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Abstract—The emergence of many interlinked, physically
distributed, and autonomously maintained RDF stores of-
fers unprecedented opportunities for predictive modeling and
knowledge discovery from such data. However existing machine
learning approaches are limited in their applicability because
it is neither desirable nor feasible to gather all of the data
in a centralized location for analysis due to access, memory,
bandwidth, computational restrictions, and sometimes privacy
and confidentiality constraints. Against this background, we
consider the problem of learning predictive models from
multiple interlinked RDF stores. Specifically we: (i) introduce
statistical query based formulations of several representative
algorithms for learning classifiers from RDF data; (ii) introduce
a distributed learning framework to learn classifiers from
multiple interlinked RDF stores that form a chain; (iii) identify
three special cases of RDF data fragmentation and describe
effective strategies for learning predictive models in each case;
(iv) consider a novel application of a matrix reconstruction
technique from the field of Computerized Tomography [1]
to approximate the statistics needed by the learning algo-
rithm from projections using count queries, thus dramatically
reducing the amount of information transmitted from the
remote data sources to the learner; and (v) report results
of experiments with a real-world social network data set
(Last.fm), which demonstrate the feasibility of the proposed
approach.

Keywords-classifier; supervised learning; distributed learn-
ing; RDF; SPARQL; linked data

I. INTRODUCTION

The growing adoption of a set of best practices, col-
lectively referred to as Linked Data, for publishing struc-
tured data on the Web [2], has made it possible to link
and share many disparate, previously isolated, distributed,
autonomously generated and managed data across virtually
every domain of human endeavor. The community-driven
Linked Open Data (LOD) effort allows structured data
to be represented using Resource Description Framework
(RDF, [3]) in the form of subject-predicate-object triples
(also called RDF triples), which describe a directed graph
where the directed labeled edges encode binary relations
between labeled nodes. RDF stores and associated query
languages such as SPARQL [4] offer the means to store
and query large amounts of RDF data. LOD also enables
integration of previously isolated distributed data such as
data stored in multi-relational databases [5]. At present, LOD
include a few hundred linked data sets that together contain

Figure 1. A motivating scenario of two RDF stores that are linked to
form a chain of RDF stores: Facebook users share posts about news items
published in New York Times.

in excess of a few trillion RDF triples [6]. These cover a
broad range of domains including government, life sciences,
geography, social media, and commerce. The emergence of
LOD offers unprecedented opportunities for using disparate
data sources in predictive modeling and decision making in
such domains.

We motivate the problem of learning predictive models
from multiple interlinked RDF stores using the scenario
shown in Fig. 1. In this case, one might want to use data
from Facebook and New York Times to predict the interest
of a user in belonging to a Facebook group, based on the
distribution of tags associated with the New York Times
news stories that the user has shared with her social network
on Facebook. This is an instance of the node prediction
problem [7]. In general, building such predictive models en-
tails using information from multiple interlinked, physically
distributed, autonomously maintained RDF stores. In such a
setting, it is neither desirable nor feasible to gather all of the
data in a centralized location for analysis, because of access,
memory, bandwidth, and computational restrictions. In other
settings, access to data may be limited due to privacy and
confidentiality constraints [8], [9]. This calls for techniques
for learning predictive models (e.g. classifiers) from multiple
interlinked RDF stores that support only indirect access to
data (e.g. via a query interface such as SPARQL). Barring
Lin et al. [10] who proposed an approach to learning rela-
tional Bayesian classifiers [11] from a single remote RDF
store using statistical queries against its SPARQL endpoint,
to the best of our knowledge, there has been very little work
on this problem.

Against this background, we consider the problem of
learning predictive models from multiple interlinked RDF
stores. Specifically we: (i) introduce statistical query based
formulations of several representative algorithms for learn-



ing classifiers from RDF data; (ii) introduce a distributed
learning framework to learn classifiers from multiple in-
terlinked RDF stores that form a chain; (iii) identify three
special cases of RDF data fragmentation and describe effec-
tive strategies for learning predictive models in each case;
(iv) consider a novel application of a matrix reconstruction
technique from the field of Computerized Tomography [1] to
approximate the statistics needed by the learning algorithm
from projections using count queries, thus dramatically
reducing the amount of information transmitted from the
remote data sources to the learner; and (v) report results
of experiments with a real-world social network data set
(Last.fm), which demonstrate the feasibility of the proposed
approach.

The paper is organized as follows: Sec. II begins with
learning classifiers from a single remote RDF store. Sec. III
extends learning to multiple interlinked RDF stores. Sec. IV
describes the experiments and the results. Finally Sec. V
concludes with a summary, related work, and future work.

II. LEARNING CLASSIFIERS FROM RDF DATA

A. RDF Learner Defined

Recall that an RDF triple is (s, p, o) ∈
(I ∪ B) × I × (I ∪ B ∪ L) where s is the subject, p
the predicate, and o the object of the triple and I , B,
and L are pairwise disjoint infinite sets of URIs, Blank
nodes, and Literals respectively. An RDF graph is a set
of RDF triples. Given an RDF graph G, and a target
class T which is a distinguished URI of type rdfs:Class
in G, we denote the set of instances of the target class as
T (G) = {x : (x, rdf:type, T ) ∈ G}. An attribute A (of a
target class T ) is a tuple of predicates (p1, . . . , pJ) such
that the domain of p1 is T , the range of pj is the domain
of pj+1, and the range of pJ is a literal. Given an instance
xi of the target class T and an attribute Ak = (pk1 , . . . , p

k
J),

we define Bik to be the bag (multi-set) of literals matched
by the variable ? vJ in the Basic Graph Pattern [4]
((x, pk1 , ? v1) AND (? v1, p

k
2 , ? v2) . . . (? vJ−1, p

k
J , ? vJ))

where vj ∈ V are variables. For convenience we denote
the range of pkJ by ∆k, and let |∆k| = sk. A target
attribute is a distinguished attribute denoted by Ac,
which describes the class label of an instance, hence we
assume that each instance has exactly one class label,
i.e.,

∣∣Bic∣∣ = 1 for every xi ∈ T (G); for brevity the class
label is denoted by ci and the set of all possible values
of ci is denoted by C. An RDF data set D is a tuple
(G, T ,A, Ac) where G is an RDF graph, T a target class
in G, A = (A1, . . . , AK) a tuple of attributes, and Ac is a
target attribute. Given an RDF data set D = (G, T ,A, Ac),
its induced multiset attributed data set [10] is defined as
M(D) = {((Bi1, . . . , BiK), ci) : xi ∈ T (G)}.

Definition 1. The input to an RDF node classifier h is
(Bi1, . . . , B

i
K) where xi is an instance of a target class T ,

and the output h(xi) ∈ C is a class label.
An RDF Learner L [10] is an algorithm that given an RDF

data set D = (G, T ,A, Ac), its induced multiset attributed
data set M(D), a hypothesis class H , and a performance
criterion P , outputs a classifier h ∈ H that optimizes P .

B. Representative Classes of RDF Learners

We consider two basic approaches to learn from RDF
data: (i) those that rely on aggregation to encode nodes to
be classified as tuples of attribute values, i.e., instances that
can be handled by traditional supervised machine learning
algorithms; and (ii) those that are based on generative
models of data.

1) Aggregation: Here we represent each bag of attributes
in M(D) by a single value, by applying a suitable aggre-
gation function, e.g., min, max, average for continuous
values and mode for discrete values. Hence we reduce the
data set into a traditional attribute-value data set where each
instance is represented by a finite number of attributes, each
of which takes a single value from the set of possible values
for the corresponding attribute.

We also consider more sophisticated aggregation schemes
proposed by Perlich and Provost [12]. WLOG, consider
binary class labels (C = {+,−}), and an attribute Ak with
discrete values (i.e. ∆k is a finite set). Suppose that Bik is the
bag of values for the kth attribute of an instance xi. We define
V ik =

(
vik1, . . . , v

i
ksk

)
to be a vector of counts of values in

Bik where vikt is the number of occurrences of the tth value
dkt ∈ ∆k. Next we define a class-conditional reference vec-
tor for c ∈ C as V (c)

k =
∑
i δc,ciV

i
k where δ is the Kronecker

delta. A number of aggregation schemes can be defined
using various measures of distance between V ik and the ref-
erence vectors [12]. Here we outline a representative model
called Class-Conditional Vector Distances (CCVD). Let
DIST be a set of M distance functions between two vectors
such as cosine or Euclidean, then we compute a |C|M -
sized vector, e.g., (distm(V

(+)
k , V ik ), distm(V

(−)
k , V ik ))Mm=1.

We concatenate these vectors from each of the K bags of
attributes of xi to obtain a single attribute vector of length
MK.

Regardless of which aggregation scheme described above,
by applying an aggregation scheme to each of the instances
inM(D), we can effectively reduce the problem of learning
from an RDF data set to the well-studied problem of
supervised learning in the traditional setting where each
instance to be classified is represented by a tuple of attribute
values.

2) Generative Models: We consider a joint distribution
p (B1, . . . , BK , c). For simplicity, under the naive Bayes
(NB) assumption that bags of attributes are conditionally
independent given the class label c the most probable class



label is given by:

hNB (x) , arg max
c∈C

p (c | B1, . . . , BK)

= arg max
c∈C

p (c)

K∏
k=1

p (Bk | c) .

We can now consider a variety of models for p (Bk | c)
including those based on Bernoulli or multinomial event
models [13], Dirichlet distribution [14], [15] or Dirichlet-
multinomial (Polya) distribution [16], [15]. We denote these
models by NB(Ber), NB(Mul), NB(Dir), and NB(Pol) re-
spectively, and outline each of them below.

Let bkt ∈ {1, 0} denote the presence or absence of dkt ∈
∆k in an attribute bag Bk and, similarly, let vkt denote
the number of occurrences of dkt. A class-conditional bag
probability, p (Bk | c), can be modeled by event models such
as Bernoulli (1) or multinomial (2):

p (Bk | c;θ) ,
sk∏
t=1

θbkt

ckt (1− θckt)1−bkt (1)

p (Bk | c;θ) , p (|Bk|)
(
∑sk
t=1 vkt) !∏sk
t=1 vkt!

sk∏
t=1

θvkt

ckt (2)

where θckt = p (dkt | c).
Next, the Dirichlet distribution (3) allows us to treat Bk

as a sample from a distribution which, in turn, is drawn from
another distribution as follows

p (Bk | c;α) , p
(
V̄k | c

)
, D (αck)

=
Γ(
∑sk
t=1 αckt)∏sk

t=1 Γ(αckt)

sk∏
t=1

v̄αckt−1
kt (3)

where αck = (αck1, . . . , αcksk) is a vector parameter of
Dirichlet distribution for class c ∈ C and V̄k = (v̄k1 · · · v̄ksk)
is the normalized vector of counts of values in Bk with v̄kt =
vkt/

∑
t vkt. Finally, we describe the Dirichlet-multinomial

(Polya) distribution (4) that compounds a Dirichlet with a
multinomial:

p (Bk | c;α) , p (Vk | c)

,
∫
p (Vk;θck) p (θck;αck) dθck (4)

=
Γ (
∑
t αckt)

Γ (
∑
t vkt + αckt)

sk∏
t=1

Γ (vkt + αckt)

Γ (αckt)

where θck = (θck1, . . . , θcksk) is a vector of multinomial
parameters.

For the above four models, their parameters, which is a
set of parameters for each class and for each attribute, can
be estimated by maximum likelihood employing the Laplace
correction.

C. Sufficient Statistics

We describe the sufficient statistics to estimate the pa-
rameters (via maximum likelihood) for each attribute Ak
and for each of the models in Sec. II-B, and provide the
corresponding SPARQL queries to obtain these statistics.
• Aggregation function: agg(Bik) and the class label

for each instance xi where agg is some aggregation
function. If naive Bayes is learned on the reduced data
set then the following is sufficient: number of instances
with the class label c and d = agg(Bik) for every
combination of c and d. The former can be expressed
by an aggregation query and the later is equivalent to
S(G, T , C = c, Ak, agg, d) in [10].

• CCVD and NB(Pol): for each c ∈ C, V ik for each
instance xi such that ci = c. Its SPARQL query can be
expressed by:
SELECT ?x ?vj COUNT(?vj) WHERE {
?x rdf:type <T> .
?x <classLabel> c .
?x <p1> ?v1 . ... ?vj-1 <pj> ?vj .

} GROUP BY ?x ?vj

• NB(Ber) and NB(Mul): V (c)
k for each c ∈ C. Its

SPARQL query can be expressed by:
SELECT ?vj COUNT(?vj) WHERE {
?x rdf:type <T> .
?x <classLabel> c .
?x <p1> ?v1 . ... ?vj-1 <pj> ?vj .

} GROUP BY ?vj

• NB(Dir): for each c ∈ C, log(v̄kt) =
∑
i log(vikt) −

log(
∑
t v
i
kt) for the subset of instances xi such that

ci = c (see [15])1. An alternative statistic though not
minimal is V ik for each instance xi such that ci = c.

D. Approximating V ik
In Sec. II-C we observe that V ik (conditioned on some

class c ∈ C) is required for a number of models (CCVD,
NB(Dir), and NB(Pol)). However, as shown by the ex-
periment in Sec. IV-D, obtaining V ik for each xi is quite
expensive. Instead, it is much cheaper to obtain approximate
summaries of each V ik . For example, define V ∗kt =

∑
i v
i
kt

and let V ∗k =
(
v∗k1, . . . , v

∗
ksk

)
; similarly define V ik∗ =∑

t v
i
kt and let Vk∗ =

(
v1k∗, . . . , v

I
k∗
)

where I is the total
number of instances. In other words, if V ik for all i ∈ [1, I]
are represented as an I-by-sk matrix where vikt is the value
of row-i and column-t, then V ∗k and Vk∗ are its column and
row projections respectively. We say that V ∗k is the projection
towards the leaf of the attribute chain Ak and hence we refer
V ∗k as the leaf projection2; similarly we refer Vk∗ as the
root projection. Here we propose to approximate V ik from
the leaf and root projections in order to save the size of
communication.

The problem of reconstructing a matrix from its projec-
tions is closely related to the problem of reconstructing a

1This requires log function which is currently not supported by SPARQL.
2Equivalently, V (c)

k is the leaf projection for those xi where ci = c.



Figure 2. Distributed learning framework from
multiple interlinked RDF stores. In practice there
can be interactions (queries and RDF links) be-
tween any two data sources, in the figure only the
adjacent interactions are drawn for simplicity.

Figure 3. Two fragmented data sources D1 and D2 showing
an example of both OLNF and ILNF, because both subject
resources S1 ∪ {S3, S4} and object resources {S2, S3} ∪
{S1, S4} for each fragment are disjoint. However it is not
LFNF because S1 and S3 are shared.

Figure 4. Computation of root projec-
tion and leaf projection under different
data fragmentations: (i) LFNF (top);
and (ii) OLNF and ILNF (bottom).

3D representation of an object from images of its slices,
that has been widely studied in the field of Computerized
Tomography (CT) (see [1] for a review). The problem
of reconstructing V ik from its root and leaf projections
is a special case of the matrix reconstruction problem.
Hence, we can adapt existing approaches from CT, and one
of the simplest such methods is Algebraic Reconstruction
Technique (ART, [17]). ART is an iterative algorithm for
solving a system of linear equations where each equation
encodes the projection angle and its projected value from
a matrix. Here we describe the update equation in our
simplified case of column and row projections. Let xit be
the element of row-i and column-t of an I-by-T matrix,
representing our reconstructed matrix; and let X∗ and X∗
be its column and row projections respectively. Let V ∗ and
V∗ be the true column and row projections respectively (i.e.,
those computed from the original matrix). Then the update
equation is xit := xit + λ

(
V i
∗−X

i
∗

T +
V ∗
t −X

∗
t

I

)
where λ is a

relaxation parameter between 0 and 1.

III. LEARNING CLASSIFIERS FROM MULTIPLE
INTERLINKED RDF DATA STORES

We now turn to the problem of learning predictive
models from multiple, interlinked data sources. Consider
the scenario shown in Fig. 2. We assume that each data
source corresponds to an RDF store that can be queried
through an access interface (e.g. SPARQL query server),
and (optionally) a sandbox that is set up with write access
for each user (i.e. learner). We can use SPARQL 1.1 update
queries [4] to store intermediate results of queries in the
sandbox for use by the learner. Also we can use SPARQL
1.1 federated queries [4] to retrieve query results from other
remote servers as needed and store them in the sandbox for
use by the learner. Thus, an RDF data set D is fragmented
across sites [1, N ] into data set fragments D1, . . . , DN such
that

⋃N
n=1Dn = D; we further assume that the learner may

be subject to access constraints Z1, . . . , ZN associated with
D1, . . . , DN such that

⋃N
n=1 Zn = Z. An access constraint

may restrict the class of queries that can be answered by

a data source, e.g. due to privacy considerations or the
query answering capabilities of the data source. The task of
learning from multiple interlinked RDF stores can be stated
as follows.

Definition 2. A Distributed RDF Learner Ld is an algorithm
that given the fragments D1, . . . , DN of a training data
set D distributed across the sites [1, N ] through a set
of access interfaces A1, . . . , AN with access constraints
Z =

⋃N
n=1 Zn, a hypothesis class H , and a performance

criterion P , outputs a classifier h ∈ H that optimizes P
using only the interactions against D that are allowed by Z.

It is useful to consider three generic ways in which an
RDF data set can be fragmented across multiple interlinked
RDF stores.

A. Characterizing RDF Data Fragmentation

The simplest case of RDF data set fragmentation cor-
responds to the setting where there are no links between
individual data stores. However, in general, the data stores
may contain triples (edges) that link two or more data stores.
E.g., a triple (i, c, j) could be in D1 while (j, c, k) could be
in D2. We refer to the set of all resources that play the role
of either the subject or the object of an RDF triple in a data
set as the resources of a data set; we use the term subject
resources to refer to the set of all resources that appear only
as the subject of an RDF triple in the data set; we use the
term object resources to refer to the set of all resources that
appear only as the object of an RDF triple in the data set. We
can now identify three special cases of data fragmentation
across multiple interlinked RDF stores (Fig. 3):

1) The link-free normal form (LFNF) where different
fragments do not share any resources.

2) The out-link normal form (OLNF) where different
fragments do not share any subject resources.

3) The in-link normal form (ILNF) where different frag-
ments do not share any object resources.

The scenario in Fig. 1 is an example of OLNF. Note that
formally an RDF store holds a set of triples (edges), and in



Figure 5. RDF Schema of
Last.fm data set.
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Figure 6. Projection and matrix errors at various
stages of ART approximation.
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Figure 7. Classification performance using data reconstructed at
various stages of ART approximation.

general the resources (nodes) are not necessarily owned by
any data store; thus, it is possible that a set of data sources
can simultaneously conform to both OLNF and ILNF as in
Fig. 3. However in practice, the domain name of a resource
often indicates its ownership; hence if a set of data sources
satisfy both OLNF and ILNF we can use the domain name
of the resources to determine which normal form is more
appropriate to use. We further note that the three normal
forms described above are not exhaustive, i.e., an RDF data
set can, in general, be fragmented in ways that do not
conform to any of the three normal forms considered here.

We observe that obtaining the statistics needed for learn-
ing classifiers from multiple RDF stores when the data frag-
mentation corresponds to LFNF reduces to combining the
results of the statistical queries from the individual sources,
e.g., the root and leaf projections (see Fig. 4, top). Because
we can decompose the statistical queries in this fashion,
the communication complexity of learning classifiers from
multiple RDF data sources in LFNF is equivalent to that
of learning classifiers from a single RDF store obtained
by taking the union of the RDF triples from the respective
sources.

B. Learning Classifiers under OLNF and ILNF

WLOG we focus on only OLNF. We consider a chain of
interlinked RDF stores (e.g. Fig. 1). Specifically, we address
the problem of obtaining the sufficient statistics in Sec. II-C
without having to gather the data from multiple RDF stores
into a central location. First we describe how to obtain the
leaf and root projections in such a setting. Consider an
attribute Ak, and let Jn be the number of resources shared
between Dn and Dn+1,. We define a Jn-by-Jn+1 matrix
Mn where the value at row-rn and column-cn is the total
number of paths that connect the shared resources indexed
by rn and cn respectively. We set J0 to be I (number of
instances), and set JN to be sk (number of possible values
for attribute Ak). Now, we have V ∗k = 1TM1 · · ·MN and
Vk∗ = M1 · · ·MN1. We note that it is more efficient to
multiply the matrices from the left to right for V ∗k , and
from right to left for Vk∗ (see Fig. 4, bottom). Thus, the
leaf projection V ∗k =

(
v∗k1, . . . , v

∗
ksk

)
is computed starting

at D1 by transferring 1TM1 to D2, and so on ending up
with V ∗k at DN which is then transferred to the learner.
The root projection Vk∗ =

(
v1k∗, . . . , v

I
k∗
)

is computed in a

similar fashion starting at DN and working towards D1. It
is easy to see that the communication costs associated with
the computation of the leaf and root projections respectively
are given by sk +

∑N−1
n=1 Jn and I +

∑N−1
n=1 Jn.

In the case of V ik required by CCVD, NB(Dir), and
NB(Pol), we first gather the leaf projection V ∗k and the
root projection Vk∗ as described above, and use ART to
reconstruct the corresponding V ik (see Sec. II-D), which
is used to construct the predictive model. In the case of
aggregation, we use the approximated V ik to compute the
aggregation function agg(Bik).

We note that NB(Ber) and NB(Mul) classifiers can be
learned from the leaf projections (for each class c ∈ C) alone,
which guarantees that the classifiers learned from an OLNF
fragmented RDF data set are identical to their centralized
counterparts (that are learned from the data set obtained by
combining the fragments).

IV. EXPERIMENTS AND RESULTS

A. Data Sets

We used a real world data set crawled from a social music
network Last.fm3 using its API (its schema is shown in
Fig. 5). We selected two disjoint groups that contain approxi-
mately equal number of users (2098/2081), and include those
tracks and artists whose number of occurrences are greater
than or equal to 45 and 100, respectively. Likewise, we
eliminated all the track’s tags and artist’s tags that occurred
fewer than 350 and 120 times. All collections of tags are
preprocessed by removing stop words and stemming, using
Apache Lucene. The resulting data set is converted to RDF
format which includes 8340 tracks attributed to one or more
of the 3753 artists. From this data, we extracted two subsets:
(i) Dataset-Track, which includes only the tags associated
with the tracks; and (ii) Dataset-Artist, which includes only
the tags associated with the artists. In both cases, the task
is to predict the group of the user. We simulate the OLNF
setting by suitably fragmenting the datasets. For example in
the case of Dataset-Track we store the triples of isMember
and favorite in D1 and the triples of hasTag in D2 such
that Track resources are shared between D1 and D2.



Table I
RESULTS FOR EXPERIMENT IV-B THAT REPORT ACCURACY (%) AND

STANDARD DEVIATION (IN PARENTHESES) FROM 10-FOLD CROSS
VALIDATION. STARRED (*) INDICATES THE OLNF MODEL IS PROVABLY

EXACT WITH RESPECT TO ITS CENTRALIZED COUNTERPART. BOLDED
INDICATES BEST RESULTS FOR EACH COLUMN BASED ON PAIRED t-TEST

ON 10-FOLD CROSS VALIDATION WITH ALPHA = 0.05.

Model Dataset-Track Dataset-Artist
Centralized OLNF Centralized OLNF

Mode+NB 71.4(3.2) 53.2(1.2) 70.8(2.5) 59.8(1.4)
CCVD+LR 81.1(2.3) 75.7(3.5) 81.7(1.9) 68.9(6.3)

NB(Ber) 71.3(2.5) 71.3(2.5)* 69.5(1.8) 69.5(1.8)*
NB(Mul) 82.0(2.4) 82.0(2.4)* 81.7(2.5) 81.7(2.5)*
NB(Dir) 81.4(2.7) 78.0(3.3) 79.9(1.9) 74.1(4.2)
NB(Pol) 82.2(2.1) 81.6(2.4) 82.2(2.3) 81.8(2.5)

B. Learning Classifiers from OLNF RDF Data Fragments

The first set of experiments was designed to compare
the performance of the proposed approaches to learning
classifiers from an RDF data set that is fragmented (in
OLNF) across multiple RDF stores with their centralized
counterparts that have access to the entire data set in a
single location. We trained two aggregation models and four
generative models described in Sec. II-B: the mode aggre-
gation coupled with a naive Bayes classifier (Mode+NB),
the CCVD aggregation coupled with a logistic regression
classifier (CCVD+LR), and the four naive Bayes generative
models NB(Ber), NB(Mul), NB(Dir), and NB(Pol). Note that
NB(Ber) and NB(Mul) need only leaf projections and there-
fore their models under OLNF is provably exact with respect
to its centralized counterparts. The rest of the classifiers in
the OLNF setting rely on the ART approximations of V ik
and hence their performance is a function of the quality
of the approximation. In this experiment, the termination
threshold (difference between the true projection and its
ART reconstruction) is set to 5% of the size of the matrix,
and λ is set to 0.25.

The results in Table I show that: (i) not surprisingly,
the performance of Mode+NB, CCVD+LR, NB(Dir), and
NB(Pol) that rely on ART approximation of the needed
statistics in the OLNF setting is always no better than
that of their centralized counterparts which do not have
to rely on the ART approximation and can instead use
the statistics obtained directly from the entire data set; (ii)
NB(Pol), despite its reliance on the ART approximation in
the OLNF setting, shows performance that is competitive
with its centralized counterpart although the latter has the
advantage of using statistics obtained directly from the entire
data set; and (iii) NB(Mul) surprisingly, is quite competitive
with NB(Pol) in both centralized and OLNF settings despite
using less information than NB(Pol).

C. Sensitivity of ART

The previous experiment used a fixed termination thresh-
old for the iterative ART approximation procedure. Be-

3http://www.last.fm/
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Figure 8. Communication complexities over the size of data sets (measured
by number of Users).

cause the performance of the classifiers that rely on ART
approximations of V ik is a function of the quality of the
approximation which in turn depends on the the number of
ART iterations, we designed an experiment to explore this
dependence. In this set of experiments, we used 80% of the
data for training, and 20% of the data for testing. First we
measure the error of the reconstruction as estimated by (i)
projection error which is the sum of absolute differences of
each element between the true and reconstructed leaf and
root projections; and (ii) matrix error which is the sum of
absolute difference of each element between the true and
reconstructed matrices. We also measure the classification
accuracies of the trained models in the case of Mode+NB,
CCVD+LR, NB(Dir), and NB(Pol) which make use of the
ART approximation.

The results summarized in Fig. 6 show that the projection
error approaches zero after a sufficiently large number of
iterations; however, the matrix error remains relatively high
even after 1000 iterations. In the case of classification
accuracies, we note three clear trends shown in Fig. 7: (i)
Mode+NB using the ART approximation does not quite
approach Mode+NB that uses statistics obtained directly
from the data regardless of the number of ART iterations;
(ii) the performance of NB(Dir) lags that of NB(Pol) during
the first few iterations of ART but both achieve comparable
performance with increasing number of ART iterations;
and (iii) CCVD+LR starts off with the worst performance
but shows steady improvement with increasing number of
ART iterations. However, theoretical underpinnings of these
observations remain to be investigated.

D. Communication Complexity

The third experiment was designed to measure the com-
munication cost of obtaining the projections required by the
ART approximation. Since the size of query is negligible
compared to the query results in our setting, we measure
only the size of query results transferred, as the size of the
underlying data set is varied. We used Dataset-Track and
Dataset-Artist described in Sec. IV-A considering subsets of
users ranging from 400 to 4000 in steps of 400, retaining
in each case only the resources (tracks, artists, tags) that are
connected to the subset of users. We recorded the size of
raw RDF data in TTL format, the size of leaf projection,



the size of root projection, and finally the size of matrix
(stored as an adjacency list).

The results of this experiment summarized in Fig. 8 show
that, not surprisingly, the size of raw data as well as matrices
are significantly larger than the leaf and root projections,
demonstrating the advantages of ART approximation in
learning classifiers from large, OLNF-fragmented RDF data
sets over alternative approaches that transmit the data or
the matrix (as opposed to only the leaf and root projections)
from the data source(s) to the learner. In the case of Dataset-
Artist, we observe that the size of matrix even exceeds that
of raw data, and this can be explained by the fact that a
majority of artists are shared among (indirectly connected
to) different users which blows up the size of the matrix,
whereas in the RDF representation the artist resources and
their tags only appear once in the data set.

V. SUMMARY AND DISCUSSION

A. Summary

The emergence of many interlinked, physically dis-
tributed, and autonomously maintained RDF stores such
as the LOD cloud offers unprecedented opportunities for
predictive modeling and knowledge discovery from such
data. However existing machine learning approaches are
limited in their applicability because it is neither desirable
nor feasible to gather all of the data in a centralized
location for analysis due to access, memory, bandwidth,
computational restrictions, and sometimes privacy or con-
fidentiality constraints. Against this background we propose
to learn classifiers from multiple interlinked RDF stores via
their SPARQL query interfaces. Specifically we have: (i)
introduced statistical query based formulations of several
representative algorithms for learning classifiers from RDF
data; (ii) introduced a distributed learning framework to
learn classifiers from multiple interlinked RDF stores; (iii)
identified three special cases of RDF data fragmentation and
describe effective strategies for learning in each case; (iv)
considered a novel application of a matrix reconstruction
technique from the field of Computerized Tomography [1] to
approximate the statistics needed by the learning algorithm
from projections using count queries, thus dramatically
reducing the amount of information transmitted from the
remote data sources to the learner; and (v) reported results
of experiments with a real-world social network data set,
which demonstrate the feasibility of the proposed approach.

B. Related Work

Most of the existing work on learning predictive models
from RDF data (e.g. [18], [19]) assume that the learner
has direct access to data. Lin et al. [10] proposed an
approach to learning relational Bayesian classifiers [11] from
a remote RDF store in a setting where the learner can
only query the RDF data store through a restricted class
of statistical queries. This paper extends the work in [10] to

the setting of multiple interlinked RDF stores using a larger
class of predictive models including Mode+NB, CCVD+LR,
NB(Dir) and NB(Pol) where, for practical reasons, we have
to approximate the relevant statistics. Our approach takes
advantage of SPARQL 1.1 update queries [4] and federated
queries [4], which extends the remote access framework
first introduced in [20] to multiple RDF stores. As opposed
to federated query processing approaches for RDF data
([21], [22], [23]), which focus on the problem of answering
queries formulated in a general purpose query language from
multiple RDF data sources, our focus in this paper is on
answering restricted classes of statistical queries needed for
learning classifiers from RDF data. Restricting the classes of
queries to those that useful in the learning predictive models
from RDF data allows us to take advantage of optimizations
such as the efficient accumulation of projections (Sec. III-B).

The work of [10] was inspired by a general learning
framework proposed by Caragea et al. [24] for learning
classifiers from distributed tabular data [25], [24]. However,
to the best of our knowledge the approaches described in this
paper are among the first of their kind for learning classifiers
from an RDF data set that is fragmented across multiple
interlinked RDF stores.

C. Future Work

ART, the method for reconstructing an approximation of
a matrix from its projections is among the simplest such
technique originally developed in the field of CT. Other
promising matrix reconstruction methods worth exploring in
our setting include filtered backprojection [1] and quadratic
optimization [1]. The kinds of RDF data fragmentation con-
sidered in this paper are relatively simple, albeit interesting
special cases. It would be interesting to consider learning
classifiers in a setting where an RDF data set is fragmented
across multiple RDF stores that are connected through more
complex linkage patterns including in particular, trees and
DAGs as opposed to the linear chains considered in this
study. Lastly it is of interest to consider richer classes of
predictive models and the corresponding learning problems,
including those that model dependency between attributes
(e.g. adaptations of statistical relational learning [26]), or
feature construction strategies for linked data [27].
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