
Modular Ontologies - A Formal Investigation of
Semantics and Expressivity

Jie Bao, Doina Caragea, and Vasant G. Honavar

Artificial Intelligence Research Laboratory,
Department of Computer Science

Iowa State University, Ames, IA 50011-1040, USA
{baojie, dcaragea, honavar}@cs.iastate.edu

Abstract. With the growing interest in modular ontology languages to
address the need for collaborative development, integration, and use of
ontologies on the Web, there is an urgent need for a common framework
for comparing modular ontology language proposals on the basis of crite-
ria such as their semantic soundness and expressive power. We introduce
an Abstract Modular Ontology (AMO) language and offer precise defi-
nitions of semantic soundness such as localized semantics and exact rea-
soning, and expressivity requirements for modular ontology languages.
We compare Distributed Description Logics (DDL), E-connections, and
Package-Based Description Logics (P-DL) with respect to these criteria.
Our analysis suggests that by relaxing the strong domain disjointedness
assumption adopted in DDL and E-connection, as P-DL demonstrated, it
is possible to overcome some known semantic difficulties and expressivity
limitations of DDL and E-Connections.

1 Introduction

Recently, there is a growing interest in modular ontology languages such as Dis-
tributed Description Logics (DDL) [4] and its syntax C-OWL[5], E-connections
[12,9], Fusion of Abstract Description Systems (FADS) [1], and Package-extended
Description Logics (P-DL) [3]. Two broad classes of approaches are adopted to
asserting and using semantic relations between multiple ontology modules: DDL
and E-connections adopt the “linking” approach that assumes that the modules
are nonoverlapping or disjoint, while P-DL adopts the “importing” approach
that allows direct use of foreign terms in an ontology module. Both DDL and P-
DL cover scenarios that require inter-module concept subsumptions (e.g., Dog
is Animal), while E-connections allows only inter-module role relations (e.g.,
DogOwner owns Dog). Serafini et.al. (2005) [16] compared several mapping
languages such as DDL and E-connections, by reducing them to the Distributed
First Order Logics (DFOL) [7] framework. Others have noted some of the se-
mantic difficulties and limitations of such approaches [9,2].

However, there has been relatively little work on precise requirements for, and
criteria for evaluating, modular ontology languages in more general settings that
encompass both linking and importing among ontology modules. Some natural

R. Mizoguchi, Z. Shi, and F. Giunchiglia (Eds.): ASWC 2006, LNCS 4185, pp. 616–631, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Modular Ontologies - A Formal Investigation of Semantics and Expressivity 617

questions that arise in comparing different approaches to integration of ontol-
ogy modules are: What are the minimal requirements for ensuring the semantic
soundness of a modular ontology language? What ontology language features are
needed to construct a practical modular ontology? Under what circumstances
can a reasoning process in a modular ontology language be said to be sound
and complete? What are the sources of semantic difficulties in some modular
ontology languages? How can such difficulties be avoided?

The goal of this paper is to provide some preliminary answers to these ques-
tions. Section 2 points out limitations of OWL to motivate the need for modular
ontology languages. Section 3 explores a set of evaluation criteria for modu-
lar ontology languages. Section 4 precisely defines the aforementioned criteria
within the Abstract Modular Ontology framework. Sections 5 and 6 (respec-
tively) compare the semantic soundness and expressivity of several existing mod-
ular ontology language proposals w.r.t. the introduced criteria. 7 concludes with
a summary and a brief discussion of related research.

2 Limitations of OWL as a Modular Ontology Language

OWL [15] is among the leading candidates for for a web ontology language.
Hence, it is natural to ask why OWL cannot be used as a satisfactory modular
ontology language.

We start by observing that OWL adopts an importing mechanism to support
the integration of ontology modules. Thus, an OWL ontology may contain an-
notations owl:imports with references to other OWL ontologies. Once an OWL
ontology O1 imports another OWL ontology O2, the terms defined in O2 can
be directly used in O1 as foreign terms. In this manner, an ontology can be
divided into smaller components within separate identification spaces, such as
XML name spaces. However, the importing mechanism in OWL, in its current
form, suffers from several serious drawbacks. In what follows, we will illustrate
these drawbacks using a concrete example, the well-known Wine Ontology.

The wine ontology is given in two OWL files1 focused on wine knowledge and
general food knowledge, respectively. However, such a division into different files,
a.k.a., XML name spaces:

– Does not support localized semantics. The inference is necessarily performed
on the integrated centralized ontology of Wine and Food. The OWL se-
mantics [14] requires that for any OWL ontology O and any abstract OWL
interpretation I of O, “I satisfies each ontology mentioned in an owl:imports
annotation directive of O”. Therefore, it directly introduces both terms and
axioms of the imported ontologies into the referring ontology (e.g., Food to
Wine), which results in a global interpretation of all modules [4].

– Does not allow local point of view. All modules are required to adopt com-
pletely the same semantic perspective. For example, if the Food module as-

1 http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf and
http://www.w3.org/TR/2004/REC-owl-guide-20040210/food.rdf

618 J. Bao, D. Caragea, and V.G. Honavar

serts “Meat and Fowl are disjoint”, the Wine module cannot adopt another
point of view asserting that “Fowl is a type of Meat”.

– Does not support directional semantic relations. Since a global model is used,
the semantic constraints specified in a referring ontology (e.g., Wine) will be
completely transfered over the imported ontologies (e.g., Food). If the Wine
module adds “Fowl is a type of Meat”, the consistency of the Food module
is also violated.

– Does not support partial reuse. Two modules mutually import each other,
therefore a user has to import ALL the Wine and Food modules, even though
only a small part (such as Grape classification) may be needed. Thus in order
for an ontology module to be reused, it has to be either completely imported
or completely discarded.

In conclusion, the current OWL importing mechanism [14] is only a syntactic
solution, not a semantically sound solution for modular web ontologies.

3 Desiderata of Modular Ontologies

The observations in the previous section provide some intuitions that suggest
evaluation criteria for modular ontology languages. The first set of criteria that
we consider is aimed at evaluating the semantic soundness of such languages:

1. Localized Semantics. A modular ontology should not only be syntactically
modular (e.g., stored in separated XML name spaces), but also semantically
modular. That is, the existence of a global model should not be a requirement
for integration of ontology modules.

2. Exact Reasoning. The answer to a reasoning problem over a collection
of ontology modules should be semantically equivalent to that obtained by
reasoning over an ontology resulting from an appropriate integration of the
relevant ontology modules.

3. Directional Semantic Relations. The language must support directional
semantic relations from a source module to a target module. A directional
semantic relation affects only the reasoning within the target module and
not the source module.

4. Transitive Reusability. Knowledge contained in ontology modules should
be directly or indirectly reusable. That is, if a module Wine reuses mod-
ule Food, and module Food reuses module Drink, then effectively, module
Food reuses module Drink. If that is not the case, the knowledge in Food
may be used in an unsafe or altered way. For example, if the Drink mod-
ule contains “Alcohol is Beverage”, the Food module contains “Beer is
Alcohol” and “Beverage is EdibleThing”, the Wine module may not be
able to infer “Beer is EdibleThing” if knowledge in the Drink module is not
considered.

5. Decidability. The ontology should be decidable, i.e. there is a decision pro-
cedure that can do reasoning on the modular ontology in finite time.

Modular Ontologies - A Formal Investigation of Semantics and Expressivity 619

Other desiderata for sound semantics that have been considered in the litera-
ture include: the ability to cope with inconsistencies [4] and local logic complete-
ness [10]. We believe that the criteria listed above are among the most critical
ones for a modular ontology to be semantically sound and practically usable.

The second group of requirements that we consider is aimed at evaluating the
language expressivity:

– Concept Subsumption (and its special case, Concept Equivalency)
between modules is probably the most urgently needed feature. For example,
the Wine module should be able to extend the Food module with wine :
WineGrape � food : Grape.

– Concept Construction with Foreign Concepts. It enables a module
to build new local concepts based on concepts from other modules, using
operators such as negation (¬) , conjunction (�) and disjunction (�).

– Concept Construction with Role Restrictions. If R is a role and C is
a concept (such that, one or both of them are foreign terms), the language
may include existential restrictions (∃R.C), universal restrictions (∀R.C)
and qualified number restrictions (e.g., ≤ 2R.C).

– Role Inclusion (and its special case, Role Equivalency) between mod-
ules. For example, wine : madeFromGrape � food : madeFromFruit.

– Role Inversion between modules. For example, wine : madeIntoWine is
the inverse of food : madeFromFruit.

– Role Construction, such as role complement (¬R) , conjunction (R � Q)
and disjunction (R � Q), where R and/or Q may be roles from different
modules.

– Transitive Role, which allows the usage of a foreign transitive role, e.g.,
the Wine module reuses a transitive role locatedIn in the Region module.

– Nominal Correspondence. For example, the Wine module declares that
the local individual CA is the same as the individual California in the
Region module.

Not all applications require the full expressive power of modular ontologies.
Based on different intended application scenarios, a specific modular ontology
language may only contain a proper subset of the given expressivity features.
For example, DDL covers concept subsumption and nominal correspondence,
and E-connections addresses only concept and role construction with a special
type of roles called “links”.

4 The Abstract Modular Ontology

This section studies an extended type of DFOL, an Abstract Modular Ontology
(AMO) language, that will serve as the common testbed for investigating existing
approaches according to the criteria introduced above.

4.1 An Abstract Modular Ontology Language

“Ontology is the science of being”(Aristotle, Metaphysics). In a general sense,
a modular ontology is a set of individual descriptions of the same domain (e.g.,

620 J. Bao, D. Caragea, and V.G. Honavar

Food) that represent correlated, but not identical points of view of multiple
observers, or agents. Thus, each ontology module can be seen as describing a
point of view held by an agent with respect to the entities (objects) and their
relations in the domain. We say that a domain relation rij reflects the ability of
an agent j to explain the point of view of an agent i, therefore it is a subjective
belief rather than an objective description.

The idea presented here is strongly influenced by the Local Model Semantics
[6] (which has also been influential on DFOL). However, instead of assuming a
single relation between each pair of agents as in DFOL, we assume that each
agent may need to interact with another agent throught different roles in different
contexts. For example, a company can both buy and sell products from and to
another company. Consequently, there may be multiple domain relations between
ontologies held by a pair of agents.

A DFOL knowledge base (KB) [7] includes a family of first order languages
{Li}i∈I , defined over a finite set of indices I. We will use Li to refer to the ith
module of the KB. An (i-)variable x or (i-)formula φ occurring in module Li

is denoted as i : x or i : φ (we drop the prefix when there is no confusion).
The signature (the set of all names) of Li are i-terms. An Abstract Modular
Ontology (AMO) is a DFOL KB in which each component language Li is a
subset of description logics (DL).

A model of AMO includes a set of local models and domain relations. For each
Li, there exists an interpretation domain Δi. Two domains Δi and Δj are not
necessarily disjoint. Let Mi be the set of all DL models of Li on Δi. We call each
m ∈ Mi a local model of Li. A domain relation rij , where i 	= j, is a subset of
Δi ×Δj . A domain relation rij represents the capability of the module j to map
the objects of Δi into Δj . Each pair of local models may have multiple domain
relations, each denoted by rR

ij where R is the name for the domain relation. For
any domain relation rR

ij , we use 〈d, d′〉 ∈ rR
ij to denote that from the point of

view of j, the object d in Δi is mapped to the object d′ in Δj , via relation R.
In particular, a special domain relation r→ij (read as “image”) implies that the
object d′ in the j’s point of view denotes the same entity as the object d in
the i’s point of view; d′ is an image of d and d is a pre-image of d′. Note that
the image relations, in general, are not necessarily one-to-one. Finally, rR

ij(d)
denotes the set {d′ ∈ Δj |〈d, d′〉 ∈ rR

ij}. For a subset D ⊆ Δi, rR
ij(D) denotes

∪d∈DrR
ij(d).

Example 1. An ontology contains two modules L{1,2}. L1 contains knowledge
about food objects and their relations, such as Grape � Fruit (a 1-formula).
L2 contains knowledge about wine objects and their relations, such as Wine �
∀madeFrom.Grape. The local domain Δ1 has Grape objects ThompsonSeedless,
CabernetFrancGrape, and local domain Δ2 has Wine object KathrynKennedy-
Lateral and Grape object WineGrape. The image domain relation r→21 is 〈2 :
WineGrape, 1 : CabernetFrancGrape〉, while the image domain relation r→12 is
〈1 : ThompsonSeedless, 2 : WineGrape〉, 〈1 : CabernetFrancGrape, 2 : WineGrape〉,
and another domain relation rmadeWine

12 is 〈1 : CabernetFrancGrape, 2 :
KathrynKennedyLateral〉. r→12(1 : ThompsonSeedless) = {2 : WineGrape}. Note

Modular Ontologies - A Formal Investigation of Semantics and Expressivity 621

that r→21 	= (r→12)− since L1 does not regard 1 : ThompsonSeedless as an image of
2 : WineGrape.

4.2 Expressivity of Abstract Modular Ontology

Consider an agent j is observing the point of view of agent i and finds i uses x
to identify an entity (e.g. a grape) in the world, which is identified by j as y.
Therefore, j creates an image domain relation i : x → j : y. If j finds that a set
of objects in i’s point of view is grouped as Grapemi by i, then j will regard
r→ij (Grapemi) as “these objects in my point of view correspond to the concept
Grape from agent i’s point of view”. Thus, j can also map relations in i’s mind
to its local point of view: for any relation instance 〈x1, x2〉 in Δi × Δi, j will
regard r→ij (x1)× r→ij (x2) as a proper image of the relation. It should also be kept
in mind that rij is always a relation viewed from j’s point of view. For example,
the fact that a person x thinks “y is my best friend” doesn’t necessarily mean
that y thinks “I’m x’s best friend”.

Therefore, the image of an i-concept C or i-role P in j is:

– Ci→j : r→ij (Cmi)
– P i→j :

⋃
〈x,y〉∈P mi r→ij (x) × r→ij (y)

Similarly, pre-image of a j-concept D or a j-role R in i is defined as

– Di←j : (r→ij)−(Dmj)
– Ri←j :

⋃
〈x,y〉∈Rmj r→ij

−(x) × r→ij
−(y)

A concrete modular ontology language, such as DDL, E-Connections or P-
DL, usually contains a set of semantic relation rules, e.g. bridge rules (DDL),
E-connection, or concept importings (P-DL), between two ontology modules.
Serafini et al. [16] have noted that such rules can be mapped to DFOL inter-
pretation constraints in the form of i : φ(x1, ..., xn) → j : ψ(y1, ..., yn), where
φ, ψ are n-ary predicates and 〈xi, yi〉 is connected by a domain relation rij . Note
that DL concepts are unary FOL predicates and DL roles are binary predicates.
Consequently, a semantic relation in AMO will be either a concept inclusion
axiom or a role inclusion axiom.

In a more general setting, a modular ontology language may also create third
party constraints. For example, module j may reuse i-concept RedWine and
k-concept Beverage, and locally declare i : RedWine � k : Beverage. However,
such a third party constraint can be avoid by an “alias” syntax sugar such that
RedWinei→j and Beveragek→j are given local alias RedWine′, Beverage′ thus
transforming the concept inclusion to the one that connects only j-concepts.

A local concept can also be a complex concept constructed with a foreign role
and/or a foreign concept, such as universal restriction (e.g.∀R.C) or existential
restriction (e.g.∃R.C), as shown in the Table 1. However, arbitrary combination
of the possible expressivity features in AMO may even lead to undecidability,
since the union of multiple decidable logics may be undecidable[1]. The design
of a practical modular ontology language has to be a tradeoff between the ex-
pressivity and reasoning complexity.

622 J. Bao, D. Caragea, and V.G. Honavar

Table 1. Possible AMO Expressivity Features

Syntax Semantics
Concept C � D Ci→j ⊆ Dmj

Subsumption C � D Ci→j ⊇ Dmj

Concept Negation ¬C r→ij (Δi\Cmi)
Concept Conjunction C � D Ci→j ∩ Dmj

Concept Disjunction C � D Ci→j ∪ Dmj

Universal Restriction ∀R.C {x ∈ Δj |∀y ∈ Δi, (y, x) ∈ rR
ij → y ∈ Cmi}

∀P.D {x ∈ Δj |∀y ∈ Δj , (x, y) ∈ P i→j → y ∈ Dmj }
∀P.E {x ∈ Δj |∀y ∈ Δk, ∃y′ ∈ r→kj(y) ∧ (x, y′) ∈ P i→j → y ∈ Emk}

Existential Restriction ∃R.C {x ∈ Δj |∃y ∈ Δi, (y, x) ∈ rR
ij , y ∈ Cmi}

∃P.D {x ∈ Δj |∃y ∈ Δj , (x, y) ∈ P i→j , y ∈ Dmj }
∃P.E {x ∈ Δj |∃y ∈ Δk, ∃y′ ∈ r→kj(y) ∧ (x, y′) ∈ P i→j , y ∈ Emk}

Number Restriction1 ≤ nR.C {x ∈ Δj |#({y ∈ Δi|(y, x) ∈ rR
ij , y ∈ Cmi}) ≤ n}

≤ nP.D {x ∈ Δj |#({y ∈ Δj |(x, y) ∈ P i→j , y ∈ Dmj }) ≤ n}
≤ nP.E {x ∈ Δj |#({y ∈ Δk|∃y′ ∈ r→kj(y) ∧ (x, y′) ∈ P i→j , y ∈ Emk}) ≤ n}

Role P � R P i→j ⊆ Rmj

Inclusion P � R P i→j ⊇ Rmj

Role Inverse P− {(y, x)|(x, y) ∈ P i→j}
Role Complement ¬P (Δj × Δj)\P i→j

Role Conjunction P � R P i→j ∩ Rmj

Role Disjunction P � R P i→j ∪ Rmj

Transitive Role trans(P) (P i→j)+ = P i→j

Nominal {x} → {y} y ∈ r→ij (x)

1 ≥ case is similar.
C is an i-concept, D is a j-concept, E is a k-concept; P is an i-role, R is a j-role, Q is
a k-role; x is a i-individual, y is a j-individual; i �= j, j �= k, i may be or may not be
k. All formulas represent module j’s point of view and constructed concepts (roles)
are j-terms. Local domains of modules may be partially overlapping.

4.3 Semantic Soundness of the Abstract Modular Ontology

To precisely specify the semantic soundness of AMO, we need to answer several
questions. First, what are the logical consequences in an AMO? How can local
constraints in the agents’ local points of view influence each other? For example,
if agent i thinks “a is b’s best friend”, and agent j thinks i : a is x and i : b is y
in j’s mind, will j also hold the constraint that “x is y’s best friend”?

Second, if there are inconsistencies in the points of view of two agents, what is
the possible cause of such consistencies? For example, if agent j holds the belief
that “x is y’s enemy”, possible causes can be either i and j hold incompatible
points of view while the domain relations (a → x, b → y) are sound, or i and j
actually hold compatible points of view but the domain relations are wrong (e.g.
j has mistaken z as y and label both y and z as b locally, while z is x’s enemy).
While the first type of inconsistency is hard to eliminate (subjectivity), are there
principled ways to avoid the second type of inconsistency (miscommunication)?

Third, if beliefs of agents are compatible, what is an “objective” way to in-
tegrate their knowledge? Or in other words, to “restore” a description of the
physical world that reflects the consensus among the agents, such that logical
consequences are consistent in the integrated point of view and each local point

Modular Ontologies - A Formal Investigation of Semantics and Expressivity 623

of view. For example, if a person Alice (identified as i : a and j : x) behaves
as the best friend of another person Bob (identified as i : b and j : y), how
can we construct an “integrated” description that is acceptable by both i and j,
such that if i(j) asserts a conclusion (e.g. x is y’s best friend), the “integrated”
description can also confirm the conclusion?

Addressing such problems is critical in identifying and solving several seman-
tic difficulties that arise in modular ontology languages. Next, we introduce some
definitions that are useful in precisely stating problems such as those we infor-
mally outlined above.

Definition 1 (AMO Satisfiability). Let M = 〈{mi}, {rij}〉 be a model for an
AMO O = {Li} with interpretation constraint sets {Cij} (as defined in Table
1) , where mi = 〈Δi, (.)i〉 is the local interpretation of i (Δi is the local domain
of i, (.)i is the assignment function of i) and rij denotes all domain relations
between mi and mj, including “image (→)”. We say that M satisfies O, denoted
as M � O, iff mi � Li, for all i, and M � Cij , for all i and j.

Definition 2 (AMO Entailment). An AMO O = {Li} entails C � D, where
C, D are j-concepts, iff for any model M = 〈{mi}, {rij}〉 of O, mj � C � D.

Although the above definition only addresses intra-module subsumption, it can
be easily extended to inter-module subsumption with a simple syntax rewriting.
If C is an i-concept, we can always create a j-concept C′ interpreted as Ci→j ,
and then i : C � j : D can be transformed as j : C′ � j : D.

Definition 3 (Localized and Globalized Semantics). An AMO O = {Li}
has only globalized semantics, iff for any model M = 〈{mi}, {rij}〉 of O, M � O,
mi = 〈Δi, (.)i〉, local domains {Δi} of {Li} must be identical. Otherwise, it has
localized semantics.

Definition 4 (Decidability). An AMO O = {Li} is decidable if for every
satisfiability problem (therefore also entailment problem) C for i, there exists an
algorithm that is capable of deciding in a finite number of steps whether there
exists a model M = 〈{mi}, {rij}〉, M � O, such that C is satisfiable in mi.

Definition 5 (Directional Semantic Relations). Domain relations in an
AMO are directional, iff for any model M = 〈{mi}, {rij}〉 of O, for any i 	= j,
mj � C � D, doesn’t imply that Ci←j ⊆ Di←j must be true in mi.

Transitive reusability means that an agent can infer local constraints based on
observing constraints in other agents’ points of view. For example, if i believes “a
is b’s best friend”, and j believes domain relation i : a → j : x, i : b → j : y, then
j may reuse i’s knowledge and infer that “x is y’s best friend”. Furthermore, if
another agent k who is confident in j’s judgement, and believes j : x → k : p, j :
y → k : q, then k also believes “p is q’s best friend”.

Definition 6 (Transitive Reusability). For an AMO O = {Li}, Li is said
to be reusable by j (j 	= i) if for any concepts C, D in Li, such that Li � C � D,

624 J. Bao, D. Caragea, and V.G. Honavar

we have that for M = 〈{mi}, {rij}〉 of O, Ci→j ⊆ Di→j must be true in mj. Li

is said to be transitively reusable if for any j, k (i 	= j 	= k), if Li is reusable by
Lj, and Lj is reusable by Lk, then we must have Li is reusable by Lk.

Exact reasoning means that the points of view of all agents can be reconciled
into a point of view (a consensus) that is consistent with each individual agent’s
point of view. Since such a merged state will be the consensus of individual
agents, their compatible beliefs may be combined. For example, if i believes x
is the identifier of a person Alice, j believes a is the identifier of Alice and
i : x → j : a, then the merged state of the two agents will “believe” i : x and
j : a are all identifiers of Alice. Thus, all semantic relation rules, in their DFOL
form i : φ(x1, ..., xn) → j : ψ(y1, ..., yn) (n=1 or 2), where xi, yi are connected
by r→ij , will be reduced to φ(x1, ..., xn) → ψ(x1, ..., xn).

Definition 7 (Exact Reasoning). Reasoning in an AMO O = {Li} is exact,
iff for any model M = 〈{mi}, {rij}〉 of O, there exists a classical model M ′ =
�(M) = 〈Δm, (.)m〉, such that M � φ ⇒ M ′ � φ. � denotes the reduction from
M to M ′ as follows:

– Δm = ∪iΔi

– The assignment function (.)m is defined as: for any concept i : C, Cm = Cmi ;
for any role i : P , Pm = Pmi ; for any individual i : I, Im = Imi .

– for every image domain relation, if (i : x, j : y) ∈ r→ij , add i : x = j : y.
– for every other domain relation R, if (i : x, j : y) ∈ rR

ij , assign (x, y) to Rm.

5 Semantic Soundness of Existing Approaches

5.1 Distributed Description Logics

Distributed Description Logics (DDL) [4], adopts a “linking”-based approach. In
DDL, the semantic mappings between disjoint modules Li and Lj are established
by a set of “Bridge Rules”(Bij) of the form:

– INTO rule: i : φ
	−→ j : ψ, semantics: rij(φmi) ⊆ ψmj

– ONTO rule: i : φ

−→ j : ψ, semantics: rij(φmi) ⊇ ψmj

– Individual Correspondence: i : a → j : b, semantics: bmj ∈ rij(ami)

where mi(mj) is a model of Li(Lj), φ, ψ are formulae; rij is a domain relation
which serves as the interpretation of Bij , and can be seen as the image domain
relation r→ij in AMO. Although φ, ψ may be role names[5,16], semantics and
decidability of such an extension is still not well-understood. The semantics of
bridge rules between concepts is shown in Figure 1.

Distributed concept correspondence between two modules in DDL covers some
of the most important scenarios that require mapping between ontology modules.
Since DDL has clear DFOL interpretation, it is easy to see that it has localized
semantics and supports directional semantic relations. DDL is decidable if each
connected module is decidable [4,12].

Modular Ontologies - A Formal Investigation of Semantics and Expressivity 625

Fig. 1. Semantics of DDL Bridge Rules between Concepts

However, DDL, as noted in [9,8], doesn’t ensure transitive reusability and ex-
act reasoning: (a) Subsumption Propagation problem: concept subsumption links
in DDLs do not propagate transitively. For example, in the case of 3 ontology
modules L{1,2,3}, the bridge rules 1 : Bird

−→ 2 : Fowl and 2 : Fowl

−→ 3 :

Chicken do not in general ensure that 1 : Bird

−→ 3 : Chicken; (b) Inter-module

Unsatisfiability problem: DDLs may not detect unsatisfiability across ontology
modules. For example, 1 : Bird

−→ 2 : Penguin and 1 : ¬Fly

−→ 2 : Penguin

do not render 2 : Penguin unsatisfiable even if L1 entails Bird � Fly.
A primary source of such difficulties has to do with the fact that the domain

relations in DDL can be arbitrary [2]. In the absence of a formal mechanism
to prevent inconsistency between the agents’ points of view due to miscommu-
nication, domain relations cannot be reused by other modules (r13 cannot be
inferred from r12 and r23, as illustrated by example (a) above). This precludes
transitive reusability. Furthermore, unsatisfiability across ontology modules can
not be detected (as illustrated by example (b) above) since objects of disjoint
i-concepts can be mapped to the same object in j. Bao et.al. [2] have recently
shown that one-to-one domain relation is a sufficient condition for exact DDL
reasoning. However, at present, there is no principled approach to coming up
with such domain relations in DDL alone.

5.2 E-Connections

While DDL allows only one type of domain relations, the E-connection approach
allows multiple “link” relations between two domains. E-connections between
DLs [11,9] restrict the local domains of the E-connected ontology modules to be
disjoint (therefore ensure localized semantics). Roles are divided into disjoint sets
of local roles (connecting concepts in one module) and links (connecting inter-
module concepts). Formally, given ontology modules {Li}, an (one-way binary)
link E ∈ Eij , where Eij , i 	= j is the set of all links from the module i to the
module j, can be used to construct a concept in module i, with the syntax and
semantics specified as follows:

– 〈E〉(j : C) or ∃E.(j : C) : {x ∈ Δi|∃y ∈ Δj , (x, y) ∈ EM , y ∈ CM}
– ∀E.(j : C) : {x ∈ Δi|∀y ∈ Δj , (x, y) ∈ EM → y ∈ CM}}
– ≤ nE.(j : C) : {x ∈ Δi|#({y ∈ Δj |(x, y) ∈ EM , y ∈ CM}) ≤ n}
– ≥ nE.(j : C) : {x ∈ Δi|#({y ∈ Δj |(x, y) ∈ EM , y ∈ CM}) ≥ n}

626 J. Bao, D. Caragea, and V.G. Honavar

where M = 〈{mi}, {EM}E∈Eij〉 is a model of the E-connected ontology, mi is
the local model of Li; C is a concept in Lj , with interpretation CM = Cmj ;
EM ⊆ Δi × Δj is the interpretation of a E-connection E.

An advantage of E-connections is that a collection of E-connected ontology
modules is decidable if all modules are decidable [12]. However, since there are
no image domain relations in E-connections, transitive reusability cannot be
guaranteed in general. Some scenarios may still allow knowledge propagation. For
example, if module i contains D � E, module j contains A ≡ ∀R.D, B ≡ ∀R.E,
where R is a E-connection from j to i, j can infer that A � B must be true.
E-connections are also directional.

The exactness of reasoning (as defined in Definition 7) of E-connections given
in [9] can be guaranteed since there is no image domain relation. A reduction from
a E-connections model to a classical model can be obtained by constructing a
simple union of all local models where all link instances are converted into classic
role instances. However such a reduction does not hold in the case of “generalized
links” [13] where a link/role name can be used within different contexts. For
example, given two modules L{1,2}, L2 contains Penguin � ∀isa(1).(1 : Bird)
and Penguin � ∃isa(2).(2 : PolarAnimal), where isa is interpreted as link or
local role under different contexts. Since 1 : Bird and 2 : PolarAnimal are
disjoint by default, the disjoint union of isa interpretation in each of its contexts
will be unsatisfiable.

5.3 Package-Based Description Logics

Package-based Description Logics (P-DL)[3] offer a tradeoff between the strong
module disjointness assumption of DDL and E-connections, and on the other
hand, the OWL importing mechanics, which forces complete overlapping of mod-
ules. In P-DL, an ontology is composed of a collection of modules called packages.
Each term (name of a concept, a property or an individual) and each axiom is
associated with a home package. A package can use terms defined in other pack-
ages i.e., foreign terms. If a package Lj uses a term i : t with home package Li

(i 	= j), then we say t is imported into Lj , and the importing relation is denoted
as rt

ij . In what follows, we will examine a restricted type of package extension
which only allows import of concept names.

The semantics of P-DL is expressed in AMO as follows: For a package-based
ontology 〈{Li}, {rt

ij}i�=j〉, a distributed model is M = 〈{mi}, {(r→ij)t}i�=j〉, where
mi is the local model of module i, (r→ij)t ⊆ Δi × Δj is the interpretation for the
importing relation rt

ij , which meets the following requirements:

– Every importing relation is one-to-one in that it maps each object of tmi to
a single unique object in tmj , therefore (r→ij)t(tmi) = tmj .

– Term Consistency: importing relations of different terms are consistent, i.e.,
for any i : t1 	= i : t2 and any x, x1, x2 ∈ Δi, (r→ij)t1(x) = (r→ij)t2(x) and
(r→ij)t1(x1) = (r→ij)t2(x2) 	= Ø → x1 = x2.

– Compositional Consistency: if (r→ik)i:t1(x) = y1, (r→ij)i:t2(x) = y2,(r→jk)j:t3

(y2) = y3, , (where t1 and t2 may or may not be same), and y1, y2, y3 are

Modular Ontologies - A Formal Investigation of Semantics and Expressivity 627

not null, then y1 = y3. Compositional consistency helps ensure that the
transitive reusability property holds for P-DL.

The image domain relation between mi and mj is r→ij = ∪t(r→ij)t and is strictly
one-to-one. From the multi-agent point of view, such a domain relation ensures
unambiguous communication between each modules. Consequently, rij in a P-
DL model isomorphically “copies” the relevant partial domain from mi to mj

(Figure 2). Since the construction of a local model is dependent on the structure
of local models of imported modules, P-DL allows a relaxation of the domain
disjointedness assumption adopted in DDL and E-connections. However, the loss
of disjointedness does not sacrifice localized semantics property of modules, since
they are, unlike in OWL, only partially overlapping. Consequently, there is no
required global model.

Fig. 2. Semantics of P-DL

With a principled way to avoid se-
mantic imprecision, P-DL can ensure
transitive reusability and exact reason-
ing [2]. A reduction from a P-DL model
to a classical DL model is the union
of all local models with“copied” ob-
jects being merged. However, sem-
antic relations in P-DL may not al-
ways be directional in local domains

that overlap: if module j imports concept C, D from i, then C � D in j will
imply Ci←j � Di←j in Δi.

The general decidability transfer property does not always hold in P-DL since
the union of two decidable fragments of DL may be undecidable [1]. This presents
semantic difficulties in the general setting of connecting ADSs [12]. However, in a
setting where different ontology modules are specified using subsets of the same
decidable DL language, such as SHOIQ(D) (OWL-DL), and importing is only
allowed for concept names, the union of such modules is decidable. In such a
setting, semantics-preserving reduction from P-DL model to the integrated DL
model is available [2] making P-DL decidable.

The comparison is summarized in Table 2.

Table 2. Comparison of Semantic Soundness

Localized Exact Directional Transitive Decidability∗

Semantics Reasoning Relation Reusability
DDL Yes No Yes No Yes1

E-Connections Yes Partial2 Yes Partial Yes
OWL No Yes No Yes Yes (OWL-DL)
P-DL Yes Yes Partial Yes Partial3

∗ when each local module is decidable; 1 yes only for concept bridge rules; 2 yes
without generalized links; 3 yes for concept importing and each module from a subset
of SHOIQ(D).

628 J. Bao, D. Caragea, and V.G. Honavar

Table 3. Comparison of Expressivity of DDL, E-connections and p-DL

Syntax DDL E-Connections P-DL
Concept C � D

√ × √

Subsumption C � D
√ × √

Concept Negation ¬C
√ × √

Concept Conjunction C � D
√ × √

Concept Disjunction C � D
√ × √

Universal Restriction ∀R.C × √ √

∀P.D × × ×
∀P.E × × ×

Existential Restriction ∃R.C × √ √

∃P.D × × ×
∃P.E × × ×

Number Restriction1 ≤ nR.C × √ √

≤ nP.D × × ×
≤ nP.E × × ×

Role P � R
√ × ×

Inclusion P � R
√ × ×

Role Inverse P− × × ×
Role Complement ¬P × × ×
Role Conjunction P � R × × ×
Role Disjunction P � R × × ×
Transitive Role trans(P) × √2 ×
Nominal {x} → {y} √ × ×

1 ≥ case is similar. 2 only with generalized links.
Notations are as the same in Table 1. All formulas represent module j’s point of view.

6 Expressivity of Existing Approaches

Table 3 shows the expressivity comparison of DDL, E-connections and P-DL.

6.1 Distributed Description Logics

DDL bridge rules cannot be directly read as inter-module concept subsumptions.
However, several techniques have been studied to simulate concept subsumptions
with bridge rules [17]. DDL is also capable of using foreign concepts in local
concept negation, conjunction and disjunction by a simple “alias” syntax sugar
as mentioned in section 4.

However, major limitations in the expressivity of DDL have to do with link-
ing modules with roles. Since DDL semantics only allows one type of domain
relations, role instances cannot be created between local models. This precludes
concepts built with foreign role or inter-module role construction. Although the
extended DDL in [5,16] allows role inclusions, the decidability of such an exten-
sion as well reasoning algorithsms that work in such a setting are still unknown.

Modular Ontologies - A Formal Investigation of Semantics and Expressivity 629

6.2 E-Connections

In contrast with DDL, E-connections allow role connections between modules
but doesn’t allow inter-module concept inclusion. Although it has been argued
that E-connections are more expressive than DDLs [12,8], the intended use
of DDL bridge rules and E-connection links are quite different. This is made
clear in the AMO framework, where DDL bridge rules are interpreted as im-
age domain relations, and E-connection links are not image domain relations.
Since E-connections strictly require local domain disjointedness, no direct inter-
module concept subsumption can be allowed. Therefore, DDL bridge rules and
E-connection links actually cover different application scenarios, and thus are
complementary in their roles.

It should be noted that the direction of “links” in E-connections is the inverse
of AMO roles defined in Table 1 and 3. In E-connections, module i can use a
link from i to j to construct an i-concept, whereas in AMO, i can only construct
i-concepts with a role from j to i. This difference arises from AMO’s underlying
assumption that any domain relation rR

ij is only a subjective point of view of j
and should only be used in j. Therefore, we contend that a E-connections link
used in module i, although is syntactically given as from i to j, stands for the
subjective point of view of i, not j. The difference can be syntactically eliminated
by inverting E-connection links to obtain AMO roles.

However, the expressivity of E-connections is limited by the need to ensure
the disjointedness of local domains. Thus, a concept cannot be declared as a
subclass of a foreign concept, and foreign concepts cannot be used in local con-
cept constructions. A property cannot be declared as sub-relation of a foreign
property, and neither foreign classes nor foreign properties can be instantiated.
It is also difficult to combine E-connections and OWL importing [8].

E-connection links cannot be seen as foreign roles in AMO. Their usage is
equivalent to allowing an AMO local role to have foreign concepts within its
range. In the case of the generalized link property [13], the boundary between
local roles and links is further ambiguous. The E-connections syntax proposal [8]
requires that the source of a link be the module in which it has been declared.
Therefore, link constructors, such as inverse, conjunction, disjunction and com-
plement, are different from the inter-module role constructors defined in Table
1, and are closer to intra-module role constructors.

6.3 Package-Based Description Logics

P-DL expressivity features summarized in table 3 only allow concept name im-
porting, since decidability of more expressive variants of P-DL is still unknown.
Despite its stronger domain relation restrictions (ont-to-one), P-DL is more ex-
pressive than DDL and E-Connections in several ways. P-DL allows inter-module
concept subsumption, concept construction with foreign concepts, and connect-
ing modules with roles, thus provides several expressivity features that are miss-
ing either in DDL or E-connections.

630 J. Bao, D. Caragea, and V.G. Honavar

DDL with only concept correspondence and E-connections without generalized
links can be reduced to P-DL. For example, an into rule i : C

	−→ j : D in DDL
can be reduced to a P-DL axiom C � D in module j and C is an imported
concept; A E-connection-like constructed concept such as ∃(i : E).(j : D) can
be defined in the module i, where j : D is imported into i, with semantics given
Table 1; ∀(i : E).(j : D) can be constructed in a similar fashion.

Therefore, we believe that the importing approach adopted by P-DL which
relaxes the strong module disjointedness assumption of DDL offers the possi-
bility of avoiding many of the semantic difficulties of current modular ontology
language proposals while improving the expressivity.

7 Conclusions

This paper provides a formal investigation of the motivation, evaluation crite-
ria, an abstract framework of modular ontologies, and compares the semantic
soundness and expressivity of several modular ontology languages. The main
contributions of this paper are: a) identification and precise definition of possi-
ble requirements for semantically sound modular ontology languages; b) iden-
tification of desirable expressivity features of modular ontology languages; c)
introduction of an Abstract Modular Ontology (AMO) framework which offers
a basis for comparing different modular ontology languages; d) comparison of the
semantic soundness and the expressivity of DDL, E-connections and P-DL; and
e) analysis of several semantic difficulties and expressivity limitations of DDL
and E-connections, and propose an approach in the form of a partial importing
mechanism in P-DL to overcome such limitations.

We conclude that different existing modular ontology language proposals are
motivated by, and hence are responsive to, different application scenarios. At
present, there is no modular ontology language with known decidability and
inference complexity that supports both general inter-module concept and inter-
module role correspondence and satisfies all semantic soundness requirement.
Our results suggest that in order to improve the expressivity of existing modular
ontology languages, and to ensure their semantic soundness, the strict module
disjointedness assumption adopted by DDL and E-connections may need to be
at least partially relaxed. Work in progress is aimed at the development of a
reasoning algorithm for an expressive and semantically sound modular ontology
language, e.g. P-DL.

References

1. F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of description logics. In
Description Logics, pages 21–30, 2000.

2. J. Bao, D. Caragea, and V. Honavar. On the semantics of linking and importing
in modular ontologies (extended version). Technical report, TR-408 Computer
Sicence, Iowa State University, 2006.

Modular Ontologies - A Formal Investigation of Semantics and Expressivity 631

3. J. Bao, D. Caragea, and V. Honavar. Towards collaborative environments for
ontology construction and sharing. In International Symposium on Collaborative
Technologies and Systems (CTS 2006), pages 99–108. IEEE Press, 2006.

4. A. Borgida and L. Serafini. Distributed description logics: Directed domain cor-
respondences in federated information sources. In CoopIS/DOA/ODBASE, pages
36–53, 2002.

5. P. Bouquet, F. Giunchiglia, and F. van Harmelen. C-OWL: Contextualizing ontolo-
gies. In Second International Semantic Web Conference, volume 2870 of Lecture
Notes in Computer Science, pages 164–179. Springer Verlag, 2003.

6. C. Ghidini and F. Giunchiglia. Local model semantics, or contextual reasoning =
locality + compatibility. Artificial Intelligence, 127(2):221–259, 2001.

7. C. Ghidini and L. Serafini. Frontiers Of Combining Systems 2, Studies in Logic
and Computation, chapter Distributed First Order Logics, pages 121–140. Research
Studies Press, 1998.

8. B. C. Grau. Combination and Integration of Ontologies on the Semantic Web. PhD
thesis, Dpto. de Informatica, Universitat de Valencia, Spain, 2005.

9. B. C. Grau, B. Parsia, and E. Sirin. Working with multiple ontologies on the
semantic web. In International Semantic Web Conference, pages 620–634, 2004.

10. B. C. Grau, B. Parsia, E. Sirin, and A. Kalyanpur. Modularity and web ontologies.
In KR2006, 2006.

11. O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of description
logics. In Description Logics Workshop, CEUR-WS Vol 81, 2003.

12. O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of abstract
description systems. Artif. Intell., 156(1):1–73, 2004.

13. B. Parsia and B. C. Grau. Generalized link properties for expressive epsilon-
connections of description logics. In AAAI, pages 657–662, 2005.

14. P. Patel-Schneider, P.Hayes, and I. Horrocks. Web ontlogy language (owl) abstract
syntax and semantics. http://www.w3.org/TR/owl-semantics/, February 2003.

15. G. Schreiber and M. Dean. Owl web ontology language reference.
http://www.w3.org/TR/2004/REC-owl-ref-20040210/, February 2004.

16. L. Serafini, H. Stuckenschmidt, and H. Wache. A formal investigation of mapping
language for terminological knowledge. In IJCAI, pages 576–581, 2005.

17. L. Serafini and A. Tamilin. Drago: Distributed reasoning architecture for the se-
mantic web. In ESWC, pages 361–376, 2005.

	Introduction
	Limitations of OWL as a Modular Ontology Language
	Desiderata of Modular Ontologies
	The Abstract Modular Ontology
	An Abstract Modular Ontology Language
	Expressivity of Abstract Modular Ontology
	Semantic Soundness of the Abstract Modular Ontology

	Semantic Soundness of Existing Approaches
	Distributed Description Logics
	\mathcal{E}-Connections
	Package-Based Description Logics

	Expressivity of Existing Approaches
	Distributed Description Logics
	E-Connections
	Package-Based Description Logics

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

