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ABSTRACT 

Computational protein-protein docking is a valuable tool for 

determining the conformation of complexes formed by interacting 

proteins. Selecting near-native conformations from the large 

number of possible models generated by docking software 

presents a significant challenge in practice.   

We introduce a novel method for ranking docked conformations 

based on the degree of overlap between the interface residues of a 

docked conformation formed by a pair of proteins with the set of 

predicted interface residues between them. Our approach relies on 

a method, called PS-HomPPI, for reliably predicting protein-

protein interface residues by taking into account information 

derived from both interacting proteins. PS-HomPPI infers the 

residues of a query protein that are likely to interact with a partner 

protein based on known interface residues of the homo-interologs 

of the query-partner protein pair, i.e., pairs of interacting proteins 

that are homologous to the query protein and partner protein. Our 

results on Docking Benchmark 3.0 show that the quality of the 

ranking of docked conformations using our method is consistently 

superior to that produced using ClusPro cluster-size-based and 

energy-based criteria for 61 out of the 64 docking complexes for 

which PS-HomPPI produces interface predictions. An 

implementation of our method for ranking docked models is 

freely available at: http://einstein.cs.iastate.edu/DockRank/.   
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1. INTRODUCTION 
Protein-protein interactions play an important role in many 

biological systems, forming the physical basis for formation of 

complexes and pathways that carry out different cellular 

processes. The 3D structures of interacting proteins can provide 

valuable residue and atomic level information regarding the 

details of protein-protein interface. Because of the expense and 

effort associated with X-ray crystallography or NMR experiments 

to determine 3D structures of protein complexes, there is 

significant interest in computational tools, such as docking 

methods that can reliably predict the 3D configuration of two or 

more interacting proteins. Docking is often used to gain insights 

into the structural and biophysical bases of protein-protein 

interactions, to validate protein-protein interactions determined 

using high throughput methods such as yeast-2-hybrid assays, and 

to identify and prioritize drug targets in computational drug 

design. The computational cost of exploring the large potential 

conformation space of complexes formed by a pair of proteins is 

high, and the development of an accurate universal scoring 

function to select near-native conformations is still challenging 

[1]. Recently, there has been increasing interest in exploiting 

knowledge of the actual or predicted interface residues between a 

pair of proteins to constrain the search space of docked 

configurations to those that are consistent with the predicted 

interfaces (thus improving the computational efficiency of 

docking) [2]. In this study, we test whether knowledge of 

predicted interface residues can also improve the reliability of the 

ranking of conformations obtained using docking software. 

 

 

Given a pair of protein structures to be docked, widely used 

docking methods, such as ClusPro [3-6], generate hundreds of 

candidate conformations. Selecting near-native conformations 

from the large number of possible models generated by docking 

software presents a significant challenge in practice. Current 

approaches to identifying near-native conformations typically rely 

on energy-based criteria (e.g., lowest energy, center energy). 

However, such energy-based rankings of conformations often fail 

to rank native conformations above most others, for a majority of 

complexes included in the Docking Benchmark 3.0 [7]. Hence, 

there is a compelling need for computationally efficient methods 

capable of reliably distinguishing near-native docked 
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conformations from the large number of candidate conformations 

typically produced by docking software. 

 

Against this background, we introduce a novel method for ranking 

docked conformations based on the degree of overlap between the 

set of interface residues defined by a docked conformation of a 

pair of proteins with the set of computationally predicted interface 

residues between them.  This approach requires a simple and 

robust method for predicting the interface residues between a pair 

of proteins. We used our recently developed method, PS-HomPPI 

[8], for predicting interface residues for a pair of interacting 

proteins. While a broad range of  computational methods for 

prediction of protein-protein interfaces have been proposed in the 

literature (see [9] for a review) barring a few exceptions [10-12]  

the vast majority of such methods focus on predicting the protein-

protein interface residues of a query protein, without taking into 

account its specific interacting partner(s).  Given a set of docked 

models, our method utilizes a scoring function based on the 

overlap between the interface residues predicted by PS-HomPPI 

and the interface residues in the corresponding docked 

conformations.  Intuitively, the docked model with the greatest 

overlap of interface residues with the predicted interface residues 

is assigned the highest score and consequently the top rank. Using 

the Docking Benchmark 3.0, we show that the performance of this 

method is superior to the use of ClusPro cluster-size-based and 

energy-based criteria for ranking docked conformations.  

  

 

2. METHODS 

2.1 Dataset 
Docking Benchmark 3.0 consists of a set of non-redundant 

transient complexes (3.25 Å or better resolution, determined using 

X-ray crystallography) from three biochemical categories: 

enzyme-inhibitor, antibody-antigen, and “others”.  This dataset 

includes complexes that are categorized into three difficulty 

groups for benchmarking docking algorithms: Rigid-body (88 

complexes), Medium (19), and Difficult (17), based on the 

conformational change upon binding. There are 108, 25, and 21 

interacting pairs of proteins in the three groups, respectively. 

2VIS (rigid-body) cannot be processed by Cluspro and was 

deleted. 1K4C (rigid-body), 1FC2 (rigid-body), 1N8O (rigid-

body) were deleted because the bound complexes and the 

corresponding unbound complexes have different number of 

chains. 1K74 (rigid-body) was deleted because the sequence of 

chain D in the bound complex is different from the corresponding 

unbound chain 1ZGY_B. There are finally 119 docking 

complexes: Rigid-body (83 complexes), Medium (19), and 

Difficult (17). 

  

Surface residues are defined as residues that have a relative 

solvent accessible area (RASA) of at least 5% [13]. Interface 

residues are defined as surface residues that have at least one atom 

that is within 4 Å distance from any of the atoms of residues in 

another chain. Interface information is extracted from ProtInDB 

http://protInDB.cs.iastate.edu. Out of 119 docking complexes, we 

used 64 complexes for which PS-HomPPI returns predicted 

interfaces for at least one chain. 

2.2 Ranking Protein-Protein Docking Models 
PDB files of unbound proteins in Docking Benchmark 3.0 were 

submitted to Cluspro 2.0 [3, 4, 6, 14], which is one of the best –

performing docking servers based on the results of a recent 

CAPRI prediction competition. For each docking case1, ClusPro 

typically outputs 20-30 representative docking models. Each 

representative model is chosen from a cluster of docked models. 

Given the docked models of a pair of proteins, A and B, we use 

PS-HomPPI [8] to predict the interface residues between A and B.  

We then compare the interface residues between A and B 

predicted by PS-HomPPI2 with the interface residues between A 

and B in each of the conformations of the complex A-B produced 

by the docking program. The docked conformation with the 

greatest overlap of interface residues with the predicted interface 

residues is assigned the top rank. 

 

2.2.1 Interface Similarity 
Given a docked conformation A:B returned by ClusPro, we 

calculated:  (1) the similarity between the predicted interface 

residues of A with B and the interface residues  of A with B in the 

docked conformation, and  (2) the similarity between the 

predicted interface residues of B with A and the interface residues 

of B with A in the docked conformation. Their average was used 

as the similarity between the predicted interface of A with B and 

the interface of A with B in the docked model (see below for 

details). We encode the interfaces of A as a binary sequence where 

1 denotes an interface residue, and 0 denotes a non-interface 

residue. Many similarity measures for binary vectors have been 

proposed (See [15] for a review). Among these, only  Russell-

Rao, SoKal-Michener and Rogers-Tanmoto(-a) measures are 

defined in the case when both sequences consist of all 0 elements 

(which is the case when there are no interface residues observed 

between the corresponding protein chains, and both PS-HomPPI 

and the docking model correctly predict no interface residues). 

Because the numbers of interface and non-interface residues are 

highly unbalanced, we used weighted SoKal-Michener metric to 

measure the similarity between the  interface and non-interface 

residues in a protein chain A (with chain B) encoded in the form 

of binary sequences AB
P and AB

D based on PS-HomPPI predictions 

and the docked conformation, respectively,  

 

    
    

   
        

 
 

 

where  S11 and S00 are the numbers of positions where the two 

sequences match with respect to interface residues and non-

interface residues, respectively, and   is a weighting factor, 

     , that is used to balance the number of matching 

interface residues against the number of matching non-interface 

                                                                 

1 Each docking case in Docking Benchmark 3.0 consists of one 

bound complex, one receptor (unbound) and one ligand 

(unbound). 

2 To objectively assess our method, if both sides of a homologous 

pair share ≥ 95% sequence identity and are from the same 

species as the query protein pair, these proteins are removed 

from the homologous protein pairs used to infer interfaces of the 

query protein pairs. 

http://protindb.cs.iastate.edu/


residues, and N is the total number of residues of protein A. When 

a protein consists of multiple chains, the interface similarities 

were calculated and averaged by pairing each chain of the first 

protein with each chain of the second protein. We calculated the 

weighting factor     for each docking case. For example, for 

docking a protein consisting of a single chain A with a protein 

consisting of two chains, B and C: 

 

 

 

 

where “# int of A|A:B” denotes the number of interface residues in 

chain A computed from the interaction between A with B. 

2.2.2 Performance Evaluation 
We used the experimentally-determined structures of bound 

complexes as the "gold standard" to evaluate our ranking of 

docked models. The similarity between interfaces of a bound 

complex and the interfaces of docking models was used to 

produce the Gold Ranking score3. For each docking case we 

compute five different rankings: Gold Rank, PS-HomPPI based 

rank (both computed using the procedure described above), lowest 

energy rank (which ranks conformations by assigning higher 

ranks to lower energy conformations), center energy rank, and 

ClusPro rank (computed by ClusPro). The last three ranking 

scores were obtained from the ClusPro Server. ClusPro ranks each 

docking model based on the size of the cluster of conformations to 

which the model belongs. ClusPro also provides two types of 

docking energies: the lowest energy among the conformations 

within a cluster of conformations, and the center energy of a 

cluster of conformations. 

 

We denote each ranking of a set of conformations by a vector of 

integers in which the positions of the vector are indexed by the 

conformations and the corresponding element of the vector 

denotes the rank of the conformation (ranging from 1 to the 

number of docked models or conformations being ranked). One 

way to compare rankings is to generate scatter plots of one 

ranking against another. A scatter plot with most of the points 

along the diagonal would correspond to the case in which two 

different ranking methods for a given set of conformations largely 

agree. Scatter plots for all docking cases considered in this study 

are available as supplementary materials at: 

http://einstein.cs.iastate.edu/DockRank/supplementaryData/scatter

Plots.pdf. From these plots, we observed that the ranking of 

predicted interfaces by PS-HomPPI (our proposed ranking 

method) is highly correlated with the ranking based on the actual 

interfaces of the bound complex (Gold Rank), whereas the 

ranking based on the lowest energy or the center energy returned 

by ClusPro shows little correlation with Gold Rank. 

 

                                                                 

3 Note that when a pair of chains in a bound complex has no 

interface residues between them, any docked model that has 

interface residues between the corresponding chains is assigned a 

lower rank than the conformations that do not have interface 

residues between the corresponding chains. 

 

An alternative measure for quantitatively evaluating the similarity 

between two rankings is the correlation coefficient of two ranking 

vectors or    of the regression of the scatter plot. However, this 

measure suffers from a serious limitation because it does not 

distinguish between incorrect ordering of top-ranking models as 

opposed to incorrect ordering of bottom-ranking models. Consider 

a docking case with a total of 30 docked models. Suppose a model 

with rank 1 has the greatest similarity of interface residues to the 

actual bound complex, and a model with rank 30 has the most 

dissimilar interface. In this case, correctly selecting (ranking) the 

top ranking models (ranks 1, 2, 3…) is more important than 

correctly ranking the bottom ranking models (ranks 28, 29, 30…). 

 

To deal with this limitation, we used a normalized Chi-square 

statistic to quantitatively measure the similarity between two 

rankings. Normalized Chi-square is defined as: 

 

             

  

where m is the number of models to be ranked for a given docking 

case.  

 

    follows the conventional definition: 

 

    
       

 

  

 

   

 

 

where Ei is the Gold Rank associated with the ith conformation, 

Oi is the rank assigned to the same conformation by a ranking 

scheme that we want to compare with the Gold Ranking scheme. 

    offers a natural measure of the similarity of rankings. Its 

denominator  Ei  provides a means of assigning higher weight to 

conformations that are ranked close to the top of the list according 

to the Gold Ranking scheme (corresponding to small values of   Ei 

) compared to those that are ranked close to the bottom of the list 

according to the Gold Ranking scheme (corresponding to larger 

values of  Ei ). Because different docking complexes have 

different numbers of docked models, we normalize     by the 

number of models to obtain        . The smaller the value 

of         , the more similar the ranking under consideration is 

to the ranking produced by the Gold Rank. 

 

For each docking case, we calculated four          for the 

rankings from PS-HomPPI, Lowest Energy, Center Energy, and 

ClusPro (Figure 1). We compared these four ranking schemes 

using the respective values of         . The best ranking scheme 

corresponds to that with the smallest value of        , and the 

worst ranking scheme has the largest value of          (relative 

to the Gold Ranking scheme). 
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Figure 1. Comparison of ranking schemes. The numbers 

between parentheses in the bottom table are the ranks of 

normalized Chi-square values computed for each docking 

case. 

3. RESULTS AND DISCUSSION 

3.1 Ranking of Docked Models 
Figure 2 shows a plot of the ranking of         (relative to Gold 

Ranking) value for PS-HomPPI, Lowest Energy, Center Energy 

based and ClusPro’s cluster size based rankings for each docking 

case. We observe that  the PS-HomPPI based ranking scheme 

consistently yields the lowest         in 95% of the docking 

cases for which whose interface residues can be predicted by PS-

HomPPI (61 out of 64). In other words, the PS-HomPPI based 

ranking of docked models is consistently superior to ranking of 

docked models based on Lowest Energy, Center Energy and 

model cluster size (schemes used by ClusPro). 

 

Figure 2. The ranking of           from PS-HomPPI, 

Lowest Energy, Center Energy, and ClusPro for 61 docking 

cases.  

 

To determine whether our proposed PS-HomPPI based scoring 

function significantly outperforms other scoring functions 

considered in this study, we chose to apply a multiple hypothesis 

non-parametric test [16] using  the normalized Chi-square value 

as the performance metric. First, the scoring methods being 

compared were ranked on the basis of their observed normalized 

Chi-square on each case (see Figure 1). The overall performance 

of each method was defined as the average rank over all of the 

docking cases. Figure 3 shows that PS-HomPPI based  method for 

ranking docked models has the best average rank of 1.11 while 

Center Energy, Lowest Energy, and ClusPro scoring methods 

have average ranks 3.17, 2.94, and 2.78 (respectively). As noted 

by Demsar [16], the average ranks by themselves provide a 

reasonably fair comparison of scoring methods. We applied the 

Friedman test to determine whether the measured average ranks 

are significantly different from the mean rank under the null 

hypothesis. Our analysis shows that the null hypothesis could be 

rejected with high confidence (p < 0.0001). We also applied the 

Nemenyi test to determine whether the observed differences in the 

ranks of any given pair of ranking schemes are statistically 

significant. The critical difference determined by Nemenyi test at 

a significance level of 0.05 is 0.59. Hence, the difference between 

any pair of docking scoring methods is statistically significant 

provided the difference between their corresponding average 

ranks is more than 0.59. Figure 3 summarizes the results of 

Nemenyi pairwise comparison of the different docking scoring 

methods considered in our experiments using the Nemenyi test. 

The results suggest that at a significance level of 0.05 there is no 

observed difference between the performance of Center Energy, 

Lowest Energy, and ClusPro scoring methods.  However, the 

difference in performance of the PS-HomPPI based scoring 

method and each of the other methods is statistically significant. 

We conclude that the performance of the PS-HomPPI based 

method for scoring docking models is superior to that of the other 

scoring methods considered in this study. 

 

Figure 3. Pair-wise comparisons of different docking scoring 

methods using Nemenyi test. Methods that are not 

significantly different (at significant level α=0.05) are grouped 

together (via connecting lines). The average “rank” of each 

method over docking cases is shown in the table (and also on 

the x-axis of the plot). 
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