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a b s t r a c t 

Ensuring scalability of recommender systems without sacrificing the quality of the recommendations pro- 

duced, presents significant challenges, especially in the large-scale, real-world setting of mobile ad tar- 

geting. In this paper, we propose MobRec, a novel two-stage user similarity based approach to recom- 

mendation which combines information provided by slowly-changing features of the mobile context and 

implicit user feedback indicative of user preferences. MobRec uses the contextual features to cluster, dur- 

ing an off-line stage, users that share similar patterns of mobile behavior. In the online stage, MobRec 

focuses on the cluster consisting of users that are most similar to the target user in terms of their con- 

textual features as well as implicit feedback. MobRec also employs a novel strategy for robust estimation 

of user preferences from noisy clicks. Results of experiments using a large-scale real-world mobile adver- 

tising dataset demonstrate that MobRec outperforms the state-of-the-art neighborhood-based as well as 

latent factor-based recommender systems, in terms of both scalability and the quality of the recommen- 

dations. 

© 2018 Elsevier Ltd. All rights reserved. 

1

 

m  

f  

a  

t  

f  

t  

p  

v  

t

 

B  

w  

p  

i

f  

a  

C

c

p  

d  

t  

f  

N  

a  

t  

(  

t  

e  

u

 

v  

t  

a  

a  

d

i  

o  

h

0

. Introduction 

In recent years, mobile applications (app), installed on the

obile devices, have become some of the most important ways

or people to access information and services online. Mobile in-

pplication (in-app) advertising plays a key role in the app ecosys-

em. Such advertising is not only the primary source of revenue

or app publishers but also the primary means for advertisers to

arget and reach specific audiences. In this context, effective ap-

roaches to personalize the recommendation of products and ser-

ices to customers based on their individual tastes, and targeting

he ads become critically important in the mobile app ecosystem. 

Collaborative Filtering (CF) ( Resnick, Iacovou, Suchak,

ergstrom, & Riedl, 1994 ) is one of the most well-known and

idely used approaches in recommender systems. CF aims to

redict the tastes of an individual based on the tastes of other

ndividuals. Neighborhood-based Collaborative Filtering (NBCF) 

ocuses on the similarity between users (user-based method) or,

lternatively, between items (item-based method). The former
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redicts the tastes of an individual based on the tastes of other in-

ividuals who are most similar to that individual (e.g., in terms of

he products that they like). The latter predicts the likely audience

or a product based on the audience for other similar products.

BCF methods are very popular due to their simplicity and their

bility to provide intuitive explanations of the rationale behind

heir recommendations, which often enhances the user experience

 Ning, Desrosiers, & Karypis, 2015 ). NBCF methods have been used

o predict the user ratings of items (e.g., Resnick et al., 1994; Xia

t al., 2016 ) and to identify the top- N items to recommend to a

ser (e.g., ( Lee, Lee, Lee, Hwang, & Kim, 2016; Liu & Yang, 2008 )). 

However, when the number of users and items becomes

ery large, some of the popular NBCF methods become imprac-

ical because of their high computational complexity. For ex-

mple, when the number of user m reaches to the order of

 few hundred million, the computational complexity of tra-

itional user-based methods, which is O ( m 

2 · n ′ ) (where n ′ 
s the time needed to compute the similarity between a pair

f users), will become impractical ( Aggarwal, 2016b ). Hence,

here are growing interests in approaches to scaling up nearest-

eighbor computations. Examples of such approaches include

ampling based approaches in which the nearest neighbors of

 user (or item) are obtained from a chosen subset of users

or items) as opposed to the entire set of users (or items)
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( Anastasiu, Christakopoulou, Smith, Sharma, & Karypis, 2016 );

Clustering based methods, where the users (or items) are first

grouped into a number of clusters and the nearest neighbor cal-

culations are limited to the members of the cluster (e.g., Katukuri,

Mukherjee, Konik, & Konik, 2013; Xu, Bu, Chen, & Cai, 2012; Xue

et al., 2005 ). But the gain in the efficiency of sampling or clus-

tering based methods comes at the expense of a loss in qual-

ity ( Aggarwal, 2016b ) and the tradeoff between improved effi-

ciency and possible decrease in accuracy needs to be carefully

measured ( Amatriain, Jaimes, Oliver, & Pujol, 2011 ). More impor-

tantly, the clusters have to be recomputed or adjusted to accom-

modate as new data about users’ actions become available over

time ( Agarwal, Chen, & Elango, 2010 ). Against this background, it

is of interest to explore accurate and efficient NBCF for large-scale

systems where the recommendations have to be constantly ad-

justed based on new data as they become available. 

To address this challenge, we focus on the user-based

neighborhood-based model for large-scale mobile in-app adver-

tising system, and propose a two-stage user similarity based ap-

proach to recommend the top- N items (MobRec). MobRec identifies

users that are most similar to given user by taking advantage of

user clusters obtained in an offline clustering phase. First, MobRec

groups the user behavior in the context of mobile in-app advertis-

ing into two sets of features: (a) mobile context: features that cap-

ture the contextual information about users such as routine, mo-

bility and mobile device features that are suggestive of typical use

patterns, but not user actions on specific ads, and hence reflect

fairly stable user preferences to ads in specific contexts; (b) im-

plicit feedback: a set of user actions on ads (such as clicks, down-

loads and installations) that are indicative of user interests as a

function of incoming data which are more precise and direct. Mo-

bRec clusters the users based on the coarse and stable mobile con-

text in an offline mode. Because of the stable nature of the mobile

context, the clusters are updated only infrequently. MobRec com-

putes the nearest neighbors of a target user in an online mode

using the similarity of the target user with other users which in

turn is obtained by aggregating the simirlarity with respect to the

dynamic features (implicit feedback) with the stable features (mo-

bile context) within the cluster to which the target user belongs.

The resulting nearest neighbors are used with a novel preference

model compute the latent preference scores of items which in turn

are used to recomme to the top-N recommendations to the target

user. 

Our contributions could be summarized as follows: 

• We design a novel, two-stage approach to recommendation

consisting of an offline user clustering stage and an online top-

N ranking stage, which improves scalability without compro-

mising the quality of recommendations. 
• We introduce a novel approach to representing the dynamic-

ity and richness of user behaviors using mobile context that

changes slowly and implicit feedback which captures the users’

response to specific ads. Contextual features are used for offline

clustering of users; the contextual features are used together

with implicit feedback features in the online stage to enhance

the accuracy of predictions. 
• We make use of a novel preference model to improve the ac-

curacy of top- N recommended ads by learning the latent user

preference from the observed implicit feedback. 
• We present results of experiments comparing our approach to

recommendation with several state-of-the-art methods, includ-

ing neighborhood-based models and latent factor models which

clearly show that our approach is able to improve scalability

without compromising the quality of the recommendations. 

The rest of the paper is organized as follows: Section 2 sum-

marizes related work. Section 3 describes our proposed two-stage
pproach to recommendation. Section 4 describes our experiments

nd results of comparison of our approach with other state-of-the-

rt methods. Section 5 concludes the paper. 

. Related work 

There are two primary Collaborative Filtering approaches:

eighborhood-based models (also referred to as memory-based

ethods) and the latent factor models. Neighborhood-based meth-

ds are widely used in real-world settings because they are sim-

le, easy to implement, easy to understand and explain, and of-

en work well in practice ( Ning et al., 2015 ). The key idea be-

ind neighborhood-based methods is the use of the user-item rat-

ng matrix to calculate the similarities between users or items and

ake recommendations to users based on the observed behav-

ors of similar users ( Linden, Smith, & York, 2003 ). For example,

esnick et al. (1994) describe a user-based Collaborative Filtering

ethod, which utilizes the explicit ratings of items provided by

sers to compute the similarity between users and recommend

tems to a user by taking a weighted average of the ratings of the

ser’s nearest neighbors. Comprehensive surveys of neighborhood-

ased Collaborative Filtering methods could be found in ( Aggarwal,

016b; Ning et al., 2015 ). The quality of recommendations pro-

uced by neighborhood-based methods depends in part on the in-

ormation and the metric used to identify the nearest neighbors of

argets of recommendation. Hence, there has been much work fo-

used on improving the quality of neighborhood-based model, in-

luding, for example: 1) predicting the rating r ui of the user u for

tem i with algorithms that focus on similarity computation on ex-

licit ratings, such as significant factor optimization ( Ma, King, &

yu, 2007 ), graph-based similarity ( Jeong, Lee, & Cho, 2010 ) and

lobal similarity ( Ahn, 2008; Liu, Hu, Mian, Tian, & Zhu, 2014 );

r algorithms that focus on implicit feedback or features, such

s FeatureKNN ( Xia et al., 2016 ); 2) learning to rank methods

hat identify the top- N most relevant items for a particular user

ased on the estimated user preferences, such as EigenRank ( Liu &

ang, 2008 ) and PrefKNN ( Lee et al., 2016 ). The main drawback of

uch methods is their limited scalability. 

Existing works on scaling up nearest-neighbor approaches are

artitioned into three categories: filtering based approaches, ap-

roximate methods for nearest neighbor identification methods

nd sampling based approaches ( Anastasiu et al., 2016 ). Filtering

ased approaches often pre-filter, using domain knowledge when

vailable, the user or item pairs that cannot be neighbors using an

nverted index data structure ( Anastasiu & Karypis, 2014; Awekar &

amatova, 2009; Bayardo, Ma, & Srikant, 2007 ); approximate meth-

ds for identifying nearest neighbors usually rely on latent de-

omposition or low-rank embeddings to learn dense latent vectors

epresenting users or items ( Bell & Koren, 2007; Koren, 2010b ).

ampling based approaches often make use of clustering to pre-

ompute the likely candidate nearest neighbors of the target user

n an offline clustering stage. For example, Xue et al. (2005) have

roposed the SCBPCC model to cluster the users based on their

xplicit ratings of items and use the resulting clusters to iden-

ify the candidate nearest neighbors for a target user. In contrast,

atukuri et al. (2013) use clustering algorithms to partition the set

f items based on a set of contextual features. Xu et al. (2012) fo-

us on co-clustering models to group users and items. However,

uch off-line clustering approaches can suffer from loss of quality,

nd may need to be rebuilt frequently (e.g., daily ( Agarwal et al.,

010 )), resulting in added computation cost. 

Latent factor models, i.e., PMF ( Mnih & Salakhutdinov, 2008 ),

VD + + ( Koren, 2010b ), generally seek to decompose the origi-

al rating matrix into fully specified low-rank matrices (user fac-

ors and item factors) with low redundancies to provides ro-

ust estimation of the missing entries. With the implementa-
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Fig. 1. The two-stage framework for a mobile in-application ad recommender sys- 

tem. The slowly-changing mobile context is used to cluster the users and then com- 

bined with dynamic implicit feedback to refine the nearest neighbor computation. 

Lastly, a preference-based ranking model is used to retrieve the top- N ads to display 

to the target user. 
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m  
ion of alternating-least-squares factorization algorithm ( Bell & Ko-

en, 2007 ), the optimization process is performed alternatively on

ne space (user or item space) while keeping the other space fixed,

hus enhancing scalability. Another notable advantage of latent fac-

or models is their ability to leverage side information, when-

ver such information is available. ALS-IMF ( Hu, Koren, & Volin-

ky, 2008 ), treats the ratings as “confidence values” related to the

trength of indicated user preferences (implicit feedback), rather

han explicit ratings of the items by users. Latent factor models

re considered to be the state-of-the-art in terms of both scalabil-

ty and quality of recommendations in a broad range of application

cenarios ( Aggarwal, 2016a ). 

While there has been considerable work on recommender sys-

ems in general, there has been relatively limited work on recom-

ender systems for mobile advertising. Existing work on this topic

ocuses more on the mining and utilization of mobile user (or mo-

ile ad) contextual features such as location, time, weather, tem-

erature and their combination (e.g., ( Park, Park, & Cho, 2015; Yuan

 Tsao, 2003 )). For example, Zhu et al. (2015) proposed a novel

ontext-aware preference mining approach to learn the intra-user

nd inter-user mobile contextual features. The extracted contex-

ual features were used to form the mobile user profile used to

rain recommenders using existing supervised learning techniques,

.g., regression model ( Wu et al., 2016 ), Gradient Boosting Decision

rees ( Wang et al., 2016 ). 

Against this background, we present a stable offline

eighborhood-based model based on the slowly-changing contex-

ual features which are combined with information provided by

mplicit feedback by an online preference-based ranking algorithm

hat achieves scalability without compromising the quality of

ecommendations. 

. User similarity-based aggregated recommendation model 

.1. Preliminaries 

We first define the basic notations used throughout this paper.

iven the set of m users, U = { u 1 , . . . , u m 

} , and the set of n ads,

 = { i 1 , . . . , i n } . All user-ad pairs can be denoted by an m-by-n ma-

rix R = U × I , where the entry r ui indicates the assigned value of

mplicit feedback of u to i . If r ui has been observed (or known), it is

epresented by a rating associated with the specific behavior; oth-

rwise, a global default rating is used. Let R + ⊆ R denote a subset

f user-ad pairs for which implicit feedbacks are observed and R u + 
enote the observed implicit feedbacks for user u . We reserve the

ndexing letters u, v to indicate arbitrary users in U and i, j to rep-

esent arbitrary ads in I . Let x u = { x u 1 , x u 2 ,…, x uP } be the contextual

eature vector of u , where P is the length of the contextual feature

ector x u . Without loss of generality, we constrain the entries of x u 
o be binary. 

.1.1. User-based neighborhood models 

User-based neighborhood models are based on the similarity

etween users. The basic assumption of neighborhood-based mod-

ls is that if two users share similar behaviors in the past (e.g.,

ave similar behaviors on common ads), they will have similar

esponse in the future (e.g., have similar actions on other ads)

 Goldberg, Roeder, Gupta, & Perkins, 2001 ). Let U k ( u; i ) be the set

f top- k similar neighbors of u who have rated item i . Given the

ser-ad rating matrix R , the predicted rating for user u to ad i is

omputed by: 

ˆ 
 ui = d ui + 

∑ 

v ∈ U k ( u ;i ) ( r v i − d v i ) sim ( u, v ) ∑ 

v ∈ U k ( u ;i ) | sim ( u, v ) | (1) 

here d ui is a biased rating value for u to i , and sim ( u, v ) is the

imilarity weight between users u and v . Specifically, when the
ean-centered prediction ( Koren, 2010a ) is used, we can replace d ui 

ith the mean rating μu of user u . Then, the predictive function in

q. (1) is revised as: 

ˆ 
 ui = μu + 

∑ 

v ∈ U k ( u ;i ) ( r v i − μv ) sim ( u, v ) ∑ 

v ∈ U k ( u ;i ) | sim ( u, v ) | (2) 

.1.2. User-based preference models 

In contrast to the traditional user-based neighborhood models

hat try to estimate the exact ratings of users, preference models

ocus on a function that produces a (possibly partial) ranking or

rdering of items. Following ( Cremonesi, Koren, & Turrin, 2010 ), we

an specify the predictive function based on a preference model as:

ˆ 
 ui = 

∑ 

v ∈ U k ( u ;i ) 
pre f v i sim ( u, v ) (3) 

here pref vi denotes the user-defined preference score for user v

o ad i over all other ads associated to v . 

The key components of neighborhood-based models consist of

imilarity computation, nearest neighbor filtering and prediction

ranking). The user-user (or item-item) similarity is computed of-

ine to enable rapid retrieval; nearest filtering and prediction are

omputed online centered at the target ( Aggarwal, 2016b ). 

.2. Architecture 

The overall structure of our two-stage recommender system

MobRec) is presented in Fig. 1 . Our framework includes two major

tages: offline user clustering stage and online nearest filtering and

anking stage. We first pre-process the user behavior logs and con-

truct the slowly-changing mobile context, which is then used as

he input to the clustering stage. The user clustering stage uses the

 -means algorithm to create a small number of peer groups. Due

o the inactive nature of mobile context, the computed similarity

ay persist for several hours to several days. 

To retrieve the most relevant ads for a target user, the dynamic

mplicit feedback is integrated with contextual information to se-

ect the nearest neighbors of the target user within the closest

luster. The ranking stage takes the combination of mobile context

nd implicit feedback as input and sorts the predicted scores of

ds with a preference-based Collaborative Filtering approach. The

ighest scoring ads are then presented to the target user. 

The complete workflow of our algorithm (MobRec) is presented

n Algorithm 1 . 

.3. User clustering 

There are two key challenges in clustering users using rating

atrix: a) the incompleteness of rating matrix leads to loss of ac-
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Algorithm 1 The workflow of MobRec. 

Input: User’s contextual feature X , implicit feedback R , target user u , number of clusters | C| , elastic factor ε. 

Output: top-N recommendation list for target user u . 

Offline stage: 

Perform user clustering using the coarse context-based similarity of users ( Section 3.3 ). 

Online stage: 

1. Retrieve the closest cluster of the target user using the coarse context-based similarity. 

2. Computer the aggregated similarity between target user and the users in the closest cluster ( Section 3.4.1 ). 

3. Selected the nearest neighbor of the target user. 

4. Perform the top-N ranking algorithm on the nearest neighbor ( Section 3.4.2 ) and compute the top-N recommendation list for target user u . 
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curacy; b) the context-dependent changes in user behavior impacts

the performance of the model in the long term ( Koren, 2010a;

Koren & Bell, 2015 ). We seek to overcome the chanllenges using

slowly-changing contextual features. Our approach is motivated by

the following observations: 

1) Mobile context provides information about a user’s long-term

routine, mobility pattern, and device features. 

2) The slowly-changing nature of mobile context ensures the sta-

bility of the clusters generated using contextual information

(e.g., from several hours to several days). 

3) The mobile context-based similarity could be easily combined

with other similarity measures. 

We compute context similarity of users using the Jaccard index

( Koutrika, Bercovitz, & Garcia-Molina, 2009 ) due to the binary na-

ture of our data entries. Thus, for two arbitrary users u, v , mobile

context-based similarity sim X ( u,v ) captures the proportion of num-

ber of entries that overlap between the context feature vector x u 
and x v : 

si m X ( u, v ) = 

| x u ∧ x v | 
| x u ∨ x v | (4)

We select the k -means algorithm to cluster the users into peer

groups based on the similarity measure in Eq. (4) . The number of

clusters | C | is heuristically set equal to the cubic root of the num-

ber of users. Suppose that C 1 ,…, C | C | represent the sets of users

to be assigned to the respective clusters and Y 1 , . . . , Y | C| denote the

corresponding centroids. Our clustering approach is summarized as

follows: 

1. For each i ∈ {1, …, | C |}, initialize the centroid Y i with the con-

textual features of a randomly chosen user. 

2. Determine the cluster assignment C 1 ,…, C | C | by assigning each

user to the cluster whose centroid is closest to the user as mea-

sured by Eq. (4) . 

3. Update the centroids based on the average (mean) contexts of

the set of users assigned to the respective clusters and then re-

turn to step 2 unless the clusters converge. 

Time complexity 

The running time of k -means algorithm for each iteration is lin-

ear to the user volume m . For a given number of cluster | C |, the

time complexity for each iteration is O (| C | Pm ). 

3.4. Nearest neighbor filtering and ranking 

Traditional neighborhood-based Collaborative Filtering models

retrieve the neighbors of target user on the whole dataset ( Lee

et al., 2016; Resnick et al., 1994; Xia et al., 2016 ). However, this ap-

proach does not scale as the number of users and items grows. Our

use of clustering allows us to limit the set of users to be consid-
red to those that belong to the cluster whose centroid is closest

o the target user. Suppose we denote the target user by u and its

losest cluster by C u . 

.4.1. Nearest neighbor filtering 

Although mobile context captures some aspects of a user’s be-

avior, it is too coarse to provide accurate information about the

ser’s preferences. Hence, we integrate the information provided

y dynamic implicit feedback with contextual information to refine

he set of closest neighbors of a target user. Let sim R ( u,v ) be an im-

licit feedback-based similarity model (several alternative models

re considered in our experiments). The resulting similarity func-

ion takes the maximum of the context-based similarity and im-

licit feedback-based similarity: 

im ( u, v ) = max 

{ 

si m X ( u, v ) − min 

v 
si m X ( u, v ) 

max 
v 

si m X ( u, v ) − min 

v 
si m X ( u, v ) 

, 

si m R ( u, v ) − min 

v 
si m R ( u, v ) 

max 
v 

si m R ( u, v ) − min 

v 
si m R ( u, v ) 

} 

(5)

Notie that the min-max scaling is adopted to make the two

ypes of similarity comparable. Based on the combined similar-

ty function, we select the k nearest neighbors of u (denoted

s U k ). 

.4.2. Top- N ranking 

It is common in real-world applications of recommender sys-

ems that only a few of the recommended items are presented to

he users. When the set of items to be recommended are chosen

mong the topmost with respect to the predicted partial order, the

esulting problem corresponds to the well-studied topic of top- N

ecommendation ( Balakrishnan & Chopra, 2012 ), where latent user

references are used instead of actual ratings ( Lee et al., 2016; Liu

 Yang, 2008 ). This is consistent to our mobile ads recommenda-

ion scenario, since only a tiny set of ads are presented at a time.

herefore, we use the latent preference scores to choose the top-

 ads based on the observed implicit feedback R u + of user u . Let

 u + denote the ascending order of ads based on R u + , we estimate

 preference (likelihood) score θ i for the corresponding ad i to re-

ect the extent to which ad i is preferred by u . We use the result-

ng likelihood to generate the ranking list S u + . Thus, 

∗ = arg max 
θ

p ( S u + | θ ) (6)

For simplicity, suppose given ad i , we divide the implicit feed-

ack into three categories in terms of i . That is, T i = { T < i , T = i , T > i }
here T < i , T = i and T > i denote the set of ads that are ranked lower

han, equal to and higher than i respectively. We can rewrite the

ikelihood p( S u + | θ ) as the product of the likelihoods of generating

he correct order for any two ads. Thus p( S u + | θ ) is replaced by: 
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p ( S u + | θ ) = 

∏ 

i 

( ∏ 

j∈ T <i 

p ( i > j| θ ) 
∏ 

j∈ T = i 
p ( i > j| θ ) 

) 

(7) 

here p ( i > j | θ ) is the likelihood that ad i is preferred to ad j ,

hich is defined as: 

p ( i > j| θ ) = θi 

(
ε − θ j 

)
(8) 

We introduce an elastic factor ε, which is set to shrink or aug-

ent the importance of preference associated with u , in ways that

ccount for the noisy nature of user preferences. For example, be-

ause of the limited device screen size and complex usage scenar-

os (e.g. walking or taking a bus), mobile users are prone to gen-

rate misclicks (e.g. the inaccurate clicks do not result in the de-

ired action); malicious publishers often try to generate fake clicks

 Hu, Liang, & Dong, 2017 ). Hence, the preference information ob-

ained from the clicks is inherently noisy. See Section 4.6 . for fur-

her discussion of the effect of elastic factor. 

Note that the probability scores for any two ads that lie within

he same category (as described above) are identical. Hence the

radient of the log likelihood of Eq. (7) is given by: 

∂ log p ( S u + | θ ) 

∂ θi 

= | T <i | 
(

1 

θi 

)
+ | T = i | 

(
1 

θi 

− 1 

ε − θi 

)
− | T >i | 

(
1 

ε − θi 

)
(9) 

By setting the gradient to zero, we can obtain the optimal prob-

bility score θ ∗
i 

as: 

∗
i = 

ε| T ≤i | 
| S u + | + | T = i | (10) 

We first transform the implicit feedback R U k ∪{ u } into a prefer-

nce matrix using Eq. (10) . We then compute the predictions using

he weighted sum of the neighbors’ preference scores as in Eq. (3) .

he top- N ads are then identified based on the preference scores. 

ime complexity. The time complexity of aggregated similarity cal-

ulation is O (| C u | n ) (where n is the number of items). For nearest

eighbor selection, we examine the members of the cluster whose

entroid is closest to the target user which takes O (| C u | n ) time.

n the prediction phase, the computation time of both the prefer-

nce matrix transformation and recommendation is O ( kn ). Since k

s typically much smaller than | C u |, the overall complexity of top- N

anking stage is O (| C u | n ). Since | C u | is much smaller than the user

olume m , our online model is substantially more scalable than

hose that do not benefit from the clustering stage ( Lee et al., 2016;

esnick et al., 1994; Xia et al., 2016 ). 

. Empirical analysis 

We experimentally evaluated the proposed algorithm on a real-

orld dataset from one of the mobile advertising platforms in

hina. We proceed to describe the data set, the experimental

etup, and the experimental results. 

.1. Dataset and basic settings 

We collect a set of three-week user behavior logs, in which im-

licit feedbacks of user-ad pairs are divided into six categories,

ncluding view, click, download starts, download completes, in-

tallation starts, and installation completes. Note that the im-

licit feedback are inherently ordered according to user action:

.g., view < click < download < installation. The resulting informa-

ion can be used directly in our proposed top-N ranking model

o compute the estimated user preference ( Eq. (10) ). In addition,

ince explicit ratings are often required for Collaborative Filtering
odels, we empirically map the implicit feedback to explicit rat-

ngs as (view, click, download starts, download completes, instal-

ation starts, installation completes) = (1, 10, 15, 20, 25, 30). As in

 Lee et al., 2016 ), all missing ratings are imputed with zero. In ad-

ition to the behavior logs, we use the following attributes: Id :

nique string to identify an object (i.e., user, application or ad). Ge-

graphical Attributes : a set of attributes that can uncover the ge-

graphical position of a user, such as IP, city and mobile network

ccess method. Action time : the timestamp of an action. Device

ttributes: characteristics of user’s mobile device, e.g., device’s op-

rating system, screen size, etc. All sensitive fields are encrypted

efore further processing due to privacy considerations. 

We first discard users that do not meet the following criteria:

a) being active for at least seven days, (b) being associated with

t least seven unique ads and (c) having clicked at least one ad.

his yields a dataset of approximately 1 M users, 1 K ads and 27 M

ecords. Since we focus on the users’ mobile context that changes

lowly over time, the mobile contextual features are modeled us-

ng binary values (i.e., {0,1}; with value 1 indicating the presence

f the specific context feature and 0 otherwise). We capture three

ypes of contextual features: user’s long-term routine, mobility and

evice feature. Three of the features we used in each type is listed

n Table 1 , where we use the term regular to represent whether a

ehavior appears consistently for at least seven days. 

Let R be the full dataset, we create multiple subset R c ⊆R by ran-

omly sampling a fraction of users. For example, we denote a 1%

ample of R by R 1% . Each subset is further split into a training set

r c and a test set Te c with ratio of 7:3. In order to measure the

erformance of our algorithms, we exclude 50% of the rated ads in

he test set for use as holdout data (denoted by T e c −). The reported

erformance values represent averages across 5 such runs. All al-

orithms are implemented on an Apache Spark cluster ( Shoro &

oomro, 2015 ) with eight compute nodes (Intel Xeon 2.1 GHz CPU

ith 10 G RAM per node) and the raw data are stored on a Hadoop

istributed File System (HDFS). 

.2. Baselines and parameter settings 

We compare our model with two broad types of Collabora-

ive Filtering models: neighborhood-based models and latent factor

odels. We consider two subtypes of neighborhood-based mod-

ls including: neighborhood-based models without clustering and

eighborhood-based models with clustering. We consider several

odels of each type as summarized below. 

.2.1. Neighborhood-based models without clustering 

We compare the following three neighborhood-based models: 

• RatingKNN. The well-known user-based Collaborative Filtering

method ( Resnick et al., 1994 ), which utilizes the user ratings to

compute the similarity or weight between users and produce

recommendations by aggregating the top- k results of the users

that are most similar to the target user. 
• FeatureKNN. A user-based recommendation model that oper-

ates in a manner similar to RatingKNN except that it uses user

features instead of ratings to compute the similarity between

users ( Xia et al., 2016 ). 
• PrefKNN. The baseline method for top- N item recommendation

in a user preference-based Collaborative Filtering model by dis-

tinguishing the qualitative user preferences from the rating ma-

trix ( Lee et al., 2016 ). 

.2.2. Neighborhood-based models with clustering 

We augment the neighborhood-based models (PrefKNN and

atingKNN model) with an offline contextual feature-based clus-

ering stage. Additionally, one of the well-known clustering rec-

mmendation models SCBPCC ( Xue et al., 2005 ) is also extended
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Table 1 

Three of the contextual features we used in each type. 

Category Feature Description 

Routine Dawn_Reg The user regularly uses the mobile device at dawn 

Morning_Reg The user regularly uses the mobile device in the morning 

Noon_Reg The user regularly uses the mobile device at noon. 

Mobility LDM_Reg The user regularly engages in long distance travel. 

Dawn_CRM The user regularly engages in short distance movement at dawn. 

Morning_CRM The user regularly engages in short distance movement in the morning. 

Device Is_largeScreen The screen size of the user device is large ( > = 5 inches). 

Is_HUAWEI The brand of the user device is HUAWEI. 

Is_Android The operating system model of the user device is Android. 
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for comparison. In our experiments, we set the number of cluster

| C| = 

3 
√ 

m . The resulting models are: 

• RatingKNN + . RatingKNN method ( Resnick et al., 1994 ) is ex-

tended with offline contextual feature-based k -means cluster-

ing. 
• PrefKNN + . PrefKNN method ( Lee et al., 2016 ) is extended with

offline contextual feature-based k -means clustering. 
• SCBPCC + . The original clustering-based smoothing recommen-

dation approach (SCBPCC) ( Xue et al., 2005 ) performs k -means

clustering based on the Pearson Correlation Coefficient. In our

setting, SCBPCC model is modified to use an appropriate simi-

larity measure (instead of the original Pearson Correlation (See

Section 4.4 for more details). We also tune the smoothing factor

λ to optimize the performance of the resulting model. 

4.2.3. Latent factor models 

We implement three state-of-the-art latent factor models. 

• SVD + + . SVD-based model that utilize the set of items user u

rated as implicit feedback information to help indicate users’

preference ( Koren, 2010b ). 
• ALS-PMF. The probabilistic matrix factorization model that as-

sumes the latent factors of users and items are subject to zero-

mean Gaussian Distribution ( Mnih & Salakhutdinov, 2008 ). 
• ALS-IMF. A matrix factorization model in which the rating ma-

trix is treated as a combination of binary preferences and con-

fidence values to stress implicit feedback ( Hu et al., 2008 ).

Specifically, we assign the implicit feedback variant α as 0.01. 

We implemented all neighborhood-based models. When con-

sidering the proper number of nearest neighbors k , we vary k from

10 to 10 0 0 and pick k = 500 based on the performance on the

training data. 

For SVD + + model, we borrow the implementation on Apache

Spark GraphX library 1 ; for AL S-PMF and AL S-IMF models, we

use the implementation provided as part of the Spark Machine

Learning Library 2 , where the “ALS-WR” approach ( Zhou, Wilkin-

son, Schreiber, & Pan, 2008 ) is incorporated to avoid the reliance

on the scale of regularization parameter λ. In addition, we set the

number of latent factors f to 10, the regularization parameter λ to

0.01 and the number of iteration iter to 10 based on performance

on the training data. 

In addition, we provide comparisons with a simple non-

personalized algorithm, AdPopularity , which commits the top- N

popular items on the descending order of item’s population regard-

less user ratings as in ( Cremonesi et al., 2010; Lee et al., 2016 ). 
1 http://spark.apache.org/docs/latest/api/java/org/apache/spark/graphx/lib/ 

SVDPlusPlus.html . 
2 http://spark.apache.org/docs/latest/ml- collaborative- filtering.html . 

t  

c  

(  

f  

s

.3. Evaluation metrics 

Since we are interested in the accuracy of recommendation

or targeting behaviors (the non-view behaviors), we employ

recision-recall curve and normalized discounted cumulative gain

NDCG) ( Järvelin & Kekäläinen, 2002 ) to evaluate the user-based

ecommender systems. 

Let N be the number of top ads presented to each target user,

 @ N be the average precision value and r @ N be the average re-

all value over all target users. Let A u be the ads preferred by u

ased on u ’s holdout data and N u denotes the output top- N rec-

mmended list of the algorithm, then precision and recall at N are

omputed as: 

p@ N = mean 

u ∈U 
| N u ∩ A u | 

| N u | (11)

@ N = mean 

u ∈U 
| N u ∩ A u | 

| A u | (12)

Next, let DCG u @ N denote the cumulative relevance score at N

nd IDCG u @ N be the optimal score at N for u , then NDCG @ N is

omputed as: 

DCG @ N = mean 

u ∈U 
DC G u @ N 

IDC G u @ N 

(13)

here: 

C G u @ N = 

n ∑ 

p=1 

2 

I ( N up ∈ A u ) − 1 

log 2 ( p + 1 ) 
(14)

In Eq. (14) , function I ( P ) = 1 if and only if P is true; otherwise

 ( P ) = 0. Note that users without any preferred ads in the holdout

et are discarded since both the precision, recall and NDCG in such

ases are fixed to zero. 

.4. Evaluation for similarity measures 

The first experiment investigates the effectiveness of differ-

nt similarity measures for the proposed neighborhood-based Col-

aborative Filtering methods. Here, we implemented the popular

earson Correlation Coefficient (PCC) ( Resnick et al., 1994 ), cosine

imilarity (COS) ( Adomavicius & Tuzhilin, 2005 ), Jaccard similarity

Jaccard) ( Koutrika et al., 2009 ), mean squared difference (MSD)

 Cacheda, Carneiro, Fernández, Ndez, & Formoso, 2011 ), and the

ombination of Jaccard and MSD (JMSD). In these experiments, the

lastic factor εu was set to 1/log | S u + |. 
Figs. 2 and 3 show that sensitivity to the choice of the simi-

arity measures differs across the different algorithms. Models that

se clustering are conspicuously more sensitive to the choice of

he similarity measureas compared to those that do not rely on

lustering. Thus, MSD, JMSD and PCC suffer significant degradation

approximately 10% in terms of the NDCG score) as seen in Pre-

KNN vs. PrefKNN + and RatingKNN vs. RatingKNN + . The Jaccard

imilarity yields the best performance overall. 

http://spark.apache.org/docs/latest/api/java/org/apache/spark/graphx/lib/SVDPlusPlus.html
http://spark.apache.org/docs/latest/ml-collaborative-filtering.html
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Fig. 2. Comparison of precision-recall curves on top-5 ads over different similarity models for neighborhood-based models. 

Fig. 3. Comparison of NDCG indexes on top-5 ads over different similarity models for neighborhood-based models. 

Table 2 

NDCG scores over different similarity models for our neighborhood-based models, where score entries are presented 

by the 95 percent confidence intervals. 

Top- N Algorithms Similarity measures 

COS Jaccard JMSD MSD PCC 

Top-1 MobRec 0.296 ± 1.14% 0.295 ± 1.19% 0.293 ± 1.28% 0.295 ± 0.58% 0.299 ± 1.04% 

PrefKNN 0.296 ± 1.12% 0.292 ± 0.15% 0.292 ± 0.15% 0.252 ± 3.54% 0.296 ± 1.01% 

PrefKN N + 0.267 ± 1.70% 0.284 ± 0.60% 0.153 ± 2.07% 0.153 ± 0.81% 0.169 ± 1.44% 

RatingKNN 0.286 ± 1.01% 0.297 ± 1.16% 0.234 ± 2.01% 0.213 ± 2.06% 0.280 ± 1.38% 

RatingKN N + 0.268 ± 1.48% 0.286 ± 1.43% 0.150 ± 1.75% 0.153 ± 0.77% 0.169 ± 1.07% 

SCBPC C + 0.270 ± 2.27% 0.271 ± 4.85% 0.152 ± 2.69% 0.151 ± 0.81% 0.238 ± 1.49% 

Top-2 MobRec 0.333 ± 1.07% 0.333 ± 1.17% 0.332 ± 0.79% 0.332 ± 0.33% 0.334 ± 0.89% 

PrefKNN 0.324 ± 0.46% 0.327 ± 0.43% 0.318 ± 0.08% 0.285 ± 2.92% 0.325 ± 0.53% 

PrefKN N + 0.311 ± 1.50% 0.326 ± 1.00% 0.187 ± 2.44% 0.188 ± 0.75% 0.203 ± 0.74% 

RatingKNN 0.321 ± 0.95% 0.330 ± 1.10% 0.277 ± 2.24% 0.253 ± 2.21% 0.318 ± 0.67% 

RatingKN N + 0.311 ± 1.53% 0.324 ± 1.41% 0.186 ± 2.47% 0.188 ± 0.80% 0.202 ± 0.75% 

SCBPC C + 0.310 ± 1.80% 0.311 ± 3.83% 0.193 ± 1.51% 0.194 ± 0.50% 0.276 ± 0.85% 

Top-5 MobRec 0.447 ± 0.89% 0.447 ± 0.97% 0.445 ± 1.40% 0.447 ± 0.45% 0.448 ± 0.99% 

PrefKNN 0.435 ± 0.94% 0.439 ± 0.93% 0.430 ± 0.75% 0.399 ± 2.71% 0.434 ± 1.04% 

PrefKN N + 0.427 ± 0.77% 0.438 ± 0.66% 0.299 ± 0.98% 0.299 ± 0.35% 0.318 ± 0.36% 

RatingKNN 0.436 ± 0.31% 0.4 4 4 ± 0.86% 0.396 ± 2.77% 0.371 ± 2.35% 0.431 ± 0.33% 

RatingKN N + 0.426 ± 0.84% 0.438 ± 0.84% 0.300 ± 1.04% 0.300 ± 0.33% 0.318 ± 0.49% 

SCBPC C + 0.424 ± 1.79% 0.429 ± 3.03% 0.304 ± 1.05% 0.303 ± 0.34% 0.392 ± 0.29% 

 

t  

a  

b

4

 

a  

i  

b  

s  

ε

Fig. 4. Comparison of precision-recall curves on top-5 ads over different size of 

data for neighborhood-based models without clustering. 
Table 2 shows that the performance of MobRec is stable over

he different similarity measures. This is explained perhaps by the

bility of MobRec to combine both context based and implicit feed-

ack based information. 

.5. Evaluation for large scale dataset 

Our second experiment examines the accuracy of all competing

lgorithms, and their scalability, using a large-scale dataset. Specif-

cally, we fix the similarity measure to Jaccard model, the num-

er of nearest neighbors to 500 and vary the user volume of sub-

ampling dataset from 50 K ( R 5% ) to 0.5 M ( R 50% ). The elastic factor

u of user u in MobRec is 1/log | S u + |. 
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Table 3 

NDCG scores over different size of data for all competing methods, where score 

entries are presented by the 95 percent confidence intervals. We use the symbol 

‘—’ to denote that the corresponding algorithm fails to process the specific data 

volume. 

Top- N Algorithms # of users 

50 K 0.1 M 0.5 M 

Top-1 FeatureKNN 0.298 ± 0.42% — —

PrefKNN 0.300 ± 0.57% — —

RatingKNN 0.300 ± 0.99% — —

MobRec 0.303 ± 0.32% 0.305 ± 0.26% 0.305 ± 0.32% 

PrefKN N + 0.298 ± 0.45% 0.297 ± 0.40% 0.303 ± 0.38% 

RatingKN N + 0.290 ± 0.57% 0.292 ± 0.51% 0.293 ± 0.18% 

SCBPC C + 0.295 ± 0.72% 0.298 ± 1.05% 0.290 ± 1.60% 

AdPopularity 0.296 ± 0.30% 0.295 ± 0.43% 0.299 ± 0.33% 

ALS-IMF 0.259 ± 0.34% 0.259 ± 0.35% 0.260 ± 0.21% 

ALS-PMF 0.255 ± 0.14% 0.256 ± 0.14% 0.253 ± 0.12% 

SVD ++ 0.262 ± 1.60% 0.276 ± 0.45% 0.264 ± 0.77% 

Top-2 FeatureKNN 0.336 ± 0.29% — —

PrefKNN 0.331 ± 0.55% — —

RatingKNN 0.337 ± 1.00% — —

MobRec 0.339 ± 0.32% 0.341 ± 0.38% 0.341 ± 0.22% 

PrefKN N + 0.327 ± 0.12% 0.327 ± 0.51% 0.331 ± 0.37% 

RatingKN N + 0.326 ± 0.36% 0.328 ± 0.50% 0.330 ± 0.23% 

SCBPC C + 0.331 ± 0.79% 0.336 ± 1.10% 0.330 ± 1.28% 

AdPopularity 0.323 ± 0.09% 0.323 ± 0.52% 0.325 ± 0.32% 

ALS-IMF 0.296 ± 0.49% 0.295 ± 0.31% 0.296 ± 0.18% 

ALS-PMF 0.288 ± 0.0.28% 0.288 ± 0.15% 0.285 ± 0.12% 

SVD ++ 0.299 ± 0.85% 0.306 ± 0.52% 0.295 ± 0.75% 

Top-5 FeatureKNN 0.449 ± 0.22% — —

PrefKNN 0.438 ± 0.79% — —

RatingKNN 0.451 ± 0.88% — —

MobRec 0.451 ± 0.22% 0.452 ± 0.30% 0.452 ± 0.17% 

PrefKN N + 0.437 ± 0.12% 0.435 ± 0.27% 0.439 ± 0.35% 

RatingKN N + 0.440 ± 0.36% 0.441 ± 0.37% 0.443 ± 0.17% 

SCBPC C + 0.4 4 4 ± 0.52% 0.447 ± 0.86% 0.442 ± 1.09% 

AdPopularity 0.431 ± 0.19% 0.429 ± 0.27% 0.432 ± 0.27% 

ALS-IMF 0.411 ± 0.31% 0.411 ± 0.40% 0.411 ± 0.09% 

ALS-PMF 0.397 ± 0.21% 0.397 ± 0.28% 0.392 ± 0.13% 

SVD + + 0.412 ± 0.65% 0.414 ± 0.29% 0.409 ± 0.72% 
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Fig. 4 reports the results for neighborhood-based models with-

out clustering. All algorithms achieve comparable performance in

the case of the top-1 ad; however, the performance of PrefKNN

drops dramatically as the number of recommended ads grows.

Though the performacne of MobRec, FeatureKNN and RatingKNN

are similar, MobRec offers significant advantage on large-scale

datasets. As shown in Table 3 , all non-clustering-based neighbor-

hood models fail when user volume grows to 0.1 M. Online run-

time comparison between MobRec and neighborhood-based mod-

els without clustering is shown in Table 4 . MobRec holds conspic-

uous advantage over other models especially when compared with

RatingKNN and PrefKNN. As user volume increases, online runtime

of neighborhood-based models without clustering increases dra-

matically. As we use offline clustering for neighbor pre-selection,

online runtime is significantly reduced when the available compu-

tational resources are held constant. 

Fig. 5 shows the results for clustering-based neighborhood

models. The results clearly show that offline clustering dramati-

cally enhances the scalability of neighborhood-based models, with

modest drops in performance. RatingKNN + shows greater degra-

dation compared to PrefKNN + . We find that the performance of

SCBPCC + is rather unstable whereas MobRec consistently outper-

forms other clustering-based models by approximately 1% in terms

of the NDCG score. 

As shown in Fig. 6 , the performance of latent factor models ap-

pear to be worse than that of neighborhood-based models. ALS-

IMF consistently outperforms ALS-PMF by over 0.7% with respect

to the NDCG index. In addition, AdPopularity, the non-personalized

model, outperforms all latent factor models especially for the top-1
d, suggesting that the user ratings are excessively noisy, and con-

equently models that directly optimize the loss on rating matrix

re likely to suffer higher risk of overfitting. MobRec shows the

est performance in both settings. 

.6. Impacts of elastic factor ε

The elastic factor ε can be employed to shrink or augment the

onfidence on the observed ratings for specific user as shown in

q. (10) , we consider three variations: 

• MobRec_1 : Confidence in user preferences are considered equal

for all users, hence we set εu = 1, which is identical to the set-

ting in PrefKNN and PrefKNN + ( Lee et al., 2016 ). 
• MobRec_aug : As suggested by existing works ( Koren, 2010b;

Liu et al., 2014 ), the more operations a user has performed, the

greater the confidence we can have in the estimated user pref-

erences. Hence, we specify εu = log | S u + | to augment the confi-

dence on longer S u + . 
• MobRec : We assume that mobile users are more prone to ca-

sual clicks or fraudulent clicks that do not faithfully depict

the actual latent user preferences. Based on the finding re-

ported in ( Hu et al., 2017 ) that the behavior patterns of mo-

bile users approximately follows the power-law distribution, we

aim to shrink the confidence on the long-tail of the distribution.

Therefore, we set εu = 1/log | S u + |. 

Fig. 7 (a)(b) shows that the performance of our model is sensi-

ive to the choice of ε. MobRec outperforms MobRec_aug by over

% and MobRec_1 by 1% with respect to NDCG scores for the top-1

d. The observed advantage of MobRec suggests that the shrink-

ge strategy better matches the complexities of user behavior in

he mobile ads scenario. First, mobile users with sparse behavior

ecords are excluded in our dataset during the preprocessing stage

see Section 4.1 ). Second, we assume that mobile users are prone

o false clicks or fraudulent clicks that do not reflect their true

references. For example, walking, riding a bus, etc., contribute

o misclicks on mobile ads. Further, the pay-per-action practice in

he mobile ads market could incentivize malicious generation of

ake clicks on the ads. The shrinkage strategy in our experiment is

ligned with the observation made by other authors that behav-

or records that are neither too sparse nor too dense are likely to

ore accurately reflect user preferences ( Tian, Zhu, Xia, Zhuang, &

hang, 2015 ). In our experiments, reducing the confidence in the

stimated preferences for users with intense activity shows signif-

cant positive effect on performance. 

. Conclusion 

Scalability of recommender systems in real-world settings of-

en is achieved at the expense of quality of the recommendations.

n this paper, we based on a careful examination of user behav-

ors from a large-scale real-world mobile advertising dataset and

roposed a novel two-stage approach (MobRec) that achieves scal-

bility without compromising the quality of recommendations. The

roposed approach leverages two sources of information within a

eighborhood-based recommendation model: slowly-changing mo-

ile context and dynamic implicit feedback. The two stages are: 1)

n offline clustering stage which uses the mobile context to clus-

er users into stable clusters that group users that share similar

ontextual features; and 2) an online stage that focuses only on

he cluster whose members are most similar to the target user

o identify the nearest neighbors of target user taking into ac-

ount user preferences reflected in the user feedback. The pro-

osed model makes use of an additional parameter that ensures

obust estimates of user preferences in the presence of misclicks

nd fake clicks. We have reported results of extensive experiments
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Table 4 

Online runtime over different size of data for the neighborhood-based models without clustering and MobRec, 

where the 95% confidence interval for the runtime entries are shown. (unit: second). 

Algorithm # of users 

10 K 20 K 30 K 40 K 50 K 

MobRec 51.6 ± 5.2 94.4 ± 12.2 138.6 ± 17.7 190.6 ± 20.9 280.4 ± 59.5 

FeatureKNN 29.0 ± 1.2 103.6 ± 10.3 205.8 ± 8.6 385.6 ± 16.0 589.0 ± 18.5 

PrefKNN 311.8 ± 34.7 1171.6 ± 157.2 2789.6 ± 387.1 4962.7 ± 176.2 7458.0 ± 905.4 

RatingKNN 335.4 ± 101.9 1137.0 ± 81.4 2590.0 ± 101.8 4983.3 ± 462.4 7985.3 ± 4694.8 

Fig. 5. Comparison of precision-recall curves on top-5 ads over different size of data for clustering-based neighborhood models. 

Fig. 6. Comparison of precision-recall curves on top-5 ads over different size of data for latent factor models. 

Fig. 7. Comparison results on top-5 ads over different settings of elastic factor ε. 

t  

n  

t

 

o  

w  

b  

p  

p  

i  

t  

m  

l

hat show that MobRec, the proposed approach, outperforms both

eighborhood-based and latent factor methods in terms of run

ime as well as quality of results. 

The work described is not without limitations. First, all of

ur experimental evaluation is based on a single large-scale real-

orld dataset. Additional studies, using additional real-world mo-

ile advertising datasets are needed to confirm our findings. Some
romising directions for further research include: (i) Principled ap-

roaches to optimizing the elastic factor εu ; (ii) Investigation of the

mpact of slow drifts in mobile context on performance; (iii) Inves-

igattion of the ways to tradeoff scalability and quality of recom-

endations using a combination of online and offline methods in

arge-scale real-world settings. 
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