trees. The majority rule consensus approach has been
shown to minimize the number of false groupings and pro-
vides a good summary of the posterior distribution over the
trees that were used to construct the consensus tree [43].
Significance of clusters was computed using a hypergeo-
metric distribution using the simple scheme:

P ðX ¼ rÞ ¼

d

r

� �
l� d

c� r

� �

l

c

� �

where d is the number of ligands that had a high number of
differentially expressed genes (10, as highlighted in Fig-
ure 1). c is the number of ligands in the cluster (17, which
includes TFR, SLC, IGF, TGF, IFG, CPG, M3A, S1P,
40L, CGS, IFB, 70L, GRH, AIG, 2MA, ELC, BOM). l

is the number of ligands in the experiment (namely 33),
and r is the number of ligands that had a high number of
differentially expressed genes in the cluster (eight from Fig-
ure 1, namely: CPG, 40L, CGS, IFB, GRH, AIG, 2MA,
and BOM).
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