A Tableau-based Federated Reasoning Algorithm for Modular Ontologie’s

Jie Bad, Doina Caragea Vasant Honavar
! Artificial Intelligence Research Laboratory,
Department of Computer Science,
lowa State University, Ames, IA 50011-1040, USA
2Department of Computing and Information Sciences
Kansas State University, Manhattan, KS 66506, USA
baojie, honavar@cs.iastate.eddgdcaragea@ksu.edu

Abstract share it in its entirety although be willing to answer
gueries to the ontology. In such a setting, it is not feasi-
Many real world applications of ontologies call for rea- ble to reduce the problem of reasoning over distributed
soning with modular ontologies. We describe a tableau- ontology modules to the problem of reasoning over a

based reasoning algorithm based on Package-based De- single centralized ontology.
scription Logics (P-DL), an modular ontology language e In general, an ontology may reuse terms defined in an-
that extends description logics. Unlike Classical ap- other ontology. Mutual or cyclic reuse is also common.
proaches that assume a single centralized, consistent ontol- Several authors have recently investigated distributed
ogy, the proposed algorithm adopts a federated approach toreasoning algorithms for modular ontologies. Serafini et. al.
reasoning with modular ontologies wherein each ontology [11, 10] describe a tableau-based reasoning algorithm for
module has associated with it, a local reasoner. The lo- DDL. The algorithm divides a reasoning problem w.r.t. a
cal reasoners communicate with each other as needed in arDDL TBox into several local reasoning problems answered
asynchronous fashion. Hence, the proposed approach ofy local modules. The basic idea behind this algorithm
fers an attractive approach to reasoning with multiple, au- s to infer concept subsumption in one module from sub-
tonomously developed ontology modules, in settings wheresumptions in another module and inter-modarieige rules
it is neither possible nor desirable to integrate all involved that relate concepts in one module to concepts in another
modules into a single centralized ontology. module. For example, cnsider ontology modulesd;; in
which the conceptd, B andG, H respectively are defined,
given the bridge rules: A ij :G,i: B £>j : H and
There is a growing recent interest in ontology lan- modulei entailsA C B, then it is possible for modulgto
guage features to support modular ontologies as well asinfer thatG' C H.
approaches to reasoning with multiple ontology modules ~ Grau et al. [8, 7] present a tableau-based reasoning pro-
including: Distributed Description Logics (DDL)[6]¢- cedure fol€-Connections £-connections divides roles into
connections [9, 8] and Package-based Description Logicsdisjoint sets ofocal roles(connecting concepts in one mod-
(P-DL) [5, 4]. Of particular interest in this context are al- ule) andlinks (connecting concepts in different modules).
gorithms for reasoning with multiple, distributed and au- For example, two modules about peoplg Y and pets 2)
tonomous ontology modules. Reasoning with ontologies in can be connected by a linkwns, and L; can use such
such a setting presents several challenges: a link to build local concepts, e.gl : DogOwner C

+ Thereasoning askinioes notasingeontology, bt 2" 22 L) The abesu hased issonig proceure
collection of ontologies about a domain of interest that 1IMp 9

are created and maintained by autonomous groups. erates a set of tableaux (trees) linked &gonnection in-

.) L _ . stances (cross-module role instances).
e In many cases, integrating distributed ontologies into g5, ot 5] [3] describe a distributed reasoning algorithm

one consistent centralized or_1t0|ogy is not possible for ¢ b b1 with acyclic importing This algorithm adopts a
seve.ral feasons.hthed(_)ntologms may t?ehlarge and COMtaderated approach to reasoning using distributed storage
munication overhead is too expensive; the autonomous ¢ 4 4j0ha| tableau. Some of local tableaux may share some
entities that control an ontology may be unwilling to |4 (i.e. “image” nodes) and communicate by sending
*A longer version of the paper is available as a technical report at MESSages to_ e?-Ch other. Thus, search forodelof the
http://archives.cs.iastate.edu/documents/disk0/00/00/04/67/index.html ontology is distributed across the local tableaux.

1 Introduction

However, existing approaches to reasoning with modu-
lar ontologies suffer from several limitations. Both DDL
and £-Connections, because of their limited expressivity,
lack support for certain types of reasoning tasks. For ex-
ample, DDLs have no support for inter-module role rela-
tions, whereag’-connections lack inter-module subsump-
tions. Both DDL and P-DL reasoning algorithms do not al-
low mutual or cyclic references (bridge rules in DDL, term
importing in P-DL) of concepts among ontology modules.

Current implementation of thé-Connections reasoner,
motivated by the “combined tableau” idea [8, 7], only “col-
ors” local tableaux without separating them. Therefore, rea-
soning relies on one (combined) ABox thereby forcing the
TBoxes of all modules to be loaded (through internaliza-
tion) into the reasoner. The strategy actually loads all on-
tology modules into a single memory space thus makes
de facto ontology integration, which sacrifices many of the
benefits of modular ontologies (e.g. scalability).

Against this background, we present an improved fed-

erated reasoning algorithm that overcomes many of these
limitations and offers several advantages over existing ap-

proaches. It strictly avoids combining the local ontology

modules in a centralized memory space using distributed

reasoning with localized P-DL semantics thereby allow-

ing local reasoning modules to operate in an asynchronous

peer-to-peer fashion. It supports reasoning with both inter-

module subsumption and inter-module role relations and al-
lows arbitrary references of concepts among ontology mod-
ules. The P-DL semantics also guarantees that the results 0?
reasoning in the distributed setting are identical to those ob-
tainable by applying a reasoner to an ontology constructed

by integrating the different modules [4].

2 Package-based Description Logics

This section briefly reviews basic features of Package-
based Description Logics (P-DL) as given in [5, 4]. In P-
DL, an ontology is composed of a collection of modules
calledpackagesEach term (name of a concept, property or
individual) or axiom is associated withremme packageA
package can use terms defined in other packages:
Definition 1 (Foreign Term and Importing) A termt that
appears in a packag®, but has a home packagg that is
different fromP is called aforeign termin P. We say that
P imports @ : ¢ and denote it ag) Lopof any term
defined in@ is imported intoP, we say thatP importsQ
and denote it ag) — P. Theimporting closurel,_, (P) of
a packageP contains packages such that:

e (directimporting)R — P = R e I, (P)

e (indirectimporting)Q — RandR € I,(P) = Q €

I.(P)

Definition 2 (Acyclic and Cyclic Importing) A P-DL on-
tology { P;} has acyclic importing relation if for any # j,

P, € I.,(P;) — P ¢ I.(P;), otherwise it has cyclic
importing relation.
For example, an ontology with acyclic importing is:
PAnimal

(1a) 1:Carnivore T V1 : eats.(1: Animal)
(Ab) 1:DogU1l: Human C 1: Animal
PPet

(2a) 2: PetDogC1: DogM?2: Pet

(2b) 2: PetDog C 32 : livesWith.(1 : Human)

By reusing terms defined il aAnimal, the ontology is
able to model both inter-module concept subsumption (e.g.
axiom 2a) and role relations (e.g. axiom 2b). We denote the
package extension to Description Logics (DL)7as For
example, ALCP is the package-based version of DILC.

4n what follows, we will examine a restricted type of pack-

age extension which only allows import of concept names,
denoted a$;.

For a package-based ontolo¢yP;},{P; — P;}ix;),

a distributed model i/ = ({Z;}, {ri; }i%;), WhereZ; =
(A4, (.):) is the local model of packag®, r;; € A; x A;

is the interpretation for thiemage domain relatio®; — P;.
(z,y) € r;; indicates an individuay € A; is an “image”

(or copy) of an individual: € A;. Therefore, local models
of P-DL can be partially overlapping.

To ensure module transitive reusability and reasoning
correctness, we require that every image domain relation
as the following properties:

e It is one-to-one: for any € A,, there is at most one

y € Aj, such thatz,y) € r;.

e It is compositional consistent:;; = 7, o %, where

o denotes function composition. Therefore, semantic

relations between terms inand terms ink can be in-

ferred even ifk doesn’t directly import terms from
For a relation;; and any individuatl € A;, r;;(d) de-
notes the sefd’ € A;|(d,d’) € r}. ForasubseD C A,,
r;;(D) denotesJ e pri;(d), is the image set ab.

A concepti : C is satisfiablew.r.t. a P-DLO
{P:},{P, — Pj}iz,) if there exists a distributed model
of O such thatC?: # (. O entailssubsumption : C' C
4 : D (i may or may not be the same gf denoted as
OFi:CLCpj:Diff rjj(CT) C D% holds in every
model ofO.

3 Distributed Reasoning for P-DL

We extend the tableau-based approach to distributed rea-
soning with P-DL modules introduced in [3] to a more gen-
eral setting wherein arbitrary importing (e.g. cyclic or mu-
tual importing) among packages is allowed, and the tableau
search process is preformed in a parallel, asynchronous
fashion. We demonstrate the strategy with the package-
extended version of a representative RILC that allows
importing of concepts between packages, A€CP; .

3.1 ALC Reasoning requiredglobal model Thus, reasoning is carried out to ob-
tain a set of connected local models for a modular ontology.

_ _We first briefly introduce the tabl_eau algorithm fpr tra- Each of the existing approaches assumes different prop-
ditional DLs. e.g. ALC . A tableau is a representation of erties of local models, and as a consequence, requires dif-
a model of a logic language, and in particular, of an on- ferent procedures for constructing such local models and
tology. Popular representation forms of a tableau include |oca tableaux. DDL andE-connections reasoning algo-

ABox and Completion Graph [2], while each of them can ithms [11, 10, 8, 7] assume domains (the set of individuals)
be transformed into the other. In this paper, we adopt the of |gcal tableaux are disjoint, while P-DL reasoning algo-
ABox representation since it is more explicit for incremen- yithm [3] allows them to be partially overlapping. Advan-
tal tableau storage needed for our algorithm. tages of the later approach include support for inter-module

An ABox contains a set ofactsin the form of C'(z),
P(z,y), x = y orz # y, wherez, y are individualsC' is
a concept name, anll is a property name. To test the sat-
isfiability of a conceptC' w.r.t. a TBox7, an initial ABox
Ay is created asC 1 Cr)(x), whereCr is theinternal-

ization concepbf 7: Cr = n (=C; U D;). Each
(C;;Di)ET

individual in any ABox of 7 will be an instance of’'7.

New facts can be inferred from existing facts based ¢
tableau expansion ruleand added to the ABox. Assum-
ing that all concepts are in Negation Normal Form (NNF
the ALC tableau expansion rules for traditional reasonir
process (i.e. on a single ontology) are:

e M-rule: if ABox A contains(C M Cs)(x) but not both
Cy(z) andCsq(z), thenA'=A U {C1(z), C2(x)}

e Li-rule: if ABox A contains(C; U Cy)(x) but nei-
therCy(z) or Cy(x), thenA;=AU {C1(x)}, A=A U
{Ca(x)}

e J-rule: if A contains(3R.C)(x) but no individual
y such thatC(y) and R(y,z) in A, then A’=4 U
{C(y), R(z,y)} wherey is an individual name not oc-
curring in original A.

e V-rule: if A containgVR.C)(z), R(x,y) but noC(y),
thenA'= AU {C(y)}

An ABox clash corresponds to the scenaric
{C(z),~C(x)} C A (for any individual z and any
concept nam&’). An ABox is consistentf it contains no
clash, and icompleteif no expansion rule can be appliec
on it. Note that theJ-rule is nondeterministic in that it
generate multiple possible new facts. The algorithm nee
to try different choices i.e.searchfor different possible

models. Once a chosen path leads to an inconsistency, th
algorithm needs to backtrack to the ABox state before the A

choice, and try other remaining choices.
A conceptC is said to be satisfiable w.r.t. a TB&x if

and only if the algorithm finds a consistent and complete

ABox for bothC andC'r.

3.2 Incremental Distributed Tableau Storage

subsumption and transitive reusability of modules [3].
In this paper, we assume incremental instantiation of
ABoxes to simplify the description of the algorithm.

] We represent an

ABox by a series of
v nodes where each node
R(x,y),D(y) contains one or more
facts The root node
contains all the initial
facts in the ABox. By

[(CLD)(x),3R.D(x),~C(x)

(=ceo-) (Lo |

applying the tableau

Inconsistent Complete & expansion rules, starting
Consistent with the root node,

Figure 1. Incremen- we can successively
tal Instantiation of generate new inferred
ABoxes facts. The inferred

facts are added as to

the successor of the current node, called déxpansion
successarThe edge linking a node to its successor is called
an expansion edge Multiple choices for expansion (e.g.
using theLl-rule), result in multiple successors. Recursive
application of the tableau expansion rules yieldsA@ox
Tree with each node in the tree representing an ABox that
contains all the facts on the path to that node from the root
node. When the algorithm terminates, each leaf in the tree
corresponds to either an inconsistent ABox or a complete
and consistent ABox (See Figure 1 for an example).

For each node:, let A(n) denoting the tree that be-
longs to;f (n) is the set of facts im; and.A(n) is the ABox
containing all the facts im and all of its ancestors up to

the root node. Thus, if a nodeis a successor of node,

(n) = A(m) U f(n). Each packag®; participating in the
reasoning process has associated with it, an initial mgde
Each individual introduced to the ABox tree Bf must be
an instance o€’7; .

Given a P-DL ontologyO = {P;}, we can obtain an
ABox forest wherein each package has associated with it
exactly one ABox tree. A distributed ABaX; (i.e., a dis-

Tableau-based reasoning for modular ontologies [11, 10,tributed model) ofO is represented by a set of complete
8, 7, 3] usually exploits multiple local tableaux instead of and consistent leaf nodgs; }, one from each ABox tree,
a single tableau. This supports the localized semantics rewhere A(n;) is a local ABox (i.e. a local model), and
quirement for modular ontologies [4], i.e., that there is no Aa = Ui A(n;).

Thus, each ABox tree is maintained by the correspond- The termination of the algorithm can still be ensured us-
ing local reasoner. The reasoning process is carried out by ang the subset blocking2]: for an ABox tree noder, the
federation of such local reasoners. Since each ABox tree isapplication of thel-rule is blocked to an individuat by an
only locally internalized, integration of the ontology mod- individualy iff {D|D(z) € A(n)} C {D’|D'(y) € A(n)}.
ules into a centralized ontology or of local models into a Note that the algorithm we presented so far is equivalent

centralized model is strictly avoided. to the completion graph-basetCCP. reasoning algorithm
o _ in [3] if we allow only acyclic importing between packages.
3.3 Distributed Tableau Expansion Thus, based on Lemmas 1 and 2 of [3], if only acyclic im-

) porting between packages is allowed, the message edges be-
To construct a distributed model for an tween ABox trees are guaranteed to be uni-directional: once
ALCPc ontology, we start with a list of initial ABox an ABox treet; receives a fact fromy, there is no path in
nodes corresponding to each package in the ontology. Newne ABox forest (linked by message edges) from a node in
facts can be added to the ABox forest by applying tableauﬁ1 ending in a node iy, hence there is no risk of message

expansion rules similar to that olLC . However, the |o0p. However, if cyclic importing is allowed, in order to
traditional ALC expansion procedure needs to be modified guarantee termination of the algorithm, we need to find a

in several important aspects. We refer to the resulting yay to prevent message looping.
expansion rules ad LCP. expansion rules.
First of all, new facts should be sent to a “destination” 3.4 Handling Cyclic Importing
ABox tree to reduce the cost of detecting a clash. Since a
concept can be imported into another package, it is possible Cyclic importing presents additional difficulties in mes-
that a factC(x) is generated from an expansion in an ABox sage exchange among ABox trees because it may lead to

of a package that is nét’s home package. Therefor€(x) ABox trees waiting for each other in a cycle or a deadlock.
and—C(z)) can be generated in different local ABoxe trees How can we avoid such a deadlock?
in which case, a clash cannotloeally detected. However, To develop some intuition regarding this problem, con-

global check for such clashes is expensive. Hence, we adopsider the logical meaning of edges in the ABox forest. If a
a strategy that is designed to minimize the cost of detectingfact f is generated by applying expansion rules at a nade
clashes. We start by introducing some relevant definitions: f is actually the logical consequence of some facts in the
ABox A(n). For example, in Figure 1, the fatt(x) is one
Definition 3 (Concept Destination) An atomic concepf’ possible logical consequence(@f L D)(x). Therefore, if a
or its negation—C"s destination isC’s home package new factf that is a (direct of indirect) logical consequence
HP(C). A complex concept’s destination is the tree in of A(n) is to be added on the ABox tree, it should be added
which it is generated. Destination 6f is denoted ag(C). as a child of node.. For example, in Figure 2 Time 5, a fact
As(x) is generated in the ABox treEs while the destina-

P) tion of A, is T'4. However, since an ancestor 4f(z) has
be sent to an ABox tree of the destination@fi.e.,d(C). received a facB, () from T, A () is an indirect logical

The destination ABox tree of a fagtis denoted by (f). consequence aB; (x). Hence, A (z) should be added to

Thus, all clashes can be detected locally. Note that there iSTA under the node containinB, (). We refer to an ABox

no role importing iNALCPc , therefore a role facP(z,) graph containing both expansion edges and message edges

is always generated in (and stays in) the ABox tred’&f as anABox graph

home package. . Further note that an ABox graph is a representation of
We refer to a fact that is sent from one ABOX tree 10) tapleaux, while each branch in a local ABox tree

another as fact messagend we add anessage eddeom stands for a search choice in finding such a global tableau.

the sending node to the receiving node. In such cases, tWory, ;s \when adding new facts to the graph, the distinction

copies of the fact are kept in the two nodes. For example, iNpeyeen the different search choices must be maintained.

Figure 2 at Time 453, (z) is generated in the ABOX ré€1) gher words, different reasoning subtasks should be kept

(of packageA), but B; has home packagB. Therefore, separate.

B, () is sent to the ABox tre@s of B, and finally results The preceding considerations suggest the following

ina !ocal clash that is detected locallyTi. strategy for avoiding message looping or deadlock in the
Since a fact (e.g.C'(x)) may be shared by two ABox presence of cyclic importing:

trees (e.9.7;, T;), an individual name (e.gz) may also o)

appear in the two trees. We denote such a shared individual ® Leteach node maintain a contact ligtst(n) of nodes
name in different ABox trees with prefixes suchias z from other ABox trees.

andj : x. However, we assume those names can still be e Initial contact list of a root node is initialized with the
identified as variances for the same individual. list of root nodes of other ABox trees.

Each generated fact(x) from any ABox tree node will

e If a new noden is generated under a node in the
same ABox tree\(m), Ist(n) < lst(m).

e If a noden in an ABox treeT” generates a new fagt
such that(f) # T, f is sent to a new nodeunderm

We summarize the expansion rules $6£CP¢ in what
follows, starting with some notations: for any nodeon
an ABox treek, Ax(n) is the ABox represented hy; for
any factf, m(n, f) is a query fromn for f’s existence in
on the destination tre&(f), wherem € Ist(n). lst(l) its destination, i.e., iff € Asy)(Istsr)(n)); r(n, f) is an
is obtained by mergingst(n) andist(m): if both n action that sends a fagt to its destination, i.e., creates a
andm contain contacts from an ABox tree, discard one nNew node containing’ underists s (n). Whens(f) = n,

if it is an ancestor of the other on the ABox graph) m(n, f) is reduced to a local query thatffe Ay (n), and
r(n, f) is reduced to a local action that adds a new node

This strategy ensures that a node always has at most oneontainingf undern. The ALCP; expansion rules are:
contact node from each of the other ABox trees: o M-rule: if Agx(n) contains fact(Cy M Ch)(z), X

Lemma 1 For a noden in an ABox tre€l’, for any pack- is not blocked inAg(n), then dor(n,C;(x)) if

agep,p # A(n), there is at most one node in the ABox m(n,C;(z))=false, fori = 1,2

tree of p such thatm is in n’'s contact list : |{m|m € e L-rule: if A, contains fact(Cy U Cs)(z), X

Ist(n), A(m) =p}| < 1. is not blocked in Ag(n), but m(n,Ci(z)) V
Proof sketch: Suppose there are two noggsandm m(n,Cy(z))=false, then do r(n,Ci(z)) or

from one ABox tree op that are both irist(n). Then there r(n, Ca(x))

must be two paths fromn; ton; and fromms tono, where
ny andng are on the path from to its root. Without loss
of generality, suppose; is a descendent of;. Then there
must be an ancestor of, sayns, such thatg € lst(ms).

J-rule: if Ay contains facf3R.C)(x), x is not blocked
in Ax(n), and R € Py, for any R(z,z) € Ay,

we havem(n, C(z))=false, then do:(n, R(z,y)) and
r(n,C(y)) wherey is a new individual name.

Hence;n, = n3 orng must be a descendentwof and there e V-rule: if Ay contains(VR.C)(x), R(x,y), X is not
must be a path fromg through some ancestor ofs to mo. blocked inA;(n), R € Py, andm(n,C(y))= false,
However, such nodes must be's descendants and hence then dor(n, C(y)).
mo must be a descend_ant of; . Af:co,rding to our contact 3.5 Asynchronous Federated Reasoning
merging rule, onlyms will be kept inn’s contact list.
The contact list update rule described above ensures that We need several types of messages to complete our de-
the contact list contains only the most “recent” message scription of the search for a complete and consistent global
sender from ABox trees of other packages. We also denoteableau, in which the targets of all messages are’siton-
Ist;(n) as the contact of on the ABox tree. tacts anch’s parent node on the local ABox treA (n)):

From Lemma 1 it follows that: e If a local clash is found ind(n), markn as L, send
Lemma 2 If a node has two ancestors, m in an ABox clash messages.
graph, it must be the case thatis an ancestor ofn on the e If all expansion successors ofare marked ad., or
ABox graph, orm is an ancestor of, on the ABox graph anyof the message successors is marked amarkn
(but not both). as_l; send clash messages.

This lemma implies that when adding new facts to the e If .A(n) is locally complete, mark asT, send model
graph, the distinction between the different search choices messages .
(tree branches) must be maintained across all local reason- e If anyexpansion successorsofre marked as’, and
ers. For example, the Figure 2 Timel8;,(x) in T has two all message successors is marked asnarkn asT,
ancestors3; (z) and Ba(x) in T4, andB; (x) is a local an- send model messages .
cestor ofBy(x). Therefore, the set of all ancestor_nodes _of In the case of centralized tableau reasoning, given any
a n_oderz on the ABox graph contains facts associated with gt of three nodes, y, z, wherez is the expansion parent
a single search branch. of y andz , it must be the case thal(x) has a clash iff(y)

Thus, there is in effect, @irtual global ABox (directed) pa 3 clash andl(2) has a clash. However, this is not nec-
graphthat corresponds to a conceptually integrated ontol- osqarily true in the distributed setting. For example, even

ogy. This graph can be decomposed into multiple smaller\,hen gl of s successors make the tableux inconsistent,
local ABoxtrees(by copying some nodes as needed). There it hone of message recipients offind a clash, it is possi-
must be no (directed) loop on the ABox graph, thereby en- e for them to send back te a different fact and open a
suring the termination of the algorithm: new branch undet (also see the example in Figure 2 Time
Lemma 3 (Termination) Let Cy be an ALCP. -concept 7, nodeB;(z) in T4, its only successor,(z) contains a
description in NNF. There cannot be an infinite sequence ofclash, while on Time 8 a new branehy(z) is created by a
ALCP. rule applications. message frorfi’z). Unlike in the centralized setting where

A(z) is consistent iffA(y) is consistent ord(z) is consis- reasoner can implement a mixed strategy of switching to the
tent, in the distributed setting, remote inconsistencies mightsynchronous (i.e. waiting for responses before proceeding)
be discovered om’s copies in other ABox trees although mode when available memory is limited, thus requires only
is locally consistent. polynomial space.

Once a node sends a fact message to one or more ABox In practice, however, the proposetiCCP.; reasoning
trees,we do not requirethat the node wait until an answer algorithm can be more memory efficient than a central-
is received from other ABox trees. A search branch may ized reasoner, since each package is only locally internal-
be closed on the basis of a local clash or clash messageized. Therefore, once a new individualis introduced in
received from other ABox trees. Therefore, local reasonersan ABox tree for packagé only C'r; (z) is added to the
for each of the ABox trees may work on different reasoning ABox tree, while in the centralized case a more complex
subtasks concurrently to make the best use of the computafact C'r(z) is added, wher€'r is the internalization con-
tional resources available to each of them. Thus, the algo-cept for the combined TBoX of all packages.
rithm presented here also relaxes the requirement adopted In conclusion, localizing reasoning subtasks within mul-
in [3] for waiting for a response from the recipient of a fact tiple local reasoners, reduces the time and space required by
message before proceeding. each local reasoner relative to that required by a centralized

Figure 2 (Time 1 -Time 7) illustrates the working of the reasoner working on an integrated version of the modular
algorithm presented in this paper. The example ontology ontology. Thus, the distributed reasoning algorithm can po-
contains two packaged and B. PackageA contains ax- tentially make it possible to reason with ontologies that are
iomsT C A; M—-As, Ay C B, Ay C Bs; packageB much larger than those that can be accomodated by a single
contains axioms3; T A, LI A3, By C As. Thus, thetwo centralized reasoner.
packages mutually import each other. The reasoning task iqs

to check the consistency of the ontology. The result is that Soundness and Completeness

the ontology is inconsistent. The proposed algorithm reduces the problem of check-
. ing inconsistency of a model to a combination of checking
4 Complexity inconsistency of local ABoxes. Given ABoxgk B3, ..., we

denote by(A, B, ..) the ABox obtained by merging the re-
1:spective ABoxes, with shared facts and shared individual
names are merged.

The ALCP; expansion rules expand one or more exist-
ing ABoxes. We have the following lemma:

It is easy to show that the worst case time complexity in
the proposed distributed reasoner is no worse than that o
a centralized reasoner o&LC , i.e. EXPTIME for consis-
tency of ALC -ABoxes [2]. It can be shown by@nceptual
reduction from ALCP. expansions toALC expansions:
Note that all local ABox trees are generated and maintained_ emma 4 If a set of locally complete ABOfA;}, i =

at a single location, the giveALCP¢ expansion rules will 1. m is generated by thel LCP. tableau expansion rules,
be reduced tod LC expansion rules. Thus, thetal number (Ay, ..., A, is consistent iff/i, A; is consistent.
of tableau expansions required to find.A4CP. model in The preceding lemma follows from the observation that

all local reasoners is the same as the number of tableau ex;4£C P, expansions will send any concept fact to the ABox
pansions required to find ad£C model for an integrated of its destination package, and inconsistency is detected
ontology of all ontology modules. when bothC(z) and ~C(z) appear in some local ABox.
However, since different reasoners magoncur- Global inconsistency must necessarily result in a local con-
rently explore different tableau search choices in sistency in some ABox; and a locally inconsistent ABox
ALCP: expansions, in practice, the proposed distributed implies that the set of ABoxes taken together must also be
reasoner can be significantly faster than its centralizedinconsistent. Thus we have:
centralized counterpart. Lemma 5 (Soundness)Assume thatS, is obtained from
The space complexity of the proposed algorithm might the finite set of ABoxesS by application of an
be a source of concern when the individual reasoners op-ALCP¢ transformation rule. Thert is consistent iffS,
erate in an asynchronous fashion (i.e., the individual rea-is consistent.
soners do not wait for responses to messages that they have Completeness of the algorithm follows from the observa-
sent to other reasoners before proceeding). In this modetion that a P-DL model can be induced by a set of distributed
of operation, the local reasoners depart from the strictly ABoxes. Itis easy to verify that a P-DL model is obtained if
depth-first search (withP SPACE complexity) [1]. While we transform each ABox; into a local model (as we usu-
this allows each reasoner to make the best use of its com-ally do to prove the completeness.4£C expansion rules),
putational resources, the departure from strictly depth-firstand if there is a fact messag&x) sent fromA,; to A;, add
search can lead to a worst case space complexity that-is ~ a pair(i : z,j : =) to the image domain relation between
PSPACE (same as that oflLC). Alternatively, each local A, andA;. Thus we have:

Time 1

Time 4 Ta Ts

Ta

(A mAR(=A LB, (A LB,)) (X)

Time 2

(Ar=A;N(=AHB,)N(-ALB,)) (x)

A0 HA)(A LB (X),(7AKB,) (X)

Time 3

(Ar=A;M(=A LB, (-ALB,) (x)
A=A, (FAB,) (X) (A 28,) ()
Time 6

(AM—ANCALBINALB)(X) | [

A (XA (DALB,) (X),(7AB,) (X)

Time 7
{

(A=A N(=A LB, N(—ALB,)) (X)
B, ()

|
A(¥): A0, (ALB,) (X) (-ALB,) ’

(arAncacsneaB)0)

As(X),~Ax),(~A LB, (X),(—A LB,)(x)

BB B]

Bi(x)

Ta

Ta

Te

Time 5

(ararcasreasien] { aecammincamm |

Ta

Ta

Ta
0
i

Legend

Fact resulting in
cccccc sistency

Time 8 (Hide some unsuccessful branches)

Aqlx)

clash

Figure 2. Reasoning with Mutual Importing

Lemma 6 (Completeness)Any complete and clash-free
ALCP. Global ABox{.A;} has a model.

6 Summary and Discussion

3.

4.

by allowing reasoning to proceed in an asynchronous,
peer-to-peer fashion, enables local reasoners to con-
currently work on different reasoning subtasks thereby
improving the efficiency and scalability of reasoning.

by exploiting on the P-DL formalism, tackles a broader
range of reasoning tasks, including those involving
both inter-module subsumption and role relations.

Work in progress is aimed at:

Extending the proposed reasoning algorithm to work
with more expressive DLs such &HZOP. (i.e.
package-baseS8HZ Q with concept importing).
Detailed performance evaluation of implementations
of the proposed algorithm in several practical appli-
cation scenarios.

Acknowledgement This research was supported by grants
from the US NSF (0219699, 0639230) to Vasant Honavar.

References

[1]

(2]

[4]

[5]

[6]

[7]

We have presented a distributed tableau-based reasoning
algorithm for the package-based extension of the DL lan-
guageALCP.: . The proposed approach offers a practical
approach that:

1.

by strictly avoiding integration of modules into a single
ontology, avoids the need for integrating the ontology
modules in a centralized knowledge base.

. by bsing a message-based inter-reasoner communi-

cation strategy, enhances the reusability of ontology
modules, incliuding in particular, mutual or cyclic im-
porting among packages thereby overcoming an im-
portant limitation of earlier approaches that were lim-
ited to acyclic importing [3].

[8]

[9]

[10]

[11]

F. Baader and W. Nutt. Basic description logics. In
F. Baader, D. Calvanese, and D. M. et.al., editdtse De-
scription Logic Handbook: Theory, Implementation, and
Applications pages 43-95. Cambridge University Press,
2003.

F. Baader and U. Sattler. An overview of tableau algorithms
for description logicsStudia Logica69(1):5—-40, 2001.

J. Bao, D. Caragea, and V. Honavar. A distributed tableau al-
gorithm for package-based description logicstha 2nd In-
ternational Workshop On Context Representation And Rea-
soning (CRR 2006), co-located with ECAI 20@606.

J. Bao, D. Caragea, and V. Honavar. Modular ontologies - a
formal investigation of semantics and expressivityRIrMi-
zoguchi, Z. Shi, and F. Giunchiglia (Eds.): Asian Semantic
Web Conference 2006, LNCS 4185ges 616—631, 2006.

J. Bao, D. Caragea, and V. Honavar. Towards collaborative
environments for ontology construction and sharinglnin
ternational Symposium on Collaborative Technologies and
Systems (CTS 20Q6)ages 99-108. IEEE Press, 2006.

A. Borgida and L. Serafini. Distributed description logics:
Directed domain correspondences in federated information
sources. IrCooplS pages 36-53, 2002.

B. C. Grau, B. Parsia, and E. Sirin. Tableau algorithms for e-
connections of description logics. Technical report, Univer-
sity of Maryland Institute for Advanced Computer Studies

(UMIACS), TR 2004-72, 2004.

B. C. Grau, B. Parsia, and E. Sirin. Working with multiple
ontologies on the semantic web. limternational Semantic
Web Conferencepages 620-634, 2004.

O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-
connections of abstract description systenstif. Intell.,
156(1):1-73, 2004.

L. Serafini, A. Borgida, and A. Tamilin. Aspects of dis-
tributed and modular ontology reasoning. IICAI, pages
570-575, 2005.

L. Serafini and A. Tamilin. Local tableaux for reasoning in
distributed description logics. IDescription Logics Work-
shop 2004, CEUR-WS Vol 102004.

