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Abstract
Background: Incorrectly annotated sequence data are becoming more commonplace as
databases increasingly rely on automated techniques for annotation. Hence, there is an urgent need
for computational methods for checking consistency of such annotations against independent
sources of evidence and detecting potential annotation errors. We show how a machine learning
approach designed to automatically predict a protein's Gene Ontology (GO) functional class can
be employed to identify potential gene annotation errors.

Results: In a set of 211 previously annotated mouse protein kinases, we found that 201 of the GO
annotations returned by AmiGO appear to be inconsistent with the UniProt functions assigned to
their human counterparts. In contrast, 97% of the predicted annotations generated using a machine
learning approach were consistent with the UniProt annotations of the human counterparts, as well
as with available annotations for these mouse protein kinases in the Mouse Kinome database.

Conclusion: We conjecture that most of our predicted annotations are, therefore, correct and
suggest that the machine learning approach developed here could be routinely used to detect
potential errors in GO annotations generated by high-throughput gene annotation projects.

Editors Note : Authors from the original publication (Okazaki et al.: Nature 2002, 420:563–73) have 
provided their response to Andorf et al, directly following the correspondence.

Background
As more genomic sequences become available, functional
annotation of genes presents one of the most important
challenges in bioinformatics. Because experimental deter-
mination of protein structure and function is expensive
and time-consuming, there is an increasing reliance on
automated approaches to assignment of Gene Ontology
(GO) [1] functional categories to protein sequences. An
advantage of such automated methods is that they can be

used to annotate hundreds or thousands of proteins in a
matter of minutes, which makes their use especially attrac-
tive – if not unavoidable – in large-scale genome-wide
annotation efforts.

Most automated approaches to protein function annota-
tion rely on transfer of annotations from previously anno-
tated proteins, based on sequence or structural similarity.
Such annotations are susceptible to several sources of
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error, including errors in the original annotations from
which new annotations are inferred, errors in the algo-
rithms, bugs in the programs or scripts used to process the
data, clerical errors on the part of human curators, among
others. The effect of such errors can be magnified because
they can propagate from one set of annotated sequences
to another through widespread use of automated tech-
niques for genome-wide functional annotation of pro-
teins [2-5]. Once introduced, such errors can go
undetected for a long time. Because of the increasing reli-
ance of biologists and computational biologists on relia-
ble functional annotations for formulation of hypotheses,
design of experiments, and interpretation of results, incor-
rect annotations can lead to wasted effort and erroneous
conclusions. Computational approaches to checking
automatically inferred annotations against independent
sources of evidence and detecting potential annotation
errors offer a potential solution to this problem [6-11].

Previous work of several groups, including our own [12-
19] has demonstrated the usefulness of machine learning
approaches to assigning putative functions to proteins
based on the amino acid sequence of the proteins. On the
specific problem of predicting the catalytic activity of pro-
teins from amino acid sequence, we showed that machine
learning approaches outperform methods based on
sequence homology [13]. This is especially true when
sequence identity among proteins with a specified func-
tion is below 10%; the accuracy of predictions by our
HDTree classifier was 8%–16% better than that of PSI-
BLAST [13]. The discriminatory power of machine learn-
ing approaches thus suggests they should be valuable for
detecting potential annotation errors in functional
genomics databases.

Here we demonstrate that a machine learning approach,
designed to predict GO functional classifications for pro-
teins, can be used to identify and correct potential anno-
tation errors. In this study, we focused on a small but
clinically important subset of protein kinases, for which
we "stumbled upon" potential annotation errors while
evaluating the performance of protein function classifica-
tion algorithms. We chose a set of protein kinases catego-
rized under the GO class GO0004672, Protein Kinase
Activity, which includes proteins with serine/threonine
(Ser/Thr) kinase activity (GO0004674) and tyrosine (Tyr)
kinase activity (GO0004713). Post-translational modifi-
cation of proteins by phosphorylation plays an important
regulatory role in virtually every signaling pathway in
eukaryotic cells, modulating key biological processes
associated with development and diseases including can-
cer, diabetes, hyperlipidemia and inflammation [20,21].
It is natural to expect that such well studied and function-
ally significant families of protein kinases are correctly
annotated by genome-wide annotation efforts.

Results
The initial aim of our experiments was to evaluate the
effectiveness of machine learning approaches to automate
sequence-based classification of protein kinases into sub-
families. Because both the Ser/Thr and Tyr subfamilies
contain highly divergent members, some of which share
less than 10% sequence identity with other members, they
offer a rigorous test case for evaluating the potential gen-
eral utility of this approach. Previously, we developed
HDTree [13], a two-stage approach that combines a clas-
sifier based on amino acid k-gram composition of a pro-
tein sequence, with a classifier that relies on transfer of
annotation from PSI-BLAST hits (see Methods for details).
A protein kinase classifier was trained on a set of 330
human protein kinases from the Ser/Thr protein kinase
(GO0004674) and Tyr protein kinase (GO0004713)
functional classes based on direct and indirect annota-
tions assigned by AmiGO [22], a valuable and widely used
tool for retrieving GO functional annotations of proteins.
Performance of the classifier was evaluated, using 10-fold
cross-validation, on two datasets: i) the dataset of 330
human protein kinases, and ii) a dataset of 244 mouse pro-
tein kinases drawn from the same GO functional classes.
The initial datasets were not filtered based on evidence
codes or sequence identity cutoffs.

Using the AmiGO annotations as reference, the resulting
HDTree classifier correctly distinguished between Ser/Thr
kinases and Tyr kinases in the human kinase dataset with
an overall accuracy of 89.1% and a kappa coefficient of
0.76. In striking contrast, the accuracy of the classifier on
the mouse kinase dataset was only 15.1%; the correlation
between the GO functional categories predicted by the
classifier and the AmiGO reference labels was an alarming
-0.40: 72 of the 244 mouse kinases were classified as Ser/
Thr kinases, 105 as Tyr kinases, and 67 as "dual specifi-
city" kinases (belonging to both GO0004674 and
GO0004713 classes) (see Table 1).

Assuming the AmiGO annotations were correct, these
results suggested that either this particular machine learn-
ing approach is extremely ineffective for classifying mouse
protein labels, or that human and mouse protein kinases
have so little in common that a classifier trained on the
human proteins is doomed to fail miserably on the mouse
proteins. In light of the demonstrated effectiveness of
machine learning approaches on a broad range of classifi-
cation tasks that arise in bioinformatics [23], and well-
documented high degree of homology between human
and mouse proteins [24], neither of these conclusions
seemed warranted. Could this discrepancy be explained
by the AmiGO annotations for mouse protein kinases?
We proceeded to investigate this possibility.
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A comparison of the distribution of Ser/Thr, Tyr, and dual
specificity kinases in mouse versus human (Figure 1a)
reveals a striking discordance: based on AmiGO annota-
tions, mouse has many more Tyr and dual specificity
kinases than human and only 40% as many Ser/Thr pro-
tein kinases. In contrast, as explained below, the fractions
of Ser/Thr, Tyr, and dual specificity kinases based on Uni-
Prot annotations are very similar in mouse and human
(Figure 1b). Furthermore, the predictions of our two-stage
machine learning algorithm are in good agreement with
the UniProt annotations for both human and mouse pro-
tein kinases (Figures 1b and 1c, and Additional File 9).

Examination of the GO evidence codes for the mouse pro-
tein kinases revealed that 211 of 244 mouse protein
kinases included the evidence code "RCA," "inferred from
reviewed computational analysis" [see Additional file 1],
indicating that these annotations had been assigned using
computational tools and reviewed by a human curator
before being deposited in the database used by AmiGO.
Notably, 28 of 33 (85%) mouse protein kinases with an
evidence code other than RCA (e.g., "inferred from direct
assay") were assigned "correct" labels, relative to the
AmiGO reference, by the classifier trained on the human
protein kinase data. Each of the 211 proteins with the RCA
evidence code had at least one annotation that could be
traced to the FANTOM Consortium and RIKEN Genome
Exploration Research Group [25], a source of protein
function annotations in the Mouse Genome Database
(MGD) [24]. To further examine each of these 211 mouse
protein kinases, we used the gene IDs obtained from
AmiGO to extract information about each protein from
UniProt [26]. We searched the UniProt records for men-
tion of "Serine/Threonine" or "Tyrosine" (or their syno-
nyms) in fields for protein name, synonyms, references,
similarity, keywords, or function, and created a dataset in
which each protein kinase had one of the corresponding
UniProt labels: "Ser/Thr kinase," "Tyr kinase," or "dual
specificity kinase" if both keywords were found. Results of
our comparison of UniProt labels with AmiGO annota-
tions for each class in this dataset of 211 mouse protein
kinases are shown in Figure 2a: for 201 of the 211 cases
with an RCA annotation code, the UniProt and AmiGO

labels were inconsistent. Results of our comparison are
shown in Table 2 [see Additional files 2 and 3].

This result led us to test the ability of the HDTree classifier
trained on the human kinase dataset to correctly predict
the family classifications for proteins in the mouse kinase
dataset, this time using UniProt instead of AmiGO anno-
tations as the "correct" reference labels. Strikingly, the
classifier (trained on the human kinase dataset) achieved
a classification accuracy of 97.2%, with a kappa coeffi-
cient of 0.93, on the mouse kinase dataset. As illustrated
in Figure 2b, the classifier correctly classified 205 out of
the 211 mouse kinases into Ser/Thr, Tyr or dual specificity
classes compared with 10 out of 211 for AmiGO. A direct
comparison of classifiers based on UniProt annotations
and AmiGO annotations can be seen in Table 3. This per-
formance actually exceeded that of the same classifier
tested on the human kinase dataset, for which an overall
classification accuracy of 89.1%, with a kappa coefficient
of 0.76, was obtained [see Table 1 and see Additional file
4]

The HDTree method uses a decision tree built from the
output from eight individual classifiers. A decision tree is
built by selecting, in a greedy fashion, the individual clas-
sifier that provides the maximum information about the
class label at each step, [27]. By examining the decision
tree, it is easy to identify the individual classifiers that
have the greatest influence on the classification. In the
case of the kinase datasets used in this study, the classifiers
constructed by the NB(k) algorithms using trimers and
quadmers, NB(3) and NB(4), were found to provide the
most information regarding class labels. This suggests that
the biological "signals" detected by these classifiers are
groups of 3–4 residues, not necessarily contiguous in the
primary amino acid sequence, but often in close proxim-
ity or interacting within three-dimensional structures to
form functional sites (e.g., catalytic sites, binding sites),
an idea supported by the results of our previous work
[13]. Notably, the NB(3) and NB(4) classifiers appear to
contribute more to the ability to distinguish proteins with
very closely related enzymatic activities than PSI-BLAST.
The PSI-BLAST results influenced the final classification,

Table 1: Performance of classifiers trained on human versus mouse kinases in predicting AmiGO annotations. The performance 
measures accuracy, kappa coefficient, correlation coefficient, precision, and recall are reported for two of the HDTree classifiers. The 
first classifier is trained on 330 human kinases. The performance is based on 10-fold cross-validation. The second classifier is trained on 
the 330 human kinases and tested on 244 mouse kinases. The annotations for the mouse and human kinases were obtained from 
AmiGO.

Correlation Coefficient Precision Recall

Classifier Accuracy Kappa Coefficient Ser/Thr Tyr Dual Ser/Thr Tyr Dual Ser/Thr Tyr Dual

Human 89.1 0.76 0.82 0.86 0.30 0.97 1.00 0.15 0.95 0.74 0.71
Mouse 15.1 -0.40 -0.40 -0.43 -0.01 0.17 0.11 0.25 0.41 0.07 0.01
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however, when the NB(3) and NB(4) classifiers disagreed
on the classification.

Discussion
Examination of the Mouse Kinome Database [28] reveals
that the majority of annotated mouse kinases have a
human ortholog with sequence identity > 90% [see Addi-
tional files 5 and 6]. The results summarized in Figures 1
and 2, together with the assumption that the relative pro-
portions of Ser/Thr, Tyr and dual specificity kinases
should not be significant different in human and mouse,

led us to conclude that UniProt derived annotations are
more likely to be correct than those returned by AmiGO
for this group of mouse protein kinases with the RCA evi-
dence code. We have shared our findings with the Mouse
Genome Database [24], which is in the process of identi-
fying and rectifying the source of potential problems with
these annotations.

Identifying potential annotation errors in a specific data-
set such as the mouse kinase dataset solves only a part of
a larger problem. Because annotation errors can propagate
across multiple databases through the widespread – and
often necessary – use of information derived from availa-
ble annotations, it is important to track and correct errors
in other databases that rely on the erroneous source. For
example, using AmiGO, we retrieved 136 rat protein
kinases for which annotations had been transferred from
mouse protein kinases based on homology (indicated by
the evidence code "ISS," 'inferred from sequence or struc-
tural similarity') with one of the 201 erroneously anno-
tated mouse protein kinases. Examination of the UniProt
records for these 136 rat protein kinases revealed that 94
of those labeled as "Ser/Thr" kinases by UniProt had
AmiGO annotations of "Tyr" or "dual specificity" kinase,
and 42 of those labeled as "Tyr" kinases by UniProt had
AmiGO annotations of "Ser/Thr" or "dual specificity"
kinase [see Additional files 7 and 8].

A recent study found that the GO annotations with ISS
(inferred from sequence or structural similarity) evidence
code could have error rates as high as 49% [29]. This
argues for the development and large-scale application of
a suite of computational tools for identifying and flagging
potentially erroneous annotations in functional genomics
databases. Our results suggest the utility of including
machine learning methods among such a suite of tools.
Large-scale application of machine learning tools to pro-
tein annotation has to overcome several challenges.
Because many proteins are multi-functional, classifiers
should be able to assign a sequence to multiple, not mutu-
ally exclusive, classes (the multi label classification prob-
lem), or more generally, to a subset of nodes in a directed-
acyclic graph, e.g., the GO hierarchy, (the structured label
classification problem). Fortunately, a number of research
groups have developed machine learning algorithms for
multi-label and structured label classification and demon-
strated their application in large-scale protein function
classification [30-33]. We can draw on recent advances in
machine learning methods for hierarchical multi-label
classification of large sequence datasets to adapt our
method to work in such a setting. For example, a binary
classifier can be trained to determine membership of a
given sequence in the class represented by each node of
the GO hierarchy, starting with the root node (to which
trivially the entire dataset is assigned). Binary classifiers at

Distribution of Ser/Thr, Tyr, and dual specificity kinases among annotated protein kinases in human versus mouse genomes [see Additional file 9]Figure 1
Distribution of Ser/Thr, Tyr, and dual specificity 
kinases among annotated protein kinases in human 
versus mouse genomes [see Additional file 9]. Pie charts 
illustrate the functional family distribution of protein kinases 
in human (top) versus mouse (bottom), based on: a. 
AmiGO functional classifications: Ser/Thr (GO0004674) 
[Blue]; Tyr (GO0004713) [Red] or "dual specificity" (proteins 
with both GO classifications) [Yellow]. b. UniProt annota-
tions: classification based on UniProt records containing the 
key words Ser/Thr [Blue], Tyr [Red], or dual specificity [Yel-
low] [see Additional file 2]. c. Predicted annotations by 
the HDTree classifier: The classifier was built on human 
proteins with functional labels Ser/Thr (GO0004674) [Blue], 
Tyr (GO0004713) [Red] or "dual specificity" [Yellow] 
derived from AmiGO and verified by UniProt [see Additional 
file 4].
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each node in the hierarchy can then be trained recursively,
focusing on the dataset passed to that node from its par-
ent(s) in the GO hierarchy.

In this study, we have limited our attention to sequence-
based machine learning methods for annotation of pro-
tein sequences. With the increasing availability of other
types of data (protein structure, gene expression profiles,
etc.), there is a growing interest in machine learning and
other computational methods for genome-wide predic-

tion of protein function using diverse types of informa-
tion [34-39]. Such techniques can be applied in a manner
similar to our use of sequence-based machine learning to
identify potentially erroneous annotations in existing
databases.

Conclusion
The increasing reliance on automated tools in genome-
wide functional annotation of proteins has led to a corre-
sponding increase in the risk of propagation of annota-

Table 2: Comparison of AmiGO and UniProt annotations for 211 mouse protein kinases with RCA Evidence code. Each of the 211 
mouse kinase proteins with an RCA evidence code used in this study has both an AmiGO and a UniProt annotation. This table shows 
the number of proteins that have each of the nine possible combinations of AmiGO and UniProt annotations. Each row of the table 
represents one of the three possible UniProt labels and each column represents each of the three AmiGO annotations. Each entry of 
the table shows the number of proteins with the corresponding annotation. Note that all entries along the diagonal (in bold) show the 
number of proteins for which the AmiGO and UniProt annotations were in agreement. All other entries show the number of proteins 
where AmiGO and UniProt were in disagreement [see Additional files 2 and 3].

KINASE FAMILY AmiGO Ser/Thr AmiGO Tyr AmiGO Dual specificity

UniProt Ser/Thr 10 105 35
UniProt Tyr 54 0 3
UniProt Dual specificity 0 4 0

Comparison of UniProt annotations of mouse protein kinase sequences with annotations from AmiGO or predicted by HDTreeFigure 2
Comparison of UniProt annotations of mouse protein kinase sequences with annotations from AmiGO or pre-
dicted by HDTree. The bar charts illustrate the number of proteins that were in agreement (blue)/disagreement (red) with 
the annotations found in UniProt. Proteins that belong to each of the three functional classes found in the UniProt records are 
represented by two bars. The blue bar represents the number of proteins in which UniProt and the given method share the 
same annotation (agreement) for that function. The red bar represents the number of proteins in which UniProt and the given 
method have different annotations (disagreement) for that function. a. AmiGO vs. UniProt annotations b. HDTree predictions 
vs. UniProt annotations [see Additional files 3 and 4].
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tion errors across genome databases. Short of direct
experimental validation of every annotation, it is impossi-
ble to ensure that the annotations are accurate. The results
presented here and in recent related studies [6-11] under-
score the need for checking the consistency of annotations
against multiple sources of information and carefully
exploring the sources of any detected inconsistencies.
Addressing this problem requires the use of machine read-
able metadata that capture precise descriptions of all data
sources, data provenance, background assumptions, and
algorithms used to infer the derived information. There is
also a need for computational tools that can detect anno-
tation inconsistencies and alert data sources and their
users regarding potential errors. Expertly curated data-
bases such as the Mouse Genome Database are indispen-
sable for research in functional genomics and systems
biology, and it is important to emphasize that several
measures for finding and correcting inconsistent annota-
tions are already in place at MGD [24]. The present study
suggests that additional measures, especially in the case of
protein annotations with RCA evidence code, can further
increase the reliability of these valuable resources.

Methods
Classification Strategy
We constructed an HDTree binary classifier, described
below, for each of the three kinase families. The first two
kinase families correspond to the GO labels GO0004674
(Ser/Thr kinases) or GO0004713 (Tyr kinases) but not
both; the third family corresponds to dual-specificity
kinases that belong to both GO0004674 and
GO0004713. Classifier #1 distinguishes between Ser/Thr
kinases and the rest (Tyr and dual-specificity kinases).
Similarly, classifier #2 distinguishes between Tyr kinases
and the rest (Ser/Thr and dual specificity kinases). Classi-
fier #3 distinguishes dual-specificity kinases from the rest
(those with only Ser/Thr or Tyr activity), based on the pre-
dictions generated by classifier #1 and classifier #2 as fol-
lows: If only classifier #1 generates a positive prediction,
the corresponding sequence is classified as (exclusively) a
Ser/Thr kinase. If only classifier #2 generates a positive
prediction, the corresponding sequence is classified as
(exclusively) Tyr kinase. If both classifiers generate a pos-

itive prediction or if both classifiers generate a negative
prediction, the corresponding sequence is classified as a
dual-specificity kinase. We interpret the disagreement
between the classifiers as indicative of signaling evidence
that the protein is neither exclusively Ser/Thr nor Tyr, and
hence, likely to have dual specificity. More sophisticated
evidence combination methods could be used instead.
However, this simple technique worked sufficiently well
in the case of this dataset (see Table 4).

HDTree Method
As noted above, an HDTree binary classifier [13] is con-
structed for each of the three kinase families. Each HDTree
binary classifier is a decision tree classifier that assigns a
class label to a target sequence based on the binary class
labels output by the Naïve Bayes, NB k-gram, NB(k), and
PSI-BLAST classifiers for the corresponding kinase fami-
lies. Because there are eight classifiers Naïve Bayes, NB 2-
gram, NB 3-gram, NB 4-gram, NB(2), NB(3), NB(4), and
PSI-BLAST, the input to a HDTree binary classifier for each
kinase family consists of an 8-tuple of class labels assigned
to the sequence by the corresponding 8 classifiers. The
output of the HDTree classifier for kinase family c is a
binary class label (1 if the predicted class is c; 0 otherwise).
Thus, each HDTree classifier is a decision tree classifier
that is trained to predict the binary class label of a query
sequence based on the 8-tuple of class labels predicted by
the eight individual classifiers. Because HDTree is a deci-
sion tree, it is easy to determine which individual classi-
fier(s) provided the most information in regards to the
predicted class label. In the resulting tree, nodes near the
top of the tree provided the most information about the
class label. Thus, HDTree can also facilitate identification
of the determinative biological sequence signals. We used
the Weka version 3.4.4 implementation [40] (J4.8) of the
C4.5 decision tree learning algorithm [27].

We describe below, a class of probabilistic models for
sequence classification.

Classification Using a Probabilistic Model
We start by introducing the general procedure for building
a classifier from a probabilistic generative model.

Table 3: Comparison of performance of classifiers based on AmiGO annotations and UniProt annotations. The performance measures 
accuracy, kappa coefficient, correlation coefficient, precision, and recall are reported for two of the HDTree classifiers. Both classifiers 
were trained on 330 human kinases and tested on 211 mouse kinases with RCA evidence codes in AmiGO. The first classifier was 
trained and tested with annotations provided by UniProt and the second classifier used annotations obtained from AmiGO.

Correlation Coefficient Precision Recall

Classifier Accuracy Kappa Coefficient Ser/Thr Tyr Dual Ser/Thr Tyr Dual Ser/Thr Tyr Dual

UniProt 97.1 0.93 0.98 0.94 0.00 0.97 0.97 0.00 0.99 1.00 0.00
AmiGO 4.2 -0.37 -0.64 -0.85 0.00 0.06 0.00 0.00 0.14 0.00 0.00
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Suppose we can specify a probabilistic model α for

sequences defined over some alphabet Σ (which in our

case is the 20-letter amino acid alphabet). The model α

specifies for any sequence  = s1, ..., sn, the probability

Pα(  = s1, ..., sn) of generating the sequence . Suppose

we assume that sequences belonging to class cj are gener-

ated by the probabilistic generative model α (cj).

Then,  is the

probability of  given that the class is cj. Therefore, given

the probabilistic generative model for each of the classes
in C (the set of possible mutually exclusive class labels)

for sequences over the alphabet Σ, we can compute the

most likely class label c( ) for any given sequence  = s1,

..., sn as follows: .

Hence, the goal of a machine learning algorithm for
sequence classification is to estimate the parameters that
describe the corresponding probabilistic models from
data. Different classifiers differ with regard to their ability
to capture the dependencies among the elements of a
sequence.

In what follows, we use the following notations.

n =  = the length of the sequence | |

k = the size of the k-gram (k-mer) used in the model

si = the ithelement in the sequence 

cj = the jth class in the class set C

Naïve Bayes Classifier
The Naïve Bayes classifier assumes that each element of
the sequence is independent of the other elements given
the class label. Consequently,

Note that the Naive Bayes classifier for sequences treats
each sequence as though it were simply a bag of letters. We
now consider two Naive Bayes-like models based on k-
grams.

Naïve Bayes k-grams Classifier
The Naive Bayes k-grams (NB k-grams) [12,13,41] method
uses a sliding a window of size k along each sequence to
generate a bag of k-grams representation of the sequence.
Much like in the case of the Naive Bayes classifier
described above treats each k-gram in the bag to be inde-
pendent of the others given the class label for the
sequence. Given this probabilistic model, the standard
method for classification using a probabilistic model can
be applied. The probability model associated with Naïve
Bayes k-grams:

A problem with the NB k-grams approach is that succes-
sive k-grams extracted from a sequence share k-1 elements
in common. This grossly and systematically violates the
independence assumption of Naive Bayes.

Naïve Bayes (k)
We introduce the Naive Bayes (k) or the NB(k) model
[12,13,41] to explicitly model the dependencies that arise
as a consequence of the overlap between successive k-
grams in a sequence. We represent the dependencies in a
graphical form by drawing edges between the elements
that are directly dependent on each other.

S

S S

P S s s c P S s sn j c njα α( ,..., | ) ( ,..., )( )= = =1 1

S

S S

c S P S s s c P c
c C

n j j
j

( ) argmax ( ,..., | ) ( )= =
∈

α 1

S S

S

c S P P s c P s c P c
c C

j n j
i

n

j
j

( ) argmax ( | ) ( | ) ( )= ⋅ ⋅ ⋅
∈ =

∏α α α1
1

P S S s S s P P S s S sn n
c C

i i i k i
j

α α α( [ ,..., ]) argmax ( ,...,= = = = = =
∈

+ −1 1 1 ++ −
=

− +

∏ k j
i

n k

jc P c1
1

1
| ) ( )

Table 4: Classification schema for Classier #3 (Method for predicting dual specificity kinases). HDTree Classifier #3 uses the outputs 
from HDTree Classifier #1 and HDTree Classifier #2 to distinguish between dual-specificity kinases, Ser/Thr kinases, and Tyr kinases. 
There are four possible labelings from the binary classifiers #1 and #2. 'Yes' or 'No' votes from Classifier #1 correspond to predictions 
of Ser/Thr or Tyr labels, respectively, for the protein. 'Yes' or 'No' votes from Classifier #2 correspond to predictions of Tyr or Ser/Thr 
labels. When both classifiers predict the protein to be Ser/Thr (that is, Classifier #1 votes 'Yes' and Classifier #2 votes 'No'), Classifier 
#3 labels the protein as "exclusively Ser/Thr" (and hence, not Tyr). Similarly, when both classifiers predict the protein to be Tyr, 
Classifier #3 labels the protein as "exclusively Tyr" (and hence not Ser/Thr). When both classifiers vote 'Yes' or when both vote 'No,' 
Classifier #3 labels the protein as having "Dual" catalytic activity. See Methods section for details on each classifier.

Prediction of classifier #1 (Ser/Thr) Prediction of classifier #2 (Tyr) New Prediction of classifier #3 (Dual, 
Ser/Thr, Tyr)

Yes Yes Dual
Yes No exclusively Ser/Thr
No Yes exclusively Tyr
No No Dual
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Using the Junction Tree Theorem for graphical models
[42], it can be proved [41] that the correct probability
model α that captures the dependencies among overlap-
ping k-grams is given by:

Now, given this probabilistic model, we can use the stand-
ard approach to classification given a probabilistic model.
It is easily seen that when k = 1, Naive Bayes 1-grams as
well as Naive Bayes (1) reduce to the Naive Bayes model.

The relevant probabilities required for specifying the
above models can be estimated using standard techniques
for estimation of probabilities using Laplace estimators
[43].

PSI-Blast
We used PSI-BLAST (from the latest release of BLAST) [44]
to construct a binary classifier for each class. We used the
binary class label predicted by the PSI-BLAST based classi-
fier as an additional input to our HD-Tree classifier. Given
a query sequence to be classified, we use PSI-BLAST to
compare the query sequence against a reference protein
sequence database, i.e., the training set used in the cross-
validation process. We run PSI-BLAST with the query

sequence against the reference database. We assign to the
query sequence the functional class of the top scoring hit
(the sequence with the lowest e-value) from the PSI-
BLAST results. The resulting binary prediction of the PSI-
BLAST classifier for class c is 1 if the class label for the top
scoring hit is c. Otherwise, it is 0. An e-value cut-off of
0.0001 was used for PSI-BLAST, with all other parameters
set to their default values.

Performance Evaluation
The performance measures [45] used to evaluate each of
the different classifiers trained using machine learning
algorithms are summarized in Tables 5 and 6.
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Table 5: Performance measure definitions for binary classification. The performance measures accuracy, precision, recall, correlation 
coefficient, and kappa coefficientare used to evaluate the performance of our machine learning approaches [45]. Accuracy is the fraction 
of overall predictions that are correct. Precision is the ratio of predicted true positive examples to the total number of actual positive 
examples. Recall is the ratio of predicted true positives to the total number of examples predicted as positive. Correlation coefficient 
measures the correlation between predictions and actual class labels. Kappa coefficient is used as a measure of agreement between 
two random variables (predictions and actual class labels). The table summarizes the definitions of performance measures in the 2-
class setting (binary classification), where M = the total number of classes and N = the total number of examples. TP, TN, FP, FN are the 
true positives, true negatives, false positives, and false negatives for the given confusion matrix.
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In this paper, the authors checked for potential Gene
Ontology (GO) annotation errors using a machine learn-
ing approach. The authors' method identified a set of
errors in GO annotations that relate to a very small subset
of results from the 2001/2002 FANTOM2 analysis. These
have subsequently been corrected.

We agree with the authors point about the importance of
detecting the annotation errors. However, we believe that
the errors the authors describe are exaggerated in impor-

tance as a result of the selection of datasets that they used
and for the small set of genes that they studied. We will
explain why they obtained these results, and we have
identified a data curation change that has been imple-
mented. However, we note such updates and revisions are
a daily part of the work of large bio-informatics resources
and of the work of the genome informatics community.

The strategy employed in FANTOM2 was appropriate and
reflected the best strategy for mining large-scale functional
information available at the time. In the computational
analysis published in 2002 by the FANTOM2 Consor-
tium, protein sequences were compared to other protein
sequences and GO annotations were inferred from identi-
cal or highly similar proteins. GO annotations were also
inferred from InterPro domains that were found in the
coding regions of the proteins. The advanced analysis
resulted in GO predictions for many proteins we knew
nothing about at that time. A subset of the results of this
landmark analysis were integrated into Mouse Genome
Informatics after the FANTOM2 publication. This data set

Table 6: Performance measure definitions for multi-class classification. The performance measures accuracy, precision, recall, 
correlation coefficient, and kappa coefficient are used to evaluate the performance of our machine learning approaches [45]. Accuracy is 
the fraction of overall predictions that are correct. Precision is the ratio of predicted true positive examples to the total number of 
actual positive examples. Recall is the ratio of predicted true positives to the total number of examples predicted as positive. 
Correlation coefficient measures the correlation between predictions and actual class labels. Kappa coefficient is used as a measure of 
agreement between two random variables (predictions and actual class labels). The table displays the general definition of each 
measure, where M = the total number of classes and N = the total number of examples, xik represents the number of examples in row 
i and column k of the given confusion matrix.
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is important because it was the first analysis of this scale
and complexity performed in mouse.

By retrieving annotations from AmiGO, Andorf et al
restricted themselves to the subset of aggressively pre-
dicted FANTOM2 GO annotations while not considering
high-quality FANTOM2 GO annotations that are repre-
sented in MGI using other automated methods. This is
because AmiGO by policy does not display annotations
inferred from automated methods. Much of the FANTOM
data does not appear in AmiGO because it entered the reg-
ular MGI annotation stream and receives regular refresh-
ing. As a result, this analysis casts a small subset of the
FANTOM2 GO annotations in an unfair light. To obtain a
fair analysis of all GO terms annotated at the time of
FANTOM2, the original FANTOM2 data are available
[46].

The results reported by Andorf et al remind us that conclu-
sions based on a particular data set must be viewed in the
context of a thorough understanding of how the data was
generated and what is being represented in the set that is
used for the analysis. The errors in GO annotation found
by the authors are not due to general poor quality of
FANTOM2 annotation. Rather, unique annotations from
FANTOM2, as data associated with a publication, were
not being comprehensively updated. We are reminded
that any annotations based on computational methods
must be regularly re-evaluated. MGI curators have now
screened and updated the annotations for genes associ-
ated with protein tyrosine and protein serine/threonine
kinase activities.
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