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Abstract

Many real world applications of ontologies call for rea-
soning with modular ontologies. We describe a tableau-
based reasoning algorithm based on Package-based De-
scription Logics (P-DL), an modular ontology language
that extends description logics. Unlike Classical ap-
proaches that assume a single centralized, consistent ontol-
ogy, the proposed algorithm adopts a federated approach to
reasoning with modular ontologies wherein each ontology
module has associated with it, a local reasoner. The lo-
cal reasoners communicate with each other as needed in an
asynchronous fashion. Hence, the proposed approach of-
fers an attractive approach to reasoning with multiple, au-
tonomously developed ontology modules, in settings where
it is neither possible nor desirable to integrate all involved
modules into a single centralized ontology.

1 Introduction

There is a growing recent interest in ontology lan-
guage features to support modular ontologies as well as
approaches to reasoning with multiple ontology modules
including: Distributed Description Logics (DDL)[6],E-
connections [9, 8] and Package-based Description Logics
(P-DL) [5, 4]. Of particular interest in this context are al-
gorithms for reasoning with multiple, distributed and au-
tonomous ontology modules. Reasoning with ontologies in
such a setting presents several challenges:

• The reasoning task involves not a single ontology, but a
collection of ontologies about a domain of interest that
are created and maintained by autonomous groups.

• In many cases, integrating distributed ontologies into
one consistent centralized ontology is not possible for
several reasons: the ontologies may be large and com-
munication overhead is too expensive; the autonomous
entities that control an ontology may be unwilling to
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share it in its entirety although be willing to answer
queries to the ontology. In such a setting, it is not feasi-
ble to reduce the problem of reasoning over distributed
ontology modules to the problem of reasoning over a
single centralized ontology.

• In general, an ontology may reuse terms defined in an-
other ontology. Mutual or cyclic reuse is also common.

Several authors have recently investigated distributed
reasoning algorithms for modular ontologies. Serafini et. al.
[11, 10] describe a tableau-based reasoning algorithm for
DDL . The algorithm divides a reasoning problem w.r.t. a
DDL TBox into several local reasoning problems answered
by local modules. The basic idea behind this algorithm
is to infer concept subsumption in one module from sub-
sumptions in another module and inter-modulebridge rules
that relate concepts in one module to concepts in another
module. For example, cnsider ontology modulesi andj in
which the conceptsA,B andG,H respectively are defined,

given the bridge rulesi : A
w−→ j : G, i : B

v−→ j : H and
modulei entailsA v B, then it is possible for modulej to
infer thatG v H.

Grau et al. [8, 7] present a tableau-based reasoning pro-
cedure forE-Connections. E-connections divides roles into
disjoint sets oflocal roles(connecting concepts in one mod-
ule) andlinks (connecting concepts in different modules).
For example, two modules about people (L1) and pets (L2)
can be connected by a linkowns, and L1 can use such
a link to build local concepts, e.g.1 : DogOwner v
∃owns.(2 : Dog). The tableau-based reasoning procedure
for E-Connections, implemented in the Pellet reasoner, gen-
erates a set of tableaux (trees) linked byE-connection in-
stances (cross-module role instances).

Bao et.al. [3] describe a distributed reasoning algorithm
for P-DL with acyclic importing. This algorithm adopts a
federated approach to reasoning using distributed storage
of a global tableau. Some of local tableaux may share some
nodes (i.e. “image” nodes) and communicate by sending
messages to each other. Thus, search for amodelof the
ontology is distributed across the local tableaux.



However, existing approaches to reasoning with modu-
lar ontologies suffer from several limitations. Both DDL
and E-Connections, because of their limited expressivity,
lack support for certain types of reasoning tasks. For ex-
ample, DDLs have no support for inter-module role rela-
tions, whereasE-connections lack inter-module subsump-
tions. Both DDL and P-DL reasoning algorithms do not al-
low mutual or cyclic references (bridge rules in DDL, term
importing in P-DL) of concepts among ontology modules.

Current implementation of theE-Connections reasoner,
motivated by the “combined tableau” idea [8, 7], only “col-
ors” local tableaux without separating them. Therefore, rea-
soning relies on one (combined) ABox thereby forcing the
TBoxes of all modules to be loaded (through internaliza-
tion) into the reasoner. The strategy actually loads all on-
tology modules into a single memory space thus makes a
de facto ontology integration, which sacrifices many of the
benefits of modular ontologies (e.g. scalability).

Against this background, we present an improved fed-
erated reasoning algorithm that overcomes many of these
limitations and offers several advantages over existing ap-
proaches. It strictly avoids combining the local ontology
modules in a centralized memory space using distributed
reasoning with localized P-DL semantics thereby allow-
ing local reasoning modules to operate in an asynchronous,
peer-to-peer fashion. It supports reasoning with both inter-
module subsumption and inter-module role relations and al-
lows arbitrary references of concepts among ontology mod-
ules. The P-DL semantics also guarantees that the results of
reasoning in the distributed setting are identical to those ob-
tainable by applying a reasoner to an ontology constructed
by integrating the different modules [4].

2 Package-based Description Logics

This section briefly reviews basic features of Package-
based Description Logics (P-DL) as given in [5, 4]. In P-
DL, an ontology is composed of a collection of modules
calledpackages. Each term (name of a concept, property or
individual) or axiom is associated with ahome package. A
package can use terms defined in other packages:
Definition 1 (Foreign Term and Importing) A termt that
appears in a packageP , but has a home packageQ that is
different fromP is called aforeign termin P . We say that

P imports Q : t and denote it asQ
t−→ P . If any term

defined inQ is imported intoP , we say thatP importsQ
and denote it asQ 7→ P . Theimporting closureI7→(P ) of
a packageP contains packages such that:
• (direct importing)R 7→ P ⇒ R ∈ I7→(P )

• (indirect importing)Q 7→ R andR ∈ I7→(P ) ⇒ Q ∈
I7→(P )

Definition 2 (Acyclic and Cyclic Importing) A P-DL on-
tology{Pi} has acyclic importing relation if for anyi 6= j,

Pj ∈ I7→(Pi) → Pi 6∈ I7→(Pj), otherwise it has cyclic
importing relation.

For example, an ontologyO with acyclic importing is:
PAnimal

(1a) 1 : Carnivore v ∀1 : eats.(1 : Animal)
(1b) 1 : Dog t 1 : Human v 1 : Animal

PPet

(2a) 2 : PetDog v 1 : Dog u 2 : Pet
(2b) 2 : PetDog v ∃2 : livesWith.(1 : Human)
By reusing terms defined inPAnimal, the ontology is

able to model both inter-module concept subsumption (e.g.
axiom 2a) and role relations (e.g. axiom 2b). We denote the
package extension to Description Logics (DL) asP. For
example,ALCP is the package-based version of DLALC.
In what follows, we will examine a restricted type of pack-
age extension which only allows import of concept names,
denoted asPC .

For a package-based ontology〈{Pi}, {Pi −→ Pj}i 6=j〉,
a distributed model isM = 〈{Ii}, {rij}i 6=j〉, whereIi =
〈∆i, (.)i〉 is the local model of packagePi, rij ⊆ ∆i ×∆j

is the interpretation for theimage domain relationPi −→ Pj .
(x, y) ∈ rij indicates an individualy ∈ ∆j is an “image”
(or copy) of an individualx ∈ ∆i. Therefore, local models
of P-DL can be partially overlapping.

To ensure module transitive reusability and reasoning
correctness, we require that every image domain relation
has the following properties:
• It is one-to-one: for anyx ∈ ∆i, there is at most one

y ∈ ∆j , such that(x, y) ∈ rij .
• It is compositional consistent:rij = rik ◦ rjk, where
◦ denotes function composition. Therefore, semantic
relations between terms ini and terms ink can be in-
ferred even ifk doesn’t directly import terms fromi.

For a relationrij and any individuald ∈ ∆i, rij(d) de-
notes the set{d′ ∈ ∆j |〈d, d′〉 ∈ r}. For a subsetD ⊆ ∆i,
rij(D) denotes∪d∈Drij(d), is the image set ofD.

A concept i : C is satisfiablew.r.t. a P-DL O =
〈{Pi}, {Pi −→ Pj}i 6=j〉 if there exists a distributed model
of O such thatCIi 6= Ø. O entailssubsumptioni : C v
j : D (i may or may not be the same asj), denoted as
O ² i : C vP j : D iff rij(CIi) ⊆ DIj holds in every
model ofO.

3 Distributed Reasoning for P-DL

We extend the tableau-based approach to distributed rea-
soning with P-DL modules introduced in [3] to a more gen-
eral setting wherein arbitrary importing (e.g. cyclic or mu-
tual importing) among packages is allowed, and the tableau
search process is preformed in a parallel, asynchronous
fashion. We demonstrate the strategy with the package-
extended version of a representative DLALC that allows
importing of concepts between packages, i.e.ALCPC .



3.1 ALC Reasoning

We first briefly introduce the tableau algorithm for tra-
ditional DLs. e.g.ALC . A tableau is a representation of
a model of a logic language, and in particular, of an on-
tology. Popular representation forms of a tableau include
ABox and Completion Graph [2], while each of them can
be transformed into the other. In this paper, we adopt the
ABox representation since it is more explicit for incremen-
tal tableau storage needed for our algorithm.

An ABox contains a set offacts in the form ofC(x),
P (x, y), x = y or x 6= y, wherex, y are individuals,C is
a concept name, andP is a property name. To test the sat-
isfiability of a conceptC w.r.t. a TBoxT , an initial ABox
A0 is created as(C u CT )(x0), whereCT is the internal-
ization conceptof T : CT = u

(CivDi)∈T
(¬Ci t Di). Each

individualx in any ABox ofT will be an instance ofCT .
New facts can be inferred from existing facts based on

tableau expansion rulesand added to the ABox. Assum-
ing that all concepts are in Negation Normal Form (NNF),
theALC tableau expansion rules for traditional reasoning
process (i.e. on a single ontology) are:

• u-rule: if ABoxA contains(C1 uC2)(x) but not both
C1(x) andC2(x), thenA′=A ∪ {C1(x), C2(x)}

• t-rule: if ABox A contains(C1 t C2)(x) but nei-
therC1(x) or C2(x), thenA1=A∪ {C1(x)},A2=A∪
{C2(x)}

• ∃-rule: if A contains(∃R.C)(x) but no individual
y such thatC(y) and R(y, z) in A, thenA′=A ∪
{C(y), R(x, y)} wherey is an individual name not oc-
curring in originalA.

• ∀-rule: ifA contains(∀R.C)(x), R(x, y) but noC(y),
thenA′=A ∪ {C(y)}

An ABox clash corresponds to the scenario:
{C(x),¬C(x)} ⊆ A (for any individual x and any
concept nameC). An ABox is consistentif it contains no
clash, and iscompleteif no expansion rule can be applied
on it. Note that thet-rule is nondeterministic in that it
generate multiple possible new facts. The algorithm needs
to try different choices i.e.,search for different possible
models. Once a chosen path leads to an inconsistency, the
algorithm needs to backtrack to the ABox state before the
choice, and try other remaining choices.

A conceptC is said to be satisfiable w.r.t. a TBoxT if
and only if the algorithm finds a consistent and complete
ABox for bothC andCT .

3.2 Incremental Distributed Tableau Storage

Tableau-based reasoning for modular ontologies [11, 10,
8, 7, 3] usually exploits multiple local tableaux instead of
a single tableau. This supports the localized semantics re-
quirement for modular ontologies [4], i.e., that there is no

requiredglobal model. Thus, reasoning is carried out to ob-
tain a set of connected local models for a modular ontology.

Each of the existing approaches assumes different prop-
erties of local models, and as a consequence, requires dif-
ferent procedures for constructing such local models and
local tableaux. DDL andE-connections reasoning algo-
rithms [11, 10, 8, 7] assume domains (the set of individuals)
of local tableaux are disjoint, while P-DL reasoning algo-
rithm [3] allows them to be partially overlapping. Advan-
tages of the later approach include support for inter-module
subsumption and transitive reusability of modules [3].

In this paper, we assume incremental instantiation of
ABoxes to simplify the description of the algorithm.

(C � D)(x),∃R.D(x),¬C(x)

R(x,y),D(y)

C(x) D(x)

Inconsistent Complete &
Consistent

Figure 1. Incremen-
tal Instantiation of
ABoxes

We represent an
ABox by a series of
nodes, where each node
contains one or more
facts. The root node
contains all the initial
facts in the ABox. By
applying the tableau
expansion rules, starting
with the root node,
we can successively
generate new inferred
facts. The inferred
facts are added as to

the successor of the current node, called itsexpansion
successor. The edge linking a node to its successor is called
an expansion edge. Multiple choices for expansion (e.g.
using thet-rule), result in multiple successors. Recursive
application of the tableau expansion rules yields anABox
Tree, with each node in the tree representing an ABox that
contains all the facts on the path to that node from the root
node. When the algorithm terminates, each leaf in the tree
corresponds to either an inconsistent ABox or a complete
and consistent ABox (See Figure 1 for an example).

For each noden, let ∆(n) denoting the tree thatn be-
longs to;f(n) is the set of facts inn; andA(n) is the ABox
containing all the facts inn and all of its ancestors up to
the root node. Thus, if a noden is a successor of nodem,
A(n) =A(m)∪ f(n). Each packagePi participating in the
reasoning process has associated with it, an initial noden0

i .
Each individual introduced to the ABox tree ofPi must be
an instance ofCTi

.
Given a P-DL ontologyO = {Pi}, we can obtain an

ABox forest wherein each package has associated with it
exactly one ABox tree. A distributed ABoxAd (i.e., a dis-
tributed model) ofO is represented by a set of complete
and consistent leaf nodes{ni}, one from each ABox tree,
whereA(ni) is a local ABox (i.e. a local model), and
Ad = ∪iA(ni).



Thus, each ABox tree is maintained by the correspond-
ing local reasoner. The reasoning process is carried out by a
federation of such local reasoners. Since each ABox tree is
only locally internalized, integration of the ontology mod-
ules into a centralized ontology or of local models into a
centralized model is strictly avoided.

3.3 Distributed Tableau Expansion

To construct a distributed model for an
ALCPC ontology, we start with a list of initial ABox
nodes corresponding to each package in the ontology. New
facts can be added to the ABox forest by applying tableau
expansion rules similar to that ofALC . However, the
traditionalALC expansion procedure needs to be modified
in several important aspects. We refer to the resulting
expansion rules asALCPC expansion rules.

First of all, new facts should be sent to a “destination”
ABox tree to reduce the cost of detecting a clash. Since a
concept can be imported into another package, it is possible
that a factC(x) is generated from an expansion in an ABox
of a package that is notC ’s home package. Therefore,C(x)
and¬C(x)) can be generated in different local ABoxe trees
in which case, a clash cannot belocally detected. However,
global check for such clashes is expensive. Hence, we adopt
a strategy that is designed to minimize the cost of detecting
clashes. We start by introducing some relevant definitions:

Definition 3 (Concept Destination) An atomic conceptC
or its negation¬C ’s destination isC ’s home package
HP(C). A complex conceptC ’s destination is the tree in
which it is generated. Destination ofC is denoted asδ(C).

Each generated factC(x) from any ABox tree node will
be sent to an ABox tree of the destination ofC, i.e.,δ(C).
The destination ABox tree of a factf is denoted byδ(f).
Thus, all clashes can be detected locally. Note that there is
no role importing inALCPC , therefore a role factP (x, y)
is always generated in (and stays in) the ABox tree ofP ’s
home package.

We refer to a fact that is sent from one ABox tree to
another as afact message, and we add amessage edgefrom
the sending node to the receiving node. In such cases, two
copies of the fact are kept in the two nodes. For example, in
Figure 2 at Time 4,B1(x) is generated in the ABox treeTA

(of packageA), but B1 has home packageB. Therefore,
B1(x) is sent to the ABox treeTB of B, and finally results
in a local clash that is detected locally inTB .

Since a fact (e.g.,C(x)) may be shared by two ABox
trees (e.g.Ti, Tj), an individual name (e.g.,x) may also
appear in the two trees. We denote such a shared individual
name in different ABox trees with prefixes such asi : x
andj : x. However, we assume those names can still be
identified as variances for the same individual.

The termination of the algorithm can still be ensured us-
ing thesubset blocking[2]: for an ABox tree noden, the
application of the∃-rule is blocked to an individualx by an
individualy iff {D|D(x) ∈ A(n)} ⊆ {D′|D′(y) ∈ A(n)}.

Note that the algorithm we presented so far is equivalent
to the completion graph-basedALCPC reasoning algorithm
in [3] if we allow only acyclic importing between packages.
Thus, based on Lemmas 1 and 2 of [3], if only acyclic im-
porting between packages is allowed, the message edges be-
tween ABox trees are guaranteed to be uni-directional: once
an ABox treet1 receives a fact fromt2, there is no path in
the ABox forest (linked by message edges) from a node in
t1 ending in a node int2, hence there is no risk of message
loop. However, if cyclic importing is allowed, in order to
guarantee termination of the algorithm, we need to find a
way to prevent message looping.

3.4 Handling Cyclic Importing

Cyclic importing presents additional difficulties in mes-
sage exchange among ABox trees because it may lead to
ABox trees waiting for each other in a cycle or a deadlock.
How can we avoid such a deadlock?

To develop some intuition regarding this problem, con-
sider the logical meaning of edges in the ABox forest. If a
factf is generated by applying expansion rules at a noden,
f is actually the logical consequence of some facts in the
ABox A(n). For example, in Figure 1, the factD(x) is one
possible logical consequence of(CtD)(x). Therefore, if a
new factf that is a (direct of indirect) logical consequence
ofA(n) is to be added on the ABox tree, it should be added
as a child of noden. For example, in Figure 2 Time 5, a fact
A2(x) is generated in the ABox treeTB while the destina-
tion of A2 is TA. However, since an ancestor ofA2(x) has
received a factB1(x) from TA, A2(x) is an indirect logical
consequence ofB1(x). Hence,A2(x) should be added to
TA under the node containingB1(x). We refer to an ABox
graph containing both expansion edges and message edges
as anABox graph.

Further note that an ABox graph is a representation of
global tableaux, while each branch in a local ABox tree
stands for a search choice in finding such a global tableau.
Thus, when adding new facts to the graph, the distinction
between the different search choices must be maintained.
In other words, different reasoning subtasks should be kept
separate.

The preceding considerations suggest the following
strategy for avoiding message looping or deadlock in the
presence of cyclic importing:

• Let each noden maintain a contact listlst(n) of nodes
from other ABox trees.

• Initial contact list of a root node is initialized with the
list of root nodes of other ABox trees.



• If a new noden is generated under a nodem in the
same ABox tree∆(m), lst(n) ⇐ lst(m).

• If a noden in an ABox treeT generates a new factf
such thatδ(f) 6= T , f is sent to a new nodel underm
on the destination treeδ(f), wherem ∈ lst(n). lst(l)
is obtained by merginglst(n) and lst(m): if both n
andm contain contacts from an ABox tree, discard one
if it is an ancestor of the other on the ABox graph)

This strategy ensures that a node always has at most one
contact node from each of the other ABox trees:

Lemma 1 For a noden in an ABox treeT , for any pack-
agep, p 6= ∆(n), there is at most one nodem in the ABox
tree of p such thatm is in n’s contact list : |{m|m ∈
lst(n),∆(m) = p}| 6 1.

Proof sketch: Suppose there are two nodesm1 andm2

from one ABox tree ofp that are both inlst(n). Then there
must be two paths fromm1 to n1 and fromm2 to n2, where
n1 andn2 are on the path fromn to its root. Without loss
of generality, supposen2 is a descendent ofn1. Then there
must be an ancestor ofn2, sayn3, such thatn3 ∈ lst(m2).
Hence,n1 = n3 or n3 must be a descendent ofn1 and there
must be a path fromn3 through some ancestor ofm2 to m2.
However, such nodes must bem1’s descendants and hence
m2 must be a descendant ofm1. According to our contact
merging rule, onlym2 will be kept inn’s contact list.

The contact list update rule described above ensures that
the contact list contains only the most “recent” message
sender from ABox trees of other packages. We also denote
lsti(n) as the contact ofn on the ABox treei.

From Lemma 1 it follows that:

Lemma 2 If a node has two ancestorsn,m in an ABox
graph, it must be the case thatn is an ancestor ofm on the
ABox graph, orm is an ancestor ofn on the ABox graph
(but not both).

This lemma implies that when adding new facts to the
graph, the distinction between the different search choices
(tree branches) must be maintained across all local reason-
ers. For example, the Figure 2 Time 6,B2(x) in TB has two
ancestorsB1(x) andB2(x) in TA, andB1(x) is a local an-
cestor ofB2(x). Therefore, the set of all ancestor nodes of
a noden on the ABox graph contains facts associated with
a single search branch.

Thus, there is in effect, avirtual global ABox (directed)
graph that corresponds to a conceptually integrated ontol-
ogy. This graph can be decomposed into multiple smaller
local ABox trees(by copying some nodes as needed). There
must be no (directed) loop on the ABox graph, thereby en-
suring the termination of the algorithm:

Lemma 3 (Termination) Let C0 be anALCPC -concept
description in NNF. There cannot be an infinite sequence of
ALCPC rule applications.

We summarize the expansion rules forALCPC in what
follows, starting with some notations: for any noden on
an ABox treek, Ak(n) is the ABox represented byn; for
any factf , m(n, f) is a query fromn for f ’s existence in
its destination, i.e., iff ∈ Aδ(f)(lstδ(f)(n)); r(n, f) is an
action that sends a factf to its destination, i.e., creates a
new node containingf underlstδ(f)(n). Whenδ(f) = n,
m(n, f) is reduced to a local query that iff ∈ Ak(n), and
r(n, f) is reduced to a local action that adds a new node
containingf undern. TheALCPC expansion rules are:

• u-rule: if Ak(n) contains fact(C1 u C2)(x), x
is not blocked inAk(n), then do r(n,Ci(x)) if
m(n,Ci(x))= false, fori = 1, 2

• t-rule: if Ak contains fact (C1 t C2)(x), x
is not blocked in Ak(n), but m(n,C1(x)) ∨
m(n,C2(x))=false, then do r(n,C1(x)) or
r(n,C2(x))

• ∃-rule: ifAk contains fact(∃R.C)(x), x is not blocked
in Ak(n), and R ∈ Pk, for any R(x, z) ∈ Ak,
we havem(n,C(z))=false, then dor(n,R(x, y)) and
r(n,C(y)) wherey is a new individual name.

• ∀-rule: if Ak contains(∀R.C)(x), R(x, y), x is not
blocked inAk(n), R ∈ Pk, andm(n,C(y))= false,
then dor(n,C(y)).

3.5 Asynchronous Federated Reasoning

We need several types of messages to complete our de-
scription of the search for a complete and consistent global
tableau, in which the targets of all messages are alln’s con-
tacts andn’s parent node on the local ABox tree (∆(n)):

• If a local clash is found inA(n), markn as⊥, send
clash messages.

• If all expansion successors ofn are marked as⊥, or
anyof the message successors is marked as⊥, markn
as⊥; send clash messages.

• If A(n) is locally complete, markn as>, send model
messages .

• If anyexpansion successors ofn are marked as>, and
all message successors is marked as>, markn as>,
send model messages .

In the case of centralized tableau reasoning, given any
set of three nodesx, y, z, wherex is the expansion parent
of y andz , it must be the case thatA(x) has a clash iffA(y)
has a clash andA(z) has a clash. However, this is not nec-
essarily true in the distributed setting. For example, even
when all ofx’s successors make the tableux inconsistent,
if none of message recipients ofx find a clash, it is possi-
ble for them to send back tox a different fact and open a
new branch underx (also see the example in Figure 2 Time
7, nodeB1(x) in TA, its only successorA2(x) contains a
clash, while on Time 8 a new branchA3(x) is created by a
message fromTB). Unlike in the centralized setting where



A(x) is consistent iffA(y) is consistent orA(z) is consis-
tent, in the distributed setting, remote inconsistencies might
be discovered onx’s copies in other ABox trees althoughx
is locally consistent.

Once a node sends a fact message to one or more ABox
trees,we do not requirethat the node wait until an answer
is received from other ABox trees. A search branch may
be closed on the basis of a local clash or clash messages
received from other ABox trees. Therefore, local reasoners
for each of the ABox trees may work on different reasoning
subtasks concurrently to make the best use of the computa-
tional resources available to each of them. Thus, the algo-
rithm presented here also relaxes the requirement adopted
in [3] for waiting for a response from the recipient of a fact
message before proceeding.

Figure 2 (Time 1 -Time 7) illustrates the working of the
algorithm presented in this paper. The example ontology
contains two packagesA andB. PackageA contains ax-
ioms> v A1 u ¬A3, A1 v B1, A2 v B2; packageB
contains axiomsB1 v A2 t A3, B2 v A3. Thus, the two
packages mutually import each other. The reasoning task is
to check the consistency of the ontology. The result is that
the ontology is inconsistent.

4 Complexity

It is easy to show that the worst case time complexity in
the proposed distributed reasoner is no worse than that of
a centralized reasoner onALC , i.e. EXPTIME for consis-
tency ofALC -ABoxes [2]. It can be shown by aconceptual
reduction fromALCPC expansions toALC expansions:
Note that all local ABox trees are generated and maintained
at a single location, the givenALCPC expansion rules will
be reduced toALC expansion rules. Thus, thetotal number
of tableau expansions required to find anALCPC model in
all local reasoners is the same as the number of tableau ex-
pansions required to find anALC model for an integrated
ontology of all ontology modules.

However, since different reasoners mayconcur-
rently explore different tableau search choices in
ALCPC expansions, in practice, the proposed distributed
reasoner can be significantly faster than its centralized
centralized counterpart.

The space complexity of the proposed algorithm might
be a source of concern when the individual reasoners op-
erate in an asynchronous fashion (i.e., the individual rea-
soners do not wait for responses to messages that they have
sent to other reasoners before proceeding). In this mode
of operation, the local reasoners depart from the strictly
depth-first search (withPSPACE complexity) [1]. While
this allows each reasoner to make the best use of its com-
putational resources, the departure from strictly depth-first
search can lead to a worst case space complexity that isEX-
PSPACE (same as that ofALC ). Alternatively, each local

reasoner can implement a mixed strategy of switching to the
synchronous (i.e. waiting for responses before proceeding)
mode when available memory is limited, thus requires only
polynomial space.

In practice, however, the proposedALCPC reasoning
algorithm can be more memory efficient than a central-
ized reasoner, since each package is only locally internal-
ized. Therefore, once a new individualx is introduced in
an ABox tree for packagei, only CTi

(x) is added to the
ABox tree, while in the centralized case a more complex
fact CT (x) is added, whereCT is the internalization con-
cept for the combined TBoxT of all packages.

In conclusion, localizing reasoning subtasks within mul-
tiple local reasoners, reduces the time and space required by
each local reasoner relative to that required by a centralized
reasoner working on an integrated version of the modular
ontology. Thus, the distributed reasoning algorithm can po-
tentially make it possible to reason with ontologies that are
much larger than those that can be accomodated by a single
centralized reasoner.

5 Soundness and Completeness

The proposed algorithm reduces the problem of check-
ing inconsistency of a model to a combination of checking
inconsistency of local ABoxes. Given ABoxesA,B, ..., we
denote by(A,B, ..) the ABox obtained by merging the re-
spective ABoxes, with shared facts and shared individual
names are merged.

TheALCPC expansion rules expand one or more exist-
ing ABoxes. We have the following lemma:

Lemma 4 If a set of locally complete ABox{Ai}, i =
1...,m is generated by theALCPC tableau expansion rules,
(A1, ...,Am) is consistent iff∀i,Ai is consistent.

The preceding lemma follows from the observation that
ALCPC expansions will send any concept fact to the ABox
of its destination package, and inconsistency is detected
when bothC(x) and¬C(x) appear in some local ABox.
Global inconsistency must necessarily result in a local con-
sistency in some ABox; and a locally inconsistent ABox
implies that the set of ABoxes taken together must also be
inconsistent. Thus we have:
Lemma 5 (Soundness)Assume thatS0 is obtained from
the finite set of ABoxesS by application of an
ALCPC transformation rule. ThenS is consistent iffS0

is consistent.
Completeness of the algorithm follows from the observa-

tion that a P-DL model can be induced by a set of distributed
ABoxes. It is easy to verify that a P-DL model is obtained if
we transform each ABoxAi into a local model (as we usu-
ally do to prove the completeness ofALC expansion rules),
and if there is a fact messageC(x) sent fromAi toAj , add
a pair(i : x, j : x) to the image domain relation between
∆i and∆j . Thus we have:
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Figure 2. Reasoning with Mutual Importing

Lemma 6 (Completeness)Any complete and clash-free
ALCPC Global ABox{Ai} has a model.

6 Summary and Discussion

We have presented a distributed tableau-based reasoning
algorithm for the package-based extension of the DL lan-
guageALCPC . The proposed approach offers a practical
approach that:

1. by strictly avoiding integration of modules into a single
ontology, avoids the need for integrating the ontology
modules in a centralized knowledge base.

2. by bsing a message-based inter-reasoner communi-
cation strategy, enhances the reusability of ontology
modules, incliuding in particular, mutual or cyclic im-
porting among packages thereby overcoming an im-
portant limitation of earlier approaches that were lim-
ited to acyclic importing [3].

3. by allowing reasoning to proceed in an asynchronous,
peer-to-peer fashion, enables local reasoners to con-
currently work on different reasoning subtasks thereby
improving the efficiency and scalability of reasoning.

4. by exploiting on the P-DL formalism, tackles a broader
range of reasoning tasks, including those involving
both inter-module subsumption and role relations.

Work in progress is aimed at:
• Extending the proposed reasoning algorithm to work

with more expressive DLs such asSHIQPC (i.e.
package-basedSHIQ with concept importing).

• Detailed performance evaluation of implementations
of the proposed algorithm in several practical appli-
cation scenarios.
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