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Abstract

Many applications call for learning causal models from rela-
tional data. We investigate Relational Causal Models (RCM)
under relational counterparts of adjacency-faithfulness and
orientation-faithfulness, yielding a simple approach to iden-
tifying a subset of relational d-separation queries needed
for determining the structure of an RCM using d-separation
against an unrolled DAG representation of the RCM. We pro-
vide original theoretical analysis that offers the basis of a
sound and efficient algorithm for learning the structure of an
RCM from relational data. We describe RCD-Light, a sound
and efficient constraint-based algorithm that is guaranteed to
yield a correct partially-directed RCM structure with at least
as many edges oriented as in that produced by RCD, the only
other existing algorithm for learning RCM. We show that un-
like RCD, which requires exponential time and space, RCD-
Light requires only polynomial time and space to orient the
dependencies of a sparse RCM.

Introduction
Discovering causal relationships from observations and ex-
periments is one of the hallmarks of intelligence. Applica-
tions of causal inference span virtually every area of hu-
man endeavor. There has been considerable progress on al-
gorithms for eliciting causal relationships from data (Pearl
2000; Spirtes, Glymour, and Scheines 2000; Shimizu et
al. 2006). Most of this work relies on Causal Bayesian
Networks (CBN), directed acyclic graph (DAG)-structured
probabilistic models of propositional data. However, in
many real-world settings, the data exhibit a relational struc-
ture. Such settings call for probabilistic models of rela-
tional data (Getoor and Taskar 2007; Friedman et al. 1999;
Richardson and Domingos 2006). Existing work on such
models has largely focused on learning models that maxi-
mize the likelihood of the data as opposed to discovering
causal relationships using independence relations from data.

It is against this background that Maier et al. (2010) in-
troduced RPC, an extension of the PC algorithm (Spirtes,
Glymour, and Scheines 2000), to the relational setting for
learning causal relationships from relational data. RPC uses
directed acyclic probabilistic entity-relationship (DAPER)
model (Heckerman, Meek, and Koller 2007), which extends
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the standard entity-relationship (ER) model (Chen 1976) to
incorporate probabilistic dependencies. DAPER unifies and
offers more expressive power than several models of rela-
tional data, including probabilistic relational models (Getoor
and Taskar 2007) and plate models (Buntine 1994). Maier et
al. (2013) demonstrated the lack of completeness of RPC
for learning causal models from relational data (which we
will refer to as relational causal models or RCM) and intro-
duced Relational Causal Discovery (RCD) as an alternative
to RPC. RCD employs a constraint-based approach (test-
ing conditional independencies (CI) and reasoning about
them to determine the direction of causal dependencies) in
an RCM. Maier, Marazopoulou, and Jensen (2013) intro-
duced relational d-separation, the relational counterpart of
d-separation (Pearl 2000) (graphical criteria for deriving CI
that hold in a CBN), and introduced abstract ground graph
(AGG), for algorithmic derivation of CI that hold in an RCM
by applying (traditional) d-separation criteria to AGG.

The proof of correctness of RCD (Maier et al. 2013) re-
lies on the soundness and completeness of AGG for rela-
tional d-separation, which in turn requires that the AGG is
a DAG that represents exactly the edges that could appear
in all possible ground graphs, i.e., instances of the RCM in
question. However, our recent work (Lee and Honavar 2015)
has called into question the completeness of AGG for rela-
tional d-separation: In short, there exist cases in which d-
separation on an AGG does not yield CI that hold in the cor-
responding RCM. Moreover, in general, AGG can contain
an infinite number of vertices and edges: It is not immedi-
ately obvious whether the practical implementation of RCD
that work with a finite subgraph of the AGG inherits the the-
oretical guarantees of RCD based on the purported sound-
ness and completeness of AGG for relational d-separation.
Furthermore, RCD orients causal relationships based on the
acyclicity of AGG which, in general, does not guarantee the
maximal-orientedness of the resulting RCM.

Against this background, we revisit the problems of learn-
ing an RCM from relational data. The main contributions
of this paper are: (i) An investigation of RCMs under two
weaker faithfulness conditions (Ramsey, Zhang, and Spirtes
2006), leading to a simple approach to identifying a sub-
set of relational d-separation queries that needed for learn-
ing the structure of an RCM; (ii) An original theoretical
analysis that provides the basis of a provably sound al-
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Figure 1: A simple example of an RCMM over a schema S, a skeleton σ∈ΣS , and a ground graph GGMσ .

gorithm for learning the structure of an RCM from rela-
tional data; (iii) RCD-Light (RCD`), a sound and efficient
constraint-based algorithm that, when given access to a con-
ditional independence oracle, is guaranteed to yield a cor-
rect partially-directed RCM structure. Unlike RCD, the only
other existing algorithm for learning RCM from relational
data, RCD` does not require the construction and manipula-
tion of AGGs, and orients dependencies more efficiently.

Preliminaries
We follow notational conventions introduced in the litera-
ture on RCM (Maier et al. 2013; Maier 2014) and on causal-
ity (Pearl 2000; Spirtes, Glymour, and Scheines 2000). An
entity-relationship model (Chen 1976) abstracts the enti-
ties (e.g., employee, product) and relationships (e.g., devel-
ops) between entities in a domain using a relational schema.
A skeleton is an instantiation of the schema wherein enti-
ties form a network of relationships (e.g., Quinn-develops-
Laptop). Entities and relationships have attributes (e.g.,
salary of employees). The relationships associate with enti-
ties under cardinality constraints (e.g., many employees can
develop a product). The following definitions in this section
are taken from (Maier 2014):

Definition 1. A relational schema S is a tuple
〈E,R,A, card〉: a set of entity classes E; a set of re-
lationship classes R; attribute classes A where A (I) is
a set of attribute classes of I ∈ E ∪ R; and cardinalities
card : R×E 7→ {one,many}.

Every relationship class has two or more participating en-
tity classes. Participation of an entity class E in a relation-
ship class R is denoted by E ∈ R. In general, the same
entity class can participate in a relationship class in two or
more different roles. Although it is straightforward to intro-
duce role indicators in the schema, for simplicity, we con-
sider only relationship classes with distinct entity classes as
in (Maier et al. 2013). We denote by I all item classes E∪R.
We denote by IX an item class that has an attribute class
X assuming, without loss of generality, that the attribute
classes of different item classes are disjoint.

A relational skeleton σ ∈ ΣS is an instantiation of re-
lational schema S and is represented by a graph of entities
and relationships where ΣS represents all possible instantia-
tions of S. We denote by σ (I) a set of items in σ of an item
class I ∈ I. The structure of skeleton and attribute values of
items in the skeleton comprise a relational data, which is to
be modeled by an RCM.

A Relational Causal Model (Maier et al. 2010), denoted
by M, consists of a set of causal relationships D where
causes and their effects are related given an underlying
relational schema S (see Figure 1(a)). A relational path
P = [Ij , . . . , Ik] is sequence in which entity class and
relationship class alternate. In the relational path P, Ij is
called a base class or perspective and Ik is called a termi-
nal class. A relational path corresponds to a walk through
the schema, and shows how its terminal class is related to
the base class. A relational variable P.X is a pair of a rela-
tional path P and an attribute class X of the terminal class
of P . A relational variable is said to be canonical if its re-
lational path has length equal to 1. A relational dependency
specifies a cause and its effect. Thus, relational dependency
is of the form [Ij , . . . , Ik].Y → [Ij ].X i.e., its cause and
effect share the same base class and its effect is canonical.
For example, the success of a product depends on the com-
petence of employees who develop the product. We repre-
sent such a relational dependency as: [Product, Develops,
Employee].Competence→[Product].Success.

An RCM is said to be acyclic if there is a partial order,
denoted by π, over the attribute classes A where the order
is based on cause and effect relationships in D. An acyclic
RCM does not allow dependencies that connect an attribute
class to itself (similar to traditional CBN). We can param-
eterize an acyclic RCM M to obtain MΘ by associating
with the parameters Θ which define the conditional distri-
butions Pr([IX ].X|Pa([IX ].X)) for each attribute class X ,
where Pa([IX ].X) denotes the set of causes of [IX ].X . Since
our focus here is on learning the structure of an RCM from
relational data, we drop the parameters Θ inMΘ.

A ground graph is an instantiation of the underlying RCM
given a skeleton (see Figure 1(b) and 1(c)). It is obtained
by interpreting the causes of dependencies of the RCM on
the skeleton using the terminal sets of each of the items
in the skeleton. Given a relational skeleton σ, the terminal
set of a relational path P given a base item b ∈ σ(P1), de-
noted by P |b, is items reachable from bwhen we traverse the
skeleton along P without revisiting any items that are pre-
viously visited. The bridge burning semantics (Maier 2014)
restricts the traversals so as not to revisit any previously vis-
ited items. Note that in order for a relational path to be valid
it must yield a non-empty terminal set for some skeleton and
some base item. We denote by GGMσ a ground graph of an
RCMM on a skeleton σ. The vertices of GGMσ are labeled
by pairs of items and their attributes. There exists an edge
ij .X → ik.Y in GGMσ if and only if there exists a de-
pendency [Ik, . . . , Ij ].X → [Ik].Y such that ij ∈ σ (Ij)
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Figure 2: (a) an RCM M excerpted from Maier (2014). (b) a finite subgraph of GM for a base class Employee. Two thick
circles correspond to canonical variables [E] .comp and [E] .salr. Two red lines correspond to dependencies [E].comp→ [E].salr
and [EDPFB].budg→ [E].salr. (c) a class dependency graph Gπ .

is reachable from ik ∈ σ (Ik) along the relational path
[Ik, . . . , Ij ]. Throughout this paper, unless specified other-
wise, we assume a relational schema S, a set of relational
dependencies D, and an RCM M = 〈S,D〉. Also, we of-
ten drop ‘relational’ in referring to schema, skeleton, path,
variables, or dependencies.

Conditional Independence of an RCM

An RCMM can be seen as a meta causal model defined on a
schema S. Given a skeleton σ of the schema, the RCM is in-
stantiated into a ground graph GGMσ , which corresponds to
a DAG-structured CBN. Given the attribute values of items
and the structure of the skeleton, CI that hold in the relational
data (i.e., probability distribution) are equivalent to those en-
tailed by d-separation from GGMσ under the causal Markov
condition and the faithfulness condition (Pearl 2000; Spirtes,
Glymour, and Scheines 2000). Relational counterpart of d-
separation inM can be reduced to traditional d-separation
on all of its instantiations as follows (Maier et al. 2013):

Definition 2. Let U, V, and W be three disjoint sets of
relational variables of the same perspective B defined over
relational schema S. Then, for relational modelM, U and
V are relational d-separated by W if and only if, for every
skeleton σ ∈ ΣS , U|b and V|b are d-separated by W|b in a
ground graph GGMσ for every b ∈ σ (B).

It is non-trivial to determine whether relational d-
separation holds for two reasons: i) All-ground-graphs se-
mantics that relational d-separation requires d-separation to
hold over all instantiations of the modelM; ii) Intersectabil-
ity of relational variables implies that their terminal sets
may have a non-empty overlap. Maier, Marazopoulou, and
Jensen (2013) devised an abstract ground graph (AGG) and
a mechanism that answers a relational d-separation query
against an RCM by reducing it to a d-separation query
against the corresponding AGG. However, as already noted,
we have shown that AGG is, in general, not complete for
relational d-separation (Lee and Honavar 2015). Hence, we
proceed to propose a new DAG representation for an RCM,
which serves to represent and reason about the CI that hold
in an RCM for the purpose of learning the structure of an
RCM from relational data.

Unrolled Graph of an RCM
We unroll an RCM to obtain a DAG which allows us to
make explicit, the CI that are implicit in an RCM. The
resulting DAG allows us to appeal to graph-theoretic no-
tions, e.g., parents, children, descendants, unshielded triples,
(traditional) d-separation, etc., to characterize relational d-
separation in the RCM in terms of (traditional) d-separation
in a DAG-structured probabilistic model (see Figure 2(b)):

Definition 3 (Unrolled Graph). Given an RCM M =
〈S,D〉, an unrolled graph ofM is a DAG denoted by GM
where vertices are all relational variables of S, and an edge
P.X → Q.Y exists if and only if there exists a dependency
R.X → [IY ].Y ∈ D such that P ∈ extend(Q,R).

The function extend (Maier, Marazopoulou, and Jensen
2013) yields relational paths that cover some of pos-
sible concatenations of Q and R (a formal definition
in Appendix). For example, extending [E1, R,E2] and
[E2, R,E1] yields {[E1, R,E2, R,E1], [E1]} if E2 partic-
ipates in R with many cardinality. The first path will not
be included if E2 participates in R with one cardinality
since valid paths should yield a non-empty terminal set un-
der bridge burning semantics. Note that [E1, R,E1] is not a
valid relational path. The unrolled graph is a graph union of
AGGs from each perspective without including intersection
variables and intersection variable edges, which are known
to be imprecisely defined (Lee and Honavar 2015).

Weak Faithfulness ofM with Respect to GM A proba-
bility distribution over a set of variables is said to be faithful
to a DAG over the same set of variables if and only if ev-
ery CI valid in the probability distribution is entailed by the
DAG. It is easy to show that an RCM M is not faithful to
its AGGs (Lee and Honavar 2015). However, we will show
that an RCMM satisfies two weaker notions of faithfulness,
namely, adjacency-faithfulness and orientation-faithfulness
(Ramsey, Zhang, and Spirtes 2006) with respect to its un-
rolled graph GM, thereby setting the stage for a new, prov-
ably correct algorithm for learning a partially-directed struc-
ture of an RCM from relational data. We denote conditional
independence by ‘⊥’ in general (e.g., RCM or probabil-
ity distribution). We use ‘⊥⊥’ to represent (traditional) d-
separation on a DAG (e.g., GM or GGMσ). Furthermore, we



use a subscript to specify, if necessary, the scope of CI. Let
VB be all relational variables of base class B.

Lemma 1 (Adjacency-Faithfulness). Let U , V be two re-
lational variables of the same perspective B. If U , V are
adjacent in GM, then they are dependent conditional on any
subset of VB \ {U, V }.

Proof. Let W ⊆ VB \ {U, V }. Let U → V be an edge in
GM, which is due to a dependency D ∈ D. We can prove
that (U 6⊥ V |W)M by constructing a skeleton σ ∈ ΣS
where GGMσ satisfies (U |b 6⊥⊥ V |b | W|b)GGMσ

. Maier
(2014) described a method to construct a skeleton (Lemma
4.4.1) to only to represent U and V with respect to D. This
ensures that: i) {u} = U |b, {v} = V |b, and {u} = D|v
are singletons; ii) u 6= v; and iii) W|b ∩ {u, v} = ∅. Since
GGMσ contains u → v, and both u and v cannot be condi-
tioned by W, it satisfies (U |b 6⊥⊥ V |b |W|b)GGMσ

.

The following lemma deals with the orientation of a pair
of dependencies that form an unshielded triple. We refer to a
triple of vertices 〈U, V,W 〉 in a DAG as an unshielded triple
if both U and W are connected to V but are disconnected
from each other. An unshielded triple of the formU → V ←
W , is called an unshielded collider.

Lemma 2 (Orientation-Faithfulness). Let U , V , and W be
distinct relational variables of the same perspective B and
〈U, V,W 〉 be an unshielded triple in GM where U and W
are not intersectable.
(O1) if U → V ←W , then U and W are dependent given
any subset of VB\{U,W} that contains V .
(O2) otherwise,U andW are dependent given on any subset
of VB \ {U, V,W}.

Proof. The method in Lemma 1 can be modified to con-
struct a skeleton σ for U , V , and W . One can add unique
items for W , which are not already a part of items for
V . The resulting skeleton σ for U , V , and W guarantees
that no T ∈ VB \ {U, V,W} can represent any items in
{u, v, w} = {U, V,W} |b. Then, the resulting ground graph
GGMσ has an unshielded triple of items {u, v, w} with di-
rections corresponding to those between U , V , and W in
GM. Hence, the existence (or absence) of V in the condi-
tional determines dependence for O1 (or O2) in GGMσ .

Note, however, that orientation-faithfulness does not im-
ply whether every unshielded triple in ground graphs can be
represented as an unshielded triple of relational variables.
Adjacency- and orientation-faithfulness of RCM with re-
spect to its unrolled DAG, provides a sound basis for an-
swering relational d-separation queries against an RCM.

Learning an RCM
The preceding results set the stage for an algorithm for
correctly identifying undirected dependencies and orienting
them through unshielded colliders in the DAG representa-
tion. Let D be P.X→ [IY ].Y . The reverse of P is denoted
by P̃ . We denote P̃ .Y → [IX ].X by D̃, which is a depen-
dency of an opposite direction. A dependency is said to be
undirected if both D and D̃ are considered valid candidates.

We will use an accent hat to differentiate an intermediate
varying structure (e.g., D̂ and M̂) from the true structure.
A graph is called partially directed acyclic graph (PDAG)
if edges are either undirected or directed and there is no di-
rected cycle. We denote X ≺ Y if there exists a directed
path from X to Y in an underlying (P)DAG or, similarly,
if X precedes Y in the given partial order (e.g., X ≺π Y
for a partial order π). A function Pa is a set of parents of
given vertices in an underlying (P)DAG. In the context of an
RCM, Pa is a set of causes for a canonical variable, which is
identical to the use of Pa in its corresponding unrolled graph.
We often specify the scope using a superscript (i.e., PaGM )
when it is not obviously inferred from the context. We pro-
vide a proposition that minimally-generalizes the existence
of a separating set to a relational setting.
Proposition 1 (Existence of a Separating Set). Let [B].X
and Q.Y be two different relational variables of the same
perspective B where Y is not a descendant of X in the par-
tial order of attribute classes induced from RCMM. Then,
[B].X and Q.Y are relational d-separated by Pa ([B].X) if
and only if Q.Y → [B].X or Q̃.X → [IY ].Y is not inM.

Phase I: Identifying Undirected Dependencies
We first identify all undirected dependencies. Recall that
CI-based algorithms for learning the structure of a causal
model start by enumerating all possible candidate dependen-
cies (Spirtes, Glymour, and Scheines 2000). Unlike in the
propositional setting where the number of variables is fixed
and finite, the number of relational variables is, in general,
infinite. It is therefore impossible to enumerate all possible
dependencies for learning the structure of an RCM. Hence,
as in (Maier et al. 2013), we assume that the number of de-
pendencies in the RCM to be learned is finite and that the
maximum number of hops (i.e., path length) of dependen-
cies, denoted by h, is known a priori. This allows us to enu-
merate candidate dependencies that include all true depen-
dencies (Maier et al. 2013). Then, we can identify and orient
true undirected dependencies among the candidates.
Lemma 3. Let D be P.X → [IY ].Y . Then, (P.X ⊥
[IY ].Y | Pa([IY ].Y ))M or (P̃ .Y ⊥ [IX ].X |
Pa([IX ].X))M if and only if both D and D̃ are not in D.

Proof. (If) In GM, there is no edge between P.X and [IY ].Y

and P̃ .Y and [IX ].X by definition of extend. By Proposi-
tion 1, a separating set exists for at least one of the two CI
tests since either X 6≺π Y or Y 6≺π X . (Only if) It follows
from adjacency-faithfulness (Lemma 1).

Phase II: Orienting Dependencies Using CI Tests
Let GM̂ be a partially directed unrolled graph from M̂ =

〈S, D̂〉 where D̂ = {D, D̃}D∈D after Phase I (currently, no
edge is directed). We orient the undirected dependencies that
correspond to unshielded triples using Lemma 2. The fol-
lowing lemma shows how to perform collider detection:
Lemma 4 (Collider Detection). Let 〈U, V,W 〉 be an un-
shielded triple in GM̂. If a separating set S exists such that
(U⊥W | S)M and V /∈S, then U→V ←W in GM.



Unfortunately, since GM̂ is an infinite graph, we can-
not naively apply the collider detection (CD) on GM̂. For-
tunately, we can prove that for each unshielded triple in
GM̂, there exists a representative unshielded triple (see Fig-
ure 2(b), red lines correspond to a representative unshielded
triple), such that orienting the representative unshielded
triples is equivalent to orienting all unshielded triples in GM̂.

Lemma 5 (Representative Unshielded Triple). Let
〈P ′.X, Q′.Y, R′.Z〉 be an unshielded triple in GM̂ where
X can be Z. Then, there exists a representative unshielded
triple 〈[IX ].X, Q.Y, R.Z〉 in GM̂.

Proof. see Appendix.

The lemma frees us from the need to check whether two
flanking elements of a given triple are non-intersectable
(see Lemma 2): Because of bridge burning semantics, a
canonical variable is not intersectable with any other rela-
tional variables of the same base class. The existence of
representative unshielded triples permits us to orient rela-
tional dependencies in unshielded colliders of the RCM, un-
like RCD, without needing search for the unshielded triples
over AGGs. We can enumerate all representative unshielded
triples totaling O(|D|2 h). We now proceed to pull together
Lemma 5 and Proposition 1:

Corollary 1. Let 〈[IX ].X, Q.Y, R.Z〉 be an un-
shielded triple in GM̂ where X 6≺π Z. Then,
([IX ].X ⊥ R.Z | Pa([IX ].X))M.

Since the existence of an unshielded collider
〈[IX ].X, Q.Y, R.Z〉 implies (by construction) the ex-
istence of another unshielded collider 〈[IZ ].Z, D̃2.Y, R̃.X〉
where D2.Z → [IY ].Y in D̂ and R ∈ extend(Q,D2), one
can always orient dependencies between X and Y and X
and Z without regard to X 6≺π Z.

Lemma 5 indirectly indicates that RCD is not complete.
There might exist an unshielded triple 〈i.X, j.Y, k.Z〉 in
some ground graph although no representative unshielded
triple exists in GM. Lemma 5 shows that no unshielded triple
in GM or AGGs represents 〈i.X, j.Y, k.Z〉. Example 1 in
Appendix shows that RCD is not complete because it fails
to identify some of such unshielded colliders.

Phase III: Maximally-Orienting the Dependencies
Phase II not only orients dependencies that form unshielded
colliders in the unrolled DAG representation, but also cre-
ates constraints on the pairs of dependencies that form
unshielded triples, which turn out to be unshielded non-
colliders. We maximally-orient the undirected dependencies
based on these constraints, together with the acyclicity of
RCM. There are systematic ways for finding a maximally-
oriented graph in the case of conventional causal Bayesian
networks (Dor and Tarsi 1992; Meek 1995; Chickering
1995), including methods that leverage background knowl-
edge (Meek 1995). It is appealing to consider applying
known rules (Meek 1995) on the unrolled graph. However,
direct application of such rules is not feasible since the un-
rolled graph is an infinite graph. Furthermore, it is not ob-
vious how to apply such rules on the unrolled graph whose

R1 R2 R3 R4

Figure 3: Orientation rules for Gπ̂ . Double arrow edges rep-
resent given oriented edges and single arrow edges are in-
ferred by each rule. Dashed edge in R1 might be present or
not. A pair of red edges represents a non-collider.

vertices are relational variables while the acyclicity of RCM
is defined at the level of attribute classes.

Hence, we translate the information expressed using re-
lational variables (i.e., dependencies and unshielded non-
colliders) into information described using the attribute
classes. We first represent unshielded non-colliders (e.g.,
〈[IX ].X, Q.Y, R.Z〉) as attribute class non-colliders (e.g.,
〈X,Y, Z〉) when X 6= Z. If X = Z, we can immediately
orient every dependency between X and Y to Y → X
given the non-collider constraints and acyclicity. This cor-
responds to Relational Bivariate Orientation (RBO) (Maier
et al. 2013). Let M̂= 〈S, D̂〉 where D̂ reflects orientations
through collider detection and orientations from unshielded
non-colliders with the same attribute class (RBO). We then
introduce a class dependency graph Gπ̂ over A (see Figure
2(c) for a true graph Gπ), a PDAG that represents π̂, an in-
ferred partial order of A. There exists an edge in Gπ̂ between
X and Y if there exists a dependency between X and Y . It
is directed as X→Y if there exists an oriented dependency
P.X→ [IY ].Y in D̂. Otherwise, it is undirected.

Characterization of Class Dependency Graph It is not
immediately obvious whether applying the rules (Meek
1995) on Gπ̂ will yield a maximally-oriented Gπ̂ since Gπ̂
and attribute class non-colliders, denoted by N , do not di-
rectly match the conditions under which the completeness of
the rules is proved: i) All unshielded colliders are oriented
in a PDAG; ii) There exists a set of known oriented edges,
constituting background knowledge, denoted by K; and iii)
All known non-colliders are unshielded in the PDAG.

Hence, we proceed to characterize Gπ̂ and N with respect
to these conditions. First, Gπ̂ satisfies the first condition that
all edges involved in unshielded colliders in Gπ are correctly
oriented in Gπ̂ . It is possible, by construction, that an un-
shielded collider of GM̂, e.g., 〈[IX ].X, Q.Y, R.Z〉, can be
shielded in Gπ̂ , e.g., X → Y ← Z where X and Z are adja-
cent. Such a shielded collider is treated as two oriented edges
as a part of background knowledge K. If an unshielded col-
lider has the same attribute class on the flanking elements
of the triple, e.g., 〈[IX ].X, Q.Y, R.X〉, then X → Y can
be regarded as K. Note that it is a shielded triple in Gπ that
Phase II might fail to orient. Second, every edge oriented by
RBO is also a part of K. Finally, let us examine N under
the third condition. It may be possible that X and Z can be
adjacent in Gπ̂ for some 〈X,Y, Z〉 ∈ N , which violates the
third condition. We prove that such shielded attribute class
non-colliders can be encoded as background knowledge.
Lemma 6. Let Gπ̂ be a PDAG as defined above. Let X , Y ,



and Z be three different attribute classes connected to each
other in Gπ̂ . If 〈X,Y, Z〉 is a non-collider, then either an
edge between X and Y or Y and Z is oriented.

Proof. Since 〈X,Y, Z〉 is a shielded non-collider, there must
be an unshielded triple 〈P ′.X,Q′.Y, R′.Z〉. Let D1.Y −
[IX ].X and D2.Y − [IZ ].Z be two corresponding undi-
rected dependencies (directionality does not affect the proof)
in D. Since 〈X,Y, Z〉 is shielded, there must be a depen-
dency D3.Z − [IX ].X ∈ D. By lemma of representative
unshielded triple, there must be a representative unshielded
triple 〈[IX ].X,D1.Y,R.Z〉 such that R 6= D3.

(If D3.Z − D1.Y ) 〈D3.Z,D1.Y, R.Z〉 forms an un-
shielded triple, and Z − Y will be oriented by either CD
or RBO with its representative unshielded triple.

(Otherwise) Because of the dependency D2.Y − [IZ ].Z,
there must existQ.Y such thatD3.Z−Q.Y ,Q ∈ D3 on D2,
and Q 6= D1. Consider the following cases.

• If Q.Y − [IX ].X , then 〈Q.Y, [IX ].X,D1.Y 〉 is an un-
shielded triple, andX−Y will be oriented by CD or RBO.

• Otherwise, following 〈Q.Y,D3.Z, [IX ].X〉,
〈D3.Z, [IX ].X,D1.Y 〉, and 〈[IX ].X,D1.Y, R.Z〉
are unshielded triples, and one of them is an unshielded
collider, which must be oriented by CD.

Finally, either an edge between X and Y or Y and Z must
be oriented for any shielded non-collider 〈X,Y, Z〉.

For a non-collider 〈X,Y, Z〉, we can orient Y → Z if
X → Y (i.e., colliding to Y ). If an oriented edge is Y → X
(i.e., diverging from Y ), then the non-collider constraint is
inactive and the other edge Y−Z can be oriented in either di-
rection. This implies that all shielded non-colliders in Gπ̂ can
be encoded in background knowledge as either two oriented
edges or one edge oriented in a direction pointing away from
Y . Finally, given a sound, but not necessarily complete, list
of non-colliders, the four rules suffice to maximally-orient
the rest of undirected dependencies in a partially-directed
RCM resulting from Phase II. Figure 3 shows the four rules
(Meek 1995) where R1 is generalized so that it can orient
edges for shielded non-colliders as well (Lemma 6).

RCD`, a Sound Algorithm for RCM
The preceding results provide a sound theoretical basis for
identifying and orienting dependencies in an RCM. We pro-
ceed to describe RCD` (Algorithm 1), a sound algorithm
for learning an RCM. Lines 1–8 enumerate candidate de-
pendencies and refine them with CI tests increasing the size
of separating sets. Lines 9–20 test whether a representative
unshielded triple is a collider or not, orient if it is either a
collider or orientable by RBO, or record as a non-collider,
otherwise. RCD`minimizes the number of CI tests by simul-
taneously orienting edges of the class dependency graph us-
ing four rules in Line 10 and 20. Lines 12–14 serve to avoid
unnecessary tests and Line 19 serves to record the ancestral
relationship between X and Z based on Proposition 1. Fi-
nally, Line 21 orients dependencies based on the orientation
of the class dependency graph. Because the four orientation

Algorithm 1 RCD`: RCD-Light
Input: S: a relational schema; p: a distribution; h: a maximum hop
threshold; K: background knowledge
Output: a correct partially-directed relational causal model
1: initialize D with candidate dependencies up to h
2: d = 0
3: repeat
4: for D = U → V in D do
5: if (U⊥V | S)p s.t. S⊆Pa(V )\{U}, |S|=d then
6: remove {D, D̃} from D

7: d = d+ 1
8: until |Pa(V )| < d for every U → V ∈ D

9: N = ∅; initialize Gπ with D and K
10: apply orientation rules on Gπ with N if K is non-empty.
11: for representative unshielded triple 〈[IX ].X,Q.Y,R.Z〉 do
12: if X ≺π Z, then continue
13: if X − Y and Y − Z are oriented, then continue
14: if 〈X,Y, Z〉 in N or X ← Y or Y → Z, then continue
15: if ([IX ].X ⊥ R.Z | S)p s.t. S ⊆ Pa([IX ].X) then
16: if Q.Y 6∈ S then orientX → Y, Z → Y
17: else if X = Z then orient Y → X
18: else add 〈X,Y, Z〉 to N
19: else setX→Z
20: apply orientation rules on Gπ with N

21: orient D as directed in Gπ
22: return 〈S,D〉

rules suffice to maximally-orient the rest of undirected de-
pendencies given a list of non-colliders, RCD` produces a
partially directed RCM with at least as many edges oriented
as in that produced by RCD. It is easy to prove that RCD`
requires time that is a polynomial function of |D| and h for
orientation of an RCM of fixed degree where the degree of
an effect is the number of its causes and the degree of an
RCM is the degree of the effect with the largest degree.

Theorem 1. Given access to the conditional independence
oracle for an RCMM, RCD` offers a sound procedure for
learning the structure of the RCM whose maximum number
of hops of dependencies is bounded by h.

Proof. This follows from: (i) Lemma 3 for identifying cor-
rect undirected dependencies; (ii) Corollary 1 for sound ori-
entation of undirected dependencies through CI tests; and
(iii) Lemma 6 and the soundness and completeness of four
rules (Meek 1995) for maximally-orienting undirected de-
pendencies given a set of non-colliders.

Empirical Comparison to RCD on Synthetic Models
We compared the time and space used by RCD and RCD`
(built on RCD codebase) on 100 RCMs with h ranging from
1 to 4. We generated schemas with 3 entity and 3 binary re-
lationship classes with 2 and 1 attribute classes per entity
and relationship class, respectively, with random cardinal-
ity. Given the schema, we generated an RCM with 10 de-
pendencies of length up to h and maximum degree of 3. We
followed settings in Maier et al. (2013): (i) RCD uses AGGs
whose hop length is limited to 2h for practical reasons; and
(ii) AGGs with 2h is adopted as a CI oracle.
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Figure 4: Empirical comparison of RCD and RCD`. Both
y-axes are on the same logarithmic scale.

Our experiments confirm that RCD` is substantially more
efficient than RCD with respect to its space and time require-
ments (see Figure 4). RCD` takes 70 seconds on average
learning an RCM given h = 4 while RCD takes 50 minutes.
These efficiency gains are due to the fact that RCD`, unlike
RCD, is able to avoid redundant CI tests and has no need
to construct or manipulate AGGs or an unrolled graph. Be-
cause the number of searched unshielded triples (UT) grows
with the size of AGGs, RCD refines them to test CI on a
small number of UTs close to the number of enumerated
representative UTs. However, the number of CI tests on the
selected UTs grows exponentially with h. This may be due
to the fact that a separating set is sought from the neighbors
of both flanking elements of each UT.

Summary and Discussion

We have presented a new theoretical analysis that (i) shows
that RCD, the only other existing algorithm for learning an
RCM, is not complete; and (ii) suggests the design of RCD-
Light (RCD`), a sound and efficient algorithm for learning
an RCM from relational data. Unlike RCD, RCD` requires
only polynomial time and space to orient the dependencies
for a sparse RCM. Our result also suggests CI tests that can
be used to define an RCM pattern where two RCMs of the
same pattern share the same set of independence relations.
RCM pattern can be seen as the relational counterpart of a
pattern originally defined for causal Bayesian networks by
Verma and Pearl (1991).

Our analysis (as in the case of all constraint-based struc-
ture learning algorithms) assumes that the algorithm has ac-
cess to a CI oracle. In practice, the reliability of tests depends
on the accuracy of the parametric form assumed for the
underlying distribution, and the quantity of available data.
Work in progress aims to design of a complete algorithm
and extend the algorithm to learn (i) temporal RCMs (Mara-
zopoulou, Maier, and Jensen 2015) (ii) variants of RCMs
that allow dependencies between the same attributes (Fried-
man et al. 1999) (iii) accurate models in real-world settings
where CI tests are necessarily imperfect, e.g., by develop-
ing the relational counterparts of methods developed in the
propositional setting (Colombo and Maathuis 2014).
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Appendix
Function extend of two relational paths Q and R is defined
as {Q1:|Q|−i+Ri:|i∈pivots(Q̃, R)} ∩PS where Qm:n rep-
resents a subpath of Q (inclusive), Q̃ is the reverse of Q,
pivots(S, T ) = {i|S1:i = T 1:i}, PS is a set of all valid re-
lational paths, and ‘+’ is a concatenation operator. We will
use a join operator ‘on’ for extend and denote Q1:|Q|−i+Ri:

by Q oni R for a pivot i. We list several important proper-
ties of extend (i.e., on operator). Let P, Q, R ∈ PS and
P|P | = Q1. Then, following hold: (nonemptiness) P onQ 6=
∅; (maximal pivots) pivots(P̃ , Q) ⊆ pivots(Q̃,Q); (trian-
gle symmetry) if R ∈ P on Q, then P ∈ R on Q̃; (single-
ton) if |Q̃ on Q| = 1, then |P onQ| = 1; (canonicality) if
[B] ∈ P onQ, then Q = P̃ . The properties can be inferred
solely from the definition of extend, and we omit proof for
the properties.

B · · · · · · n m IY
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IX
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IZ

P ′

Q = D̃1

R′ D2

B · · · m · · · IY

...

`

...

IX

· · ·IZ

Q′

R

Q = D̃1
R′

Figure 5: Schematic examples for m 6= n (left) and m = n
(right). Simple walks from B to IX , IY , and IZ are P ′, Q′,
and R′; from IX to IY and IZ are Q and R; from IY to IZ
is D2, respectively. Gray color highlights R from IX to IZ .

Lemma (Representative Unshielded Triple). Let
〈P ′.X, Q′.Y, R′.Z〉 be an unshielded triple in GM̂
where X can be Z. Then, there exists a representative
unshielded triple 〈[IX ].X, Q.Y, R.Z〉 in GM̂.

Proof. (IfX = Z) For P ′.X−Q′.Y andQ′.Y −R′.X , there
must exist dependencies D1.X → [IY ].Y and D2.X →
[IY ].Y , respectively, in D̂. Then, Q = D̃1 and we need to
select R from Q on D2 such that R 6= [IX ] to satisfy the
definition of an unshielded triple. Since [IX ] is canonical,
[IX ] 6= R implies [IX ].X and R.X are not intersectable
because of the bridge burning semantics. Then, we have to
prove {[IX ]} 6= Q on D2 = D̃1 on D2. Suppose for the sake



of contradiction that R = [IX ] be the only path of Q on D2.
This implies that D1 = D2 by canonicality of extend. Due
to the singleton property of extend, {P ′} = {R′} = Q′ on
D2, which contradicts that 〈P ′.X, Q′.Y, R′.X〉 be an un-
shielded triple. Hence, {[IX ]} ( Q on D2.
(Otherwise, X 6= Z) Similarly, there exist dependencies
D1.X → [IY ].Y andD2.Z → [IY ].Y in D̂. We setQ = D̃1

and choose R from Q on D2 such that there is no edge from
R.Z to [IX ].X . Letm and n be pivots for P ′ andR′ relative
to Q′ so that P ′ = Q′ onm D1 and R′ = Q′ onn D2. If
m 6= n, then, let R = Q onmin(m,n) D2. Otherwise, any R
in Q1:|Q|−m+1 on Dm:

2 will satisfy our purpose. Let ` be the
selected pivot so that R = Q1:|Q|−m+1 on` Dm:

2 . We can
see that R′ ∈ P ′ on R (see Figure 5). If m 6= n, then pivot
is |Q| −m+ |m− n|+ 1 and |Q| −m− `+ 2, otherwise.
Suppose R.Z and [IX ].X are adjacent. Since R′ ∈ P ′ on R,
there must be an edgeR′.Z → P ′.X , which contradicts that
〈P ′.X, Q′.Y, R′.Z〉 is an unshielded triple.

Example 1. Let S be a schema with E = {Ei}4i=1 and
R = {Ri}4i=1 where R1 : {E1, E2}, R2 : {E2, E3},
R3 : {E2, E3}, and R4 : {E2, E4} with every cardinal-
ity is ‘one’. Let R1, R2, and E2 have an attribute class
X , Y , and Z, respectively. Let D = {D1, D2, D3} where
D1 : [R2, E2, R1].X→ [IY ].Y , D2 : [R2, E3, R3, E2].Z→
[IY ].Y , and D3 : [R1, E2, R2, E3, R3, E2].Z→ [IX ].X . In
AGGs, any relational variables P.X and R.Z that are ad-
jacent to some Q.Y are connected. That is, there is no un-
shielded triple of the form 〈P.X,Q.Y,R.Z〉 in AGGs. How-
ever, there exists a skeleton σ such that e1 − r1 − e2 − r2 −
e3 − r3 − e2 ∈ σ where two e2 are the same item. Then,
r1.X→r2.Y , e2.Z→r2.Y , and r1.X and e2.Z are discon-
nected in its ground graph. Hence, 〈r1.X, r2.Y, e2.Z〉 is an
unshielded collider where a separating set between [IX ].X
and [R1, E2].Z must not include [R1, E2, R2].Y . Such in-
dependence test leads to the orientation of D1 and D2. RCD
does not check such case and will leave all dependencies
undirected (RCD cannot orient D1, D2, and D3 via RBO).
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