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Abstract

Spread of infections (diseases, ideas, etc.) in a network
can be modeled as the evolution of states of nodes in
a graph as a function of the states of their neighbors.
Given an initial configuration of a network in which a
subset of the nodes have been infected, and an infec-
tion propagation function that specifies how the states of
the nodes evolve over time, we show how to use model
checking to identify, verify, and evaluate the effective-
ness of intervention policies for containing the propaga-
tion of infection over such networks.

Introduction
The spread of infections such as diseases, rumors, computer
viruses and fire across networks of people, computers and
forests poses severe challenges to the sustainability of eco-
nomic, societal and ecological systems. Designing effective
intervention policies to control the spread of infection, e.g.,
administering vaccines, installing security patches, deploy-
ing firefighters, etc. is an important problem in computa-
tional sustainability. Of particular interest are practical algo-
rithms and tools for finding and evaluating effective policies.

The dynamics of the spread of infections in networks
can be modeled in terms of the evolution of the states of
nodes in graphs. Previous work in this area (Dreyer and
Roberts 2009; Finbow and MacGillivray 2009; Anshelevich
et al. 2010) has examined the existence of an effective pol-
icy that prevents the dynamics of such graphs from violat-
ing some desired property. The problem of finding an ef-
fective policy to control the infection spread in a network
is NP-hard even for graphs with a maximum degree three
(Dreyer and Roberts 2009; Finbow and MacGillivray 2009;
Anshelevich et al. 2010). Against this background, practical
solutions to this problem are of significant interest.

In this paper, we present a novel solution to the problem
of finding and verifying policies to control the spread of in-
fection using the state-of-the-artmodel checkingtechniques
(Clarke, Grumberg, and Peled 2000). We consider a sim-
ple model of spread where the state of a node in the net-
work at each time step is a function of (a) the states of other
nodes in the network; and (b) the history of previous states
of the node. We encode the evolution of states of the nodes
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in the network succinctly usingKripke structures. We con-
sider the problems of findingintervention policiesthat con-
tain the infection in and verifyingpreventive policiesthat
protect a subset of the nodes in the network from infection.
We consider a policy to be effective if the number of nodes
infected at any time is at mostl. We use satisfiability of tem-
poral formulas in the model to answer the following queries:
(a) Given a network with a set of initially infected nodes, is
there an effective intervention policy? (b) Given a network
with a set of initially protected nodes, is the given preventive
policy effective? We demonstrate how to find an intervention
policy whenever such a policy exists. We also show how to
exploit the ability of the model checker to find a counter
example (if one exists) to a desired property of the model,
to identify conditions that make a preventive policy ineffec-
tive. Our approach takes advantage of specialized algorithms
used by model checkers to verify the desired reachability
properties with respect to a Kripke model. We present pre-
liminary results of experiments that demonstrate the feasi-
bility of this approach to verifying and identifying effective
intervention policies. Our approach can be used to counter
the spread of diseases (WHO 2007), fire (G. MacGillivray
2003), opinion (Zanette 2002), and computer virus (Serazzi
and Zanero 2004), where similar deterministic, discrete-time
models of infection spread have been considered (Dreyer
and Roberts 2009; Finbow and MacGillivray 2009; Anshele-
vich et al. 2010).

Models of Spread

LetG(V,E) be an undirected graph, whose nodesV repre-
sent the entities (people, computers) that can potentiallybe
infected. Each nodevi ∈ V in the graph is associated with
a stateσ(vi) ∈ Σ, the domain of possible states (e.g., in-
fected, uninfected); and a set of neighborsρ(vi) = {vj ∈
V : (vi, vj) ∈ E} in the graph. The edgesE represent the
medium over which infection can be potentially transmitted
from one node to another. We call the tuple of states of the
nodes in the graph at any time step as theconfigurationof the
graph at that time step. The set of all possible configurations
of the graph isΣn. At each discrete time stept, each node
vi in the graph changes its state as a function of (a) the cur-
rent and previous states ofvi and (b) the current states of the
rest of the nodes inV ; Let f andg respectively represent the
transmissionandlocal updatefunctions (collectively called



the infection propagationfunctions), that compute the next
state of a nodevi as described by (a) and (b) above respec-
tively. The new updated state ofvi in the next time step is a
composition off andg applied onσ(vi). Thus, the configu-
ration of the graph evolves with every discrete time step.
Remarks
1. The model of spread over a graphG(V,E) is quite

generic. Different instantiations of theΣ, f andg can be
used to model the spread of an epidemic in a population,
the spread of opinion in a social network, the spread of
fire in a forest, or the spread of a virus over a computer
network.

2. The functionf determines the state of a node with respect
to the states of the other nodes the graph; while the func-
tion g accounts for temporal aspects in the behavior of a
node based on the history of its states.

3. If in a specific application, the states of the nodes in the
graph do not depend on (a) or (b) in the model of spread
introduced above, the respective functionsf or g become
identity functions.

4. Some application scenarios may may requiref andg to be
composed in a specified order that needs to be respected
in updating the states of the nodes inG.
In this paper, we focus on a model of infec-

tion spread over a graphG(V,E) where Σ =
{open,infected,protected}, i.e., each node can be
in one of three states: (a)open – the node is vulnerable
to infection, (b)infected – the node is infected, or (c)
protected – the node can never be infected. We denote
the state of a nodevi in the graph byσ(vi). We focus on the
reversibleand irreversiblek-thresholdprocesses described
in (Dreyer and Roberts 2009) in this paper.
1. Irreversiblek-threshold process: In this model of infec-

tion spread, an open node can become infected in the time
step after at leastk of its neighbors get infected, and the
node remains at the infected state throughout. The local
update functiong is simply the identity function, and

f(σ(vi)) =























infected if σ(vi) = open and
∃u1, u2 . . . uk ∈ ρ(vi) :
∀j ∈ [1, k]
σ(uj) = infected

σ(vi) otherwise

2. r-Reversiblek-threshold process: Here, an open node can
become infected as soon as at leastk of its neighbors
are infected, and the node returns to the open stater
time steps after getting infected. The infection propaga-
tion functionsf andg are given as follows.

f(σ(vi)) =























infected1 if σ(vi) = open and
∃u1, u2 . . . uk ∈ ρ(vi) :
∀j ∈ [1, k]
σ(uj) = infected

σ(vi) otherwise

g(σ(vi)) =



















open if σ(vi) = infectedr

infectedq+1 if σ(vi) = infectedq

andq < r

σ(vi) otherwise

Figure 1: Infection Spread in a4 × 4 Grid

Here, the set of states is expanded asΣ =
{open,protected,infected1 . . .infectedr} to
track the additional intermediate states of the nodes.

One way to control the spread of infection in the graph is by
protecting one or more of the nodes from getting infected,
e.g., by vaccinating them, which in turn prevents them from
infecting some of the other open nodes.

Definition 1 (Policy). A policy is a mapping between the
configurations of a graph to sets of nodes in the graph that
are to be protected.

We consider two types of policies: (1)prevention poli-
ciesthat are deployedbefore any of the nodes in the graph
are infected; and (2)intervention policiesthat are deployed
after some of the nodes in the graph are infected. In both
cases, the objective is to restrict the spread of infection to
at mostl nodes in the graph. Such policies are of particular
interest to policymakers and public health officials who are
often tasked with finding effective prevention or interven-
tion policies in preparation or response to disease outbreak.
The example below illustrates two intervention policies that
prevent nodes in certain parts of the graph from getting in-
fected.

Example 1. Consider a4 × 4 grid network shown in Fig-
ure 1. Suppose the nodes3 and6 are infected (colored black)
at timet = 0. Assume that the local update functiong is the
identity function, i.e.,g(σ(vi)) = σ(vi) and the transmis-
sion functionf models the irreversible1-threshold process,
i.e., a node becomes infected at time stepT + 1 if any of its
neighbors becomes infected at timet.

The figure shows the spread of infection, i.e., the evolution
of states in the graph over three time steps. The use of policy
π1 of vaccinating the nodes4, 7, 9 and10 at timet = 0, the
infection is contained to nodes1, 2 and 5, thus protecting
nodes8, 11 − 16. In contrast, the use of policyπ2 of vacci-
nating the nodes4, 5, 7 and10 at timet = 0, contains the
infection to nodes1 and2, thereby protecting the node5 in
addition to the nodes protected byπ1.

Example 2. Consider a ring network shown in Figure 2.
Suppose that att = 0, nodes1 and 4 are infected with a
virus that subsequently spreads according to the1-reversible
1-threshold process. In this case, each node has exactly 2
neighbors. An open node becomes infected att+1 if at least
one of its neighbors is infected att. Suppose further that a



Figure 2: Infection Spread in a Ring

node that becomes infected at timet becomes open again
at time stept + 1, i.e., the infection lasts only for one time
step after which the infected node returns to its uninfected
(normal) state. The infection propagation functionsf andg
corresponding to this model of spread are as follows.

f(σ(vi)) =















infected if σ(vi) = open and
∃vj ∈ ρ(vi) :
σ(vj) = infected

σ(vi) otherwise

g(σ(vi)) =

{

open if σ(vi) = infected

σ(vi) otherwise

Suppose we have a drug that can cure a node if it is in-
fected; and further prevent the node from contracting the
infection in the future; and two such doses are available to
be administered, one per time step. Figure 2 shows the evo-
lution of the graph over three time steps according to two
policiesπ1 andπ2. Policyπ1 administers the drug to node
2 at t = 0 and to node4 at t = 1, whileπ2 administers the
drug to node2 at t = 0 and to node3 at t = 1. Note that
the policyπ1 controls the spread such that eventually (i.e.,
at timet ≥ 3), the maximum number of infected nodes in the
graph is always≤ 2. On the other hand, when policyπ2 is
applied, the maximum number of infected nodes in the graph
can exceed2 at times (e.g., att = 4).

In the preceding examples, the identity of nodes that are
infected at timet = 0 are assumed to be known. However, in
many settings, one might have only an estimate of the total
number of infected nodes , or the number of doses of vac-
cine or drug available to be administered may be variable.
Thus, a policymaker must consider every possible scenario
for a given set of initially infected and protected nodes in or-
der to arrive at an effective intervention strategy. Moreover,
some of the available intervention policies may be more ef-
fective than others in controlling the spread (as measured by
the number of nodes in the graph that are protected from
infection). Other measures of the effectiveness of policies
in controlling the spread may include the number of doses
of the vaccine or drug needed, the number of nodes saved
per dose administered at the beginning of the spread and the
maximum number of newly infected nodes at each time step.
Hence, there is a need for effective computational tools for
assisting policymakers to identify effective policies in spe-
cific scenarios.

Given an arbitrary graphG(V,E) and the infection prop-
agation functionsf andg that specify the evolution of the

states of the nodes inG, we are interested in answering ques-
tions such as the following:

Q1. Finding an intervention policy: Given a configuration of
the graph where a setI ⊆ V of nodes are infected, and
a fixed numberm of nodes that can be protected at the
outset, is there an intervention policyπ that contains the
infection to at mostl nodes?

Q2. Verifying a preventive policy: Given a preventive policyπ
specifying a setP ⊆ V of protected nodes, and a fixed
numberm of nodes that may be infected at the outset,
does the policyπ prevent the infection from spreading to
more thanl nodes?

We next proceed to show how questions such as the above
can be answered by modeling the spread of infection over
an arbitrary graph using Kripke structures and verifying the
satisfiability of appropriate temporal logic properties using
model checking techniques.

Analyzing Policies using Model Checking
Each of the above questions can be answered by computing
the reachability of a desired configuration of the graph, or
the non-reachability of any undesired configuration of the
graph from all the possible initial configurations. We use
some of the state-of-the-art approaches to model checking
to verify the reachability of one configuration of the graph
to another. We first encode the transitions between the con-
figurations of the original graph over which the infection
is spreading as an input graph to a model checker (we use
Spin (Spin 2010)). We reduce the problem of checking the
existence of, or verifying policies to the problem of test-
ing whether a specified reachability condition holds in this
graph.

Given the initial configuration of a graph over which in-
fection is spreading, we construct a model in a language that
is accepted by the model checker as follows. The nodes of
the graph over which the infection is spreading are mapped
to the state variables of the model in a model checker. Thus,
a configuration of the original graph corresponds to a state
of the model input to the model checker. The allowed transi-
tions between the various configurations of the graph as dic-
tated by the infection propagation functions are then directly
encoded as transitions in the model. This ensures that the
model checker explores all possible evolutions of the graph
with respect to initial configurations, which corresponds to
simulating all the possible ways in which the infection can
spread over the nodes in the graph.

Queries regarding the identification and verification of
policies are then formulated as linear temporal logic proper-
ties (Vardi 1996) over the state space of the model. We thus
leverage the optimized algorithms for LTL model checking
used by the model checker to efficiently verify the satisfia-
bility of the corresponding properties.

Encoding Spread using Kripke Structures
We use aKripke structure(Clarke, Grumberg, and Peled
2000) to model the transitions between the configurations.

Definition 2 (Kripke Structure). A Kripke structure is a tu-
ple 〈S, S0, T, L〉 whereS is a set of states described by the



valuations of a set of propositional variablesP , S0 ⊆ S is a
set of initial states,T ⊆ S×S is a transition relation induc-
ing directed edges between states such that∀s ∈ S : ∃s′ ∈
S : (s, s′) ∈ T , andL : S → 2P is a labeling function such
that∀s ∈ S : L(s) is set of propositions that aretrue in s.

Given a graphG(V,E) with a setV = {v1, . . . vn} of
nodes, a set of statesΣ of the nodes of the graph, and the
propagation functionsf, g, a Kripke structureKG that cap-
tures all the possible transitions between the configurations
of the graph (with respect tof ) is constructed as follows.

1. The statesS ofKG are defined by the valuations of propo-
sitionsP = {σ(vi) | vi ∈ V }, where eachσ(vi) ∈ Σ in-
dicates the state (e.g., open, infected or protected) of the
corresponding nodevi ∈ V in the graph. A states ∈ S
is represented by the tuples = 〈σ(v1), . . . σ(vn)〉. Thus,
each state in the Kripke structure corresponds to a unique
configuration of the graphG.

2. The transition relationT is defined as follows. For
any two statess, s′ ∈ S, define (s, s′) ∈ T (de-
noted s → s′) if s = 〈σ(v1), . . . σ(vn)〉 and s′ =
〈f(g(v1)), . . . f(g(vn))〉.

3. The set of start statesS0 of KG correspond to the initial
configurations of the graphG, based on the type of query
that is posed to the model checker. For example, if the
query type Q1 is to be answered, then each initially in-
fected nodevi ∈ I is set to the stateσ(vi) = infected
and in the case of Q2, each initially protected nodevi ∈ P
is set to the stateσ(vi) = protected.This restricts the
state space explored by the model checker to only con-
sider the required initial configurations.

4. The labeling function in this construction is simply
the tuple of valuations of the state variables:L(s) =
〈σ(v1), . . . σ(vn)〉, i.e., we identify the states of the
Kripke structure precisely by the states of the nodes in
the graphG.

In the above encoding of the Kripke structure, the transi-
tion rules ensure that the infection spreads exactly as spec-
ified by the infection propagation functions, i.e., the tran-
sitions inKG correspond to the change of configurations
in the graphG in a single time step. The specification of
initial statesS0 identifies the set of nodes that are infected
and/or the set of nodes that are protected. The model checker
considers every possible instantiation of the Kripke structure
corresponding to the set of initial statesS0 in order to verify
a desired property. Note for the spread problems considered
in this paper, given an initial configuration of the graph (a
state inS0), there is exactly one possible evolution of the
graph (a path in the corresponding Kripke structure).

The Kripke structure corresponding to the graph in Exam-
ple 1 is given byKG = 〈S, S0, T, L〉 as follows. Each state
is a tuples = 〈σ(v1) . . . σ(vn)〉 ∈ S whereσ(vi) ∈ Σ rep-
resents the state of the nodevi in the graph. Note that if at
least one of the neighbors ofvi is currently infected, then the
state ofvi must be infected in the target state of any transi-
tion froms in KG, as dictated by the functionsf andg (see
Example 1). Hence, transitions in the Kripke structure cor-
respond to changes in the configurations of the graph, e.g.,

the transition0010010000000000 → 01111110010000000
(where0 and1 represent the statesopen andinfected
respectively), corresponds to the change of configuration
from t = 0 to t = 1 in the graph when there are no pro-
tected nodes to start with.

The above Kripke structure can be encoded in the lan-
guage of the model checker Spin (Spin 2010).We now show
how the model checker can be used to find and verify inter-
vention policies for containing the spread of infections.

Finding & Verifying Policies using LTL
Given a Kripke structureKG that encodes the spread of in-
fection in a graphG(V,E), finding and verifying policies
can be reduced to verifying corresponding temporal prop-
erties in LTL (linear temporal logic, see (Vardi 1996)). The
syntax of LTL is defined over a set of propositionsProp
and temporal operatorsX andU as follows.

ϕ→ true | Prop | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ
The semantics of LTL is defined in terms of the set of

paths that satisfy the formula. Letδ be a path whereδ[i] de-
notes thei-th state in the path andδi denotes the suffix of the
path starting fromδ[i] (δ0 = δ). Any path satisfiestrue, a
pathδ satisfiesProp iff δ[0] satisfiesProp; a path satisfies
¬ϕ iff it does not satisfyϕ; and a path satisfiesϕ1 ∨ϕ2 iff it
satisfies either of the disjuncts. A pathδ satisfiesXϕ (nextϕ)
iff δ1 satisfiesϕ and a pathδ satisfiesϕ1Uϕ2 (ϕ1 until ϕ2)
iff there existsj ≥ 0 : δj satisfiesϕ2 and for alli < j : δi

satisfiesϕ1. Other temporal operators in LTL are described
in terms of the above. In particular,Fϕ ≡ trueUϕ (a path
δ satisfies the propertyeventuallyiff ∃j ≥ 0 : δj satisfies
ϕ); Gϕ ≡ ¬F¬ϕ (a pathδ satisfies the propertyglobally iff
∀i ≥ 0 : δi satisfiesϕ). A Kripke structure satisfies an LTL
formulaϕ iff all paths starting from all its start states satisfy
ϕ.

We consider the LTL properties that correspond to queries
of the type Q1 or Q2 shown below. For each of the
query types, the initial states, i.e., the set ofinfected or
protected nodes in the graph, are pre-specified. For ex-
ample, in a query of type Q1, the setI gives the nodes that
are initiallyinfected which correspond to the set of start
statesS0 in the Kripke structureKG. This guides the model
checker to only explore those paths in the Kripke structure
that start from one of the states inS0. Other queries may
specify instead, the maximum number of infected or pro-
tected nodes in the graph. This implies that different com-
binations of nodes in the graph can be infected or protected
at the start of the spread. We encode this information by al-
lowing the model checker to non-deterministically initialize
the states of the nodes in the graph while ensuring that the
constraints on the number of infected or protected nodes are
respected.

Q1: Finding an intervention policy In this case, the set
I ⊆ V of initially infected nodes, and a fixed numberm
of nodes that can be initially protected are pre-specified.
Hence, we encode the set of start states as follows.

S0 = {〈σ(v1) . . . σ(vn)〉 | ∀vi ∈ I : σ(vi) = infected
∧|{vi | σ(vi) = protected}| = m}



The query condition specifies anumberm of nodes
that are initially protected, rather than the precise nodes
that are protected. Thus requires considering different com-
binations of m nodes in the graph that could be ini-
tialized to protected state. The term|{vi | σ(vi) =
protected}| = m in the above definition models
this condition, and allows the model checker to non-
deterministically initialize the start states accordingly.

Let totalI be the total number of infected nodes at any
given time step. In order to find a policyπ such that at most
l nodes are infected, we use the LTL formulaϕ : F(totalI >
l). The Kripke structure satisfies the LTL formulaϕ if and
only if in every path beginning from all the possible ini-
tial states (i.e., all states inS0), there exists a state where
totalI > l holds. Note that the satisfaction of this LTL for-
mula implies that no policy exists, i.e., any combination of
m nodes that are protected at the start of the spread will
lead to at leastl + 1 nodes being infected over time. On
the other hand, if the LTL formula is not satisfied, it implies
the existence of an initial configuration (start state inS0)
such thattotalI ≤ l holds in each of the states along a path
starting from the initial configuration (recall that there is ex-
actly one path from each start state). In this case, the model
checker returns a counter-example specifying an initial state
s = 〈σ(v1) . . . σ(vn)〉 and a path starting from this initial
state in which every state satisfiestotalI ≤ l. The desired
policy π can be constructed from the counter-example re-
turned by the model checker by assigning to the nodevi the
stateprotected, if σ(vi) = protected in s.

The formulaϕ can be used to find policies for controlling
the spread of infection when the functionsf andg are mono-
tonic, i.e., a node can never become open after it has been
infected. This means thattotalI never decreases (see Ex-
ample1). However, in the case ofr-Reversiblek-threshold
process a node changes state to open after it has been in-
fected forr time steps, i.e., the transmission functiong is not
monotonic. Consequently,totalI may increase or decrease
at each time step, as seen in Figure2 (see policyπ2 Exam-
ple2) wheretotalI changes from2 to 3 to 2 at t = 1, 2, 3.

In this case, instead of finding a policyπ such that at most
l nodes are infected at any time step, the policymaker might
seek to stabilize the the total number of infected nodes,
i.e., “Is there a policyπ such that the total number of in-
fected nodes is at mostl always,after a certain number
of time steps?” In this case, we can use the LTL formula
ϕ′ : GF(totalI > l). The Kripke structure satisfies the
LTL formulaϕ′ if and only if in every path beginning from
each possible initial state (i.e., all states inS0), totalI > l
holds infinitely often. As in the previous query, the satis-
faction of this LTL formula implies that no policy such ex-
ists; and its non-satisfaction implies that the desired policy
exists. Specifically, non-satisfiability ofϕ′ implies the exis-
tence of a start state such that the path from that state sat-
isfiesFG(totalI ≤ l) (recall that there is exactly one path
from each start state). The policy can be obtained by from
the counter example returned by the model checker as in the
case of the irreversiblek-threshold process.

Q2: Verifying a preventive policy In this query, a policy
π specifying a setP ⊆ V of initially protected nodes, and
a fixed numberm of nodes that may be initially infected are
pre-specified. The set of start states is encoded similar to the
case of Q1 as follows.

S0 = {〈σ(v1) . . . σ(vn)〉 | ∀vi ∈ P : σ(vi) = protected
∧|{vi | σ(vi) = infected}| = m}

As in Q1, the condition|{vi | σ(vi) = protected}| =
m allows the model checker to non-deterministically explore
all possible combinations ofm nodes to be initially infected.
Thus the policy is modeled along with all possible scenarios
of initial infections.

Verification of a given policyπ can be achieved using the
LTL formula ψ : G(totalI ≤ l). ψ is satisfied if and only
if in every path beginning from all the possible initial states
(i.e., all states inS0), totalI ≤ l always holds. This implies
that protecting the nodes initially according to the given pol-
icy can successfully control the infection from spreading to
more thanl nodes, regardless of which combination ofm
nodes are infected at the start of the spread. On the other
hand, ifψ is not satisfied, then the model checker returns
a counter example specifying a path starting from a state
s ∈ S0 in the Kripke structure where a combination ofm
nodes are initially infected, for which the policy fails, i.e.,
the infection spreads to at leastl+ 1 nodes. The counter ex-
ample specifies a scenario of initial infection outbreak in the
graph, which may be used by the policymakers to change the
policy.

As in the case of Q1, queries of type Q2 posed against
models where the transmission functions are non-monotonic
(e.g., for spread usingr-Reversiblek-threshold processes),
the policymaker may look for verifying if the given policy
will satisfy the stability condition that‘ the total numberof
infected nodes is at mostl always,after a certain number
of time steps. The policy can be verified against this new
criteria using the formulaψ′ : FG(totalI ≤ l). If ψ′ is satis-
fied, it means that the policy is successful in containing the
infection to at mostl nodes eventually, after a certain num-
ber of time steps. On the other hand, ifψ′ is not satisfied,
the model checker provides a counter-example specifying
an initial configuration (start state inS0) havingm infected
nodes resulting in a a path in which the total number of in-
fected nodes is> l infinitely often. The counter example
may be used by the policymakers to examine the cause of
the policy’s failure and develop alternative policies.

Implementation and Experiments
We now proceed to describe results of preliminary experi-
ments that demonstrate the feasibility of the proposed model
checking approach to finding intervention policies and ver-
ifying prevention policies. We have implemented a prepro-
cessor (in Java) that accepts as input, the network, the ini-
tial configuration, and optionally the policy to be verified,
and provides a Kripke model encoding of the problem in
Promela, the input language for the Spin model checker
(Spin 2010). The preprocessor generates the input model
such that the model checker only explores states where the
query conditiontotalI ≤ l is satisfied; this is sufficient for



E
States (×106) Time (secs.) Memory (GB)

10 20 10 20 10 20

40
0.82 10−4 2.54 10−3 0.07 10−3

(10−5) (10−5) (10−3) (10−3) (10−3) (10−3)

50
12.24 10−3 52.20 0.02 1.08 10−3

(10−3) (10−2) (10−3) (0.02) (10−3) (10−3)

60
42.01 0.10 201.98 0.43 3.68 0.01

(6.14) (0.12) (12.76) (0.23) (0.51) (0.01)

70
59.17 0.62 270.20 2.75 5.18 0.05

(30.73) (0.02) (87.38) (0.05) (2.53) (10−3)

80
56.33 45.66 272.00 193.04 4.99 4.05

(25.93) (23.46) (65.00) (49.47) (2.14) (1.93)

Table 1: Results for random networks with40 nodes.

the model checker to produce correct solutions for the model
checking problem because reachability of a state where the
query condition is not satisfied implies the non-existence of
intervention policy or unsatisfiability of prevention policy
along that path.

Table 11 shows the results of our implementation for
networks having40 nodes and40, 50, 60, 70 and80 edges
(E) randomly generated such that the maximum degree of
each node is≤ 5. We tested each network with query Q1
F(totalI > l) with l = 10 and l = 20. The results show
that the model checker is able to identify intervention poli-
cies, when one exists, within a minute for many of the test
cases. The number of states explored by the model checker
increases with increase in the number of edges (for a fixed
value ofl). This is because increasing number of edges leads
to increase in the number of possible ways the infection can
spread in the network. On the other hand, the number of
states explored by the model checker decreases with increase
in l (for a fixed value of edges). This is because increasing
l increases the number of intervention policies that are ef-
fective and the model checker terminates exploration of the
model as soon as it identifies one such policy. We observe
similar trends with respect to memory usage.

Optimizations to Improve Scalability
We developed several optimizations that can be incorporated
into the preprocessing step. These optimizations are specifi-
cally designed to allow faster search for intervention policies
in settings where the spread of infection is irreversible.

Iterative Bounded Search: The main idea here is to itera-
tively search for an intervention policy, each time choosing
the nodes to protect in a specific order. In iterationi, we con-
sider all the non-infected nodes that are≤ i edges away from
the infected nodes ascandidatesto be protected (rather than
consideringall non-infected nodes). This strategy yields a
trivial intervention policy if we are able to protect all thecan-
didate nodes, i.e., when number of candidates≤ the number
of nodes that can be protected at the outset (Protecting each
of the neighbors of each infected node ensures that the in-
fection cannot spread to any as yet uninfected nodes). The
iteration is continued (fori = 1, 2, . . .) until an interven-
tion policy is obtained or thei is larger than the maximum

1All experiments were conducted using Intel i7 3.528 GHz pro-
cessor with 6GB memory on 64 bit Kubuntu 10.10 OS.

distance between the nodes in the network being considered
(i.e., non existence of intervention policy is proved). This
strategy guides model exploration in a manner that ensures
that an intervention policy (if one exists) is obtained (faster)
with minimal exploration of the parts of the model state-
space that do not contribute to finding an intervention policy.

Single-Step Search to Detect Non-existence of Policy: If the
number of nodes that can get infected in one step exceeds
the number of nodes that can be protected at the outset by
more than the specified threshold for the intervention policy,
then we can infer the non existence of an intervention policy
(without having to deploy the model checker).

Node Merging: This optimization is based on a simple ob-
servation that when two adjacent nodesn1 andn2 in G are
are uninfected and unprotected, and one of the nodes (say
n2) has no neighbors other thann1, thenn2 can be merged
with n1 without affecting the answer to the query. Wheni
nodes adjacent ton1 are thus merged withn1, we annotate
the noden1 with i to denote the fact that ifn1 gets infected
at (discrete) time stept, then each of thei nodes adjacent to
n1 inG are infected at at time stept+1. While this optimiza-
tion reduces the number of states in the model, solutions ob-
tained for the optimized model remain valid for the original
model. Note that this strategy cannot be applied in settings
where nodes can be protected after the spread of infection is
already underway.

Effectiveness of Optimizations. We performed a new set
of experiments by applying the above optimizations on ran-
dom graphs with the same parameters as shown in Table 1.
The new results (in terms of size of the state-space, time and
memory usage) are presented along with the results obtained
without the optimizations in parenthesis. The optimizations
resulted in about50% reduction in the number of states ex-
plored by the model checker, the time taken, and the amount
of memory used. The optimizations made it possible to find
intervention policies for random networks with40 to 100
nodes, which was not possible without the optimizations.

It should be noted that real world networks (e.g., social
networks, the Internet, the power grid), tend to exhibit scale-
free topologies and and hierarchical modularity (Ravasz and
Barabási 2003). Due to the existence of a fewhub nodes
that have a relatively high degree of connectivity, the degree
distribution of the nodes in such networks generally follow
a power law distribution (Ravasz and Barabási 2003).

We have conducted preliminary experiments to assess the
effectiveness of our approach to finding policies in scale-
free networks. In our experiments, we used randomly gen-
erated scale-free networks with80 to 100 nodes (V ), with
two combinations of initial configurations (10 infected,20
protected nodes; and20 infected,10 protected nodes), and
threshold values of30 and40. The corresponding results are
presented in Table 2.

As compared to random networks of similar size (results
not shown), the performance of our approach (as measured
by the size of the state space, time, and memory used) is
at least an order of magnitude (and sometimes two orders of
magnitude) better in the case of scale-free networks. We note
that the space and time usage is extremely low for some of



V E
States (×106) Time (secs.) Memory (GB)

30 40 30 40 30 40

10 Infected nodes, 20 protected nodes

80 119.53 0.07 10−4 0.18 10−3 10−2 10−3

90 138.00 3.46 6.76 0.83 27.98 10−2 0.63

100 149.43 5.46 10−3 29.00 10−3 0.51 10−3

20 Infected nodes, 10 protected nodes

80 120.97 12.29 29.33 26.59 112.66 1.01 2.46

90 133.67 6.14 30.04 13.61 149.10 0.51 2.53

100 151.53 10−6 27.99 0.00 146.67 10−3 2.53

Table 2: Results for scale-free networks.

the generated problem instances (e.g., see Table 2,100 node
networks with20 initially infected,10 protected nodes and
a threshold of30). This suggests that in the case of these in-
stances the non-existence of a policy was determined in the
preprocessor stage, without the need for invoking the model
checker to explore to the state space.

The scalability of our approach can also be further im-
proved by taking advantage of the advances in model check-
ing such as abstraction, symmetry reduction and bounded
model checking (Clarke 2008; Biere et al. 1999; Cook
and Sharygina 2005). Alternative techniques based on SAT
solvers (Biere et al. 2006) would be interesting to explore
and compare with our approach.

Conclusion
We have presented a practical solution to the problem of
finding and verifying policies for controlling the spread of
infections (diseases, ideas, etc.) in networks. Our approach
encodes the spread of infection in a network using a Kripke
structure, where each change in the configuration (the set of
infected or protected nodes in the network) corresponds to
a transition in the Kripke structure. This allows us to reduce
the problem of verifying the effectiveness of prevention poli-
cies to the problem of model checking temporal properties
of the Kripke structure. Furthermore, we we can take ad-
vantage of the ability of model checkers to identify counter-
examples that demonstrate that a given temporal property
is not satisfied by the model to derive the desired policies
from the counter-example by verifying temporal properties
that violate the conditions that need to be satisfied by the
policies.

Using the Spin model checker, we have used LTL model
checking techniques to (a) find an intervention policy (if one
exists) for containing an infection break; and (b) verify a
prevention policy (i.e., a strategy to protect a subset of the
nodes before the onset of an outbreak) where the policies
are required to control the spread to at mostl nodes in the
network. The model of spread we considered is quite gen-
eral: The details of how the nodes in the network respond to
the spread of infection are specified by the infection propa-
gation functionsf andg. Hence, the techniques introduced
here are equally applicable to settings that involve the spread
of infections in a population, the spread of viruses or mal-
ware in a computer network, or the spread of opinions or
rumors in a social network. As part of future work, we plan
to investigate strategies to model and analyze spread prob-
lems with probabilistic and real time constraints (Newman
2003).
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