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Abstract—High accuracy sequence classification often re-
quires the use of higher order Markov models (MMs). However,
the number of MM parameters increases exponentially with
the range of direct dependencies between sequence elements,
thereby increasing the risk of overfitting when the data set
is limited in size. We present abstraction augmented Markov
models (AAMMs) that effectively reduce the number of nu-
meric parameters of kth order MMs by successively grouping
strings of length k (i.e., k-grams) into abstraction hierarchies.
We evaluate AAMMs on three protein subcellular localization
prediction tasks. The results of our experiments show that
abstraction makes it possible to construct predictive models
that use significantly smaller number of features (by one to
three orders of magnitude) as compared to MMs. AAMMs are
competitive with and, in some cases, significantly outperform
MMs. Moreover, the results show that AAMMs often perform
significantly better than variable order Markov models, such
as decomposed context tree weighting, prediction by partial
match, and probabilistic suffix trees.

Keywords-Markov models; abstraction; sequence classifica-
tion.

I. INTRODUCTION

Many real-world problems, e.g. protein function or protein

subcellular localization prediction, can be cast as sequence
classification problems (1). Markov models (MMs), which

capture dependencies between neighboring sequence ele-

ments, are among the most widely used generative models

of sequence data (2), (3). In a kth order MM, the sequence

elements satisfy the Markov property: each element is in-

dependent of the rest given k preceding elements (called

parents). MMs have been successfully applied in many

applications including natural language processing (3) and

molecular sequence classification (2). One of the main

disadvantages of MMs in practice is that the number of MM

parameters increases exponentially with the range k of direct

dependencies, thereby increasing the risk of overfitting when

the data set is limited in size.

Against this background, we present abstraction aug-

mented Markov models (AAMMs) aimed at addressing these

difficulties. AAMM’s advantages are as follows:

• AAMMs effectively reduce the number of numeric

parameters of MMs through abstraction. Specifically,

AAMMs learn an abstraction hierarchy over the set of

unique k-grams, i.e., substrings of length k, extracted

from the training data. An abstraction hierarchy over

such a set is a tree such that the leaf nodes correspond

to singleton sets containing individual k-grams, and the

internal nodes correspond to abstractions or groupings

of “similar” k-grams. The procedure for constructing

abstraction hierarchies is based on hierarchical agglom-

erative clustering. At each step, two abstractions are

merged together if they result in the least loss in mutual

information with respect to the next element in the

sequence. An m-cut or level of abstraction through

the resulting abstraction hierarchy is a set of m nodes

that form a partition of the set of k-grams. An m-cut

specifies an AAMM where the m abstractions are used

as “features” in the classification model (with m being

much smaller than the number of unique k-grams).

• Abstraction acts as a regularizer that helps minimize

overfitting (through parameter smoothing) when the

training set is limited in size. Hence, AAMMs can yield

more robust models as compared to MMs.

We evaluate AAMMs on three protein subcellular lo-

calization prediction tasks. The results of our experiments

show that AAMMs are able to use significantly smaller

number of features (by one to three orders of magnitude) as

compared to MMs. AAMMs often yield significantly more

accurate classifiers than MMs. Moreover, the results show

that AAMMs often perform significantly better than variable

order Markov models (VMMs) (4), such as decomposed

context tree weighting, prediction by partial match, and

probabilistic suffix trees.

The rest of the paper is organized as follows: Section 2

introduces AAMMs. Section 3 presents experimental design

and results and Section 4 concludes with a summary and

discussion.

II. FROM MARKOV MODELS TO ABSTRACTION

AUGMENTED MARKOV MODELS

Before introducing abstraction augmented Markov mod-
els, we briefly review Markov models.

A. Markov Models

Let x = x0 · · ·xn−1 be a sequence over a finite alphabet

X , x ∈ X ∗, and let Xi, for i = 0, · · · , n − 1, denote the

random variables corresponding to the sequence elements xi.
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Figure 1: (a) 2nd order Markov model; (b) 2nd order abstraction augmented Markov model

In a kth order Markov model (MM), the sequence elements

satisfy the Markov property:

Xi ⊥⊥ {X0, · · · , Xi−k−1} | {Xi−k, · · · , Xi−1}. (1)

That is, Xi is conditionally independent of X0, · · · , Xi−k−1

given Xi−k, · · · , Xi−1 for i = k, · · · , n−1. Xi−k, · · · , Xi−1

are called parents of Xi. Hence, under a kth order MM, the

joint probability of X = {X0, · · · , Xn−1} can be factorized

as follows:

p(X) = p(X0, · · · , Xk−1)
n−1∏
i=k

p(Xi|Xi−k, · · · , Xi−1). (2)

An MM can be represented as a directed graph where the

nodes represent the random variables Xi, and the edges

represent direct dependencies between neighboring elements

of x. Figure 1a shows the directed graph for a 2nd order MM

on a subset of nodes of x: {Xi−3, · · · , Xi+1}.
Let Si−1 denote the parents Xi−k · · ·Xi−1 of Xi in a

kth order MM. The values of Si−1 represent instantiations

of Xi−k · · ·Xi−1, which are substrings of length k (i.e.,

k-grams) over the alphabet X . Furthermore, let S denote

the set of k-grams over X , s denote a k-gram in S, and

σ a symbol in X . The set of parameters θ that define an

MM is: θ = {θσ|s : σ ∈ X , s ∈ S; θs : s ∈ S}, where

θσ|s = p(σ|s; θ), θs = p(s|θ).
The cardinality of S (i.e., |S|) is |X |k and is denoted by

N . Hence, the number of parameters of a kth order MM

is proportional to N , which grows exponentially with the

length k of direct dependencies.

B. Abstraction Augmented Markov Models

Abstraction augmented Markov models (AAMMs) ef-

fectively reduce the number of numeric parameters of a

kth order MM by grouping k-grams into an abstraction

hierarchy.

Definition 1 (Abstraction Hierarchy) An abstraction
hierarchy T over a set of k-grams S is a rooted tree such
that: (1) the root of T denotes S; (2) the leaves of T
correspond to singleton sets containing individual k-grams
in S; (3) the children of each node (say a) correspond to a

partition of the set of k-grams denoted by a. Thus, a denotes
an abstraction or grouping of “similar” k-grams.

Note that each internal node (or abstraction a) contains

the k-grams at the leaves of the subtree rooted at a.

Definition 2 (m-Cut) An m-cut γm through an abstrac-
tion hierarchy T is a subset of m nodes of T such that for
any leaf si ∈ S, either si ∈ γm or si is a descendant of
some node in γm. The set of abstractions A at any given
m-cut γm forms a partition of S.

Specifically, an m-cut γm partitions the set S of k-grams

into m (m ≤ N ) non-overlapping subsets A = {a1 :
S1, · · · , am : Sm}, where ai denotes the i-th abstraction and

Si denotes the subset of k-grams that are grouped together

into the i-th abstraction based on some similarity measure.

Note that S1∪· · ·∪Sm = S and ∀1 ≤ i, j ≤ m, Si∩Sj = ∅.
AAMMs extend the graphical structure of MMs by in-

troducing new variables Ai that represent abstractions over

the values of Si−1, for i = k, · · · , n− 1. In AAMMs, each

node Xi directly depends on Ai as opposed to Si−1 (as

in MMs). Figure 1b shows the directed graph for a 2nd

order AAMM on a subset of nodes: {Xi−3, · · · , Xi+1} ∪
{Ai−1, · · · , Ai+1}. Each variable Ai takes values in the set

of abstractions A = {a1, · · · , am} corresponding to an m-

cut, γm, which specifies an AAMM. We model the fact that

Ai is an abstraction of Si−1 by defining p(Ai = ai|Si−1 =
si−1) = 1 if si−1 ∈ ai, and 0 otherwise, where si−1 ∈ S and

ai ∈ A represent instantiations of Si−1 and Ai, respectively.

Under a kth order AAMM, the joint probability of the

entire set of variables X ∪A can be factorized as follows:

p(X,A) = p(Sk−1) ·
n−1∏
i=k

p(Xi|Ai) · p(Ai|Si−1). (3)

The set of parameters θ of an AAMM is: θ = {θσ|a : σ ∈
X , a ∈ A; θa|s : a ∈ A, s ∈ S; θs : s ∈ S}, where θσ|a =
p(σ|a; θ), θa|s = p(a|s; θ), and θs = p(s|θ).

1) Learning AAMMs: In what follows we show how

to learn AAMMs from data. This involves: learning an

abstraction hierarchy; and learning model parameters using

the resulting abstraction hierarchy.

Learning an Abstraction Hierarchy: The procedure for

learning an abstraction hierarchy (AH) over the set S of k-
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Algorithm 1 Abstraction Hierarchy Learning

Input: A set of k-grams S = {s1, · · · , sN}; a set of

sequences D ={xl}l=1,···,|D|, xl ∈ X ∗
Output: An abstraction hierarchy T over S
Initialize A = {a1 :{s1}, · · · , aN :{sN}}, and

T = {a1 :{s1}, · · · , aN :{sN}}
for w = N + 1 to 2N − 1 do

(umin, vmin) = arg minu,v∈AdD(au, av)
aw = aumin

∪ avmin

A = A\{aumin
, avmin

} ∪ {aw}
T = T ∪{aw} s.t. Pa(aumin) = Pa(avmin) = aw

end for

grams is shown in Algorithm 1. The input consists of the

set S of k-grams and a set D of sequences over the alphabet

X , D = {xl}l=1,···,|D|. The output is an AH T over S.

The algorithm starts by initializing the set of abstractions

A such that each abstraction ai ∈ A corresponds to a k-

gram si ∈ S, i = 1, · · · , N (the leaves of T are initialized

with elements of S). The algorithm recursively merges pairs

of abstractions that are most “similar” to each other and

terminates with an AH T after N − 1 steps. We store T
in a last-in-first-out (LIFO) stack. For a given choice of the

size m of an m-cut through T , we can extract the set of

abstractions that specifies an AAMM, by discarding the top

m− 1 elements from the stack.

Next we introduce a measure of similarity between a pair

of abstractions. We consider two abstractions to be “similar”

if they occur within similar contexts.

Context of an abstraction. We define the context of a
k-gram s ∈ S to be the conditional probability distribution

p(Xi|s) of the sequence element Xi that “follows” the k-

gram s. The estimate p̂(Xi|s) of p(Xi|s) can be obtained

from the data set D of sequences as follows:

p̂(Xi|s) =

[
1 +

∑|D|
l=1 #[sσ,xl]

|X |+ ∑
σ′∈X

∑|D|
l=1 #[sσ′ ,xl]

]
σ∈X

(4)

where #[sσ,xl] represents the number of times the symbol

σ “follows” the k-gram s in the sequence xl.

The context of an abstraction a (i.e., a set of k-grams

a = {s1, · · · , s|a|}) is obtained using a weighted aggregation

of the contexts of its constituent k-grams. The weights

are chosen to ensure that such aggregation yields a proper
probability distribution. That is,

p̂(Xi|a) =
|a|∑
t=1

#st∑|a|
t=1 #st

· p̂(Xi|st), (5)

where #st = 1 +
∑|D|

l=1 #[st,xl].
From the preceding definitions it follows that p(Xi = σ|a)

corresponds to the conditional probability that the symbol σ,

σ ∈ X , “follows” some k-gram st ∈ a.

Distance between abstractions. We proceed to define a

distance between a pair of abstractions au and av , denoted

by dD(au, av). As we shall see below, the definition of

d ensures that, at each step, Algorithm 1 selects a pair

of abstractions to merge such that the loss of information

resulting from the merger is minimized.

The reduction, due to a single step of Algorithm 1, in

mutual information between a node Xi and its parent Ai in

an AAMM (see Figure 1b) can be calculated as follows: Let

γm be an m-cut through the AH T and γm−1 be the (m−1)-
cut through T that results after the merger of au and av into

aw, i.e., {au, av} → aw. Let Am and Am−1 denote the sets

of abstractions corresponding to γm and γm−1, respectively.

Furthermore, let πu and πv denote the prior probabilities of

au and av in the merger aw, i.e., πu = p(au)
p(au)+p(av) and

πv = p(av)
p(au)+p(av)

1.

Proposition 1: The reduction in the mutual information
between each variable Xi and its parent Ai, due to the
merger of au and av into aw is given by δI({au, av} , aw) =
(p(au) + p(av)) · JSπu,πv

(p(Xi|au), p(Xi|av)) ≥ 0,
where JSπu,πv

(p(Xi|au), p(Xi|av)) represents the weighted
Jensen-Shannon divergence (5) between two probability dis-
tributions p(Xi|au) and p(Xi|av) with weights πu and πv ,
respectively.

We define the distance between two abstractions au and

av in D as follows:

dD(au, av) = δI({au, av} , aw) where aw = {au ∪ av}.
The effect of one merge of Algorithm 1 on the log likelihood

of the data is given by the following proposition.

Proposition 2: The reduction in the log likelihood of the
data D given an AAMM based on the merger {au, av} → aw

is given by δLL({au, av} , aw) = M · (p(au) + p(av)) ·
JSπu,πv (p(Xi|au), p(Xi|av)) ≥ 0, where M is the cardi-
nality of the multiset of (k+1)-grams in D. (See Appendix
B for the proof sketch of Propositions 1 and 2).

Algorithm Analysis: Recall that S = {s1, · · · , sN} is

the set of unique k-grams in D, N = |S|, and that

A = {a1, · · · , am} is the set of constructed abstractions,

m = |A|. At each step, the algorithm searches for a pair

of abstractions that are most “similar” to each other. The

computation of dD(au, av) takes O(|X |) time. Furthermore,

at each step, for each Aw = {a1 : S1, · · · , aw : Sw},
1The probability p(a) represents the prior probability of an abstraction

a. The estimate p̂(a) of p(a) can be obtained from D as follows:

p̂(a) =
1 +

∑|D|
l=1

#[a,xl]

|A| +
∑

a
′∈A

∑|D|
l=1

#[a′ ,xl]
,

where #[a,xl] is the number of times a occurs in xl (Note that a =
{s1, · · · , s|a|}. If we “abstract out” the difference between all the k-grams
s1, · · · , s|a| in a and replace each of their occurrences in data D by a,

then #a =
∑|a|

t=1
#st).
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a0:{ra} a1:{ca} a2:{da} a3:{ab}

a3:[.14,.14,.44,.14,.14]

a4:{br} a5:{ac} a6:{ad}

a9:{ra,ca}

a10:{ra,ca,da}
a10:[.17,.22,.17,.22,.22]

a7:{ac,ad}

a8:{br,ac,ad}
a8:[.36,.16,.16,.16,.16]

a11:{ra,ca,da,ab}

a12:{ra,ca,da,ab,br,ac,ad}

(a)

X0 · · · Xi−3 Xi−2Xi−1 Xi Xi+1 · · ·Xn−1

Aiγ3
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Figure 2: (a) An abstraction hierarchy T on a set S = {ra, ca, da, ab, br, ac, ad} of 2-grams over the alphabet X =
{a, b, c, d, r}. T is learned from the training sequence abracadabra. The subset of nodes A = {a10, a3, a8} represents a

3-cut γ3 through T ; (b) The computation of p(x = x0, · · · , xn−1) given the abstraction hierarchy T and the cut γ3.

w = N, · · · , m + 1, there are
w(w−1)

2 possible pairs of

abstractions to consider. However, the computational time

can be reduced by a factor of N by precomputing the

distances dD(au, av) between each pair of (trivial) au and

av in AN , and then, at each step, updating only the distances

between pairs containing aumin
and avmin

. Thus, the time

complexity of Algorithm 1 is O(N2|X |).
Next we show how to learn AAMM parameters from data

using the resulting abstraction hierarchy T .
Learning AAMM Parameters: AAMMs are completely

observable graphical models (i.e. there are no hidden vari-

ables). Given a training set D = {xl}l=1,···,|D|, and a set of

abstractions A corresponding to an m-cut, γm, through the

resulting AH T , learning an AAMM reduces to estimating

the set of parameters θ from D, denoted by θ̂, using

maximum likelihood estimation (6). This can be done as

follows: use Equation (4) to obtain the estimates
[
θ̂σ|s

]
σ∈X

of
[
θσ|s

]
σ∈X for any k-gram s ∈ S (note that these estimates

correspond to the estimates
[
θ̂σ|a

]
σ∈X

when a = {s},

i.e., the leaf level in the AH T ). The estimates
[
θ̂σ|a

]
σ∈X

of
[
θσ|a

]
σ∈X , when a = {s1, · · · , s|a|}, are a weighted

aggregation of the estimates of a’s constituent k-grams, i.e.,

θ̂σ|a =
|a|∑
t=1

#st∑|a|
t=1 #st

· θ̂σ|st
, (6)

where #st are defined as before. The estimate θ̂s of θs is

obtained from D as follows:

θ̂s =
1 +

∑|D|
l=1 #[s,xl]

|S|+ ∑
s′∈S

∑|D|
l=1 #[s′ ,xl]

, (7)

where #[s,xl] is the number of times s occurs in xl. We

used Laplace correction to obtain smoothed estimates of

probabilities.

Given an AH and a choice of the size m of an m-cut,

an array of indices of size N (corresponding to the number

of unique k-grams extracted from D2) is used to specify

the membership of k-grams in the abstractions on the m-

cut. Hence, the space complexity for storing this array is N .

However, the number of parameters of the corresponding

AAMM is m|X |, as opposed to N |X | in the case of MMs

(m � N ).

Figure 2a shows an example of an AH T learned

from a training set, which consists of a single se-

quence s = abracadabra over the set of 2-grams S =
{ra, ca, da, ab, br, ac, ad} extracted from s, where the al-

phabet X is {a, b, c, d, r}. In the figure, the subset of

nodes {a10, a3, a8} represents a 3-cut γ3 through T . The

nodes of γ3 are annotated with the AAMM parameters

learned from the same training set of a single sequence

abracadabra. Thus, the probabilities that the letters a, b,

c, d, and r “follow” the abstraction a10 : {ra, ca, da}, i.e.,[
θ̂σ|a10

]
σ∈X

, are .17, .22, .17, .22, and .22, respectively.

(Note that, in practice, T is learned from a training set

consisting of a large number of sequences).

2) Using AAMMs for Classification: Given a new se-

quence x = x0, · · · , xn−1 and an AAMM (corresponding

to an m-cut γm), p(x|θ̂) is obtained as follows: initialize

p(x|θ̂) by θ̂x0,···,xk−1 . For each k-gram xi−k, · · · , xi−1 find

the abstraction aj ∈ γm it belongs to and retrieve the

parameters associated with aj . Successively multiply θ̂xi|aj

for i = k, · · · , n− 1 to obtain p(x|θ̂).
Figure 2b shows how to compute p(x) given the resulting

abstraction hierarchy over the set of 2-grams and the cut

2The number of unique k-grams is exponential in k. However, for large
values of k, many of the k-grams may not appear in the data. Note that the
number of unique k-grams is bounded by the size of D, i.e., the number
of (non-unique) k-grams in D.
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γ3. For example, p(abracadabra|θ̂), where θ̂ represents the

AAMM corresponding to the cut {a10, a3, a8} in Figure 2a,

is obtained as follows:

p(abracadabra) = p(ab)p(r|a3)p(a|a8)p(c|a10)p(a|a8)
p(d|a10)p(a|a8)p(b|a10)p(r|a3)p(a|a8 )

= 0.18 · 0.14 · 0.36 · 0.17 · 0.36
0.22 · 0.36 · 0.22 · 0.14 · 0.36

AAMMs can be used for classification by learning a

model for each class and selecting the model with the highest

posterior probability when classifying new data. Specifically,

classification of a sequence x requires computation of con-

ditional probability p(cj |x; θ̂), for each class cj ∈ C, where

C is the set of possible classes. By applying Bayes rule, we

obtain:

p(cj |x; θ̂) ∝ p(x|cj ; θ̂)p(cj |θ̂). (8)

The class with the highest posterior probability,

arg maxj p(cj |x; θ̂) is assigned to x.

III. EXPERIMENTS AND RESULTS

A. Experimental Design

Our experiments are designed to explore the following

questions: (i) How does the performance of AAMMs com-

pare with that of MMs and Naı̈ve Bayes (NB) classifiers,

given that AAMMs effectively reduce the number of nu-

meric parameters of MMs through abstraction? (ii) What

is the effect of the algorithms for learning AHs on the

quality of the predictions made by AAMMs? (iii) How does

the performance of AAMMs compare with that of variable

order Markov models (VMMs) that use more compact

representations of the abstraction hierarchies compared to

AAMMs?

To answer the first question, we trained AAMMs for

values of m that range from 1 to N , where m is the

cardinality of the set of abstractions Am used as “features”

in the classification model, and N is the number of unique

k-grams, and compared the performance of AAMM with

that of MM and NB over the entire range from 1 to N .

To answer the second question, we compared our AAMM

clustering algorithm with agglomerative information bot-

tleneck (AIB) introduced by Slonim and Tishby (7). The

primary difference between our AAMM clustering algorithm

and AIB is in the criterion used to cluster the k-grams,

i.e., in AAMM, the k-grams are clustered based on the

similarity between the conditional distributions of Xi given

the k-grams, where Xi takes values in X ; in AIB, the k-

grams are clustered based on the similarity between the

conditional distributions of the class variable C given the

k-grams, where C takes values in C.

We learned AHs from training sequences as follows: (i)

a class-specific AH for each class using our AAMM clus-

tering algorithm (from sequences belonging to that class);

(ii) a class-independent AH using our AAMM clustering

algorithm (from all training sequences, independent of the

class variable); and (iii) an AH using the AIB clustering

algorithm (from all sequences). In each case, we learned

AAMM parameters for each class (from sequences in that

class). We compared the performance of AAMMs (using

different clustering algorithms) over the entire range from 1
to N .

To answer the third question, we trained AAMMs for

values of m ranging from 1 to N and compared their

performance with that of VMM-type learning algorithms

(4), including Lempel-Ziv 78 (LZ78); an improved ver-

sion of LZ78, namely LZ-MS; decomposed context tree

weighting (DE-CTW); prediction by partial match (PPM-

C); and probabilistic suffix tree (PST). In our experiments,

the AAMM order is k = 3. We set the parameters of the

VMM-type algorithms as follows: input shifting S = 2,

back-shift parsing M = 1 for LZ-MS; the upper bound k
on the Markov order for DE-CTW, PPM-C, and PST is set

to 3. In addition, for PST, the other parameters are set as

in (4), namely pmin = 0.001, α = 0, γ = 0.0001, and

r = 1.05. (see Appendix A for a brief description of these

five learning algorithms and an explanation of parameters).

For the VMM-type learning algorithms, we have used the

VMM implementation of Begleiter et al., 2004 (4).

We present results of experiments on three protein sub-

cellular localization data sets: psortNeg3 introduced in (8),

plant, and non-plant4 introduced in (9). The psortNeg
data set is extracted from PSORTdb v.2.0 Gram-negative

sequences, which contains experimentally verified localiza-

tion sites. Our data set consists of all proteins that belong

to exactly one of the following five classes: cytoplasm
(278), cytoplasmic membrane (309), periplasm (276), outer
membrane (391) and extracellular (190). The total number

of examples (proteins) in this data set is 1444. The plant data

set contains 940 examples belonging to one of the following

four classes: chloroplast (141), mitochondrial (368), secre-
tory pathway/signal peptide (269) and other (consisting of

54 examples with label nuclear and 108 examples with label

cytosolic). The non-plant data set contains 2738 examples,

each in one of the following three classes: mitochondrial
(361), secretory pathway/signal peptide (715) and other
(consisting of 1224 examples labeled nuclear and 438 ex-

amples labeled cytosolic).

For all of the experiments, we report the average classifi-

cation accuracy obtained in a 5-fold cross-validation experi-

ment. We define the relative reduction in classification error

between two classifiers to be the difference in error divided

by the larger of the two error rates. To test the statistical

significance of our results, we used the 5-fold cross-validated

paired t test for the difference in two classification accuracies

3www.psort.org/dataset/datasetv2.html
4www.cbs.dtu.dk/services/TargetP/datasets/datasets.php
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Figure 3: Comparison of abstraction augmented Markov model (AAMM) with Markov model (MM) and Naı̈ve Bayes (NB)

on (a) psortNeg, (b) plant, and (c) non-plant data sets, respectively. The x axis shows the number of abstractions m, used

as “features” in the classification model, on a logarithmic scale.

(10). The null hypothesis (i.e., two learning algorithms M1

and M2 have the same accuracy on the same test set) can be

rejected if |t(M1,M2)| > t4,0.975 = 2.776. We abbreviate

|t(M1,M2)| by |t| in what follows.

B. Results

We trained AAMMs and MMs using 3-grams extracted

from the data. For psortNeg, plant, and non-plant data

sets, the numbers of 3-grams are 7970, 7965, and 7999
respectively.

Comparison of AAMMs with MMs and NB. Figure 3

shows results of the comparison of AAMMs with MMs on

all three data sets considered in this study. As can be seen

in the figure, AAMM matches the performance of MM with

substantially smaller number of abstractions. Specifically,

the performance of MM trained using approximately 8000
3-grams is matched by that of AAMM trained using only

79, 19 and 855 abstractions on the psortNeg, plant, and

non-plant data sets, respectively. On the psortNeg and non-
plant data sets, AAMM has performance similar to that of

MM over a broad range of choices of m. On the plant data

set, AAMM significantly outperforms MM for many choices

of m. For example, with only 168 abstractions, AAMM

achieves its highest accuracy of 71.59% as compared to

MM which achieves an accuracy of 68.19% with N = 7965
(|t| = 3.03). This represents 13% reduction in classification

error. Not surprisingly, when m = N , the performance of

AAMMs is the same as that of MMs (AAMM trained using

N abstractions and MM are exactly the same models).

We conclude that AAMMs can match and, in some

cases, exceed the performance of MMs using significantly

smaller number of abstractions (by one to three orders of

magnitude). AAMMs could provide more robust estimates

of model parameters than MMs, and hence, help minimize

overfitting.

Figure 3 also shows the comparison of AAMM with NB

trained using a “bag of letters” feature representation. As can

be seen, except for a few values of m (m < 18, m < 5, and

m < 2 on psortNeg, plant, and non-plant, respectively),

AAMM significantly outperforms NB (for any other choices

of m). MM is superior in performance to NB on all data sets.

Comparison of AAMM clustering algorithm with Ag-
glomerative Information Bottleneck. Figure 4 shows, on

all three data sets, results of the comparison of AAMMs

trained based on (i) class-specific AHs, with one AH for

each class, (ii) a single class-independent AH, and (iii) an

AH produced using AIB (7). As can be seen in the figure,

AAMMs trained based on class-specific AHs generated by

the clustering algorithm proposed here significantly outper-

form AAMMs trained based on an AH generated by AIB,

over a broad range of values of m (from 1 to 1000). For

example, on the plant data set, with m = 100, the accuracy

of AAMM based on our clustering algorithm is 69.57%,

whereas that of AIB-clustering based AAMM is 48.29%
(|

t| = 11.31). This represents 42% reduction in classification

error. As expected, AAMMs trained using class-specific

AHs significantly outperform AAMMs trained using a class-

independent AH on all three data sets.

We conclude that organizing k-grams in an AH based

on the conditional distribution of the next element in the

sequence rather than the conditional distribution of the class

given the k-grams produces AHs that are better suited for

AAMMs, and hence, result in better performing AAMMs.

Comparison of AAMMs with VMM-type learning
algorithms. Table I summarizes, on all three data sets, the

results of the comparison of AAMMs with five VMM-type

learning algorithms: Lempel-Ziv 78 (LZ78); an improved

version of LZ78, namely LZ-MS; decomposed context tree

weighting (DE-CTW); prediction by partial match (PPM-C);

and probabilistic suffix tree (PST). For AAMMs, we show
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Figure 4: Comparison of the AAMM clustering algorithm with the Agglomerative Information Bottleneck on (a) psortNeg,

(b) plant, and (c) non-plant data sets, respectively. The x axis shows the number of abstractions m on a logarithmic scale.

Data sets LZ78 LZ-MS DE-CTW PPM-C PST AAMM
psortNeg 0.67±0.012 0.69±0.014 0.74±0.008 0.75±0.006 0.76±0.006 0.77±0.007
plant 0.62±0.017 0.68±0.019 0.55±0.032 0.72±0.019 0.66±0.016 0.72±0.015
non-plant 0.67±0.006 0.70±0.005 0.68±0.018 0.73±0.009 0.79±0.007 0.75±0.006

Table I: Classification accuracy ± SEM of AAMMs and VMM-type learning algorithms on psortNeg, plant, and non-plant
data sets (SEM = standard error of the means).

the best classification accuracy over the entire range of val-

ues of m, on each data set. The values of m where AAMM

reaches the best classification accuracy are: 438, 168, 7070
on psortNeg, plant, non-plant data sets, respectively.

As can be seen in the table, AAMM significantly out-

performs LZ78, LZ-MS, and DE-CTW on all three data

sets (p < 0.05). AAMM significantly outperforms PPM-

C on psortNeg (|t| = 4.973), and non-plant (|t| = 3.099),

and has the same performance as PPM-C on plant. Fur-

thermore, AAMM significantly outperforms PST on plant
(|t| = 4.163), and is comparable in performance with PST

on psortNeg (the null hypothesis is not rejected). On non-
plant, PST significantly outperforms AAMM (|t| = 4.433).

We conclude that AAMMs are competitive with, and often

significantly outperform, VMM-type learning algorithms on

the protein subcellular localization prediction task.

IV. SUMMARY AND DISCUSSION

A. Summary

We have presented abstraction augmented Markov models

that simplify the data representation used by the standard

Markov models. The results of our experiments on three

protein subcellular localization data sets (psortNeg, plant,
and non-plant) have shown that:

• Organizing the set of k-grams in a hierarchy using

abstraction makes it possible to construct predictive

models that use significantly smaller number of features

(by one to three orders of magnitude) as compared to

MMs (which is exponential in k);

• While abstraction helps reduce the number of MM

parameters, the performance of AAMMs is similar, and

in some cases, significantly better than that of MMs;

• AAMMs are competitive with, and in many cases,

significantly outperform variable order Markov models.

These conclusions are supported by results of additional

experiments on three other data sets compiled from the

Structural Classification of Proteins (SCOP) database: E, F,

and G SCOP classes that have been used by other authors

(4) (data not shown due to space limitation).

B. Related Work
Several authors have used abstraction hierarchies over

classes to improve the performance of classifiers (e.g.,

(11; 12). Others have explored the use of abstraction hier-

archies to learn compact predictive models (13; 14). Slonim

and Tishby (7), Baker and McCallum (15), and Silvescu

et al. (16) have generated abstraction hierarchies over fea-

tures or k-grams based on the similarity of the probability

distributions of the classes conditioned on the features or k-

grams (respectively) and used the resulting abstract features

to train classifiers (15; 16). In contrast, the focus of this

paper is on abstraction hierarchies that group k-grams (or

more generally their abstractions) based on the similarity of

the probability distributions of each letter of the alphabet

conditioned on the abstractions, and the use of the resulting

abstraction hierarchies over k-grams to construct generative

models from sequence data.
Begleiter et al. (4) (and papers cited therein) have ex-

amined and compared several methods for prediction using
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variable order MMs (VMMs), including probabilistic suffix

trees (PSTs) (17). PSTs can be viewed as a variant of

AAMMs wherein the abstractions are constrained to share

suffixes. Hence, the clustering of k-grams in PSTs can be

represented more compactly compared to that of AAMMs,

which require storing an array of indices of size N to

specify the membership of k-grams in the abstractions (or

clusters). The results of our experiments show that AAMMs

are competitive with VMM-type learning algorithms. Inter-

polated MMs (18), which recursively combine several fixed-

order MMs, capture important sequence patterns that would

otherwise be ignored by a single fixed-order MM.

C. Discussion

Abstraction helps reduce the model input size and, at the

same time, could potentially improve the statistical estimates

of complex models by reducing the number of parameters

that need to be estimated from data (hence reducing the risk

of overfitting). However, one limitation of our abstraction-

based approach is that, while it provides simpler models, the

simplicity is achieved at the risk of some information loss

due to abstraction. To trade off the complexity of the model

against its predictive accuracy, it would be useful to augment

the algorithm so that it can choose an optimal cut in an AH.

This can be achieved by designing a scoring function (based

on a conditional MDL score), similar to Zhang et al. (13)

in the case of Naı̈ve Bayes, to guide a top-down search for

an optimal cut.

It is worth noting that the AHs can be learned using any

top-down or bottom-up clustering procedure. However, in

this study, we have used a bottom-up approach because it

is simple, fast, and allows iterating through all cardinalities,

from 1 to N .

Connection between AAMMs and HMMs. An AAMM

can be simulated by an appropriately constructed HMM

where the number of hidden states is equal to the number of

abstractions in the AAMM. However, as a state corresponds

to an abstraction over the observable variables, the state is

not really “hidden”. It can be derived in a feed-forward man-

ner, thus not requiring a Backward Reasoning/Expectation

step. This allows a “one pass through the data” learning

procedure based on MAP learning (19) once the set of

abstractions is chosen. Unlike the learning procedure of

HMMs (which involves the Expectation Maximization (EM)

algorithm), the AAMM learning procedure is not prone

to local maxima, has lower variance as no uncertainty is

inherited from the inference performed in the E step, and

requires less time.

The overall time complexity of AAMM is O(N2 ·|X |+N ·
|D|), where N is the number of unique k-grams, |X | is the

alphabet size, and |D| is the data set size, i.e., the number of

(non-unique) k-grams in D. The time complexity of HMM

EM learning procedure for a fixed number of hidden states

is O(T · |D| ·(|H|2 + |H| · |X |)), where |H| is the number of

hidden states and T is the number of EM iterations. Running

this procedure for all numbers of hidden states (from 1 to

N ) requires an overall time of O(N2(N + |X |) · T · |D|).
Because N � |D|, our algorithm requires at least a factor

of N ·T less time than HMM. While algorithms that attempt

to automatically determine the number of hidden states in

HMMs can be used (e.g., based on the Chinese Restaurant

Process (20)), they incur additional costs relative to standard

HMM, and are prone to the difficulties encountered by

hidden variable models. Hence, although less expressive than

HMMs, AAMMs are easier to learn.

D. Future directions

Some directions for further research include: (i) design

of AA Interpolated MMs (AAIMMs) that extend Interpo-

lated MMs in the same way AAMMs extend MMs; (ii)

applications of AAMMs to settings where data have a much

richer structure (e.g., images and text); (iii) exploration of

alternative clustering algorithms for generating abstraction

hierarchies for use with AAMMs; (iv) incorporation of

MDL-like criteria for finding an optimal level of abstraction.
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APPENDIX A

In what follows, we briefly describe five algorithms for

learning variable order Markov models (VMMs) from a set

of training sequences D over an alphabet X . See (4) for

more details and citations therein.

Lempel-Ziv 78 (LZ78): The LZ78 learning algorithm (21),

(22) extracts a set Ŝ of non-overlapping adjacent phrases
from sequences in D as follows: Ŝ initially contains only the

empty phrase ε; at each step, a new phrase, which extends

an existing phrase from Ŝ by a symbol in X , is added to Ŝ.

The algorithm then constructs a phrase tree T over X
such that the degree of each internal node is exactly |X |.
Initially, T contains the root and |X | leaves (i.e., one leaf

for each symbol in X ). For any phrase s ∈ Ŝ, start at the

root and traverse T according to s. When a leaf is reached,

it is made an internal node by expanding it into |X | leaf

nodes. Each node stores a counter such that the counter of

a leaf node is one, and that of an internal node is the sum

of the counters stored at the child nodes.

Improved Lempel-Ziv 78 Algorithm (LZ-MS): Two major

disadvantages of the LZ78 learning algorithm are: (i) unre-
liable estimation of model parameters when subsequences s
of a sequence x are not parsed, and hence, they are not part

of T ; (ii) unreliable computation of p̂(σ|s) when the algo-

rithm ends in a leaf node while traversing T along the path

corresponding to s starting from the root. LZ-MS learning

algorithm (23) aims at addressing these disadvantages by

introducing two parameters: input shifting, denoted by S,
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and back-shift parsing, denoted by M . The S parameter

ensures that more phrases are extracted during learning,

whereas the M parameter ensures the existence of a suffix

of s when computing p̂(σ|s).
Decomposed Context Tree Weighting (DE-CTW): The

CTW learning algorithm (24) combines exponentially many

VMMs of k-bounded order in an efficient way. The CTW

algorithm over binary alphabets X constructs a perfect
binary tree T of height k from sequences in D. Each node is

labeled with the string s corresponding to the path from this

node to the root, and stores two counters, which represent

the number of times each symbol in X (0 or 1) occurs after

s in D.

CTW algorithm can be extended to work with multi-

alphabets. One approach, called decomposed CTW (DE-

CTW), uses a tree-based hierarchical decomposition of the

multi-valued prediction problem into binary problems.

Prediction by Partial Match (PPM-C): The PPM learning

algorithm (25) requires an upper bound k on the Markov

order of the VMM it learns. It constructs a tree T of maximal

depth k+1 from sequences in D as follows: it starts with the

root node which corresponds to the empty string ε and parses

sequences in D, one element at a time; each element xi in

a sequence x and its k preceding elements xi−k, · · · , xi−1

form a path of length k +1 in T . Each node in T is labeled

by a symbol σ and stores a counter. The counter of a node σ
on a path sσ from the root represents the frequency counts

of sσ in D, denoted by #sσ.

To obtain smoothed estimates of probabilities for any

string s, |s| ≤ k, PPM introduces a new variable, called

escape, for all symbols in the alphabet that do not ap-

pear after s in D and allocates a probability mass for

all these symbols, i.e., p(escape|s). 1 − p(escape|s) is

distributed among all other symbols that occur after s
in D. A successful PPM variant, namely PPM-C, per-

forms mass probability allocation for escape and mass

probability distribution over the other symbols as follows:

p̂(σ|s) = #sσ

|Xs|+
∑

σ′∈Xs
#sσ′

, if σ ∈ Xs, p̂(escape|s) =
|Xs|

|Xs|+
∑

σ′∈Xs
#sσ′

, where |Xs| denotes the set of symbols

in X that occur after s in D.

Probabilistic Suffix Tree (PST): The PST learning algo-

rithm (26) constructs a non empty tree T over an alphabet

X such that the degree of each node varies between 0 (for

the leaves) and |X | (for the internal nodes). Each edge e is

labeled by a single symbol in X , and each node v is labeled

by a sub-sequence s that is obtained by the concatenation

of edge labels on the path from v up to the root of T .

In the first stage, the PST learning algorithm identifies a

set Ŝ of candidate suffixes of length ≤ k from D (k is

the maximal length of a suffix), such that the empirical

probability of each suffix s ∈ Ŝ, p̂(s), is above some

threshold pmin. In the second stage, a candidate suffix s and

all its suffixes are added to T if s satisfies two conditions:

s is “meaningful” for some symbol σ (i.e., p̂(σ|s) is above

some user threshold (1+α)γmin), and s provides additional

information relative to its parent s′, where s′ is the string

obtained from s by deleting the leftmost letter (i.e.,
p̂(σ|s)
p̂(σ|s′)

is greater than a user threshold r or smaller than 1/r). In the

last stage, the probability distribution associated with each

node, p(σ|s) over X for each s, are smoothed.

APPENDIX B

Lemma 1: Let X and Z be two random variables such

that Z can take on k possible values. Let p (zi) be the prior

distribution of zi and p (x|zi) be the conditional distribution

of X given zi for i = 1, · · · , k. Then:

JSp(z1),···,p(zk) (p(x|z1), · · · , p(x|zk))

= H

(
k∑

i=1

p(zi)p(x|zi)

)
−

k∑
i=1

p(zi)H (p(x|zi)) = I(X; Z)

where H(·) is Shannon’s entropy (5).

Proof of Proposition 1: Without loss of generality,

let us assume that the merger is {a1, a2} → a. Let

δI({a1, a2} , a) = I(A(Am), Xi) − I(A(Am−1), Xi) denote

the reduction in the mutual information I(A; Xi), where

A(Am) represents the variable A that takes values in the

set Am = {a1, · · · , am}. We use the above lemma. Hence,

δI({a1, a2} , a)

= JSp(a1),p(a2),···,p(am) [p(xi|a1), p(xi|a2), · · · , p(xi|am)]
−JSp(a),···,p(am) [p(xi|a), · · · , p(xi|am)]

= H

⎛
⎝ m∑

j=1

p(aj)p(xi|aj)

⎞
⎠−

m∑
j=1

p(aj)H (p(xi|aj))

−H

⎛
⎝p(a)p(xi|a) +

m∑
j=3

p(aj)p(xi|aj)

⎞
⎠

+p(a)H (p(xi|a)) +
m∑

j=3

p(aj)H (p(xi|aj))

= p(a)H (p(xi|a))−
2∑

j=1

p(aj)H (p(xi|aj))

= p(a)H

⎛
⎝ 1

p(a)

2∑
j=1

p(xi, aj)

⎞
⎠−

2∑
i=1

p(aj)H (p(xi|aj))

= p(a)

⎛
⎝H

⎛
⎝ 2∑

j=1

p(aj)
p(a)

p(xi|aj)

⎞
⎠−

2∑
j=1

p(aj)
p(a)

H (p(xi|aj))

⎞
⎠

= (p(a1) + p(a2)) · JSπ1,π2(p(Xi|a1), p(Xi|a2)).

Proof of Proposition 2: As in Proposition 1, let us

assume, without loss of generality, that the merge is

{a1, a2} → a. Hence, #a = #a1 + #a2. Furthermore, let

π1 = p(a1)
p(a1)+p(a2)

and π2 = p(a2)
p(a1)+p(a2)

.
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δLL({a1, a2} , a) = LL(A(Am), Xi)−LL(A(Am−1), Xi)

=
∑

xi∈X ,aj∈Am

log p(xi|aj)#[aj ,xi]

−
∑

xi∈X ,aj∈Am−1

log p(xi|aj)#[aj ,xi]

=
∑

xi∈X
log p(xi|a1)#[a1,xi]

+
∑

xi∈X
log p(xi|a2)#[a2,xi] −

∑
xi∈X

log p(xi|a)#[a,xi]

=
∑

xi∈X
#[a1, xi] log p(xi|a1) +

∑
xi∈X

#[a2, xi] log p(xi|a2)

−
∑

xi∈X
(#[a1, xi] + #[a2, xi]) · log p(xi|a1 ∪ a2)

= −Mp(a)
∑

xi∈X

⎛
⎝ 2∑

j=1

πjp(xi|aj)

⎞
⎠ log

⎛
⎝ 2∑

j=1

πjp(xi|aj)

⎞
⎠

+M · p(a)

⎛
⎝ ∑

xi∈X

2∑
j=1

πjp(xi|aj) log p(xi|aj)

⎞
⎠

= Mp(a)

⎛
⎝H

⎛
⎝ 2∑

j=1

πjp(xi|aj)

⎞
⎠−

2∑
j=1

πjH (p(xi|aj))

⎞
⎠

= M · ((p(a1) + p(a2)) · JSπ1,π2(p(Xi|a1), p(Xi|a2))

where M is the cardinality of the multiset of (k + 1)-
grams. We have used that: p(xi|a1 ∪ a2) = π1p(xi|a1) +
π2p(xi|a2), when a1 ∩ a2 = φ. and #[aj , xi] = p(aj , xi) ·
M = p(xi|aj) · p(aj) ·M = p(xi|aj) · πj · p(a) ·M .
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