
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

PSpace Tableau Algorithms for Acyclic Modalized ALC

Jia Tao · Giora Slutzki · Vasant Honavar

Received: date / Accepted: date

Abstract We study ALCKm and ALCS4m, which extend the description logic ALC
by adding modal operators of the basic multi-modal logics Km and S4m. We develop

a sound and complete tableau algorithm ΛK for answering ALCKm queries w.r.t. an

ALCKm knowledge base with an acyclic TBox. Defining tableau expansion rules in the

presence of acyclic definitions by considering only the concept names on the left-hand

side of TBox definitions or their negations, we are able to give a PSpace implementa-

tion for ΛK. We then consider answering ALCS4m queries w.r.t. an ALCS4m knowl-

edge base (with an acyclic TBox) in which the epistemic operators correspond to those

of classical multi-modal logic S4m. The expansion rules in the tableau algorithm ΛS4
are designed to syntactically incorporate the epistemic properties. Blocking is corpo-

rated into the tableau expansion rules to ensure termination. We also provide a PSpace

implementation for ΛS4. In light of the fact that the satisfiability problem for ALCKm
with general TBox and no epistemic properties (i.e., KALC) is NEXPTIME-complete,

we conclude that both ALCKm and ALCS4m offer computationally manageable and

practically useful fragments of KALC .

Keywords Description Logic · ALC · Modal Logic · Tableau Algorithm · PSpace

1 Introduction

Description Logics (DLs) [1] offer a powerful formalism for representing and reasoning

with knowledge in a broad range of applications. Many DLs have been investigated with

Jia Tao
Iowa State University
E-mail: jtao@cs.iastate.edu

Giora Slutzki
Iowa State University
Tel.: +1-515-294-2963
E-mail: slutzki@cs.iastate.edu

Vasant Honavar
Iowa State University
Tel.: +1-515-294-1098
E-mail: honavar@cs.iastate.edu

2

respect to their expressivity and complexity [2–5]. Some DLs provide the foundation for

powerful practical languages to represent knowledge on the web, e.g., DAML+OIL [6],

OWL DL, OWL Lite [7], and reasoners (typically based on the analytic tableau method

[4]) can be used to draw inferences from these DL knowledge bases [7]. Because of its

inferential feasibility and practical utility, the terminological knowledge representation

language ALC [2] is of particular interest. Representing knowledge in such a system

amounts to introducing the terminology of the application domain through definitions

of the relevant concepts, and assertions that hold with respect to specific individuals in

the domain. However, terminological knowledge representation languages such as ALC
lack the expressivity needed to represent modal or epistemic aspects of knowledge.

Thus, in a pure terminological system, we can say that ‘swine flu is a life threaten-

ing disease’ but not that ‘Dr. Vos knows that swine flu is a life threatening disease’.

Epistemic DLs allow us to address this limitation by providing a means to model as

well as reason about the knowledge of different experts using epistemic operators. The

resulting logic finds applications in settings where it is useful to be able to attribute

specific pieces of knowledge to individual experts.

Motivated by such applications, there is growing interest in incorporating some

features of epistemic modal logics [8–10] into DLs [11–16]. In general, in DLs aug-

mented with modal operators the interaction between modalities and DL constructs

can substantially increase the complexity of reasoning and in some cases, even lead to

undecidability [17–19]. In a series of papers, Wolter and Zakharyaschev [20–23] showed

various decidability results for the satisfiability problem for logics that augment DLs by

modal operators. These papers delineate some syntactical and semantical limits within

which DLs augmented with modal operators remain decidable; this line of research was

summarized in [16].

There are also papers that provide decision procedures for languages that augment

ALC with modal operators. For example, Donini et al. [13,14] investigated the addition

of an epistemic operator to an ALC-based query language and showed that this allows

treatment of several features of standard databases such as closed-world reasoning and

integrity constraints. The language is further extended by adding the autoepistemic

operator A [24] such that the resulting language combines the non-first-order features

of frame-based systems with default reasoning. Baader and Laux [15] extended ALC by

adding multi-modal operators which can be used both inside concept expressions and

in front of assertional (ABox) and terminological (TBox) axioms but not in front of

roles. The modal operators in the resulting language (later named KALC in [16]), are

interpreted in the classic multi-modal logic Km. By extending the tableau expansion

rules for ALC to incorporate accessibility relation between worlds, they showed that

the satisfiability of finite sets of formulae in KALC is decidable under the increasing

domain assumption (i.e., if a world w′ is accessible from a world w, then the domain of

w is a subset of the domain of w′). They further showed that their tableau algorithm for

KALC is not adequate under the constant domain assumption (a.k.a. common domain

assumption in [8]) where all worlds share the same interpretation domain. It has been

shown in [20] that the satisfiability problem w.r.t. models with increasing domains can

be reduced to that w.r.t. models with constant domains. Hence, the treatment in this

paper is based on the constant domain assumption.

Lutz et al. [16] assumed a constant domain and a global interpretation for all in-

dividuals (i.e., all individuals are interpreted identically in all worlds) and provided a

tableau decision algorithm for the KALC satisfiability problem. They observed that al-

though infinitely many individuals may be needed to construct a model for a satisfiable

3

KALC formula, only finitely many concepts are involved. Based on this observation,

they designed a tableau algorithm that constructs a quasimodel wherein each object

represents a type of individuals (i.e., a set of concepts they belong to) rather than

the individuals themselves. The complexity of the resulting tableau algorithm is NEX-

PTIME which is consistent with the known result that the satisfiability problem for

KALC is NEXPTIME-complete [18]. In contrast, the satisfiability problem for ALC is

known to be PSpace-complete [2,25]. Hence, it is of interest to explore computation-

ally manageable, yet practically useful fragments of KALC . We investigate a subset

of KALC obtained by augmenting ALC with an acyclic TBox with modal operators

that can appear in front of any concept expressions, yielding a language which we refer

to as ALCKm. As in the case of KALC , ALCKm conforms to the constant domain

assumption. We provide a sound and complete tableau algorithm for ALCKm with an

acyclic TBox.

As in the case of DL knowledge bases (see [26]), given an ALCKm knowledge base

(KB) Σ, the following problems are of interest: (1) KB-satisfiability : Σ is satisfiable if

it has a model; (2) Concept satisfiability : a concept C is satisfiable w.r.t. Σ if there exist

a model of Σ in which the interpretation of C is not empty; (3) Subsumption: a concept

C is subsumed by a concept D w.r.t. Σ if for every model of Σ the interpretation of

C is a subset of the interpretation of D; (4) Instance checking : a is an instance of C if

the assertion C(a) is satisfied in every model of Σ. Instance checking problem can be

viewed as a query answering problem. It is well-known that problems (2)-(4) can be

reduced to KB-satisfiability in linear time [26]. We solve the query answering problem

(whether the KB entails the query) by reducing it to the KB-satisfiability problem.

The main contribution of this paper is two PSpace implementations for the sat-

isfiability of an ALCKm query with respect to an ALCKm knowledge base and the

satisfiability of an ALCS4m query with respect to an ALCS4m knowledge base. This

extends the result of Schmidt-Schauß and Smolka [2] that checking satisfiability and

subsumption of ALC concepts can be decided in linear space. Hladik and Peñaloza [27]

used automata-theoretic approach to reprove the result that the ALC concept satis-

fiability w.r.t. acyclic TBoxes is decidable in PSpace. Our solution takes advantage

of:

1. Tableau expansion rules that can cope with acyclic definitions by considering only

the left-hand sides of TBox definitions or their negations. This approach allows us

to detect potential clashes and facilitates PSpace implementation by eliminating

the need for backtracking.

2. An extension of the idea of canonical interpretation [28,26] that incorporates the

TBox definitions into the interpretation of concept names.

3. A blocking technique that facilitates the termination of the algorithm in the case

of ALCS4m.

To the best of our knowledge, the main results of this paper as well as the technical

approach used are novel.

The paper is organized as follows. Section 2 introduces the syntax and seman-

tics of ALCKm. We proceed to develop a sound and complete algorithm for ALCKm
KB-satisfiability with an acyclic TBox in Section 3, and then provide the solution to

the query answering problem in Section 4. Section 5 shows a PSpace implementa-

tion for ALCKm KB-satisfiability. Section 6 develops a sound and complete algorithm

for ALCS4m KB-satisfiability w.r.t. the class of S4-models and provides a PSpace

implementation for the algorithm. Section 7 concludes the paper.

4

2 Preliminaries

2.1 The Syntax and Semantics

The non-logical signature of the ALCKm language includes four mutually disjoint sets:

a set of concept names NC , a set of role names NR, a set of individual names NO, all

of which are countably infinite and a finite set of experts NE = {1, . . . ,m}. When we

write �i or ♦i, the subscript i refers to an expert i ∈ NE . The syntax of ALCKm is

defined by specifying ALCKm expressions E and ALCKm formulae F. E contains the

set of roles names NR and a set of concepts C which is recursively defined as follows:

C,D −→ A | > | ⊥ | ¬C | C uD | C tD | ∀R.C | ∃R.C | ♦iC | �iC
where A ∈ NC , > is the top symbol, ⊥ is the bottom symbol, C,D ∈ C, R ∈ NR, i ∈ NE
and ♦iC is an abbreviation of ¬�i¬C.

In this paper we will consider restricted ALCKm formulae F of two kinds: the

assertional formulae of the form C(a) or R(a, b) and the definitional formulae of the

form A
.
= C, where a, b ∈ NO, C ∈ C, R ∈ NR and A ∈ NC .

A concept is said to be in negation normal form (NNF) if negation occurs only

in front of concept names. It is well-known that any concept can be rewritten into an

equivalent negation normal form in linear time [2].

The semantics of ALCKm language is defined by using Kripke structures [8]. A

relational Kripke structure for m experts is a tuple M = 〈S, π, E1, ..., Em〉 where S is

a set of states, Ei ⊆ S × S are the accessibility relations, and π interprets the syntax

of ALCKm, both the expressions in E and the formulae in F for each state s ∈ S. A

(Kripke) world is a pair w = (M, s) where M is a Kripke structure and s is a state in S.

The intuitive interpretation of (s, t) ∈ Ei is that in world (M, s) expert i considers world

(M, t) as a possible world. We may further use Ei(s) to denote the set {t | (s, t) ∈ Ei}
of the i-successors of the state s.

For a finite set of symbols N ⊂ NC ∪ NR ∪ NO, we define a Kripke structure

M = 〈S, π, E1, ..., Em〉 restricted to N to be M|N = 〈S, π|N , E1, ..., Em〉 where π|N
denotes the restriction of the function π to N .

All the concepts and roles will be interpreted in a common (i.e., state-independent)

non-empty domain which we denote by ∆. We do not make the Unique Name As-

sumption, i.e., distinct individual names can be interpreted identically. The inter-

pretation of concept and role expressions is defined recursively as follows: for all

a ∈ NO, A ∈ NC , R ∈ NR, C ∈ C,

>π(s) = ∆ (C tD)π(s) = Cπ(s) ∪Dπ(s)

⊥π(s) = ∅ (C uD)π(s) = Cπ(s) ∩Dπ(s)

aπ(s) ∈ ∆, (�iC)π(s) =
⋂
t∈Ei(s)C

π(t)

Aπ(s) ⊆ ∆, (♦iC)π(s) =
⋃
t∈Ei(s)C

π(t)

Rπ(s) ⊆ ∆×∆, (¬C)π(s) = ∆ \ Cπ(s)

(∀R.C)π(s) = {a ∈ ∆ | ∀b : (a, b) ∈ Rπ(s) → b ∈ Cπ(s)}
(∃R.C)π(s) = {a ∈ ∆ | ∃b : (a, b) ∈ Rπ(s) ∧ b ∈ Cπ(s)}

Definition 1 Let C be a concept, C(a) and R(a, b) assertional formulae, and A
.
= C

a definitional formula. We define the satisfiability relation as follows:

(M, s) � C ⇔ Cπ(s) 6= ∅ (M, s) � R(a, b) ⇔ (aπ(s), bπ(s)) ∈ Rπ(s)

(M, s) � C(a) ⇔ aπ(s) ∈ Cπ(s) (M, s) � A
.
= C ⇔ Aπ(s) = Cπ(s)

5

Let ϕ be a formula (assertional or definitional). Then (i) ϕ is satisfiable if there is

a world w = (M, s) such that w � ϕ; (ii) ϕ is valid in a Kripke structure M =

〈S, π, E1, ..., Em〉, written as M � ϕ, if (M, s) � ϕ for all s ∈ S; (iii) ϕ is valid, written

as � ϕ, if M � ϕ for all M.

2.2 Knowledge Bases and Query Answering

A finite non-empty set of assertional formulae whose concepts and roles belong to the

language ALCKm is called an ABox. A finite set T of definitional formulae is called

a TBox. A concept name A directly refers to a concept name B w.r.t. T if there is a

definition A
.
= C ∈ T and B occurs in C. Let refers be the transitive closure of directly

refers. Then T is said to be acyclic if no concept name refers to itself. In this paper,

a TBox is assumed to be acyclic such that no defined concept (l.h.s. of a definitional

formula) has more than one definition (r.h.s. of a definitional formula). An ABox A
and a TBox T together form an ALCKm-knowledge base Σ = 〈A, T 〉. Note that all

the KBs in this paper will be ALCKm-knowledge bases unless specified otherwise. A

knowledge base Σ = 〈A, T 〉 is called acyclic if T is acyclic. Our query language is the

set of all assertional formulae over the alphabet of the given knowledge base.

Definition 2 A world w = (M, s) satisfies a knowledge base Σ = 〈A, T 〉, written as

w � Σ, if w satisfies all the assertions in A and all the definitions in T . A knowledge

base Σ entails an assertion C(a), written as Σ � C(a), if for all worlds w, w � Σ ⇒
w � C(a).

In this paper, our motivation is to answer queries of the form C(a) or R(a, b), i.e.,

whether a is a member of the concept C, or whether (a, b) is a member of the role R.

Given a KB Σ, a concept C ∈ C, and an individual a ∈ NO, the answer to the query

C(a) posed to Σ, is based on the Open World Assumption (OWA) and it is defined as

– YES, if Σ � C(a),

– NO, if Σ � ¬C(a),

– UNKNOWN, otherwise.

Clearly, given Σ = 〈A, T 〉, answering the query C(a) is equivalent to checking the

non-satisfiability of 〈A ∪ {¬C(a)}, T 〉 in the following sense. If 〈A ∪ {¬C(a)}, T 〉 is

not satisfiable, the answer to the query is YES. Otherwise, if 〈A ∪ {C(a)}, T 〉 is not

satisfiable, then the answer to the query is NO; and if both are satisfiable, the answer

to the query will be UNKNOWN.

The query answering framework contains the following components:

– A knowledge base Σ = 〈A, T 〉.
– Σ includes epistemic statements that contain knowledge of the experts expressed

using modal operators.

– A reasoner that knows every assertion and definition in Σ. In response to a query,

it computes answers such as “YES”, “NO”, or “UNKNOWN” from the information

present in Σ and returns the answer to the querying agent.

– A querying agent that poses queries of the form C(a) or R(a, b) to Σ. We assume

that the querying agent does know the language, NC , NR, NO, NE as well as the

syntax of the language. In particular, the querying agent can ask queries that

involve knowledge operators.

6

In the following example we consider a knowledge base with an ABox and an acyclic

TBox with exactly one operator on the right-hand side of each definition.

Example 1 Consider the following knowledge base Σ1 = 〈A, T 〉 where

A = { ADVISE(john, mary), TEACHES(susan, cs525), ♦1Advisor(susan),

♦2Grad(mary), �2Lecturer(susan), Advisor(john), ¬BasicCourse(cs525)}
T = { Lecturer

.
= ∀TEACHES.BasicCourse, Advisor

.
= Professor u A,

A
.
= ∃ADVISE.Grad }.

Consider the following queries:

Q1: Is john a professor?

Query: Professor(john); Answer: YES.

Q2: Is susan a lecturer?

Query: Lecturer(susan); Answer: NO.

Q3: Is there an Expert 1’s successor world where peter is a graduate student?

Query: ♦1Grad(peter); Answer: UNKNOWN.

Q4: In all Expert 2’s successor worlds, is it true that all courses that susan teaches

are basic courses?

Query: �2(∀TEACHES.BasicCourse)(susan); Answer: YES.

The answer to Q1 is explained by the assertion Advisor(john) and the definition Advisor
.
= Professor u A. The answer to Q2 comes from the assertions TEACHES(susan,

cs525), ¬BasicCourse(cs525) and the definition Lecturer
.
= ∀TEACHES.BasicCourse.

To answer Q3, observe that there is an Expert 1’s world where Advisor(susan) is

true. However, under the OWA, whether there is an Expert 1’s world where peter

is a graduate student is UNKNOWN. In answering Q4, for any Expert 2’s successor

world (and there is one in view of ♦2Grad(mary)), Lecturer(susan) is true. Since the

definition Lecturer
.
= ∀TEACHES.BasicCourse is satisfied in any such world, The

answer to �2(∀TEACHES.BasicCourse)(susan) is YES. �

3 Tableau Algorithm for ALCKm

As discussed in Section 2.2, answering queries against a knowledge base can be reduced

to the problem of checking existence of models. Tableau algorithms are generally used

to construct models. Such a model, usually built by using a data structure called a

constraint system [13,15,14,16], contains a set of constraints and it is constructed by

recursively applying expansion rules.

In the presence of modal operators, we need to construct a model which eventually

is equivalent to a Kripke structure. Intuitively, one world corresponds to one constraint

system, and the accessibility relations connect one constraint system to another. Let

Σ = 〈A, T 〉 be a knowledge base. We define the concept of a constraint graph by

generalizing the idea of a completion tree in [29], and build it starting from a single

node representing the constraint system obtained from A and an input query and

repeatedly applying expansion rules. The constraints in constraint systems are of the

form a : C or (a, b) : R, where a, b ∈ NO, C ∈ C and R ∈ NR. Each assertion D(a) in

A is rewritten into a constraint a : D′ where D′ is the NNF of D; each R(a, b) in A is

rewritten into a constraint (a, b) : R.

7

Formally, a constraint graph 1 is a directed graph G = 〈V,E,L〉 where V is a set

of nodes, E is a set of directed edges and L is a function that labels each node n

with a constraint system and each edge (n, n′) in E with a nonempty subset of NE .

If i ∈ L(n, n′), then n′ is an i-successor of n, i.e., it is directly accessible from node

n by expert i. We denote by OG (a subset of NO) the set of all individual names

that occur in G. A node n ∈ V is said to be closed if L(n) contains a clash, i.e.,

{a : C, a : ¬C} ⊆ L(n) or {a : ⊥} ⊆ L(n). G is said to be closed if at least one of its

nodes is closed. A constraint graph that is not closed is open, and it is complete if no

expansion rule applies.

There are three types of expansion rules: local expansion rules which generate new

constraints within one constraint system, global expansion rules which can add new

assertions to constraint systems associated with nodes that are directly accessible from

the current node and terminological expansion rules which take into consideration

both the constraints in the constraint systems and the given set of terminological

definitions T . Note that the syntactic construct ∃R.C encodes incomplete information.

For example, ∃ADVISE.Grad(susan) says that the individual susan advises a graduate

student. However, who is this graduate student is left unspecified. Under the OWA

and without the Unique Name Assumption, to find a model for the knowledge base

containing this kind of assertions, it is sufficient to use a new individual name that

has not yet appeared in the constraint graph to denote this unknown person. If using

a new individual name causes a clash, then, a fortiori, using any existing individual

name will also cause a clash.

We denote by NΣ (OΣ) the set of all the symbols (individual names) appearing in

the knowledge base Σ. Initially, the constraint graph G contains only the individual

names occurring in Σ, i.e., OG = OΣ . With the application of expansion rules, new

individual names may be added to OG. An individual name is called fresh (at any

particular time) if it belongs to NO \OG (at that time). The local and global expansion

rules are listed in Fig.1.

We assume that the TBox T is in simple form where the right-hand side of each

definition contains exactly one operator, i.e., the right-hand side of each definition is of

the form ¬C,C uD,C tD,∃R.C, ∀R.C,♦iC or �iC where C,D ∈ NC and R ∈ NR;

moreover, if the right-hand side is of the form ¬A, then A does not appear on the

left-hand side of any definition in T (see [30], Definition 6). It can be shown that

transforming a given TBox to an equivalent simple form can be done in linear time.

The proof is similar to that of Lemma 1 in [30].

Nebel has shown that the straightforward unfolding of an ABox w.r.t. a TBox may

lead to an exponential blowup [31]. To give a PSpace complexity result for reasoning

ALC with acyclic TBoxes, instead of unfolding iteratively as in [31], the approach in

[30] ensures that if an assertion a : C is in the ABox and a definition C
.
= D is in

the TBox, then the assertion a : D is added to the ABox. However, in the case when

C
.
= D1 u D2 ∈ T and {a : D1, a : D2, a : ¬C} is a subset of a constraint system,

such an approach may not detect the implicit clash. The terminological expansion rules

given in Fig. 2 deal with this issue.

We denote by ΛK the K-tableau algorithm which nondeterministically applies the

local, global and terminological expansion rules until no further applications are pos-

sible. We note again, following up on footnote 1, that the graph-structure constructed

1 We use constraint graphs, rather than trees, with an eye towards an application to the
case of S4-structures in which the accessibility relations are reflexive and transitive.

8

Local Expansion Rules:
u-rule: If there is a node n with a : C1 u C2 ∈ L(n),

and {a : C1, a : C2} * L(n),
then L(n) := L(n) ∪ {a : C1, a : C2};

t-rule: If there is a node n with a : C1 t C2 ∈ L(n)
and {a : C1, a : C2} ∩ L(n) = ∅,
then L(n) := L(n) ∪ {a : Ci} for some i ∈ {1, 2};

∃-rule: If there is a node n with a : ∃R.C ∈ L(n),
and there is no b ∈ OG s.t. {(a, b) : R, b : C} ⊆ L(n),
then L(n) := L(n) ∪ {(a, c) : R, c : C} where c is fresh;

∀-rule: If there is a node n with {a : ∀R.C, (a, b) : R} ⊆ L(n),
and b : C /∈ L(n),
then L(n) := L(n) ∪ {b : C};

Global Expansion Rules:
♦-rule: If there is a node n with a : ♦iC ∈ L(n),

and n has no i-successor l with a : C ∈ L(l),
then add a new i-successor n′ of n with L(n′) := {a : C};

�-rule: If there is a node n with a : �iC ∈ L(n),
and n has an i-successor n′ with a : C /∈ L(n′),
then L(n′) := L(n′) ∪ {a : C}.

Fig. 1 The local and global expansion rules for ALCKm

by ΛK is actually a tree, referred to as a constraint tree. It is also easily seen that in a

constraint tree the edge labels are singletons. The following lemma is easy to prove.

Lemma 1 All executions of ΛK on an input consisting of a knowledge base and a

query terminate.

The next definition provides a formal interpretation of a constraint graph.

Definition 3 Let G = 〈V,E,L〉 be a constraint graph, M = 〈S, π, E1, ..., Em〉 a Kripke

structure, and σ a mapping from V to S. Then M satisfies G via σ if, for all n, n′ ∈ V,

– i ∈ L(n, n′) =⇒ Ei(σ(n), σ(n′))
– a : C ∈ L(n) =⇒ (M, σ(n)) � C(a)

– (a, b) : R ∈ L(n) =⇒ (M, σ(n)) � R(a, b)

We say that M satisfies G, denoted as M G, if there is a mapping σ such that M
satisfies G via σ. In this case, we also say that M is a model of G. Note that M G
implies that G is open.

The idea behind Definition 3 is that each constraint system is mapped to a state of

M in which all its constraints are satisfied. Moreover, labeled edges in G are mapped

to the corresponding accessibility relations.

Let M = 〈S, π, E1, ..., Em〉 and M′ = 〈S, π′, E1, ..., Em〉 be two Kripke structures,

and N2 ⊆ N1 be finite subsets of NC ∪ NR ∪ NO such that N1 \ N2 ⊆ NO. Then

M′|N1
= 〈S, π′|N1

, E1, ..., Em〉 is a semantic extension of M|N2
= 〈S, π|N2

, E1, ..., Em〉
if (M′|N1

)|N2
= M|N2

. The following theorem shows that if a constraint graph has a

model, then the constraint graph resulting from the application of any expansion rule

also has a model which is a semantic extension of the original model.

Theorem 1 (Soundness of the expansion rules) Given a Kripke structure M = 〈S, π,

E1, ..., Em〉 and an acyclic TBox T where M � T , let G be a constraint graph, α a local,

9

Terminological Expansion Rules:
T-rule: If there is a node n with a : A ∈ L(n), A

.
= D ∈ T , and a : D /∈ L(n)

then L(n) := L(n) ∪ {a : D}.
N-rule: If there is a node n with {a : ¬A, a : B} ∩ L(n) 6= ∅, A .

= ¬B ∈ T ,
and {a : ¬A, a : B} * L(n),
then L(n) := L(n) ∪ {a : ¬A, a : B};

N u -rule: If there is a node n with a : ¬A ∈ L(n), A
.
= B1 uB2 ∈ T ,

and a : ¬B1 t ¬B2 /∈ L(n),
then L(n) := L(n) ∪ {a : ¬B1 t ¬B2};

N t -rule: If there is a node n with a : ¬A ∈ L(n), A
.
= B1 tB2 ∈ T ,

and a : ¬B1 u ¬B2 /∈ L(n),
then L(n) := L(n) ∪ {a : ¬B1 u ¬B2};

N∃-rule: If there is a node n with a : ¬A ∈ L(n), A
.
= ∃P.B ∈ T ,

and a : ∀P.(¬B) /∈ L(n),
then L(n) := L(n) ∪ {a : ∀P.(¬B)};

N∀-rule: If there is a node n such that a : ¬A ∈ L(n), A
.
= ∀P.B ∈ T ,

and a : ∃P.(¬B) /∈ L(n),
then L(n) := L(n) ∪ {a : ∃P.(¬B)};

N♦-rule: If there is a node n with a : ¬A ∈ L(n), A
.
= ♦iB ∈ T ,

and a : �i¬B /∈ L(n),
then L(n) := L(n) ∪ {a : �i¬B}.

N�-rule: If there is a node n with a : ¬A ∈ L(n), A
.
= �iB ∈ T ,

and a : ♦i¬B /∈ L(n),
then L(n) := L(n) ∪ {a : ♦i¬B}.

Fig. 2 The terminological expansion rules for ALCKm

global or terminological expansion rule and Gα a constraint graph obtained by applying

α to G. If M G via σ, then there exists a semantic extension Mα of M|NΣ∪OG s.t.

Mα Gα via σ′ (which extends σ) and Mα � T . Furthermore, Mα G.

Theorem 1 (proof is given in Appendix A) ensures that applications of expansion

rules preserve the existence of models. Unfortunately, it does not specify how to con-

struct such models in the first place. The canonical interpretation of a constraint system

has been defined in [28,26]. In [28], no TBox is involved, and the canonical interpre-

tation is defined to be a model for a constraint system that originates from an ABox

of an ALCN knowledge base. The approach in [26] incorporates the subsumptions in

the TBox (not necessarily acyclic) into the initial constraint system and then applies

expansion rules. A subsumption, C v D, is converted into a constraint ∀x.x : ¬C tD
in which, during the process of expansion, the variable x is substituted by all possible

individual names in the constraint system. The resulting algorithm for ALCNR is in

NEXPTIME. In contrast, our tableau algorithm for ALCKm incorporates the TBox

(in our case, acyclic) into the terminological expansion rules. This is reflected in the

following definition of a canonical Kripke structure for a constraint graph which takes

the TBox into account. It thereby ensures that the TBox is valid in the canonical

Kripke structure for an open constraint graph that is complete w.r.t. local, global and

terminological expansion rules.

Definition 4 Let G = 〈V,E,L〉 be a constraint graph and T a simple acyclic TBox.

Let Θ be the set of all the concept names in either G or T that do not occur on the left-

hand side of any definition in T . The canonical Kripke structure MG = 〈S, π, E1, ..., Em〉
for G w.r.t. T is defined as follows.

– S := V,

10

– Ei := {e ∈ E | i ∈ L(e)}, 1 ≤ i ≤ m,

– ∆ := OG,

– aπ(n) := a for all a ∈ OG,

– Rπ(n) := {(a, b) | (a, b) : R ∈ L(n)},
– Aπ(n) := {a | a : A ∈ L(n)}, if A ∈ Θ,

– Aπ(n) := {a | a : A ∈ L(n)} ∪Dπ(n), if A /∈ Θ and A
.
= D ∈ T .

Let T be a given TBox and let G be a constraint graph that is complete w.r.t.

local, global and terminological expansion rules. We next prove that G is open if and

only if it has a model. This shows the soundness and completeness of the K-tableau

algorithm. Before proving it, we state an auxiliary lemma that specifically deals with

negation (proof is given in Appendix B).

Lemma 2 Let T be an acyclic TBox and let G be an open complete constraint graph

w.r.t. local, global and terminological expansion rules. Then for every A ∈ NC and

every a ∈ ∆, a : ¬A ∈ L(n)⇒ (MG, n) � ¬A(a).

Theorem 2 (Soundness and Completeness of the K-Tableau Algorithm) Let T be a

simple acyclic TBox, and G be a constraint graph, complete w.r.t. local, global and

terminological expansion rules. Then G is open if and only if MG G and MG � T .

Proof It suffices to prove the following:

– Claim 1. If G is open, then MG G and MG � T .

– Claim 2. If G is closed, then there does not exist a Kripke structure M such that

M G.

Proof of Claim 1. For Claim 1, suppose that the complete constraint graph G is

open. We first prove MG G.

By the construction of MG, for every n, n′ ∈ V, i ∈ L(n, n′) ⇒ Ei(n, n′) and

(a, b) : R ∈ L(n)⇒ (MG, n) � R(a, b) where R ∈ NR. The implication a : C ∈ L(n)⇒
(MG, n) � C(a) where C ∈ C, is proved by induction on the structure of C. The base

case is when C ∈ NC . If C ∈ Θ, by the definition of Cπ(n), (MG, n) � C(a). If C /∈ Θ,

then there is a definition C
.
= D ∈ T , and again by Definition 4, Cπ(n) = {b | b : C ∈

L(n)} ∪Dπ(n). Hence, (MG, n) � C(a).

With respect to the induction step, the most involved case is that of the negation,

which was dealt with in Lemma 2. The remaining cases, namely, u,t, ∃,∀,♦, and �,

are proved below.

1. C is of the form B1 u B2. Since G is complete, {a : B1, a : B2} ⊆ L(n). By IH,

a : B1 ∈ L(n) and a : B2 ∈ L(n) ⇒ (MG, n) � B1(a) and (MG, n) � B2(a) ⇔
(MG, n) � B1 uB2(a)⇔ (MG, n) � C(a).

2. C is of the form B1 t B2. Since G is complete, {a : B1, a : B2} ∩ L(n) 6= ∅. By

IH, a : B1 ∈ L(n) or a : B2 ∈ L(n) ⇒ (MG, n) � B1(a) or (MG, n) � B2(a) ⇔
(MG, n) � B1 tB2(a)⇔ (MG, n) � C(a).

3. C is of the form ∃R.B. Since G is complete, there exists b s.t. {(a, b) : R, b : B} ⊆
L(n). Since (a, b) : R ∈ L(n) ⇒ (MG, n) � R(a, b) and by IH, b : B ∈ L(n) ⇒
(MG, n) � B(b), (MG, n) � ∃R.B(a).

4. C is of the form ∀R.B. Since G is complete, for every b where (a, b) : R ∈ L(n),

we have b : B ∈ L(n). Since (a, b) : R ∈ L(n) ⇒ (MG, n) � R(a, b) and by IH,

b : B ∈ L(n)⇒ (MG, n) � B(b), (MG, n) � ∀R.B(a).

11

5. C is of the form ♦iB. Since G is complete, there exists n′ ∈ V s.t. i ∈ L(n, n′)
and a : B ∈ L(n′). Since i ∈ L(n, n′) ⇒ Ei(n, n′) and by IH, a : B ∈ L(n′) ⇒
(MG, n

′) � B(a), we have (MG, n) � ♦iB(a).

6. C is of the form �iB. Since G is complete, then for every n′ ∈ V where i ∈ L(n, n′),
we have a : B ∈ L(n′). Since i ∈ L(n, n′) ⇒ Ei(n, n′) and by IH, a : B ∈ L(n′) ⇒
(MG, n

′) � B(a), we have (MG, n) � �iB(a).

We next show that T is valid in MG. Suppose that there is a node n and a definition

A
.
= D ∈ T such that (MG, n) 2 A

.
= D. Since A /∈ Θ, Aπ(n) := {a | a : A ∈

L(n)} ∪Dπ(n), and hence, Dπ(n) ⊆ Aπ(n). Suppose that Dπ(n) 6= Aπ(n). Then there

is b ∈ OG such that b ∈ Aπ(n) and b /∈ Dπ(n). This implies that b ∈ {a | a : A ∈ L(n)}.
G being complete and b : A ∈ L(n) imply that b : D ∈ L(n). We already proved that

MG G. So (MG, n) � D(b)⇔ b ∈ Dπ(n), which is a contradiction. It follows that for

every definition A
.
= D ∈ T and for every n ∈ V, (MG, n) � A

.
= D.

Proof of Claim 2. Assume that the complete constraint tree G is closed. Then there

is a node n in G such that {a : C, a : ¬C} ⊆ L(n) or {a : ⊥} ⊆ L(n). Suppose there is

a Kripke structure M and a mapping σ that satisfy G. Then aπ(σ(n)) ∈ Cπ(σ(n)) and

aπ(σ(n)) ∈ ¬Cπ(σ(n)), or aπ(σ(n)) ∈ ⊥π(σ(n)). Either case leads to a contradiction. �

Remark. Firstly, note that Theorem 2 applies to general directed graphs (rather than

just trees as, e.g., in [29]). Secondly, it is crucial that G is complete w.r.t. all the local,

global and terminological expansion rules as given in Fig.1 and Fig. 2.

Corollary 1 Given a simple acyclic TBox T , let G be a constraint graph that is com-

plete w.r.t. local, global and terminological expansion rules, and let M be an arbitrary

Kripke structure. Then, M G =⇒ (MG G ∧MG � T).

Discussion. Designing a set of terminological expansion rules that provide a sound

and complete tableau algorithm, and also lead to a PSpace implementation is rather

challenging. Recall the example presented just before Lemma 1: Given a definition

C
.
= D1 uD2 and a constraint system L(n) = {a : D1, a : D2, a : ¬C}, to generate a

“quick” clash, one may expand L(n) by adding a constraint a : C. This would suggest a

terminological expansion rule for the construct u : “If there is a node n with {a : B1, a :

B2} ⊆ L(n), A
.
= B1uB2 ∈ T , and a : A /∈ L(n), then L(n) := L(n)∪{a : A}”. Similar

terminological expansion rules could be defined for other constructs. However, treating

♦ and � analogously would require one to backtrack to the parent node, which would

vastly complicate the algorithm. To avoid backtracking, our terminological expansion

rules always examine the left-hand side of a definition and expand the right-hand

side whenever necessary. As we will see in Section 5, this idea facilitates the PSpace

implementation of the K-tableau algorithm ΛK
2.

4 Query Answering

In this section we show how to use the tableau algorithm to answer queries.

2 If the terminological expansion rules go from left to right for definitions involving modalities
(to avoid backtracking) and go from right to left for definitions that do not involve modalities,
then the resulting tableau algorithm is incomplete. See an example in Appendix C.

12

Theorem 3 Let Σ = 〈A, T 〉 be a knowledge base, C a concept, and a ∈ NO. Let L(n0)

be the constraint system obtained from A ∪ {¬C(a)}. Then Σ � C(a) if and only if

all the complete constraint graphs generated by the tableau algorithm ΛK from n0 are

closed.

Proof Assume the hypotheses. The proof can be split into two claims:

– Claim 1. If Σ � C(a), then all the constraint graphs generated by ΛK from n0 are

closed.

– Claim 2. If Σ 2 C(a), then there is an open and complete constraint graph

generated by ΛK from n0.

Proof of Claim 1. Assume that Σ � C(a). By Definition 2, this means that for

all (M, s), (M, s) � Σ ⇒ (M, s) � C(a). Suppose that G is an open and complete

constraint graph generated by ΛK starting from n0. By Theorem 2, MG G and

MG � T . By Theorem 1, (MG, n0) � L(n0). Because the set of constraints obtained

from A∪ {¬C(a)} is a subset of L(n0), we have (MG, n0) � A and (MG, n0) � ¬C(a).

It follows that (MG, n0) � Σ and (MG, n0) � ¬C(a). This contradicts that Σ � C(a).

Proof of Claim 2. Suppose that Σ 2 C(a). By Definition 2, this means that for

some (M0, s0), (M0, s0) � Σ and (M0, s0) 2 C(a); this implies that (M0, s0) � T and

(M0, s0) � A ∪ {¬C(a)}. We construct an initial constraint graph G0 consisting of

a single node n0 with label L(n0) obtained from A ∪ {¬C(a)} and set the mapping

σ0(n0) = s0. Obviously, M0 G0 via σ0. By Lemma 1 and repeated application

of Theorem 1, there is an execution of ΛK resulting a complete constraint graph G, a

corresponding Kripke structure M and a mapping σ such that M is a semantic extension

of M0|NΣ where M G (via σ) and M � T . Thus, M G. By Corollary 1, MG G
and MG � T where MG is the canonical Kripke structure of G. It follows from Theorem

2 that G is open. �

We revisit Example 1 to illustrate the use of tableau algorithm to answer queries

against an ALCKm knowledge base.

Example 2 (Example 1 continued.) Consider the knowledge base Σ1 = 〈A, T 〉 where

A = { ADVISE(john, mary), TEACHES(susan, cs525), ♦1Advisor(susan),

♦2Grad(mary), �2Lecturer(susan), Advisor(john), ¬BasicCourse(cs525)}
T = { Lecturer

.
= ∀TEACHES.BasicCourse, Advisor

.
= Professor u A,

A
.
= ∃ADVISE.Grad }.

Each query will be answered by constructing a constraint graph.

Q1: Is john a professor? Query: Professor(john).

In this example, since there are no concepts involving the construct t or possibility

of generating a concept involving t, there is only one complete constraint graph

that can be constructed from A∪{¬Professor(john)}. The constraint system L(n0)

at the root node n0 is listed below:

L(n0) ={ (john, mary) : ADVISE, (susan, cs525) : TEACHES, susan : ♦1Advisor,

mary : ♦2Grad, susan : �2Lecturer, john : Advisor, john : Professor,

john : A, john : ∃ADVISE.Grad, (john, x) : ADVISE, x : Grad,

john : ¬Professor, cs525 : ¬BasicCourse }
Because of the constraints “john : Professor” and “john : ¬Professor”, L(n0) has

a clash and the constraint graph is closed. Hence, Σ1 � Professor(john) and the

answer to the query is YES.

13

Q2: Is susan a lecturer? Query: Lecturer(susan).

We start by constructing a constraint system from A∪{¬Lecturer(susan)} and end

up with an open complete constraint graph G1 as follows.

L(n0) ={ (john, mary) : ADVISE, (susan, cs525) : TEACHES, susan : ♦1Advisor,

mary : ♦2Grad, susan : �2Lecturer, john : Advisor, john : Professor,

john : A, john : ∃ADVISE.Grad, (john, x) : ADVISE, x : Grad,

cs525 : ¬BasicCourse, susan : ¬Lecturer, susan : ∃TEACHES.¬BasicCourse }
L(n1) ={ susan : Advisor, susan : Professor, susan : A,

susan : ∃ADVISE.Grad, (susan, y) : ADVISE, y : Grad }
L(n2) ={ mary : Grad, susan : Lecturer, susan : ∀TEACHES.BasicCourse }
L(n0, n1) = {1}, L(n0, n2) = {2}.
The above G1 provides a model of 〈A∪{¬Lecturer(susan)}, T 〉. Therefore, we can-

not conclude “YES” to the original query. We then go on to construct a constraint

graph from A ∪ {Lecturer(susan)} and similarly to Q1, there is a clash in L(n0).

L(n0) ={ (john, mary) : ADVISE, (susan, cs525) : TEACHES, susan : ♦1Advisor,

mary : ♦2Grad, susan : �2Lecturer, john : Advisor, john : Professor, john : A,

john : ∃ADVISE.Grad, (john, x) : ADVISE, x : Grad, cs525 : ¬BasicCourse,

susan : Lecturer, susan : ∀TEACHES.BasicCourse, cs525 : BasicCourse }
Since there is only one constraint graph that can be constructed from A ∪ { Lec-

turer(susan) } and it has a clash, we conclude that Σ1 � ¬Lecturer(susan) and

therefore the answer to the query is NO.

The queries Q3 and Q4 in Example 1 will be answered in the same way. �

5 PSpace implementation of the Tableau Algorithm ΛK

The model constructed by the K-tableau algorithm ΛK may be exponential in the

size of input as illustrated by the following set of constraints a : Ci where Ci =

♦1Ai1 u ♦1Ai2 u�1Ci+1 (1 ≤ i < n− 1), and Cn = ♦1An1 u ♦1An2.

We now describe the algorithm ALCKm-Sat (Algorithm 1), a PSpace implementa-

tion for the tableau algorithm ΛK. Given an ALCKm KB Σ = 〈A, T 〉 and an ALCKm
query C(a), the algorithm ALCKm-Sat decides whether C(a) is satisfiable with re-

spect to Σ. The algorithm ALCKm-Sat(Σ,C(a)) makes use of the recursive subrou-

tine Sat(n, L(n)) that imposes restrictions on the order in which expansion rules are

applied so as to maintain only a single path of the constraint tree at all times during

its execution.

The algorithm ALCKm-Sat expands constraint systems in a depth-first manner

(see Fig. 3). The expansion procedure creates two kinds of successors: successors of

individuals w.r.t. roles that are created due to the ∃-rule, and successors of the current

constraint system that are created due to the ♦-rule.

Within each constraint system, before applying the ∃-rule or the ♦-rule, the algo-

rithm ensures that all the other local and terminological rules are applied exhaustively.

Once this process is completed, the resulting constraint system, say L(n), remains fixed

until the time when L(n) is removed. The algorithm then expands L(n), by applying

the ∃-rule to a constraint of the form b : ∃R.D ∈ L(n), and creates an R-successor, say

x, of the individual b, and constraints (b, x) : R, x : D that are put in a “temporary”

set Lx(n). In the presence of (b, x) : R and x : D, other expansion rules may become

applicable to constraints in L(n) ∪ Lx(n). So the algorithm then exhaustively applies

local and terminological rules, except the ∃-rule. All these newly created constraints,

14

Algorithm 1 ALCKm-Sat(Σ,C(a))

ALCKm-Sat(Σ,C(a)) := Sat(n0,L(n0)), where Σ = 〈A, T 〉 and L(n0) is a constraint system
obtained from A ∪ {C(a)}.

Sat(n,L(n)):

1: while a local or terminological rule, except for the ∃-rule, is applicable to L(n) do
2: apply the rule (if it is a t-rule, non-deterministically pick one choice),

add the new constraints to L(n)
3: end while
4: if L(n) contains a clash then
5: return “not satisfiable”
6: end if
7: E(n) := {a : ∃R.C | a : ∃R.C ∈ L(n) and there is no b s.t. (a, b) : R, b : C ∈ L(n)}
8: D(n) := {a : ♦iC | a : ♦iC ∈ L(n)}
9: while E(n) 6= ∅ do

10: pick one a : ∃R.C ∈ E(n) and let Lx(n) := {(a, x) : R, x : C} where x is fresh
11: while a local or terminological rule, except for the ∃-rule, is applicable to L(n)∪Lx(n)

do
12: apply the rule (if it is a t-rule, non-deterministically pick one choice),

add the new constraint to Lx(n)
13: end while
14: if Sat(n,Lx(n)) = “not satisfiable” then
15: return “not satisfiable”
16: end if
17: discard Lx(n)
18: E(n) := E(n) \ {a : ∃R.C}
19: end while
20: while D(n) 6= ∅ do
21: pick one a : ♦iC ∈ D(n), create a new constraint system L(n′)

let L(n′) := {a : C} and L(n, n′) := {i}
22: while the �-rule is applicable to L(n) do
23: apply the rule in L(n), add corresponding constraints to L(n′)
24: end while
25: if Sat(n′,L(n′)) = “not satisfiable” then
26: return “not satisfiable”
27: end if
28: discard L(n′)
29: D(n) := D(n) \ {a : ♦iC}
30: end while
31: return “satisfiable”

except for (b, x) : R, are only about the fresh individual x and they are put into the set

Lx(n). Since constraints about x cannot clash with constraints about other individuals,

we consider Lx(n) as an auxiliary constraint system specifically for individual x. The

algorithm checks in a depth first manner whether Lx(n) contains any clash (Line 14-

16). During the recursive call (Line 14), new auxiliary constraint systems, e.g., Ly(n),

may be created. Once Ly(n) was found to be satisfiable, the control returns to Lx(n)

and Ly(n) is removed. If still E(n) 6= ∅, another auxiliary constraint system will be

created, and the space previously used by Ly(n) will be reused. Once E(n) = ∅, D(n)

is checked. If D(n) 6= ∅, the ♦-rule will be applied and a new constraint system Lx(n′)
will be created (see Fig. 3). Expansion rules are applied in Lx(n′) the same manner

as in L(n). If Lx(n′) has been fully examined without any clash, the ♦-rule will be

applied to another possible constraint and another constraint system will be created

using the same space of Lx(n′). When D(n) = ∅, if no clash has been detected, Lx(n)

15

is satisfiable. The control returns to L(n) and Lx(n) is removed so that the same space

can be reused for another “fresh” individual.

Fig. 3 An Illustration of the Execution of Algorithm 1

The following example illustrates the operation of Algorithm 1.

Example 3 Suppose that we have an initial constraint system L(n) = {a : ∃R.♦1C,

a : ∀R.∃R.♦2D, b : ♦1D}. The constraint systems and the auxiliary constraint systems

are created or removed in the following order:

1. Lx(n) = {(a, x) : R, x : ♦1C, x : ∃R.♦2D} is created;

2. Ly(n) = {(x, y) : R, y : ♦2D} is created;

3. Ly(n′) = {y : D} is created where (n, n′) = {2};
4. Ly(n′) is removed;

5. Ly(n) is removed;

6. Lx(n′) = {x : C} is created where (n, n′) = {1};
7. Lx(n′) is removed;

8. Lx(n) is removed;

9. L(n′) = {b : D} is created where (n, n′) = {1};
10. L(n′) is removed.

Eventually, the algorithm returns “satisfiable”. �

In reference to Fig. 3, we note that at any one time only one path through the “tree”

is maintained. For example, when this path consists of · · · ,L(n),Lx(n),Lx(n′), · · ·, the

temporary “nodes” Ly(n),Ly(n′), · · · would have already been processed and the space

they used can therefore be reused. At that point of time, the node L(n′), in Fig. 3, has

not yet been created.

We now proceed to show that the ALCKm satisfiability problem can be solved

in PSpace. It suffices to show that ALCKm-Sat, the implementation of the tableau

algorithm ΛK, runs in PSpace.

Theorem 4 The tableau algorithm ΛK can be implemented in PSpace.

Proof Referring to the execution of ALCKm-Sat, within each (possibly auxiliary) con-

straint system, the algorithm ALCKm-Sat takes one existential constraint a : ∃R.C
at a time and the auxiliary constraint system is reset for the newly created constraints

that are all about the witness individual of a : ∃R.C. The algorithm reuses the same

space for new constraint systems that are successors of the current system. The con-

straint system L(n′) is reset whenever such a successor of the current constraint system

is created.

16

Since the TBox is acyclic, the depth of the auxiliary constraint systems created due

to the ∃-rule or ♦-rule is linearly bounded by the length of the constraints in the original

constraint system. Within each constraint system, the total number of constraints is

polynomially bounded by the number of constraints in the initial constraint system.

Furthermore, in algorithm ALCKm-Sat, once the ∃-rule is applied to a constraint

b : ∃R.D ∈ L(n), it will not be applicable to the same constraint again (Line 18).

Similarly, for constraints of the form b : ♦iD, after the ♦-rule is applied to it, the same

rule will not be applicable to this constraint any more (Line 29). It follows that the

algorithm terminates and runs in PSpace. �

6 Tableau Algorithm for ALCS4m

In this section we study ALCS4m, an epistemically motivated language whose syn-

tax is identical to that of ALCKm, but whose semantics is based on the modal logic

S4m. The modal logic S4m is well-suited to express epistemic knowledge in multia-

gent environments. This point was argued eloquently in [32]. Given a knowledge base

Σ = 〈A, T 〉 and a query C(a), we would like to know whether Σ � C(a) w.r.t. all

S4-structures defined as follows.

A Kripke structure M = 〈S, π, E1, ..., Em〉 is reflexive (transitive) if for every i ∈
NE , the relation Ei is reflexive (transitive). M is an S4-structure if it is reflexive and

transitive. It can be easily shown that S4-structures satisfy the following two properties

(see the analogous axioms (A3) and (A4) in [9]):

(e1) (Truth) The facts known by experts are true; formally, for any world w, every

i ∈ NE , if w � �iC(a), then w � C(a).

(e2) (Positive Introspection) If an expert knows something, then he/she knows that

he/she knows it; formally, for any world w, every i ∈ NE , if w � �iC(a), then

w � �i�iC(a).

As discussed in Section 2.2, checking whether Σ � C(a) can be reduced to the

problem of checking the existence of models. Given a knowledge base Σ and a query

C(a), we would like to build an open and complete constraint graph which can be used

to construct an S4-structure as per Definition 4. However, the K-tableau algorithm

which utilizes only local, global and terminological expansion rules is not sufficient for

this purpose. For example, consider a set of constraints A = {a : �1C, a : ¬C} with

an empty TBox. Clearly, the constraint graph G consisting of a single node labeled

with A is open and complete w.r.t. local, global and terminological expansion rules. By

Theorem 2, there is a canonical Kripke structure MG = 〈{s}, π, ∅〉 such that MG G.

But MG is not an S4-structure for G since it is not reflexive. In fact, due to reflexivity,

G is not satisfiable in any S4-structure.

To address this problem, we adapt the K-tableau algorithm by adding two accessi-

bility expansion rules that implement the two properties (e1) and (e2) stated above and

which will facilitate the construction of S4-models. They are shown in Fig. 4. However,

it turns out that the tableau algorithm with the accessibility rules and the current lo-

cal, global and terminological rules may not terminate 3. Consider an initial constraint

system L(n0) = {a : �1♦1C}. After an application of the AT -rule, a constraint a : ♦1C

is added to L(n0) and leads to the application of ♦-rule which creates a new constraint

3 We thank the referee for this observation.

17

Accessibility Expansion Rules:
AT -rule: If there is a node n with a : �iC ∈ L(n), and a : C /∈ L(n),

then L(n) = L(n) ∪ {a : C}.
A4-rule: If there is a node n with a : �iC ∈ L(n),

and n has an i-successor n′ with a : �iC /∈ L(n′),
then L(n′) := L(n′) ∪ {a : �iC}.

Fig. 4 The accessibility expansion rules

system L(n1) = {a : C} with L(n0, n1) = {1}. After an application of the A4-rule

followed by another application of the AT -rule, L(n1) = {a : C, a : �1♦1C, a : ♦1C}.
With the current tableau algorithm ΛK, a new constraint system, say L(n2), will be

created and contain the same constraints as L(n1); this process will not terminate.

Since S4-structures are reflexive, any world in the structure is an i-successor of itself

(i ∈ NE) and this suggests that we modify the condition of the ♦-rule such that the

♦-rule is not applicable to a : ♦iC ∈ L(n) whenever a : C ∈ L(n). Unfortunately,

this modification by itself is not sufficient to ensure termination as is illustrated in the

following example.

Example 4 Consider an initial constraint system L(n0) = {a : �1♦1D, a : ♦1D, a :

�1♦1∃R.�1♦1C, a : ♦1∃R.�1♦1C}. Applications of several expansion rules may lead

to the following constraint systems: L(n1) = {a : ∃R.�1♦1C, (a, x) : R, x : �1♦1C,

x : ♦1C} ∪ L(n0), L(n2) = {x : C, x : �1♦1C, x : ♦1C} ∪ L(n0), and L(n3) = {a :

∃R.�1♦1C, (a, y) : R, y : �1♦1C, y : ♦1C} ∪ {x : �1♦1C, x : ♦1C} ∪ L(n0) where

L(n0, n1) = L(n1, n2) = L(n2, n3) = {1} and individuals x, y were freshly chosen.

Both L(n1) and L(n3) were created because of the constraint a : ♦1∃R.�1♦1C. The

constraint system L(n2) was created because of the constraint x : ♦1C. Since the ∃-rule

always picks a fresh individual, the box-assertions for the previously picked individuals

will be carried along to the newly created constraint system. So there may be larger

and larger sets of constraints with the creation of new constraint systems. �

To address this problem, we use a blocking technique. We define Bni = {a : �iC ∈
L(n) | a ∈ NO, C ∈ C} for i ∈ NE . In a constraint tree, we say that n1 is an i-ancestor

of nk and that nk is an i-descendant of n1 if i ∈
⋂k−1
j=1 L(nj , nj+1) where k > 1.

Among all the tableau expansion rules that we use, there are two expansion rules that

create new entities - the ♦-rule and the ∃-rule. To enforce termination, we must limit

the applicability of these rules. Figure 5 lists the “blocking” versions of these rules: the

♦b-rule and the ∃b-rule.

Definition 5 An assertion a : ♦iC ∈ L(n) is blocked by a node n′ if (i) n′ is an i-

ancestor of n, (ii) Bni = Bn
′

i , and (iii) a : C ∈ L(n′). An assertion a : ∃r.C ∈ L(n) is

blocked by an individual x ∈ OG \OΣ if there is an ancestor n′ of n such that {a : ∃r.C,

(a, x) : r, x : C} ⊆ L(n′).

The u-, t-, ∃b- and ∀-rules (respectively, the ♦b- and �-rules/the AT - and A4-rules)

are jointly referred to as S4-local rules (respectively, S4-global rules/S4-accessibility

rules). The S4-local, S4-global, terminological and S4-accessibility expansion rules

together are called S4-rules. We denote by ΛS4 the S4-tableau algorithm which non-

deterministically applies an S4-rule until no rule is applicable. As was the case with

18

♦b-rule: If there is a node n such that none of the expansion rules except the ♦b-rule
is applicable to L(n), and
1. a : ♦iC ∈ L(n), a : C /∈ L(n),
2. a : ♦iC is not blocked,
3. n has no i-successor l with a : C ∈ L(l),

then add a new i-successor n′ of n with L(n′) := {a : C} and L(n, n′) = {i}.
∃b-rule: If there is a node n with a : ∃R.C ∈ L(n) and there is no b ∈ OG such that

{(a, b) : R, b : C} ⊆ L(n), then
(i) if there is an individual x ∈ OG \ OΣ such that a : ∃R.C is blocked by x,
then L(n) := L(n) ∪ {(a, x) : R, x : C}; or
(ii) if a : ∃R.C is not blocked by any individual in OG \ OΣ ,
then L(n) := L(n) ∪ {(a, c) : R, c : C} where c is fresh.

Fig. 5 The ♦b-rule and the ∃b-rule

ΛK, the graph-structure produced by ΛS4 will be a tree. The next theorem establishes

the soundness of the expansion rules used in ΛS4.

Theorem 5 (Soundness of expansion rules) Given an S4-structure M = 〈S, π, E1, ...,
Em〉 and an acyclic TBox T with M � T , let G be a constraint graph, α an S4-rule

and Gα a constraint graph obtained by applying α to G. If M G via σ, then there

exists a semantic extension Mα (also an S4-structure) of M|NΣ∪OG s.t. Mα Gα via

σ′ (which extends σ) and Mα � T . Furthermore, Mα G.

Proof Assume the hypotheses. It suffices to prove that the ∃b-rule, the ♦b-rule and S4-

accessibility expansion rules preserve the existence of S4-models. In the other cases,

Mα is a semantic extension of M (see proof of Theorem 1) and hence, if M is an

S4-structure, so is Mα.

– If α is an AT -rule, then there is a node n with a : �iC ∈ L(n) and a : C /∈ L(n).

After applying α, a : C ∈ L(n). Since M is reflexive, Gα obtained from G is satisfied

by M via σ.

– If α is an A4-rule, then there are two nodes n and n′ in G such that i ∈ L(n, n′),
a : �iC ∈ L(n) and a : �iC /∈ L(n′). After applying α, a : �iC is added to L(n′).
Let n′′ be an arbitrary i-successor of n′. Because M G and a : �iC ∈ L(n),

we have (M, σ(n)) � �iC(a). Since M being transitive implies that n′′ is also an

i-successor of n, we have (M, σ(n′′)) � C(a). Because n′′ is an arbitrary i-successor

of n′, (M, σ(n′)) � �iC(a). Therefore, Gα obtained from G is satisfied by M via σ.

– If α is a ♦b-rule, then there is a node n such that none of the expansion rules except

the ♦b-rule is applicable, a : ♦iC ∈ L(n), a : ♦iC is not blocked, and n does not

have an i-successor l with a : C ∈ L(l). By Definition 3, a : ♦iC ∈ L(n) implies

(M, σ(n)) � ♦iC(a) which means that there is a world s with (σ(n), s) ∈ Ei and

aπ(s) ∈ Cπ(s). There are two cases. (i) If a : C /∈ L(n), then after applying the

♦b-rule, a new node n′ is added to G with L(n′) = {a : C}, L(n, n′) = {i} and

L(n, n′) = a : ♦iC. Extend σ to σ′ such that σ′(n′) = s. M satisfies the resulting

Gα via σ′. (ii) When a : C ∈ L(n), since M is reflexive, (σ(n), σ(n)) ∈ Ei, then

s = σ(n) and aπ(s) ∈ Cπ(s).
– If α is an ∃b-rule, then there is a node n with a : ∃R.C ∈ L(n) and there is no

b ∈ OG such that {(a, b) : R, b : C} ⊆ L(n). There are two cases. (i) If a : ∃R.C
is blocked by x, then x ∈ OG \ OΣ and there is an i-ancestor n′ of n such that x

is a witness for the assertion a : ∃R.C ∈ L(n′). Since a : ∃R.C ∈ L(n), we have

19

(M, σ(n)) � ∃R.C(a). So there exists an element d ∈ ∆ such that (aπ(σ(n)), d) ∈
Rπ(σ(n)) and d ∈ Cπ(σ(n)). Let xπ(σ(n)) = d. Then we have xπ(σ(n)) ∈ Cπ(σ(n))
and (aπ(σ(n)), xπ(σ(n))) ∈ Rπ(σ(n)). Therefore, the newly added constraints (a, x) :

R and x : C are satisfied. (ii) If a : ∃R.C is not blocked, the proof is same as that

in Theorem 1). �

In the case of ALCKm, since the KB is finite and the TBox is acyclic, there are

finitely many assertions in each constraint system and so the outdegree of each con-

straint system is finite. Moreover, since no A4-rule is involved (and the TBox is acyclic),

whenever a new constraint system is created, the length of an assertion in the new con-

straint system is shorter than the assertion that creates it. It follows that the length

of a path is also finite and therefore, the tableau algorithm ΛK terminates. However,

in the ALCS4m case, because of the A4-rule, the same assertion may be passed from

one constraint system to its successor and so it is not immediately obvious why the

tableau algorithm ΛS4 terminates. The following lemma deals with this issue.

Lemma 3 Given a KB Σ = 〈A, T 〉 and a query C(a), the S4-tableau algorithm ΛS4
that takes 〈A ∪ {¬C(a)}, T 〉 as input terminates.

Proof It suffices to show that the constraint tree that ΛS4 creates is a finite tree and

that each constraint system contains finitely many constraints.

Let l be the total number of sub-expressions of all the concepts and roles that

appear in Σ or C(a). Within each constraint system, for each individual x ∈ OG, the

number of assertions involving individual x is bounded by l. Since the TBox is acyclic,

at most one fresh individual is chosen for each ∃-assertion and so the total number of

individuals in each constraint system is also bounded by l. Therefore, the size of each

constraint system is O(l2). It follows that the number of ♦-assertions in each constraint

system and hence the outdegree of each node in a constraint tree are O(l2).

Note that starting from the root, each path actually contains a sequence of i-edges

followed by a sequence of j-edges (j 6= i), and so on. Let i-sequence denote the sequence

of nodes as well as the constraint systems associated with them where nodes (except

the starting node) are i-descendants of the starting node. Also note that due to the

∃b-rule, for each ∃-assertion within an i-sequence, at most one fresh individual will be

chosen as witness and so there are O(l) individuals within each i-sequence. It follows

that the total number of distinct �-assertions and ♦-assertions along each i-sequence

of a constraint tree is O(l2). To show that the length of each path of a constraint tree

is finite, it suffices to show that (1) each i-sequence has finite length, and (2) on each

path, there are finitely many such sequences:

(1) Since there are O(l2) �-assertions in one i-sequence of a constraint tree, there

are O(l2) �i-assertions in each i-sequence. Due to the A4-rule, every �i-assertion is

passed to its i-descendants. So there will be one constraint system L(n∗) in an i-

sequence which contains all the �i-assertions that appear in this i-sequence. Starting

from node n∗, each ♦i-assertion will be expanded once and then will remain blocked

so that the ♦b-rule is not applicable to this assertion any more. Since there are O(l2)

♦i-assertions in an i-sequence, each i-sequence is finite.

(2) If a j-sequence starts from the last node of an i-sequence (j 6= i), then no �k-

assertions (k 6= j) can be passed to the constraint systems in the j-sequence (see

A4-rule). There may be two or more different i-sequences in one path. However, since

the TBox is acyclic, the constraint systems associated with two different i-sequences

will be different and none of such sequences can be repeated in one path. Specifically,

20

every �-concept appearing in the latter i-sequence is a proper sub-concept of some

�-concept appearing in the former i-sequence (with a shorter length). Therefore, the

number of distinct such sequences in one path of a constraint tree is finite.

Since each constraint system has finitely many constraints with a finite outdegree

and each path is finite, ΛS4 terminates. �

Let G be an open and complete constraint tree resulting from ΛS4. To obtain an S4-

model for G, we need to construct a graph from G such that whenever a : ♦iC ∈ L(n),

there is an i-successor n′ of n such that a : C ∈ L(n′). Moreover, for each i ∈ NE , the

set of edges labeled by {i} should represent a reflexive and transitive relation. Formally,

this is defined as follows.

Definition 6 Let G = 〈V,E,L〉 be an arbitrary constraint tree resulting from ΛS4.

An S4 constraint graph GS4 = 〈V,E∗,L∗〉 is obtained from G as follows:

1. For every i ∈ NE ,

Ei := {(n, n′) | n, n′ ∈ V, either i ∈ L(n, n′) or a : ♦iC ∈ L(n) is blocked by n′},
E∗i is the reflexive and transitive closure of Ei,
E∗ :=

⋃
i E
∗
i ;

2. For every n ∈ V and every e ∈ E∗,
L∗(n) := L(n),

L∗(e) := NE , if e is a self-loop edge,

L∗(e) := {i}, if e ∈ E∗i and e is not a self-loop edge.

Note that when i 6= j, Ei ∩ Ej = ∅. Moreover, since G is a tree, E∗i ∩ E∗j =

{(n, n) | n ∈ V}. The following lemma shows the relationship between G and GS4.

Lemma 4 If a constraint tree G = 〈V,E,L〉 is open and complete w.r.t. S4-rules, then

GS4 = 〈V,E∗,L∗〉 is also open and complete w.r.t. S4-rules. Moreover, GS4 is open

and complete w.r.t. local, global and terminological expansion rules.

Proof Suppose that G is open and complete w.r.t. S4-rules. Let us analyze the appli-

cability of the expansion rules in GS4.

– A4-rule: If an A4-rule is applicable in GS4, then there is a node n with a : �iC ∈
L∗(n) = L(n) and n has an i-successor n′ with a : �iC /∈ L∗(n′). Since a : �iC ∈
L(n) and G is complete (specifically, the A4-rule is not applicable), n′ cannot be an

i-descendant of n in G. In view of the construction of E∗i (see Definition 6), there

is an assertion b : ♦iD ∈ L(n) that is blocked by a node n′′ (an i-ancestor of n in

G) which is either n′ itself or an i-ancestor of n′. It follows from Definition 5 that

Bni = Bn
′′

i . Moreover, if n′′ is an i-ancestor of n′ in G, by the the A4-rule, we have

Bn
′′

i ⊆ Bn
′

i . Hence, a : �iC ∈ L(n′) = L∗(n′), which is a contradiction. Therefore,

no A4-rule is applicable in GS4.

– �-rule: Since no A4-rule is applicable in GS4 by the previous case, for any two

nodes n, n′ such that i ∈ L∗(n, n′), a : �iC ∈ L∗(n) ⇒ a : �iC ∈ L∗(n′).
Furthermore, since no AT -rule is applicable in G, a : �iC ∈ L∗(n′) = L(n′)
implies a : C ∈ L(n′) = L∗(n′). Therefore, no �-rule is applicable in GS4.

– ♦b-rule: Since G is a subgraph of GS4, if an assertion a : ♦iC ∈ L∗(n) is not

blocked by any i-ancestor, a : C /∈ L∗(n) and there is no i-successor n′ of n such

that a : C ∈ L∗(n′) in GS4, same happens in G. However, this contradicts that G
is complete w.r.t. ♦b-rule. Therefore, no ♦b-rule is not applicable in GS4.

21

Since none of the A4-, �- and ♦b-rules are applicable and all the constraint systems

in GS4 remain the same as those in G, if no S4-local, terminological expansion rule,

or AT -rule is applicable in G, it is not applicable in GS4 either. Next we analyze the

applicability of the ♦- and ∃-rules.

– ♦-rule: If a ♦-rule is applicable in GS4, then there is a node n with a : ♦iC ∈
L∗(n) = L(n), a : C /∈ L∗(n) = L(n) and n does not have an i-successor n′

in GS4 such that a : C ∈ L∗(n′) = L(n′). This implies that in G the assertion

a : ♦iC ∈ L(n) was blocked by an i-ancestor n1 of n. It follows that a : C ∈ L(n1)

and Bn1
i = Bni . By Definition 6, there is an edge (n, n1) ∈ E∗i in GS4 and so n1

is an i-successor of n such that a : C ∈ L∗(n1) = L(n1), which is a contradiction.

Therefore, no ♦-rule is applicable in GS4.

– ∃-rule: All constraint systems in GS4 are same as those in G. Moreover, G is

complete w.r.t. ∃b-rule, i.e., for every n ∈ V, if a : ∃R.C ∈ L∗(n), there is a witness

x ∈ OG such that {(a, x) : R, x : C} ⊆ L∗(n). Therefore, no ∃-rule is applicable in

GS4.

It follows that GS4 is complete w.r.t. local, S4-local, global, S4-global, terminolog-

ical and S4-accessibility expansion rules. Furthermore, the constraint systems in GS4
are exactly the same as the corresponding ones in G and since G is open, so is GS4. �

Note that the converse implication of Lemma 4 does not hold. That is, GS4 =

〈V,E∗,L∗〉 being open and complete (w.r.t. S4-rules) does not imply that G = 〈V,E,L〉
is open and complete (w.r.t. S4-rules). For example, suppose that we have L(n0) =

{a : ♦1C, a : ♦1♦1C} = L∗(n0), L(n1) = {a : ♦1C} = L∗(n1) and L(n2) = {a : C} =

L∗(n2) where L(n0, n1) = L(n1, n2) = {1}. G is not complete since n0 does not have

a 1-successor l such that a : C ∈ L(l). However, the corresponding GS4 is complete

because (n0, n2) ∈ E∗1.

The canonical Kripke structure MGS4 is obtained from GS4 using Definition 4. By

Definition 6, MGS4 is actually an S4-structure. To show the soundness and completeness

of the tableau algorithm ΛS4, we need to show that any complete constraint graph G
(w.r.t S4-rules) is open if and only if there is an S4-structure that satisfies G. The next

lemma shows that the canonical Kripke structure MGS4 is such an S4-structure for G.

Lemma 5 Let G = 〈V,E,L〉 be a constraint tree and GS4 = 〈V,E∗,L∗〉 the constraint

graph obtained from G by Definition 6. Let MGS4 = 〈S, π, E1, ..., Em〉 be the canonical

Kripke structure of GS4. Then MGS4 GS4 ⇒MGS4 G.

Proof Suppose MGS4 GS4 via σ where σ is an identity function (see Definitions 3 and

4). Since for every n ∈ V, L(n) = L∗(n), E ⊆ E∗ and for every e ∈ E, L(e) = L∗(e), it

is clear that MGS4 G via σ. Hence, MGS4 GS4 ⇒MGS4 G. �

Theorem 6 (Soundness and completeness of ΛS4) Let G = 〈V,E,L〉 be a complete

constraint tree resulting from ΛS4 applied to a KB Σ = 〈A, T 〉 where T be a simple

acyclic TBox. Then G is open if and only if MGS4 G and MGS4 � T .

Proof (⇒) Suppose that G is open and complete w.r.t. S4-rules. Let GS4 be the con-

straint graph constructed from G by Definition 6. By Lemma 4, GS4 is open and

complete w.r.t. local, global and terminological expansion rules, and hence, by Theo-

rem 2, MGS4 GS4 and MGS4 � T . By Lemma 5, MGS4 G.

(⇐) The proof is exactly the same as the proof of Claim 2 in Theorem 2. �

22

Algorithm 2 ALCS4m-Sat

ALCS4m-Sat(Σ,C(a)) := S4-Sat(n0,L(n0)), where Σ = 〈A, T 〉, T is a simple acyclic TBox,
and L(n0) is a constraint system obtained from A ∪ {C(a)}.

S4-Sat(n,L(n)):

1: while an S4-local, terminological or AT -rule, except for the ∃b-rule, is applicable to L(n)
do

2: apply the rule (if it is a t-rule, non-deterministically pick one choice),
add the resulting constraints to L(n)

3: end while
4: if L(n) contains a clash then
5: return “not satisfiable”
6: end if
7: E(n) := {a : ∃R.C | a : ∃R.C ∈ L(n) and there is no b ∈ OG s.t. (a, b) : R, b : C ∈ L(n)}
8: D(n) := {a : ♦iC | a : ♦iC ∈ L(n) is not blocked and a : C /∈ L(n)}
9: while E(n) 6= ∅ do

10: pick one a : ∃R.C ∈ E(n)
11: if a : ∃R.C is blocked by an individual x then
12: Lx(n) := {(a, x) : R, x : C} ∪ {x : D | x : D ∈ L(n)} and

L(n) := L(n) \ Lx(n)
13: else
14: Let Lx(n) := {(a, x) : R, x : C} where x is fresh
15: end if
16: while an S4-local, terminological or AT -rule, except for the ∃b-rule,

is applicable to L(n) ∪ Lx(n) do
17: apply the rule (if it is a t-rule, non-deterministically pick one choice),

add the resulting constraint to Lx(n)
18: end while
19: if S4-Sat(n,Lx(n)) = “not satisfiable” then
20: return “not satisfiable”
21: end if
22: discard Lx(n)
23: E(n) := E(n) \ {a : ∃R.C}
24: end while
25: while D(n) 6= ∅ do
26: pick one a : ♦iC ∈ D(n), create a new constraint system L(n′)

let L(n′) := {a : C} and L(n, n′) := {i}
27: while the �- or A4-rule is applicable to L(n) do
28: apply the rule to L(n), add corresponding constraints to L(n′)
29: end while
30: if S4-Sat(n′,L(n′)) = “not satisfiable” then
31: return “not satisfiable”
32: end if
33: discard L(n′)
34: D(n) := D(n) \ {a : ♦iC}
35: end while
36: return “satisfiable”

By Lemma 3, the S4-tableau algorithm ΛS4 terminates. Based on ΛS4, a PSpace

implementation ALCS4m-Sat for ALCS4m-satisfiability can be obtained following the

approach of ALCKm-Sat. The basic idea is to maintain a single path of the constraint

tree during the execution by imposing restrictions on the order of application of the

expansion rules. The algorithm ALCS4m-Sat(Σ,C(a)) (see Algorithm 2) calls the

subroutine S4-Sat by providing the input arguments n0 and L(n0), where Σ = 〈A, T 〉
and L(n0) is a constraint system obtained from A ∪ {C(a)}. The subroutine S4-Sat

differs from the subroutine Sat in Algorithm 1 mainly at the following points:

23

– Lines 10-15 in S4-Sat implements the ∃b-rule which corresponds to Line 10 in Sat

(see Algorithm 1).

– In Lines 1 and 16, S4-Sat tests for the applicability of the S4-local, terminological

and AT rules except for the ∃b-rule instead of local and terminological rules except

for the ∃-rule in Sat (Lines 1 and 11).

– In Line 8, S4-Sat chooses constraints of the form a : ♦iC ∈ L(n) only under the

condition that a : ♦iC is not blocked and a : C /∈ L(n) whereas Sat chooses

constraints of the form a : ♦iC ∈ L(n) without any restriction.

– In Line 27, S4-Sat tests for the applicability of the A4-rule in addition to the

�-rule in Sat (Line 22).

It is clear that these changes do not affect the space requirements of ALCS4m-Sat. It

follows that the tableau algorithm ΛS4 can be implemented in PSpace.

7 Summary and Discussion

In this paper we studied ALCKm and ALCS4m, knowledge representation languages

obtained by augmenting ALC with modal operators of the basic multi-modal logics Km
and S4m. The resulting logics allow us to represent and reason about the knowledge of

multiple experts. We developed sound and complete tableau algorithms ΛK and ΛS4
for answering queries w.r.t. corresponding knowledge bases with acyclic TBoxes.

Instead of general concept inclusions allowed in KALC [16] which lead to a NEXP-

TIME algorithm for satisfiability, the acyclicity restriction on the TBoxes is critical to

achieving the PSpace implementations for both algorithms. In particular, the tableau

algorithm ΛK does not need any blocking technique to ensure termination. Further-

more, we have introduced expansion rules that have the following features:

– The expansion rules are quite efficient at detecting clashes in the tableau by

avoiding addition of concept memberships that are guaranteed not to lead to a

clash during tableau expansion. For example, when L(n) = {a : C, a : D} and

A
.
= C u D ∈ T , we do not add a : A into L(n). The design of the terminologi-

cal expansion rules aims at detecting clashes only when necessary instead of fully

expanding the constraint systems. A consequence of this approach is that not all

individuals are categorized as being in or out (of the interpretation) of concept

names. In this setting, it turns out that a canonical interpretation, defined anal-

ogously to [26], is not sufficient to ensure that the TBox definitions are valid in

the model. Therefore, we had to introduce a new definition of a canonical Kripke

structure for a constraint graph to address this issue (see Definition 4).

– In the case of ΛS4, we not only have accessibility expansion rules that are designed

to syntactically incorporate the properties of S4-structures, but also use a blocking

technique that guarantees the termination of the algorithm and facilitates the con-

struction of S4-models. In KALC [16], since there is no acyclicity restriction on the

formulas, in order to prevent creating infinitely many individuals and ensure the

termination of the algorithm, each object is used to represent a type, i.e., a set of

concepts that an individual belongs to, rather than the individual itself. Thus, two

“individuals” that have the same type are deemed the same. This identification can

be viewed as a “blocking” of sorts. In ΛS4, the repetition of the same constraint in

different constraint systems is caused because of the epistemic property (e2) that

is implemented as the A4-rule. To prevent creating infinitely many individuals and

24

ensure termination, we limit the generation of new entities as follows. The ∃b-rule

limits the creation of a new individual by reusing an existing one created in some

previous constraint system and the ♦b-rule limits the creation of a new constraint

system if there is an existing constraint system that can be used as a successor of

the current one. With this blocking technique, when ΛS4 terminates, the result-

ing constraint tree is sufficient to detect clashes (see Definition 6 and Lemma 4).

If the resulting constraint tree is open and complete, the corresponding canonical

S4-structure can be constructed by adding edges to the constraint tree without the

need to change any constraint system.

The implementations of the tableau algorithms ΛK and ΛS4 trace a constraint

tree one path at a time, and within each (possibly auxiliary) constraint system the

algorithms deal with constraints about the same “freshly” chosen individual one at a

time, thus lending themselves to PSpace implementations.

Our PSpace results for the satisfiability of ALCKm and ALCS4m extend the

result of Schmidt-Schauß and Smolka [2] for the satisfiability and subsumption of ALC
concepts. Baader et al. [33] have recently extended the PSpace result of [2] toALC with

transitive and inverse roles. In light of this result, we conjecture that query answering

against SIK, obtained by replacing ALC with SI (ALC augmented with transitive

and inverse roles), can also be implemented in PSpace.

Acknowledgment. We thank the anonymous referees and Dr. Uli Sattler for their

insightful comments which helped us to significantly improve the paper. We also thank

George Voutsadakis and Jie bao for helpful discussions and Moshe Vardi for encourag-

ing us to consider incorporating epistemic operators into Description Logic knowledge

bases. The work of Vasant Honavar and Giora Slutzki was supported in part by grant

#0639230 from the National Science Foundation. Jia Tao was supported in part by a

research assistantship from the Center for Computational Intelligence, Learning, and

Discovery and in part by a teaching assistantship from the Department of Computer

Science at Iowa State University. The work of Vasant Honavar while working at the

National Science Foundation was supported by the National Science Foundation. Any

opinion, finding, and conclusions contained in this article are those of the authors and

do not necessarily reflect the views of the National Science Foundation.

References

1. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

2. Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descriptions with com-
plements. Artif. Intell., 48(1):1–26, 1991.

3. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Daniele Nardi. Reasoning
in expressive description logics. In John Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning, pages 1581–1634. Elsevier and MIT Press, 2001.

4. Franz Baader and Ulrike Sattler. An overview of tableau algorithms for description logics.
Studia Logica, 69(1):5–40, 2001.

5. Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for very expressive
description logics. Logic Journal of the IGPL, 8(3), 2000.

6. Ian Horrocks. Daml+oil: a description logic for the semantic web. IEEE Data Eng. Bull.,
25(1):4–9, 2002.

7. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From shiq and rdf to
owl: the making of a web ontology language. J. Web Sem., 1(1):7–26, 2003.

25

8. Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning about
Knowledge. MIT Press, 1995.

9. John-Jules Ch. Meyer and Wiebe Van Der Hoek. Epistemic Logic for AI and Computer
Science. Cambridge University Press, 2004.

10. Patrick Blackburn, Johan F. A. K. van Benthem, and Frank Wolter. Handbook of Modal
Logic, Volume 3 (Studies in Logic and Practical Reasoning). Elsevier Science Inc., New
York, NY, USA, 2006.

11. Riccardo Rosati. On the semantics of epistemic description logics. In Lin Padgham, Enrico
Franconi, Manfred Gehrke, Deborah L. McGuinness, and Peter F. Patel-Schneider, editors,
Description Logics, volume WS-96-05 of AAAI Technical Report, pages 185–188. AAAI
Press, 1996.

12. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Epistemic first-order queries over description logic knowledge bases. In
Parsia et al. [34].

13. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, Andrea Schaerf, and Werner
Nutt. Adding epistemic operators to concept languages. In KR, pages 342–353, 1992.

14. Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, Werner Nutt, and Andrea
Schaerf. An epistemic operator for description logics. Artif. Intell., 100(1-2):225–274,
1998.

15. Franz Baader and Armin Laux. Terminological logics with modal operators. In IJCAI
(1), pages 808–815, 1995.

16. Carsten Lutz, Holger Sturm, Frank Wolter, and Michael Zakharyaschev. A tableau decision
algorithm for modalized ALC with constant domains. Studia Logica, 72(2):199–232, 2002.

17. Franz Baader and Hans Jürgen Ohlbach. A multi-dimensional terminological knowledge
representation language. Journal of Applied Non-Classical Logics, 5(2), 1995.

18. Milenko Mosurovic and Michael Zakharyaschev. On the complexity of description logics
with modal operators. In George Koletsos and Phokion G. Kolaitis, editors, 2nd PLS,
pages 166–171, 1999.

19. Frank Wolter and Michael Zakharyaschev. Multi-dimensional description logics. In
Thomas Dean, editor, IJCAI, pages 104–109. Morgan Kaufmann, 1999.

20. Frank Wolter and Michael Zakharyaschev. Satisfiability problem in description logics with
modal operators. In KR, pages 512–523, 1998.

21. Frank Wolter and Michael Zakharyaschev. Dynamic description logics. In Michael Za-
kharyaschev, Krister Segerberg, Maarten de Rijke, and Heinrich Wansing, editors, Ad-
vances in Modal Logic, pages 431–446. CSLI Publications, 1998.

22. Frank Wolter and Michael Zakharyaschev. Modal description logics: Modalizing roles.
Fundam. Inform., 39(4):411–438, 1999.

23. Frank Wolter and Michael Zakharyaschev. Decidable fragments of first-order modal logics.
J. Symb. Log., 66(3):1415–1438, 2001.

24. Francesco M. Donini, Daniele Nardi, and Riccardo Rosati. Description logics of minimal
knowledge and negation as failure. ACM Transactions on Computational Logic (TOCL),
3(2):225, 2002.

25. Stephan Tobies. Complexity results and practical algorithms for logics in knowledge rep-
resentation. CoRR, cs.LO/0106031, 2001.

26. Martin Buchheit, Francesco M. Donini, and Andrea Schaerf. Decidable reasoning in ter-
minological knowledge representation systems. J. Artif. Intell. Res. (JAIR), 1:109–138,
1993.

27. Jan Hladik and Rafael Peñaloza. PSpace automata for description logics. In 2006 Inter-
national Workshop on Description Logics DL’06, page 74, 2006.

28. Franz Baader and Werner Nutt. Basic description logics. In Baader et al. [1], pages 43–95.
29. Ian Horrocks, Ullrich Hustadt, Ulrike Sattler, and Renate Schmidt. Computational modal

logic. In Patrick Blackburn, Johan van Benthem, and Frank Wolter, editors, Handbook of
Modal Logic, chapter 4, pages 181–245. Elsevier, 2006.

30. Carsten Lutz. Complexity of terminological reasoning revisited. In Harald Ganzinger,
David A. McAllester, and Andrei Voronkov, editors, LPAR, volume 1705 of Lecture Notes
in Computer Science, pages 181–200. Springer, 1999.

31. Bernhard Nebel. Terminological reasoning is inherently intractable. Artif. Intell.,
43(2):235–249, 1990.

32. Moshe Y. Vardi. A model-theoretic analysis of monotonic knowledge. In Proc. Ninth
International Joint Conference on Artificial Intelligence (IJCAI’85), pages 509–512, 1985.

26

33. Franz Baader, Jan Hladik, and Rafael Peñaloza. Automata can show PSpace results for
description logics. Inf. Comput., 206(9-10):1045–1056, 2008.

34. Bijan Parsia, Ulrike Sattler, and David Toman, editors. Proceedings of the 2006 Interna-
tional Workshop on Description Logics (DL2006), Windermere, Lake District, UK, May
30 - June 1, 2006, volume 189 of CEUR Workshop Proceedings. CEUR-WS.org, 2006.

A Proof of Theorem 1

Theorem 1 (Soundness of the expansion rules) Given a Kripke structure M = 〈S, π, E1, ...,
Em〉 and an acyclic TBox T where M � T , let G be a constraint graph, α a local, global
or terminological expansion rule and Gα a constraint graph obtained by applying α to G. If
M G via σ, then there exists a semantic extension Mα of M|NΣ∪OG s.t. Mα Gα via σ′

(which extends σ) and Mα � T . Furthermore, Mα G.

Proof Assume the hypotheses.

1. If α is a u-rule, then there is a constraint a : C1 u C2 ∈ L(n) in G and {a : C1, a : C2} *
L(n). After applying u-rule, L(n) = L(n)∪ {a : C1, a : C2}. By Definition 3, a : C1 uC2 ∈
L(n) implies (M, σ(n)) � C1 u C2(a). It follows that aπ(σ(n)) ∈ (C1 u C2)π(σ(n)), which

means that aπ(σ(n)) ∈ Cπ(σ(n))1 and aπ(σ(n)) ∈ Cπ(σ(n))2 . Hence, (M, σ(n)) � C1(a) and
(M, σ(n)) � C2(a). Thus, Gα obtained by application of u-rule from G is satisfied by M
via σ.

2. If α is a t-rule, then there is a constraint a : C1 t C2 ∈ L(n) in G and {a : C1, a : C2} ∩
L(n) = ∅. By Definition 3, (M, σ(n)) � C1tC2(a) and therefore aπ(σ(n)) ∈ (C1tC2)π(σ(n)).

This means that aπ(σ(n)) ∈ C
π(σ(n))
1 or aπ(σ(n)) ∈ C

π(σ(n))
2 . Hence, (M, σ(n)) satisfies

C1(a) or C2(a) (or both). It follows that t-rule can be applied in a way such that Gα is
satisfied by M via σ.

3. If α is an ∃-rule, then there is a constraint a : ∃R.C ∈ L(n) in G. Since (M, σ(n)) � ∃R.C(a)

(by Definition 3), there must be an element d ∈ ∆ such that (aπ(σ(n)), d) ∈ Rπ(σ(n))

and d ∈ Cπ(σ(n)). After applying the ∃-rule, a fresh individual name c is picked and
L(n) := L(n) ∪ {(a, c) : R, c : C}. Define the interpretation π′ as π except for the fresh

individual name c: cπ
′(σ(n)) = d. The resulting Gα is satisfied by Mα via σ where Mα =

〈S, π′, E1, ..., Em〉 is a semantic extension of M|NΣ∪OG .
4. If α is a ∀-rule, then there is a node n with {a : ∀R.C, (a, b) : R} ⊆ L(n) and b : C /∈ L(n).

By Definition 3, a : ∀R.C ∈ L(n) implies (M, σ(n)) � ∀R.C(a), which means that for

all d ∈ ∆, (aπ(σ(n)), d) ∈ Rπ(σ(n)) implies d ∈ Cπ(σ(n)). Moreover, (a, b) : R ∈ L(n)

implies (M, σ(n)) � R(a, b), which means (aπ(σ(n)), bπ(σ(n))) ∈ Rπ(σ(n)). After applying
the ∀-rule, b : C is added to L(n). The resulting Gα is satisfied by M via σ.

5. If α is a ♦C-rule, there is a constraint a : ♦iC ∈ L(n) in G and n does not have an i-successor
l such that a : C ∈ L(l). By Definition 3, a : ♦iC ∈ L(n) implies (M, σ(n)) � ♦iC(a) which

means that there is a world s with (σ(n), s) ∈ Ei and aπ(s) ∈ Cπ(s). After applying the
♦C-rule, a new node n′ is generated with L(n′) = {a : C} and L(n, n′) = {i}. Extend σ to
σ′ such that σ′(n′) = s. M satisfies the resulting Gα via σ′.

6. If α is a �C-rule, then there are two nodes n and n′ in G such that i ∈ L(n, n′), a : �iC ∈
L(n) and a : C /∈ L(n′). By Definition 3, a : �iC ∈ L(n) implies (M, σ(n)) � �iC(a) which
means that for all s with (σ(n), s) ∈ Ei, (M, s) � C(a). It follows that (M, σ(n′)) � C(a).
After applying the �C-rule, a : C ∈ L(n′). Gα obtained from G is satisfied by M via σ.

7. If α is a T-rule, then there is a constraint a : A ∈ L(n), a definition A
.
= D ∈ T and

a : D /∈ L(n). After applying α, L(n) = L(n) ∪ {a : D}. Since M G and M � T ,

aπ(σ(n)) ∈ Aπ(σ(n)) = Dπ(σ(n)). Therefore, (M, σ(n)) � D(a) and hence, M Gα via σ.
8. If α is an N-rule, then {a : ¬A, a : B} ∩ L(n) 6= ∅, A .

= ¬B ∈ T and {a : ¬A, a :
B} * L(n). Since M G and M � T , we have (M, σ(n)) � A

.
= ¬B and therefore

aπ(σ(n)) /∈ Aπ(σ(n)) ⇔ aπ(σ(n)) ∈ Bπ(σ(n)). Because only one of a : ¬A and a : B is in
L(n), after applying the N-rule, the other constraint is added to L(n) and it is satisfied by
(M, σ(n)). Therefore, M Gα via σ.

9. If α is an Nu-rule, then a : ¬A ∈ L(n), A
.
= B1 u B2 ∈ T , and a : ¬B1 t ¬B2 /∈ L(n).

Since M G and M � T , we have (M, σ(n)) � ¬A(a), (M, σ(n)) � A
.
= B1 u B2 and

27

therefore aπ(σ(n)) /∈ Aπ(σ(n)) ⇔ aπ(σ(n)) /∈ (B1uB2)π(σ(n)) ⇔ aπ(σ(n)) ∈ ∆\(B
π(σ(n))
1 ∩

B
π(σ(n))
2) ⇔ aπ(σ(n)) ∈ (∆ \ Bπ(σ(n))1) ∪ (∆ \ Bπ(σ(n))2) ⇔ aπ(σ(n)) ∈ (¬B1)π(σ(n)) ∪

(¬B2)π(σ(n)). This means that aπ(σ(n)) ∈ (¬B1 t ¬B2)π(σ(n)). After applying α, a :
¬B1 t ¬B2 ∈ L(n) and it is satisfied by (M, σ(n)). Therefore, M Gα via σ.

10. If α is an Nt-rule, then a : ¬A ∈ L(n), A
.
= B1 t B2 ∈ T , and a : ¬B1 u ¬B2 /∈ L(n).

Since M G and M � T , we have (M, σ(n)) � ¬A(a), (M, σ(n)) � A
.
= B1 t B2 and

therefore aπ(σ(n)) /∈ Aπ(σ(n)) ⇔ aπ(σ(n)) /∈ (B1tB2)π(σ(n)) ⇔ aπ(σ(n)) ∈ ∆\(B
π(σ(n))
1 ∪

B
π(σ(n))
2) ⇔ aπ(σ(n)) ∈ (∆ \ Bπ(σ(n))1) ∩ (∆ \ Bπ(σ(n))2) ⇔ aπ(σ(n)) ∈ (¬B1)π(σ(n)) ∩

(¬B2)π(σ(n)). This means that aπ(σ(n)) ∈ (¬B1 u ¬B2)π(σ(n)). After applying α, a :
¬B1 u ¬B2 ∈ L(n) and it is satisfied by (M, σ(n)). Therefore, M Gα via σ.

11. If α is an N∃-rule, then a : ¬A ∈ L(n), A
.
= ∃R.B ∈ T , and a : ∀R.¬B /∈ L(n). Since

M G and M � T , we have (M, σ(n)) � ¬A(a), (M, σ(n)) � A
.
= ∃R.B and therefore

aπ(σ(n)) /∈ Aπ(σ(n)) ⇔ aπ(σ(n)) /∈ (∃R.B)π(σ(n)) ⇔ aπ(σ(n)) /∈ {c ∈ ∆ | ∃b : (c, b) ∈
Rπ(s) ∧ b ∈ Bπ(s)} ⇔ aπ(σ(n)) ∈ {c ∈ ∆ | ∀b : (c, b) ∈ Rπ(s) → b /∈ Bπ(s)} ⇔ aπ(σ(n)) ∈
(∀R.¬B)π(σ(n)). After applying α, a : ∀R.¬B ∈ L(n) and it is satisfied by (M, σ(n)).
Therefore, M Gα via σ.

12. If α is an N∀-rule, then a : ¬A ∈ L(n), A
.
= ∀R.B ∈ T , and a : ∃R.¬B /∈ L(n). Since

M G and M � T , we have (M, σ(n)) � ¬A(a), (M, σ(n)) � A
.
= ∀R.B and therefore

aπ(σ(n)) /∈ Aπ(σ(n)) ⇔ aπ(σ(n)) /∈ (∀R.B)π(σ(n)) ⇔ aπ(σ(n)) /∈ {c ∈ ∆ | ∀b : (c, b) ∈
Rπ(s) → b ∈ Bπ(s)} ⇔ aπ(σ(n)) ∈ {c ∈ ∆ | ∃b : (c, b) ∈ Rπ(s) ∧ b /∈ Bπ(s)} ⇔ aπ(σ(n)) ∈
(∃R.¬B)π(σ(n)). After applying α, a : ∃R.¬B ∈ L(n) and it is satisfied by (M, σ(n)).
Therefore, M Gα via σ.

13. If α is an N♦-rule, then a : ¬A ∈ L(n), A
.
= ♦iB ∈ T , and a : �i¬B /∈ L(n). Since

M G and M � T , we have (M, σ(n)) � A
.
= ♦iB, (M, σ(n)) � ¬A(a) and therefore

aπ(σ(n)) /∈ Aπ(σ(n)) ⇔ aπ(σ(n)) /∈ (♦iB)π(σ(n)) ⇔ aπ(σ(n)) ∈ ∆ \ (♦iB)π(σ(n)) where ∆ \
(♦iB)π(σ(n)) = ∆ \

⋃
t∈Ei(σ(n))B

π(t) =
⋂
t∈Ei(σ(n))(∆ \B

π(t)) =
⋂
t∈Ei(σ(n))(¬B)π(t) =

(�i¬B)π(σ(n)). Hence, aπ(σ(n)) ∈ (�i¬B)π(σ(n)). After applying α, a : �i¬B is added
into L(n) and is satisfied by (M, σ(n)). Therefore, M Gα via σ.

14. If α is an N�-rule, then a : ¬A ∈ L(n), A
.
= �iB ∈ T , and a : ♦i¬B /∈ L(n). Since

M G and M � T , we have (M, σ(n)) � A
.
= �iB, (M, σ(n)) � ¬A(a) and therefore

aπ(σ(n)) /∈ Aπ(σ(n)) ⇔ aπ(σ(n)) /∈ (�iB)π(σ(n)) ⇔ aπ(σ(n)) ∈ ∆ \ (�iB)π(σ(n)) where ∆ \
(�iB)π(σ(n)) = ∆ \

⋂
t∈Ei(σ(n))B

π(t) =
⋃
t∈Ei(σ(n))(∆ \B

π(t)) =
⋃
t∈Ei(σ(n))(¬B)π(t) =

(♦i¬B)π(σ(n)). Hence, aπ(σ(n)) ∈ (♦i¬B)π(σ(n)). After applying α, a : ♦i¬B is added into
L(n) and is satisfied by (M, σ(n)). Therefore, M Gα via σ.

It follows that after the application of every expansion rule, the resulting constraint graph
Gα is satisfied by Mα which, except after applying an ∃-rule, is the same as M. When α is
an ∃-rule, Mα differs from M only in the interpretation of the newly picked individual name.
Therefore, T is valid in Mα. Since Mα is a semantic extension of M restricted to NΣ ∪OG, it
is obvious that Mα satisfies the constraint graph G. �

B Proof of Lemma 2

Lemma 2 Let T be an acyclic TBox and let G be an open complete constraint graph w.r.t.
local, global and terminological expansion rules. Then for every A ∈ NC and every a ∈ ∆,
a : ¬A ∈ L(n)⇒ (MG, n) � ¬A(a).

Proof There are two cases, and for both, since G is open, a : A /∈ L(n).

(1) When A ∈ Θ, a : ¬A ∈ L(n) ⇒ a : A /∈ L(n) ⇒ a /∈ Aπ(n) ⇔ a ∈ (¬A)π(n) ⇔ (MG, n) �
¬A(a). The first implication is due to the fact that G is open. The second implication is
by Definition 4 and the rest equivalences are because of the semantics.

(2) When A /∈ Θ, i.e., there is a definition A
.
= D ∈ T , we will prove by induction on the

structure of D. For the base case where the concept names involved in D are elements in
Θ, we have the following cases:

28

1. D is of the form ¬B where B ∈ Θ. Since G is complete, a : B ∈ L(n). By Definition

4, a ∈ Bπ(n) ⇔ a /∈ (¬B)π(n). Since G is open, a : ¬A ∈ L(n) ⇒ a : A /∈ L(n).

However, Aπ(n) = {b | b : A ∈ L(n)} ∪ (¬B)π(n). This implies that a /∈ Aπ(n) ⇔ a ∈
(¬A)π(n) ⇔ (MG, n) � ¬A(a).

2. D is of the form B1 uB2 where {B1, B2} ⊆ Θ. Since G is complete, a : ¬B1 t ¬B2 ∈
L(n) and a : ¬B1 or a : ¬B2 is in L(n). W.l.o.g., suppose a : ¬B1 ∈ L(n). Since

G is open, a : B1 /∈ L(n). Because B1 ∈ Θ, a /∈ B
π(n)
1 ⇔ a ∈ (¬B1)π(n) ⇒ a /∈

(B1 uB2)π(n). However, Aπ(n) = {b | b : A ∈ L(n)}∪ (B1 uB2)π(n) and a : A /∈ L(n).

Hence, a /∈ Aπ(n) ⇔ a ∈ (¬A)π(n) ⇔ (MG, n) � ¬A(a).
3. D is of the form B1 t B2 where {B1, B2} ⊆ Θ. Since G is complete, a : ¬B1 u
¬B2 ∈ L(n) and {a : ¬B1, a : ¬B2} ⊆ L(n). Since G is open, a : B1 /∈ L(n) and

a : B2 /∈ L(n). Because {B1, B2} ⊆ Θ, a /∈ Bπ(n)1 and a /∈ Bπ(n)2 ⇔ a /∈ (B1tB2)π(n).

However, Aπ(n) = {b | b : A ∈ L(n)} ∪ (B1 t B2)π(n) and a : A /∈ L(n). Therefore,

a /∈ Aπ(n) ⇔ a ∈ (¬A)π(n) ⇔ (MG, n) � ¬A(a).
4. D is of the form ∃R.B where B ∈ Θ. Since G is complete, a : ∀R.¬B ∈ L(n) and

for every b, (a, b) : R ∈ L(n) ⇒ b : ¬B ∈ L(n). Suppose (a, b) : R ∈ L(n). Then,

b : ¬B ∈ L(n), and since B ∈ Θ and G is open, we have b /∈ Bπ(n). Moreover, since

R ∈ NR, we have (a, b) ∈ Rπ(n). It follows that for every b, (a, b) ∈ Rπ(n) ⇒ b /∈ Bπ(n).
So a ∈ (∀R.¬B)π(n) and therefore a /∈ (∃R.B)π(n). However, Aπ(n) = {c | c : A ∈
L(n)} ∪ (∃R.B)π(n) and a : A /∈ L(n). Hence, a /∈ Aπ(n) ⇔ a ∈ (¬A)π(n) ⇔ (MG, n) �
¬A(a).

5. D is of the form ∀R.B where B ∈ Θ. Since G is complete, a : ∃R.¬B ∈ L(n) and
there exists b s.t. (a, b) : R ∈ L(n) and b : ¬B ∈ L(n). Since B ∈ Θ and G is open, we

have b /∈ Bπ(n). And since R ∈ NR, we have (a, b) ∈ Rπ(n). Therefore, there exists b

s.t. (a, b) ∈ Rπ(n) ∧ b /∈ Bπ(n). Thus, a ∈ (∃R.¬B)π(n) and hence, a /∈ (∀R.B)π(n).

However, Aπ(n) = {c | c : A ∈ L(n)} ∪ (∀R.B)π(n) and a : A /∈ L(n). Therefore,

a /∈ Aπ(n) ⇔ a ∈ (¬A)π(n) ⇔ (MG, n) � ¬A(a).
6. D is of the form ♦iB where B ∈ Θ. Since G is complete, a : �i¬B ∈ L(n) and for

each n′ with i ∈ L(n, n′), a : ¬B ∈ L(n′). Since B ∈ Θ and G is open, we have

a /∈ Bπ(n′) whenever i ∈ L(n, n′). Therefore, we have a ∈
⋂
n′∈Ei(n)(¬B)π(n

′) ⇔ a ∈
(�i¬B)π(n) ⇔ a /∈ (♦iB)π(n). However, Aπ(n) = {b | b : A ∈ L(n)} ∪ (♦iB)π(n) and

a : A /∈ L(n). Hence, a /∈ Aπ(n) ⇔ a ∈ (¬A)π(n) ⇔ (MG, n) � ¬A(a).
7. D is of the form �iB where B ∈ Θ. Since G is complete, a : ♦i¬B ∈ L(n) and there

exists n′ s.t. i ∈ L(n, n′) and a : ¬B ∈ L(n′). Since B ∈ Θ and G is open, we have

a /∈ Bπ(n′). Therefore, we have a ∈
⋃
n′∈Ei(n)(¬B)π(n

′) ⇔ a ∈ (♦i¬B)π(n) ⇔ a /∈
(�iB)π(n). However, Aπ(n) = {a | a : A ∈ L(n)}∪(�iB)π(n) and a : A /∈ L(n). Hence,

a /∈ Aπ(n) ⇔ a ∈ (¬A)π(n) ⇔ (MG, n) � ¬A(a).
Note that for the first five cases, the correctness of the implication a : ¬A ∈ L(n) ⇒
(MG, n) � ¬A(a) depends on the fact that the constraint graph G has no applicable local
or terminological expansion rules. For the last two cases, the correctness of the implication
depends on the fact that G has no applicable global or terminological expansion rules.
The induction step is similar to the corresponding base case, except that in the general
case, in order to show that a /∈ Dπ(n), we use the induction hypothesis rather than relying
on the membership in Θ when none of the concept names occurring in D belong to Θ,
and we use both induction hypothesis and the membership in Θ when some of the concept
names occurring in D belong to Θ and some don’t. �

C An Example for Footnote 2

One may wonder what would happen if the terminological expansion rules go from left to
right for definitions involving modalities (to avoid backtracking) and go from right to left for
definitions that do not involve modalities. It turns out that using this approach causes the
tableau algorithm to become incomplete as is illustrated in Example 5.

Example 5 Consider a set of expansion rules that contains (i) local and global expansion rules
as given in Fig. 1, and (ii) terminological expansion rules that contain the T-, N♦-, and N�-rules

29

as given in Fig. 2. Suppose that there are also five other rules (corresponding to the N-, Nu-,
Nt-, N∃- and N∀-rules in Fig. 2) that examine the right-hand sides of definitions in the TBox.
For example, the rule “If there is a node n with {a : B1, a : B2}∩L(n) 6= ∅, A .

= B1 tB2 ∈ T ,
and a : A /∈ L(n), then L(n) := L(n) ∪ {a : A}” corresponds to the Nt-rule in Fig. 2.
Now consider a Tbox T = {A .

= C1 t C2, C1
.
= ♦1B} and a constraint tree G containing

the constraint systems L(n0) = {a : ¬A, a : �1B, b : ♦1C} and L(n1) = {b : C, a : B}
where 1 ∈ L(n0, n1). With respect to this set of expansion rules, G is complete and open.
Suppose that there is a model M G via σ and M � T . Then we have (M, σ(n1)) � B(a) and
E1(σ(n0), σ(n1)), which implies (M, σ(n0)) � ♦1B(a). Since M � T and C1

.
= ♦1B ∈ T , we

have (M, σ(n0)) � C1(a). Furthermore, because M � A
.
= C1 tC2, we have (M, σ(n0)) � A(a).

However, the fact that M G and a : ¬A ∈ L(n0) implies that (M, σ(n0)) � ¬A(a), and this
contradicts (M, σ(n0)) � A(a). Hence, there does not exist a model that satisfies G. Thus,
due to the inability to generate a : ¬A in L(n0), this set of expansion rules fails to detect a
potential clash. �

