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Abstract

We present the first prototype of INDUS (Intelligent Data
Understanding System), a federated, query-centric system
for information integration and knowledge acquisition from
distributed, semantically heterogeneous data sources that
can be viewed (conceptually) as tables. INDUS employs
ontologies and inter-ontology mappings, to enable a user
to view a collection of such data sources (regardless of lo-
cation, internal structure and query interfaces) as though
they were a collection of tables structured according to an
ontology supplied by the user. This allows INDUS to an-
swer user queries against distributed, semantically hetero-
geneous data sources without the need for a centralized
data warehouse or a common global ontology.

1 Introduction

Ongoing transformation of biology from a data-poor sci-
ence into an increasingly data-rich science, with the atten-
dant increase in the number, size, and diversity of sources
of data (e.g., protein sequences, structures, expression pat-
terns, interactions) offer unprecedented, and as yet, largely
unrealized opportunities for large-scale collaborative dis-
covery in a number of areas including characterization of
macromolecular sequence-structure-function relationships,
discovery of complex genetic regulatory networks, etc.

Biological data sources developed by autonomous indi-
viduals or groups differ with respect to their ontological
commitments, that is, assumptions concerning the objects
that exist in the world, the properties or attributes of the ob-
jects, relationships between objects, the possible values of

attributes, and their intended meaning, as well as the granu-
larity or level of abstraction at which objects and their prop-
erties are described [12, 11]. Therefore, semantic differ-
ences among autonomous data sources are simply unavoid-
able. Effective use of multiple sources of data in a given
context requires reconciliation of such semantic differences,
which in fact involves solving a data integration problem.

Driven by the semantic Web vision [2], there have
been significant community-wide efforts aimed at the
construction of ontologies in life sciences. Exam-
ples include the Gene Ontology (www.geneontology.org)
in biology and Unified Medical Language System
(www.nlm.nih.gov/research/umls) in heath informatics.
However, because data sources that are created for use in
one context often find use in other contexts or applications
(e.g., in collaborative scientific discovery applications in-
volving data-driven construction of classifiers from seman-
tically disparate data sources [4]), and because users often
need to analyze data in different contexts from different per-
spectives, there is no single privileged ontology that can
serve all users, or for that matter, even a single user, in every
context. Effective use of multiple sources of data in a given
context requires flexible approaches to reconciling such se-
mantic differences from the user’s point of view.

Against this background, we have investigated a feder-
ated, query-centric approach to information integration and
knowledge acquisition from distributed, semantically het-
erogeneous data sources, from a user’s perspective.

The choice of the federated, query-centric approach was
influenced by the large number and diversity of loosely
linked, autonomously maintained data repositories involved
and the context and user-specific nature of integration tasks
that need to be performed. Our work has led to INDUS, a
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system for information integration and knowledge acquisi-
tion.

We associate ontologies with data sources and users and
show how to define mappings between them. We exploit the
ontologies and the mappings to develop sound methods for
flexibly querying (from a user perspective) multiple seman-
tically heterogeneous distributed data sources in a setting
where each data source can be viewed (conceptually) as a
single table [5, 4].

The rest of the paper is organized as follows: Section 2
introduces the problem that we are addressing more pre-
cisely through an example from biology. Section 3 de-
scribes the first prototype of INDUS. We end with conclu-
sions, discussion of related work and directions for future
work in Section 4.

2 Motivating Example

The problem that we address is best illustrated by an ex-
ample. Consider two biological laboratories that indepen-
dently collect information about protein functions based on
the protein sequences. The data collected by the first labo-
ratory contains information about human proteins and their
functions (see the entry corresponding to D1 in Table 1),
whereas the data collected by the second laboratory con-
tains information about yeast proteins and their functions
(see the entry corresponding to D2 in Table 1). Suppose
that a biologist (user) U wants to assemble a data set based
on the two data sources of interest D1 and D2 from his or
her own perspective. The representative attributes from the
user’s perspective are ID, AA composition (i.e., the num-
ber of occurrences of each amino acid in the amino acid
sequence corresponding to the protein), and GO Function
(see the entry corresponding to DU in Table 1).

However, we observe that the attributes in the data
sources D1 and D2 are different from the user attributes. In
order to reconcile these differences, the user must observe
that the attributes Protein ID in D1 and Accession Number
in D2 are similar to the user attribute ID in DU ; the at-
tributes Protein Sequence in D1 and AA Sequence in D2 are
also similar, and they can be used to derive the attribute AA
Composition in DU ; furthermore, the attributes EC Num-
ber1 in D1 and MIPS Funcat 2 in D2 are similar to the user
attribute GO Function.

To establish the correspondence between values that two
similar attributes can take, we need to associate types with
attributes and map the domain of the type of an attribute
to the domain of the type of the corresponding attribute
(e.g., AA Sequence to AA Composition or EC Number to GO
Function). We assume that the type of an attribute can be
a standard type such as a collection of values (e.g., amino

1Enzyme Commission Number, http://www.chem.qmul.ac.uk/iubmb/enzyme/
2Munich Information Center for Protein Sequences, http://mips.gsf.de/

acids, Prosite motifs, etc.), or it can be given by a simple
hierarchical ontology (e.g., species taxonomy). Figure 1
shows examples of (simplified) attribute value hierarchies
for the attributes EC Number in D1 and GO Function in
DU . Examples of semantic correspondences in this case
could be: EC 2.7.1.126 in D1 is equivalent to GO 0047696
in DU , EC 2.7.1.126 in D1 is lower than (i.e., hierarchi-
cally below) GO 0004672 in DU , or for that matter EC 1.14
is higher than GO 0004597, etc.

In general, a biologist might want to answer queries (e.g.,
proteins that are involved in catalytic activity or the num-
ber of human proteins that are involved in kinase activity)
from the integrated data. INDUS, the system that we de-
velop in our lab, can be used to answer such queries against
distributed, semantically heterogeneous data sources with-
out the need for a centralized data warehouse or a common
global ontology. We will describe INDUS in more detail in
the next section.

3 Prototype Implementation of INDUS

The current prototype of INDUS enables a biologist with
some familiarity with the relevant data sources to integrate
and analyze relevant data sources by specifying a user on-
tology, simple mappings between data source specific on-
tologies, and executing queries - all without having to write
code. The current implementation of INDUS includes sup-
port for:

• Import, adaptation and reuse of selected fragments of
existing ontologies (e.g., Gene Ontology GO), editing
of ontologies, specification of semantic relationships
between ontologies using inter-ontology mappings [1].

• Specification of semantic correspondences between a
user ontology and data source ontologies [4, 3]. Se-
mantic correspondences between ontologies can be de-
fined at two levels: schema level (between attributes
that define data source schemas) and attribute level
(between values of attributes). INDUS allows the
following types of semantic correspondences at both
schema and attribute level: semantic equality (e.g.,
AASequence : O1 ≡ ProteinSequence : OU ), se-
mantic subsumption (e.g., MIPS : 16.19.01 : O1 ≤
GO : 0017076 : OU ), and procedural mappings (e.g.,
from AASequence : O1 to AAComposition : OU at
attribute level).

• Registration of a new data source (using a data-source
editor for defining the schema of the data source by
specifying the names of the attributes and their corre-
sponding ontological types, location, type of the data
source and access procedures that can be used to inter-
act with a data source as though it were a table struc-
tured according to its schema and the ontology. In the
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Table 1. Data sets D1, D2 and user data DU .
Data Protein ID Protein Name Protein Sequence Prosite Motifs EC Number

Beta-adrenergic MADLEAVLAD RGS 2.7.1.126
P35626 receptor kinase 2 VSYLMAMEKS PROT KIN DOM Beta-adrenergic

D1 · · · PH DOMAIN receptor kinase
Aspartyl/asparaginyl MAQRKNAKSS TPR 1.14.11.16

Q12797 beta-hydroxylase GNSSSSGSGS TPR REGION Peptide-aspartate
· · · TRP beta-dioxygenase

Data Acc. Num. Gene ID AA Sequence Length Pfam Domains MIPS Funcat

P32589 SSE1 STPFGLDLGN 692 HSP70 16.01 protein binding
NNSVLAVARN

D2 · · ·
P07278 BCY1 VSSLPKESQA 415 cNMP binding 16.19.01 cyclic nucleotide

ELQLFQNEIN RIIa binding (cAMP, cGMP, etc.)
· · ·

User ID AA composition GO Function

P35626 7 3 9 14 · · · 0047696:beta-adrenergic-receptor
kinase activity

Q12797 5 1 7 12 · · · 0004597: peptide-aspartate
DU beta-dioxygenase activity

P07278 10 8 6 15 · · · 0009408: Biological process- response to heat

Figure 1. Hierarchies associated with the attributes EC number in D1 and Go Function in DU .
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current implementation several types of data sources
can be defined including multiple relational databases
(Oracle, MySQL, PostgreSQL), and files (e.g., ARFF
files used in WEKA, a widely used open source ma-
chine learning software package). Work in progress is
aimed at the design and implementation of extensions
that allow definition of complex views that allow exe-
cution of complex statistical queries against sequence,
structure, expression, and interaction databases based
on multiple ontologies as well as inter-ontology map-
pings.

• Specification and execution of queries across multiple
large, semantically heterogeneous data sources with
different interfaces, functionalities and access restric-
tions. Each user may choose data sources of interest
to him/her from a list of data sources that have been
previously registered with the system, specify a user
ontology (by selecting an ontology from a list of avail-
able ontologies or by invoking the ontology editor and
defining a new ontology). Once the ontology-extended
data sources and the user ontology have been speci-
fied, the user can select mappings between data source
ontologies and user ontology from the available set
of existent mappings (or invoke the mappings editor
to define a new set of mappings). After all the map-
pings are specified, the system can be used to answer
queries posed by the user. The data needed for an-
swering a query is specified by selecting (and possibly
restricting) attributes from the user ontology, through
a friendly interface. Queries posed by the user are
sent to a query-answering engine (QAE) that decom-
poses a user query into sub-queries that can be an-
swered by the individual data sources (using prede-
fined or user-supplied mappings between the respec-
tive ontologies). The results of the partial queries an-
swered by the distributed data sources are sent back to
the QAE which composes them to generate the answer
to the user query (expressed in terms of user ontology)
and presents it to the user.

Note that in the current release of the INDUS software,
we have assembled two relational databases which contain
a subsets of the information gathered from SWISSPROT
and MIPS to demonstrate how the user can query the two
databases flexibly using user-supplied mappings.

4 Summary and Discussion

Summary: We present the first prototype of INDUS, a
federated, query-centric approach to answering user queries
from distributed, semantically heterogeneous data sources.
INDUS assumes a clear separation between data and the

semantics of the data (ontologies) and allows users to spec-
ify ontologies and mappings between data source ontolo-
gies and user ontology. These mappings are stored in a
mappings repository to ensure their re-usability and are
made available to a query answering engine. The task
of the query answering engine is to decompose a query
posed by a user into subqueries according to the dis-
tributed data sources and compose the results into a fi-
nal result to the intial user query. An initial version
of INDUS software and documentation are available at:
http://www.cild.iastate.edu/software/
indus.html.

Discussion: There is a large body of literature on infor-
mation integration and systems for information integration.
Davidson et al. [7] and Eckman [8] survey alternative ap-
proaches to data integration. Hull [14] summarizes theoret-
ical work on data integration. Several systems have been
designed specifically for the integration of biological data
sources. It is worth mentioning SRS [10], K2 [19], Kleisli
[6], IBM’s DiscoveryLink [13], TAMBIS [18], OPM [15],
BioMediator [17], among others.

Systems such as SRS and Kleisli do not assume any data
model (or schema). It is the user’s responsability to specify
the integration details and the data source locations, when
posing queries. Discovery Link and OMP rely on schema
mappings and the definition of views to perform the integra-
tion task. TAMBIS and BioMediator make a clear distinc-
tion between data and the semantics of the data (i.e., ontolo-
gies) and take into account semantic correspondences be-
tween ontologies (both at schema level and attribute level)
in the process of data integration.

Most of the above mentioned systems assume a prede-
fined global schema (e.g., Discovery Link, OMP) or ontol-
ogy (e.g., TAMBIS), with the notable exception of BioMe-
diator, where users can easily tailor the integrating ontology
to their own needs. This is highly desirable in a scientific
discovery setting where users need the flexibility to specify
their own ontologies.

While some of these systems can answer very complex
queries (e.g., BioMediator), others have limited query ca-
pabilities (e.g, SRS which is mainly an information re-
trieval system). Furthermore, for some systems it is very
easy to add new data sources to the system (e.g., SRS or
Kleisli, where new data source wrappers can be easily de-
veloped), while this is not easy for other biological inte-
gration systems (e.g., Discovery Link or OMP, where the
global schema needs to be reconstructed).

On a different note, there has been a great deal of work
on ontology development environments. Before developing
INDUS editor, off-the-shelf alternatives such as IBM’s Clio
[9] or Protege [16] were considered, but they proved insuf-
ficient for our needs. Clio provides support only for schema
mapping, but not for hierarchical ontology mapping. Pro-
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tege is a purely knowledge base constructing tool (includ-
ing ontology mappings). It does not provide support for
the association of ontologies with data, data management or
queries over the data. Furthermore, neither of these systems
allow procedural mappings (a.k.a., conversion functions),
which are essential for data integration.

Work in progress is aimed at:

• Integrating some machine learning algorithms with
INDUS. This would enable collaborative construction
of predictive models or classifiers without having to
first construct a data set [5, 4, 3].

• Development of data-source specific data retrieval pro-
cedures (iterators) for several commonly used data
sources in bioinformatics.

• Development of support for handling modular ontolo-
gies including support for integration and reuse of on-
tologies, some basic inference procedures.

• Development of a conceptual framework for exploiting
self-describing web services (much along the lines of
ontology-extended data sources).

• Implementation of techniques for optimization of
query execution across multiple data sources to mini-
mize data transfer and computational overhead subject
to constraints imposed by the individual data sources.

• Support for sharing of data, analysis results, and pro-
grams securely between users, groups of users, or the
world, across the Internet.

• Documentation and dissemination of INDUS software,
along with sample ontologies, inter-ontology map-
pings, data source descriptions, to the user community
and further refinement of the software based on user
feedback.
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