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Abstract—The ability to identify protein binding sites and
to detect specific amino acid residues that contribute to the
specificity and affinity of protein interactions has important
implications for problems ranging from rational drug design
to analysis of metabolic and signal transduction networks.
Support vector machines (SVM) and related kernel methods
offer an attractive approach to predicting protein binding sites.
An appropriate choice of the kernel function is critical to
the performance of SVM. Kernel functions offer a way to
incorporate domain-specific knowledge into the classifier.

We compare the performance of3 types of kernels func-
tions: identity kernel, sequence-alignment kernel, and amino
acid substitution matrix kernel for predicting protein-protein,
protein-DNA and protein-RNA binding sites. The results show
that the identity kernel is quite effective in on all three tasks,
with the substitution kernel based on amino acid substitution
matrices that take into account structural or evolutionary
conservation or physicochemical properties of amino acids
yields modest improvement in the performance of the resulting
SVM classifiers for predicting protein-protein, protein-DNA and
protein-RNA binding sites.

I. INTRODUCTION

The SVM [Boser et al., 1992] classifies inputs into two
classes using a hyperplane in a high-dimensional space. If the
patterns are not separable in the originalimensional pat-
tern space, a suitable non-linear kernel function is used to im-
plicitly map the patterns in the-dimensional input space into
a typically higher (finite or even infinite)dimensional feature
space in which the patterns become separable. SVM selects
the hyperplane that maximizes the margin of separation be-
tween the two classes from among all separating hyperplanes.
The kernel function measures the similarity between pairs of
patterns in the feature space. An appropriate choice of the
kernel function is critical to the performance of SVM. An
ideal kernel function assigns a higher similarity score to any
pair of patterns that belong to the same class label than it does
to any pair of patterns that belong to different classes. Kernel
functions provide a means of incorporating domain-specific
knowledge into an SVM. Hence, there is a large body of work
aimed at designing suitable kernels for protein sequence clas-
sification [Leslie et al., 2002], [Leslie et al., 2004]. Against
this background, we investigate the effect of incorporating

Proteins are the principal catalytic agents, structural elerarious types of biological information into SVM kernels

ments, signal transmitters, transporters and molecular mfar protein-protein, protein-DNA, and protein-RNA binding

chines in cells. Hence, assigning them putative functiorste prediction.

from sequences alone remains one of the most challengingThe rest of this paper is organized as follows: Section

problems in functional genomics. Protein-protein, protein2 describes the3 data sets used in the study. Sectidn

DNA, and protein-RNA interactions play a pivotal roleintroduces the kernel methods and elaborates on the design

in protein functions. Experimental detection of residues iof the 3 types of kernel functions. Sectioh presents the

protein-protein interaction surfaces must come from determéxperimental results and discusses the factors influencing

nation of the structure of protein-protein, protein-DNA anctlassification performance. SectiGhsummarizes the find-

protein-RNA complexes. However, experimental determinangs and suggests future work. The final section lists kernel

tion of structures of such complexes is a time-consumingiethod applications in computational biology field.

and expensive enterprise. Hence, there is a need for reli-

able computational methods for identifying protein-protein,

protein-DNA and protein-RNA binding sites from the amino The data sets used in this study are available for download

acid sequence of the protein. Machine learning methoas http://www.cild.iastate.edu/GM06638idmepage.htm.

in general, and support vector machines and related kernel ) ) )

methods in particular, offer an attractive approach to corf- 42 Peptidase Protein-Protein Interface Data Set

struction of sequence-based classifiers for identifying suchA peptidase is an enzyme that digests proteins

binding sites [Schikopf et al., 2003], [Yan et al., 2004a], through the breaking of peptide bonds. The peptidase

[Yan et al., 2004b], [Vert, 2005], [Terribilini et al., 2006]. interface data set consists ofl2 peptidase chains
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on complex formation is> 142[Jones and Thornton, 1996]. The optimization procedure used in training a support
Relative solvent accessibility is defined as the ratio of ASAiector machine coefficients essentially solves a quadratic
to the nominal maximal ASA of the residue by Rost angrogramming problem. This utilizeskernelwhose elements
Sander[Rost and Sander, 1994]. A residue is defined asrepresent the pairwise kernel evaluations between training in-
surface residue when the relative accessibility is greatstances (i.eK;; = K(z;, x;)). A valid kernel function needs
than 25%. This data set consists df94 interface residues to satisfy the Mercer conditions which requires the kernel
out of 5513 total surface residues. matrix to be positive semi-definite [Lanckriet et al., 2002].

B. 56 Protein-DNA Interface Data Set B. Input Representation and Kernel Function Definition

Specific proteins bind DNA to direct DNA replication |n this study, the SVM was trained to predict whether
and transcription. Theb6 protein-DNA binding data set, or not a residue is in the interaction site. The input to
first published by Jones[Jones et al., 2003], includ®s the SVM consists of the identity of amino acids within a
non—homologous protein chains. The definition of interfacwmdow of 11 Contiguous residues, Corresponding to the
residues is the same as in tHe peptidase interface data target residue flanked by five sequence neighbors residues
set. This results in752 interface residues out dR665 total  on each side. The desired output of the classifier is a 1 if
residues. the target residue is an interface residue (clds$ and -1
C. 109 Protein-RNA Interface Data Set (classC_) otherwise. The training set con;ists of 11—residue_

subsequences extracted from the protein sequences, with

The 109 protein-RNA binding data set extracted fromeach window labelled with the corresponding class label.
PDB [Berman et al., 2000] consists 839 non-homologous
protein chains. Interface residues are determined using soft-o kernel function defines similarity between two fixed
ware ENTANGLE [Allers and Shamoo, 2001]. The data S8kngth sequences, = ajas...a, and S, = bibs...b, in
consists of 3518 interface residues out of5,118 total \yhich a;,bi(1 < i < n) are amino acids and is the width
residues. of the window. We define three kernel functions: ttentity

. M ETHOD kernel the alignment kerneland thesubstitution kernel
A. Support Vector Machines and Kernel Functions Definition 1 (identity kernel):The identity kernel counts

The SVM classifies inputs into two classes using &he number of matching residues between the two strings

hyperplane in a high-dimensional space. If the patterns afg, S.

not separable in the origina-dimensional pattern space, a n

suitable non-linear kernel function is used to implicitly map ~ K,(s,,5,) = Z e(ax, by)

the patterns in the-dimensional input space into a typically 1

higher (finite or even infinite)dimensional feature space elap, bp) =1, if ap = by;
in which the patterns become separable. SVM selects the where e(ay,by) =0 otherwise

hyperplane that maximizes the margin of separation betwegnis easy to show that the resulting kernel matkix is a

the two classes’; and C_ from among all separating positive semidefinite matrix.

hyperplanes. The kernel function measures the similarity

between pairs of patterns in the feature space. Given thepefinition 2 (alignment kernel)Let A be a matrix of

training data set wittm labelled examples alignment scores obtained by locally aligning each pair of
strings S,, Sy, in the training set.

(Xla y1)7 (X27 yz), (X3a y3)7 ooy (Xnu ym) A(Sa, Sb) = align(S,, Sp)
ye =1 if xp € Cy; . . .
WW’@’{ g = —1 if xp € C_, where align(S,, Sy) is the alignment score based on local
alignment of S, and S,. The align function, and hence
the SVM produces a decision function: the matrix A is not guaranteed to be positive definite. To

m circumvent this problem, we define the alignment keigl
D(x) = Z%K(Xk,x) +b as follows:

=1 A(S4,Sp) — Ay i Sy = Sp;

such that Ka(Sa, 86) = { A(S,, Sy) otherwise

if D(X) > 0,x€ A
otherwisex € B where ), is the smallest eigenvalue of the matrix of pairwise
alignment score®\. The resulting matrixK, is a positive
where the kernel functioK is a predefined kernel function. semidefinite matrix.

Theweightsay, (1 < k < m) and thebias b are determined  Definition 3 (substitution kernel)Let M, be an amino
by the SVM algorithm. The training samples with non-zeracid substitution matrix [Henikoff and Henikoff, 1992]. Sub-

weights are called the support vectors. stitution matrices are not typically positive definite. We can



create a positive semidefinite matfiA from a substitution was derived using different substitution matrixes and get

matrix M, as follows: 3 substitution kernelsK ,;, with evolution based substitution
1) Find the minimal entrymin of M matrix HENS920102,K,; with structure based matrix
2) Find the maximal entrynaxof M, JOHM930101 andKg,, with chemical similarity based
3) M(i,j) = %‘ matrix MCLA720101. Our SVM classifiers with different
4) Find the least eigenvalue of M kernels were implemented based on WEKA machine
5) M(i,i) = M(i,i) — A learning package[Witten and Frank, 2005].

The substitution kernel is defined as follows: .
When data sets have unbalanced class representation (as

n
in the case with the data sets used in this study), the
Ko(SaSs) = > M(ay, br) reditonal verf . Y)
Pt raditional performance measure of accuracy can present a
o . . _ misleading picture of the effectiveness of the classifier. Hence
Substitution matrixes of amino acid are symmetye report multiple performance measures including accuracy,

ric matrices expressing the rate of substitution of onfecall, precision, and correlation coefficient. The results are
amino acid by another. A variety of substitution ma-symmarized in Table I.
trices that are based on physical, chemical and biolog- TABLE |
ical properties of amino acids as well as evolutionary

. . . . . COMPARISON OF THE AMINO ACID IDENTITY KERNELK ;, THE
and structural considerations are available in the AAm-ALIGNMENT CERNEL K - AND SEVERAL SUBSTITUTION KERNELSK
dex database[Kawashima and Kanehisa, 2000]. For exam; (DERN“E’D croMHENS920102 JOHM930101\N;h
ple, HENS920102, a well known BLOSUM62 matrix, is % o ‘

. . . . _— .MCLA720101SUBSTITUTION MATRICES RESPECTIVELY. ACCURACY
based on evolutionary considerations; The substitution matnxac) RECALL(1€), PRECISION( pr), AND CORRELATION COEFFICIENT
JOHM930101 is based on structural considerations, ano‘ ’ ' pr,

(CC) SHOWN ARE ESTIMATED USING LEAVEONE-OUT

MCLA720101 is based on chemical properties of amino
CROSSVALIDATION .

acids. _
[ data set] kernelfunction] ac [ re [ pr [ cc |
C. Performance Measures K 60.3% | 54.9% | 42.0% | 16.6%
N ) ) Kq 63.7% | 47.6% | 43.9% | 16.6%
Let TP be the number of true positives(residues predicted P Ksn 63.4% | 48.1% | 44.0% | 17.7%
to be interaction sites that are actually interaction sites); IESj gg-ggf g?-zgf 3‘21-32;0 ig-g‘;/;
FP the number of false positives(residues predicted to be sm —2 ] 022 ] PelD ] SR
. . . . . o K, 64.0% | 69.6% | 30.0% | 25.0%
interaction sites that are actually non-interaction sites); K. 63.9% | 66.0% | 29.4% | 2279%
TN the number of true negative=N the number of D Ksh 64.1% | 69.3% | 29.7% | 24.4%
false negatives. the performance measuaefaccuracy), Ksj 64.4% | 68.1% | 29.8% | 24.3%
re(recall), pr(precision) and cdcorrelation coefficient) Kem 05.1% | 69.0% | 30.3% | 25.7%
. » Prip ) K, 71.2% | 60.3% | 34.8% | 25.1%
defined as follows: Ka 69.2% | 53.1% | 31.9% | 18.0%
R Ksn 72.1% | 58.4% | 35.3% | 24.9%
Ksj 72.2% | 58.9% | 35.5% | 25.3%
P TP+ TN K sm 71.6% | 58.6% | 34.8% | 24.3%
TP+ FP+ TN+ FN
P
" = TPIEN The performance of the identity kernel is competitive
TN with that of other kernels on all three prediction tasks.
= =S Ep
TP+ FP o i
TP+« TN— EN % EP The substitution kernel, depending on the data set used,
cc = and the specific substitution kernel chosen, sometimes

\/(TP+ FN)(TN+ FP)(TP+ FP)(TN + FN) outperforms the identity kernel. In the case of the peptidase

protein-protein interface data set, the substitution kernel
yields a 13.9% relative improvement in correlation
We trained SVM classifiers for predicting whether orcoefficient over the identity kernel when the JOHM930101
not a target residue is a (protein-protein, protein-DNA, osubstitution matrix is used; In the case of the other two
protein-RNA) interface residue based on the amino acidata sets, the relative improvement in correlation coefficient
identities of its sequence neighbors using the identity kerneffered by the substitution kernel is quite small: 2.8%
K;, alignment kernelK, and substitution kerneK,. The (using MCLA720101 substitution matrix on the protein-
classifiers were trained and evaluated (using leave-one-ddNA interface data set) and 0.8% (using JOHM930101
cross-validation) on the 3 data sets: P(42 peptidase proteBubstitution matrix on the protein-RNA interface data set)
protein interface data set), D(56 protein-DNA interfacaespectively.
data set) and R(109 protein-RNA interface data set).
The alignment kernel was derived using the BLOSUM62 The alignment kernel does not perform as well as the
(HENS920102) substitution matrix. The substitution kernebther kernels on these data sets. This might be due to the

IV. EXPERIMENTAL RESULTS



fact that the substitution matrix used for aligning sequencesith a window size of 25 (as opposed to a window size of
(BLOSUM62) may be suboptimal for the data sets used.1l used in our study).
(Note that the results of the substitution kernel varies with

on the specific substitution matrix used). VI. SUMMARY
We have compared the performance3diypes of kernels
V. RELATED WORK to predict protein-protein, protein-DNA, and protein-RNA

Kernel methods have been widely applied in comput interfaces from amino acid sequence information alone.
tional biology, and many kernel functions have been spec%?.ur results suggest that thg iQentity kernel is competitive
cally designed for biological data [Stkopf et al., 2003] with apparently more sophisticated kernels on all three
[Vert, 2005]. Several authors have explored .t'he usé &rediction tasks. Our results also suggest the possibility of

support vector machines for secondary structure predi|mprovmg the performance of the SVM classifiers using

tion [Hua and Sun, 2001] [Guo et al., 2004]. Bram et alﬁ_ernel functions derived using amino acid substitution

[Vanschoenwinkel and Manderick, 2004] have examined thrgatrlces. Yan et al. [Yan et al., 2006] have shown that it is

effects of amino acid substitution matrix on the eﬁec_possible to improve the accuracy of protein-DNA interface

tiveness of SVM kernels for secondary structure predicgred'cuon by using sequence entropy of the target residue

tion. Jaakkola et al. [Jaakkola et al., 2000] have derive an additional input to the Naive Bayes classifier. Sen
a Hidden Markov Model (HMM) profile based SVM- et al. [Sen et al., 2004] have reported improved accuracy

Fisher kernel for remote homology detection. Leslie e?f protein-protein interface prediction using multiple types

al [Leslie et al., 2002] have explored thespectrum ker- of information. Hence, there i; reason to expect .that the
nel and a misr"natch kernel[Leslie et al., 2004] for prote";])erformance OT the SVM clas_smers reported n this paper
function classification. Saigo et al. [Saigo et al., 2004] hav an be further improved by using other types of information

proposed a string alignment kernel for protein remote homo?-UCh. as sequence conservation score [Glaser et al., 2003],
redicted or known secondary structure, sequence entropy,

ogy detection. Lanckriet et al.[Lanckriet et al., 2004] havé .

: - . equence disorder, sequence entropy, among others. Work
developed a method based on semi-definite programming f%r roaress is aimed at exploring these possibilities

optimal linear combination of multiple kernels for proteinI prog IS al xploring POSSIDIILES.

function prediction. s
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