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Creative use of new mobile and wearable health information and sensing technologies (mHealth)
has the potential to reduce the cost of health care and improve well-being in numerous ways. These
applications are being developed in a variety of domains, but rigorous research is needed to examine
the potential, as well as the challenges, of utilizing mobile technologies to improve health outcomes.
Currently, evidence is sparse for the efficacy of mHealth. Although these technologies may be
appealing and seemingly innocuous, research is needed to assess when, where, and for whom
mHealth devices, apps, and systems are efficacious.
In order to outline an approach to evidence generation in the field of mHealth that would ensure

research is conducted on a rigorous empirical and theoretic foundation, on August 16, 2011,
researchers gathered for the mHealth Evidence Workshop at NIH. The current paper presents the
results of the workshop. Although the discussions at the meeting were cross-cutting, the areas
covered can be categorized broadly into three areas: (1) evaluating assessments; (2) evaluating
interventions; and (3) reshaping evidence generation using mHealth. This paper brings these
concepts together to describe current evaluation standards, discuss future possibilities, and set a
grand goal for the emerging field of mHealth research.
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Introduction
Creative use of new mobile health information and
sensing technologies (mHealth) has the potential
to reduce the cost of health care and improve

health research and outcomes. These technologies can
support continuous health monitoring at both the
individual and population level, encourage healthy
behaviors to prevent or reduce health problems, support
chronic disease self-management, enhance provider
knowledge, reduce the number of healthcare visits, and
provide personalized, localized, and on-demand inter-
ventions in ways previously unimaginable.1–3 In this
paper, mobile technology is defined as wireless devices
and sensors (including mobile phones) that are intended
to be worn, carried, or accessed by the person during
normal daily activities. As highlighted in Figure 1,
mHealth is the application of these technologies either
by consumers or providers, for monitoring health status
or improving health outcomes, including wireless diag-
nostic and clinical decision support.
mHealth applications are being developed and eval-

uated in a variety of domains, including diabetes,4
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Figure 1. Continuum of mHealth tools
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asthma,5 obesity,6,7 smoking cessation,8 stress manage-
ment,9 and depression treatment.10 However, whether
mHealth leads to better overall health outcomes and
reduced disease burden is still unknown. For example,
recent studies note that short messaging service (SMS)-
based health interventions have not been adequately
tested for efficacy,11 and few smoking-cessation smart-
phone apps are evidenced based.12 Rigorous research is
needed that examines the potential, as well as the
challenges, of using mobile technologies to improve
health outcomes. mHealth devices, apps, and systems
may be ineffective or, at worst, yield adverse outcomes
on the quality or cost outcomes of health. In a healthcare
system already burdened with suboptimal outcomes
and excessive costs, premature adoption of untested
mHealth technologies may detract from, rather than
contribute to, what is needed for true overall health
improvement.
In order to outline an approach to evidence generation

to ensure mHealth research has a rigorous empirical and
theoretic foundation, on August 16, 2011, researchers
from the domestic and international community, policy-
makers, health professionals, technologists, and repre-
sentatives from regulatory and funding agencies gathered
for the invited mHealth Evidence Workshop at NIH. The
meeting was sponsored by the Pioneer Portfolio of the
Robert Wood Johnson Foundation, the McKesson Foun-
dation, the National Science Foundation, and the Office
of Behavioral and Social Sciences Research and the
August 2013
National Heart, Lung, and Blood Institute at NIH.
Table 1 provides a list of participants at the meeting
who also contributed to the current paper, in addition to
the authors listed above.
This paper presents the results of the workshop

participants’ discussion summarized into opportunities
and challenges in three areas of mHealth evidence
generation where unique issues are emerging: (1) evalu-
ating assessments; (2) evaluating interventions; and
(3) reshaping evidence generation using mHealth. Some
are issues traditionally addressed in medical or health
behavior research, but others are less common in health-
related research and reflect the need to borrow research
methods from other domains such as engineering and
the systems sciences. The final section of the paper
addresses other key issues for mHealth research.

Evaluating Assessment
mHealth technologies support new methods for collect-
ing biological, behavioral, or environmental data and the
outcomes of interventions. These include sensors that
monitor phenomena with higher precision, improved
sampling frequency, fewer missing data, greater conven-
ience, and in some cases, lower cost than traditional
measures. Algorithms derived from sensor data and self-
reports allow inferences about physiologic, psychological,
emotional, and environmental state, such as mobile
sensor systems for psychological stress9 or smoking.8
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Reliability and Validity
As with any measure, before mHealth assessment meth-
ods can be recommended, their reliability and validity
must be established.13 Table 2 highlights the goals and
challenges of attaining reliability and validity in mHealth
assessments, not the least of which is the rapid evolution
of device technologies that may affect the quality of data
they produce and thus influence their reliability and
validity.
The very nature of reliability assessment in free-living

samples—across subjects, times of day, or days of the
week—challenges the value of reliability estimates
derived from studies conducted in controlled laboratory
environments. Research is needed to better understand
the effect of the variability on collecting time-intensive
data in real-world settings. mHealth devices are fre-
quently used by individuals with little training, or
in situations where comfort and convenience are para-
mount. For example, wearable device placement may
need to be negotiable even though it may affect data
quality. Novel approaches to determining reliability are
needed that incorporate factors such as the impact of
placement changes and data collection models that do
not have the same pristine information flows that could
be collected in the lab (e.g., using a mobile phone
microphone to assess sound).
Establishing validity usually requires existence of gold

standards that measure the same or similar constructs.
mHealth now enables us to use common measures across
the population and around the globe, which means that
a single construct may not have one gold standard. For
example, walking may not have the same data signature
in an elderly person as in a child. Thus, the gold standard
for walking will have to be based on formulas that take
into account variability within the population and
environment.

Intervention Evaluation
Matching the Rapid Pace of mHealth with
Existing Research Designs
Evidence requirements for new interventions in health
are well established. Experiments are conducted to
evaluate the efficacy and effectiveness of new treatments
and prevention programs. The RCT has long been the
research gold standard for research for determining the
efficacy of health interventions.14 However, RCTs have a
long time lag (i.e., 5.5 years on average) from the
initiation of subject recruitment to publication of the
outcome.15 In addition, RCTs pose additional challenges
due to cost, randomization for treatment assignment,
and/or the level of treatment adherence required.16

In mHealth, this time lag is critical because the
technology may be obsolete before the trial is completed.
In some cases, the rapidly evolving nature of both
mHealth technologies and their uptake in the population
and healthcare settings mean that some components of
mHealth interventions may need to continuously
improve during a trial. This gap may lead developers to
move quickly from pilot to dissemination or skip out-
come evaluations altogether to avoid a full-scale RCT,
threatening understanding of the long-term value of
mHealth.
Recent work in mHealth, and the data “revolution”

that it augers, suggests that mHealth’s capabilities may
change the strengths, weaknesses, and feasibility of
www.ajpmonline.org



Table 2. Reliability and validity in mHealth

Construct Challenge for mHealth Example

Reliability Reliability refers to the consistency of a measure. A measure is said to have a high reliability if it produces consistent
results under consistent conditions.

Test–retest The degree to which assessment
values are consistent when
repeated

May be a challenge when the goal
is to capture temporal variability

Self-reported mood collected daily
via ecologic momentary
assessment

Inter-
method
reliability

The degree of agreement among
various assessment methods

No challenges noted and actually
may be very appropriate for
mHealth

Two different types of
accelerometers worn on the
same wrist

Validity Validity is considered to be the degree to which an assessment measures what it claims to measure.

Concurrent
validity

Different measures of the same
phenomena should produce
similar results

No challenges noted Correlation in the measures of
conversation via respiration or
microphone

Convergent
validity

Degree of agreement between a
new assessment method and a
gold standard

Many mHealth assessments are
new ways to assess constructs
with no gold standard (or
“ground truth”)

Wireless plethysmography of
respiration patterns validated
against a clinically accepted
stationary unit

Divergent
validity

Degree to which the new measure
diverges from measures of
other phenomena

No challenges noted Wireless measures are not
correlated with height

Predictive
validity

How well a future outcome can be
predicted from the measure

No challenges noted, and
intensive data collection may
enhance predictive ability

Myocardial infarction predicted by
mobile electrocardiogram
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existing research methods and may even enable develop-
ment of new, more efficient designs. Many open ques-
tions exist about use of current methods in mHealth
research. For example, can obtaining multiple repeated
measures on a few participants, rather than a few
measures on many participants, reduce the size of clinical
trials and render conventional research designs, such as
RCTs, more efficient (i.e, quicker, cheaper, and more
viable for the rapidly moving technology-based mHealth
in terms of time and recruitment)? In this section, several
potential research designs to evaluate the efficacy and
effectiveness of mHealth interventions are described.
Table 3 outlines these designs, grouped by stage of
development of the mHealth intervention.

Accommodating Continuously Evolving
Technology in Research Designs
To address the problem noted above about mHealth
technologies becoming obsolete before they are fully
tested, researchers might wish to provide upgrades on a
regular basis. However, this runs counter to scientific
norms, where changes to an intervention during a
research study threaten internal validity. To address this
issue, continuous evaluation of evolving interventions
(CEEI) has been proposed as one method for testing
evolving mHealth interventions.22 In CEEI, substantively
new versions are deployed along with the previous
version, with users randomized to available versions.
August 2013
The most efficacious version, based on a priori criteria, is
retained. The CEEI design also may be well suited to
ongoing evaluation of interventions as they go to scale,
continuously improve over time, and adapt to rapidly
changing technologies.
Although the CEEI allows a fine-grained level of

testing and inference around specific design features,
the traditional RCT may still be applied to mHealth
interventions if the level of inference is made around a
package of robust intervention features or functions
whose delivery will naturally adapt to changing technol-
ogy environments and preferences over time and across
contexts during dissemination. The integration of assess-
ment and intervention methods in mHealth also holds
the potential to make ongoing and continuous evaluation
feasible and cost effective, as well as to improve design.

Model-Based Design of Adaptive Interventions
Using mHealth
One of the promises for mobile technologies is the
potential to use them to tailor and personalize inter-
ventions in real time. This may lead to adaptive
interventions that reduce waste, increase compliance,
and enhance the potency of an intervention.23,24 To
accomplish this, however, will require a better under-
standing of within-subject differences and the effects of
hypothesized mediating variables on outcomes. Thus,
statistical methods that better specify within- and



Table 3. Potential research designs to evaluate the efficacy and effectiveness of mHealth interventions

Key points Additional considerations

Treatment
development stage

The following quasi-experimental designs are useful during treatment development. They are also important for studies in which randomization is not
possible.

Pre–post test
designs17

Target measures that are collected before the intervention begins (pretest)
serve as the baseline. Posttest measures are used to estimate change
due to the intervention. Causality cannot be determined because there is
no control or comparison group, and potential confounding variables limit
interpretation of effects.

Can be used with continuous measurements to examine changes in the
trend of target behavior over time. Measures of potential confounding
variables help estimate change due to the intervention and assess
variation introduced by other factors.

n-of-1 design18 Multiple cross-over, single-subject experimental design that is an
experimental variant of the pre–post text design. It reduces bias and
accounts for random variation over time through repeated, short-term
comparisons of treatments, where each treatment may be an active
intervention or placebo. The patient receives treatments in a systematic
or random sequence.

n-of-1 trials are applicable to chronic symptomatic conditions and to
treatments characterized by rapid onset of action and quick washout.
Obviously, this design is only feasible when ethically appropriate.

Interrupted
time-series design

Pre–post test design where large numbers of repeated measurements are
collected before and after the treatment. The premise is that
administration of the treatment should produce an interruption to the pre-
treatment time series. The interruption can be found along any of three
dimensions: form of the effect (the level, slope, variance, cyclicity);
permanence of the effect (continuous or discontinuous); and immediacy
of the effect.

This design is especially suited to mHealth, in which multiple measurements
are common.

Mature intervention
testing

When interventions have been developed that are feasible and usable and have quasi-experimental or pilot data supporting their efficacy, larger randomized
trials are appropriate.

RCT The participants, groups, or locations are randomly assigned to treatment or
control group.

This is the most common trial design for testing causality in health
research.14

Regression
discontinuity
design

Participants are assigned to treatment or control based on whether they fall
above or below a criteria cutoff score. The assignment variable may be
any variable measured before treatment. The design is similar to
interrupted time series, but differs in that the effect or interruption occurs
not at a specific time, but rather at a cutoff score in regression
discontinuity.

The design is most powerful when the cutoff is placed at the mean of the
assignment variable since the analysis focuses on the subjects close to
the cutoff score. Because only a fraction of the participants are used for
the analysis, this technique requires more participants in order to equal
the power of a randomized experiment.

Stepped-wedge
design19–21

This design operates as a series of waiting lists and randomizes the order in
which groups, locations, or even populations receive the intervention. The
intervention group can be compared with both their pretest measures and
with measures from other subjects who have not yet received the
treatment, who form an independent and homogeneous control group at
each time point.

In this design, all participants are told that they will receive intervention,
which ensures participants are not denied intervention. Stepped-wedge
design is appropriate if the intervention is going to be implemented with
all individuals (or at all sites) and if it is not feasible to scale all at once.
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between-subjects effects are needed. For example, know-
ing if variations in mood are related to health behaviors
such as smoking, eating, or exercise may be critical for
tailoring and personalizing interventions.
Recent developments have begun addressing tailoring

and intervention optimization in treatment research. In
the multiphase optimization strategy (MOST)23, promis-
ing components of an intervention are identified in a
screening phase through either factorial or fractional
factorial analysis of variance design. These promising
components can then be evaluated in a confirmatory
randomized trial. For refining the intervention, sequen-
tial multiple assignment randomized trial (SMART)24

can be used where individuals are randomly assigned to
various intervention choices over time. In SMART,
researchers decide which aspects of treatments require
investigation and then randomize individuals at each
treatment decision based on feasibility, ethical issues, or
other factors.25

Reshaping Evidence Generation Using
mHealth
mHealth technologies also offer new capabilities for
evaluating the efficacy of both traditional and mHealth
interventions while reducing the time and resources
needed. Several of these (described below), when com-
bined with the statistical enhancements, such as model-
ing and machine learning, will enable improvements in
the speed and efficiency of evaluation.26 These advan-
tages reflect fundamental scientific issues that set
mHealth apart from the traditional approaches.

High Data Density
Mobile technologies can provide data at very high
sampling rates (e.g., 10–500 times per second) that
support the quantification of phenomena (e.g., physical
activity) that previously was only poorly understood
because of intermittent and limited measurement. The
high density of data in conjunction with time-series
analysis can increase the discriminative power of any
experimental design. High-density data also can facilitate
exploration of subtle patterns or “fingerprints” that may
better explain intervention or treatment effects in shorter
intervals than previous methods.27 Further, such inten-
sive longitudinal data can allow one to examine effects on
variances, both between- and within-subjects, as well as
on mean levels of parameters of interest.28

Data Processing and Analytics
High data density requires data processing methods not
commonly used in health research. Machine-learning
August 2013
methods that make classification decisions based on
features from the data can be applied to segments of
data to draw inferences about individuals such as type of
physical activity, level of stress, or intensity of pain.
Having accurate analytics for high-frequency data col-
lected in mHealth applications is critical for both assess-
ment and intervention purposes.
Examples of methods for classification decisions

include unsupervised cluster analysis, latent class analy-
sis, and latent semantic analysis; more-complex models
such as topic models are used to learn associations and
patterns using numeric or textual data.29 If training data
are available, supervised classification algorithms are
more efficient. Another popular classification technique,
support vector machines (SVM), can lead to robust
classification performance, but in some cases, simpler
algorithms such as decision trees also may provide
sufficient classification accuracies.30

In many situations, the variables of interest cannot be
observed directly and must be inferred from those that
are directly measurable. In those cases the inferences
must be made using various model-based techniques, for
example, hidden Markov models.31 In a similar fashion,
factor analysis and latent trait models can be used to
reveal the internal structure of the data in a way that best
explains the variance among the measured variables or
items.32

What these processes share is a goal to minimize bias
and achieve high predictive accuracy of a data classifier.
This is a multistep process that (1) defines the classi-
fication problem; (2) divides the annotated data set into
training and validation data sets; (3) decides what
machine-learning classifiers will be tested (e.g., support
vector machines, k-nearest neighbor); (4) defines the
time segment or data windows of the streaming data for
applying the classifier (e.g., a classifier makes a decision
for each 10-second window of data); (5) extracts features
from the data windows that become the inputs for the
machine-learning classifier (e.g., mean, variance, amplitude);
and (6) tests the accuracy of the classifier (% agreement with
annotated “truth”) with the training data set initially and
then externally with the validation data set.8,9,32,33 These
steps are often conducted in an iterative process where
various classifiers, window sizes, and data features are tested
to find the best analytic strategy for the data.
Real-Time Data Analysis
Because many measures collected by mHealth can be
obtained remotely in real time without the subject having
to participate in traditional measurement visits, data
analysis can be conducted more quickly, sometimes in
real time. This can enable studies to be concluded earlier
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than planned when evidence of outcomes is obtained.
Near real-time data analysis also can be used to control
various versions of adaptive experimental approaches
and designs. Additionally, the streaming data of mHealth
can be used for real-time predictive modeling. This can
help in the selective acquisition of measure and inter-
ventions, especially when these factors are not of equal
expense. Real-time predictive modeling can provide
evidence for adaptive selection and continuation within
a broader study design.
Comprehensive Data Sets and Information
Fusion
mHealth provides an opportunity to gather data from
multiple sensors and modalities including divergent
physiologic, behavioral, environmental, biological, and
self-reported factors that can be simultaneously linked to
other indicators of social and environmental context. In
addition, they can be linked to healthcare system and
payer data at either the individual or population level.
Combining or fusing these data, for example by using
probabilistic techniques,34 allows researchers to reduce
measurement error and explore linkages among physio-
logic, behavioral, and environmental factors that may
mediate or moderate treatment effects. Such ecologically
rich data sets allow assessment of treatment effects under
various real-world conditions. These comprehensive
assessments may enhance the validity and reliability of
the inferences and improve the statistical power of the
assessment process.
In many cases, data fusion is useful to reduce the

variability of the resulting estimates and to improve
reliability. In some situations, however, data fusion can
improve the validity of the estimates. For example, the
interpretation of ambulatory electrocardiogram (ECG)
data can be enhanced by data provided simultaneously by
accelerometers: The ECG signal is expected to be strongly
affected by physical disturbances due to activities such as
running. Using the accelerometer information can there-
fore improve the interpretation of the raw ECG data and
thereby reduce the probability of incorrect clinical
interpretation that would lead to false alarms. What
makes fusion challenging in practice is the fact that not
all measurements can be made at the same spatial and
temporal resolution. This presents multimodal and
multiscale information fusion research with challenges
that need to be addressed in future work.
Increasing the Number of Eligible Participants
mHealth can facilitate remote research recruitment and
potentially reduce the frequency, and consequently, the
burden of face-to-face interactions. The mobility of
mHealth allows research to take place in a participant’s
home, workplace, and community, rather than in trips to
an academic research center. In addition to reduced
travel, mHealth also has the potential to reduce burden
by cutting down on required self-report, which can be
augmented and, at times, replaced by non-invasive
sensing. Finally, many mHealth tools can be scaled
rapidly. Sensors and mobile phones provide researchers
with untold research opportunities for both monitoring
and intervening in real time. By increasing scalability,
reducing burden, and spreading access to people beyond
the reach of traditional health research, new populations
may consider participating who would have never done
so before. By broadening the participant pool for research
studies, research can be not only more efficient but also
more generalizable.

Improved Adherence to Interventions and
Assessment of Intervention Outcomes
mHealth methods can be used for real-time monitoring of
treatment adherence and to discern factors that influence
adherence behaviors. mHealth interventions also may be
used to provide feedback and support to improve adher-
ence. For instance, micro-payments can be provided at
opportune moments to motivate protocol adherence,35 and
corrective actions can be initiated based on the detection of
disturbances in adherence to the proper use of wearable
technologies, such as loosening of wearable sensors.9

These same technologies can help reduce subject burden
by substituting objectively measured assessments with
those requiring participant engagement. Examples of these
include the automatic detection of social interactions,33

smoking,8 and stress levels.9 Finally, mobile technologies
can be used to assess the effects of intervention dissem-
ination, because the same feedback loops deployed to
monitor intervention fidelity can be used to understand the
impact of the intervention on treatment outcomes. The
hypothesis that mHealth can improve evidence generation
by offering new capabilities discussed in the preceding itself
needs evidence to conclude that mHealth can indeed lead
to better evidence.

Additional Issues for mHealth
Using Open Infrastructure and Data Standards
In addition to increasing research efficiency through
design and technologic capabilities, mHealth technolo-
gies can enhance scientific efficiencies through the
creation of modular platforms to share information and
standardize and coordinate data collection. Based on the
Internet ecosystem, the open platform specifies that
substantial interfaces between the hardware and software
components in the mHealth open system should be
www.ajpmonline.org
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standardized and agreed on through collaboration
among stakeholders. An open mHealth approach also
specifies that interfaces should be published and available
to the public. This model should reduce the need to
create each project from “scratch” and should instead
build on successful applications. For example, Open
mHealth36,37 is developing a repository of shared,
open-source, interoperable modules for mHealth data
interpretation and presentation for use by mHealth
researchers and practitioners.
The open platforms also suggest that there is potential

value in generating and promoting the use of common
metrics and standards for mHealth research. These
standards could include such things as “metatags” on
sensor data to facilitate cross-study comparisons and the
creation of databases to make data aggregation possible.
Additionally, the use of common measures such as those
available in the NIH PROMIS© program (Patient-
Reported Outcomes Measurement Information System;
www.NIHPromis.org); and the Neuroscience toolkit
(www.nihtoolbox.org/Pages/default.aspx); and PhenX
(www.phenx.org/) could help move the field forward by
facilitating the same kinds of comparisons.
Privacy, Security, and Confidentiality
Several concerns exist about how privacy, security, and
confidentiality in mHealth are handled, because these
data can reveal highly personal information such as social
interactions, location, emotion, and other potentially
sensitive health conditions.38 There has been a societal
trend over the past few decades to accept the collection of
person-level data for public good, such as the use of
community-wide video surveillance for purposes of
public safety. Nonetheless, the mHealth research com-
munity is now challenged to develop methods to preserve
participant privacy and confidentiality while satisfying
research needs.
Recent work suggests that this can be done using

privacy-preserving protocols that address data confiden-
tiality, authenticity, and integrity, as well as unlinking
multiple data transmissions.39 This final component—
unlinking—is critical because the loss of one data point/
transmission is often not enough to create inferences that
might compromise an individual’s confidentiality, but
multiple intercepted transmissions from a source can
create a profile that becomes identifiable. This is especially
the case when location data are included. Confidentiality,
authenticity, and integrity of the data can be accomplished
through encryption, which transforms the data using a key
known only to users on either end of the transmission.
Unlinking requires a separate key that scrambles the
linking features of each data packet, to which, again, only
August 2013
the sender and user have access.39 These issues may be
particularly important for research participants who have
the greatest healthcare needs, such as older adults and low-
income or disadvantaged populations.
mHealth also poses privacy challenges from people

who are not enrolled in the research. Examples of this
issue include the use of mobile cameras or microphones
to collect data, but which also pick up sounds and images
from nonparticipants. Similar to the issues raised at the
participants’ level, ways to address these issues are
needed, not only at the level of study design, but also
through the use of techniques that can extract informa-
tion from raw data that abstracts the information while
protecting privacy.
Conclusion
The capabilities inherent in mHealth constitute a new
paradigm for evidence generation in health research,
promising, perhaps more than any previous wave of
innovations in health technologies, to help reduce the
time from conception of interventions to their dissem-
ination. Achieving this will necessitate addressing the
many methodologic issues outlined above. Although
these methodologic challenges present exciting new
opportunities for scientific innovation, the marketplace
and consumers are not waiting for scientific validation.
This workshop endorsed the need for timely and
increased efforts in mHealth research and for a new
transdisciplinary scientific discipline incorporating med-
icine, engineering, psychology, public health, social
science, and computer science. Training the next gen-
eration of mHealth scientists, a process recently begun
via workshops sponsored by some the workshop spon-
sors (obssr.od.nih.gov/training_and_education/mhealth/
index.aspx), will be essential if the health community is to
realize the full measure of benefits from mHealth.
The views expressed in this article are those of the authors and
do not necessarily reflect the position or policy of the NIH or
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