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Abstract

Spread of infections (diseases, ideas, etc.) in a network
can be modeled as the evolution of states of nodes in
a graph as a function of the states of their neighbors.
Given an initial configuration of a network in which a
subset of the nodes have been infected, and an infec-
tion propagation function that specifies how the states of
the nodes evolve over time, we show how to use model
checking to identify, verify, and evaluate the effective-
ness of intervention policies for containing the propaga-
tion of infection over such networks.

Introduction

in the network succinctly usingripke structuresWe con-
sider the problems of findinigtervention policieshat con-
tain the infection in and verifyingrreventive policieshat
protect a subset of the nodes in the network from infection.
We consider a policy to be effective if the number of nodes
infected at any time is at mostWe use satisfiability of tem-
poral formulas in the model to answer the following queries:
(a) Given a network with a set of initially infected nodes, is
there an effective intervention policy? (b) Given a network
with a set of initially protected nodes, is the given prewant
policy effective? We demonstrate how to find an intervention
policy whenever such a policy exists. We also show how to
exploit the ability of the model checker to find a counter

The spread of infections such as diseases, rumors, computerexample (if one exists) to a desired property of the model,
viruses and fire across networks of people, computers and to identify conditions that make a preventive policy ineffe

forests poses severe challenges to the sustainabilityosf ec
nomic, societal and ecological systems. Designing effecti
intervention policies to control the spread of infectiory.e
administering vaccines, installing security patches|aep
ing firefighters, etc. is an important problem in computa-
tional sustainability. Of particular interest are praatialgo-
rithms and tools for finding and evaluating effective pagi

The dynamics of the spread of infections in networks
can be modeled in terms of the evolution of the states of
nodes in graphs. Previous work in this area (Dreyer and
Roberts 2009; Finbow and MacGillivray 2009; Anshelevich
et al. 2010) has examined the existence of an effective pol-
icy that prevents the dynamics of such graphs from violat-
ing some desired property. The problem of finding an ef-
fective policy to control the infection spread in a network
is NP-hard even for graphs with a maximum degree three
(Dreyer and Roberts 2009; Finbow and MacGillivray 2009;
Anshelevich et al. 2010). Against this background, prattic
solutions to this problem are of significant interest.

In this paper, we present a novel solution to the problem
of finding and verifying policies to control the spread of in-
fection using the state-of-the-amodel checkingechniques
(Clarke, Grumberg, and Peled 2000). We consider a sim-
ple model of spread where the state of a node in the net-
work at each time step is a function of (a) the states of other
nodes in the network; and (b) the history of previous states

tive. Our approach takes advantage of specialized algosith
used by model checkers to verify the desired reachability
properties with respect to a Kripke model. We present pre-
liminary results of experiments that demonstrate the feasi
bility of this approach to verifying and identifying efféo
intervention policies. Our approach can be used to counter
the spread of diseases (WHO 2007), fire (G. MacGillivray
2003), opinion (Zanette 2002), and computer virus (Serazzi
and Zanero 2004), where similar deterministic, discristet
models of infection spread have been considered (Dreyer
and Roberts 2009; Finbow and MacGillivray 2009; Anshele-
vich et al. 2010).

Models of Spread

Let G(V, E) be an undirected graph, whose nodlesepre-
sent the entities (people, computers) that can potentially
infected. Each node; € V in the graph is associated with
astatec(v;) € %, the domain of possible states (e.g., in-
fected, uninfected); and a set of neighbp(s;) = {v; €

V i (v;,v5) € E}in the graph. The edges represent the
medium over which infection can be potentially transmitted
from one node to another. We call the tuple of states of the
nodes in the graph at any time step asahefiguratiorof the
graph at that time step. The set of all possible configuration
of the graph isx™. At each discrete time step each node

v; in the graph changes its state as a function of (a) the cur-
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rest of the nodes iir; Let f andg respectively represent the
transmissiorandlocal updatefunctions (collectively called



theinfection propagatiorfunctions), that compute the next
state of a node; as described by (a) and (b) above respec-
tively. The new updated state of in the next time step is a
composition off andg applied oro(v;). Thus, the configu-
ration of the graph evolves with every discrete time step.

Remarks ) )
1. The model of spread over a gragh(V, E) is quite

generic. Different instantiations of ti¥, f andg can be
used to model the spread of an epidemic in a population,
the spread of opinion in a social network, the spread of
fire in a forest, or the spread of a virus over a computer
network.

. The functionf determines the state of a node with respect
to the states of the other nodes the graph; while the func-
tion g accounts for temporal aspects in the behavior of a
node based on the history of its states.

. If in a specific application, the states of the nodes in the
graph do not depend on (a) or (b) in the model of spread
introduced above, the respective functighar g become
identity functions.

. Some application scenarios may may reqyiiaedg to be

composed in a specified order that needs to be respected

in updating the states of the nodegin

In this paper, we focus on a model of
tion spread over a graphG(V,E) where ¥
{open,i nf ect ed, pr ot ect ed}, i.e., each node can be
in one of three states: (@)pen — the node is vulnerable
to infection, (b)i nf ect ed — the node is infected, or (c)
pr ot ect ed — the node can never be infected. We denote
the state of a node, in the graph by (v;). We focus on the
reversibleandirreversible k-thresholdprocesses described
in (Dreyer and Roberts 2009) in this paper.

1. Irreversible k-threshold procesdn this model of infec-

infec-

Figure 1: Infection Spread indax 4 Grid

Here, the set of states is expanded &s
{open,protected,i nfected;...infected,} to
track the additional intermediate states of the nodes.

One way to control the spread of infection in the graph is by
protecting one or more of the nodes from getting infected,
e.g., by vaccinating them, which in turn prevents them from
infecting some of the other open nodes.

Definition 1 (Policy). A policy is a mapping between the
configurations of a graph to sets of nodes in the graph that
are to be protected.

We consider two types of policies: (prevention poli-
ciesthat are deployetiefore any of the nodes in the graph
are infected; and (Zptervention policieghat are deployed
after some of the nodes in the graph are infected. In both
cases, the objective is to restrict the spread of infection t
at mostl nodes in the graph. Such policies are of particular
interest to policymakers and public health officials who are
often tasked with finding effective prevention or interven-
tion policies in preparation or response to disease outbrea

tion spread, an open node can become infected in the time e example below illustrates two intervention policieatth

step after at least of its neighbors get infected, and the
node remains at the infected state throughout. The local
update functiory is simply the identity function, and
infected if o(v;) = open and

Juy,ug ... ug € p(v;) :

Vi e 1,k

o(u;) =infected

flo(vi))

o(v;) otherwise

. r-Reversible-threshold procesdere, an open node can
become infected as soon as at lehstf its neighbors
are infected, and the node returns to the open state
time steps after getting infected. The infection propaga-
tion functionsf andg are given as follows.

i nfected; if o(v;) =o0penand
Fuq,uz ... ug € p(v;) :
) — Vi € [1,k]
V; Y
flow)) o(u;) =1nfected
o(v;) otherwise
open if o(v;) =i nfected,
i nfected if ;) =i nfected
glon)) = o1 o) q
o(v;) otherwise

prevent nodes in certain parts of the graph from getting in-
fected.

Example 1. Consider a4 x 4 grid network shown in Fig-
ure 1. Suppose the nodgand6 are infected (colored black)
at timet = 0. Assume that the local update functigis the
identity function, i.e.g(o(v;)) = o(v;) and the transmis-
sion functionf models the irreversiblé-threshold process,
i.e., a node becomes infected at time step 1 if any of its
neighbors becomes infected at time

The figure shows the spread of infection, i.e., the evolution
of states in the graph over three time steps. The use of policy
m, of vaccinating the nodes 7,9 and 10 at timet = 0, the
infection is contained to nodes 2 and 5, thus protecting
nodess, 11 — 16. In contrast, the use of policy, of vacci-
nating the noded, 5,7 and 10 at timet = 0, contains the
infection to nodes and?2, thereby protecting the nodein
addition to the nodes protected by.

Example 2. Consider a ring network shown in Figure 2.
Suppose that at = 0, nodesl and 4 are infected with a
virus that subsequently spreads according tolttreversible
1-threshold process. In this case, each node has exactly 2
neighbors. An open node becomes infectedtat if at least

one of its neighbors is infected atSuppose further that a



e SO ©-g ) o v oo states of the nodes {, we are interested in answering ques-
5 L @ &b e e ® tions such as the following:
OO © D O O Q1. Finding an intervention policyGiven a configuration of

the graph where a sét C V of nodes are infected, and

v % o« o . % oo a fixed numbern of nodes that can be protected at the
e‘ = ‘o.‘ - ‘o a outset, is there an intervention polieythat contains the
ol 0 o, o o infection to at most nodes?
=0 =1 =2 =3 =4 Q

2. Verifying a preventive policyGiven a preventive policy
) _ ) ) ) specifying a set? C V' of protected nodes, and a fixed
Figure 2: Infection Spread in a Ring numberm of nodes that may be infected at the outset,

node that becomes infected at tim&ecomes open again does the policyr prevent the infection from spreading to
at time step + 1, i.e., the infection lasts only for one time more thari nodes?
step after which the infected node returns to its uninfected ~ We next proceed to show how questions such as the above
(normal) state. The infection propagation functighandg can be answered by modeling the spread of infection over
corresponding to this model of spread are as follows. an arbitrary graph using Kripke structures and verifying th
infected if o(v;) = open and satisfiability qf appropriate temporal logic propertiesngs
model checking techniques.

Jv; € p(v;) i .. . .
flo(vi)) = o(v;) =infected Analyzing Policies using Model Checking
o(v;) otherwise Each of the above questions can be answered by computing

the reachability of a desired configuration of the graph, or
the non-reachability of any undesired configuration of the
glo(vy)) = _ graph from all the possible initial configurations. We use
o(v;) otherwise some of the state-of-the-art approaches to model checking
Suppose we have a drug that can cure a node if it is in- t0 verify the reachability of one configuration of the graph
fected; and further prevent the node from contracting the to another. We first encode the transitions between the con-
infection in the future; and two such doses are available to figurations of the original graph over which the infection
be administered, one per time step. Figure 2 shows the evo- is spreading as an input graph to a model checker (we use
lution of the graph over three time steps according to two Spin (Spin 2010)). We reduce the problem of checking the
policies; and . Policy r; administers the drug to node  €Xistence of, or verifying policies to the problem of test-

open ifo(v;) =infected

2 att = 0 and to nodet at¢ = 1, while r, administers the ing whether a specified reachability condition holds in this
drug to node2 att = 0 and to node3 at¢ = 1. Note that graph. o ] ) o

the policyr; controls the spread such that eventually (i.e., ~ Given the initial configuration of a graph over which in-
attimet > 3), the maximum number of infected nodes in the fection is spreading, we construct a modelin a language that
graph is always< 2. On the other hand, when poliey; is is accepted by the model checker as follows. The nodes of
applied, the maximum number of infected nodes in the graph the graph over which the infection is spreading are mapped
can exceed at times (e.g., at = 4). to the state variables of the model in a model checker. Thus,

a configuration of the original graph corresponds to a state
of the model input to the model checker. The allowed transi-
tions between the various configurations of the graph as dic-
tated by the infection propagation functions are then direc
encoded as transitions in the model. This ensures that the
model checker explores all possible evolutions of the graph
with respect to initial configurations, which corresponals t
simulating all the possible ways in which the infection can
spread over the nodes in the graph.

Queries regarding the identification and verification of
policies are then formulated as linear temporal logic prope
ties (Vardi 1996) over the state space of the model. We thus
leverage the optimized algorithms for LTL model checking
used by the model checker to efficiently verify the satisfia-
bility of the corresponding properties.

In the preceding examples, the identity of nodes that are
infected at time = 0 are assumed to be known. However, in
many settings, one might have only an estimate of the total
number of infected nodes , or the number of doses of vac-
cine or drug available to be administered may be variable.
Thus, a policymaker must consider every possible scenario
for a given set of initially infected and protected nodesrin o
der to arrive at an effective intervention strategy. MooV
some of the available intervention policies may be more ef-
fective than others in controlling the spread (as measwed b
the number of nodes in the graph that are protected from
infection). Other measures of the effectiveness of pdicie
in controlling the spread may include the number of doses
of the vaccine or drug needed, the number of nodes saved
per dose administered at the beginning of the spread and the
maximum number of newly infected nodes at each time step. Encoding Spread using Kripke Structures

Hence, there is a need for effective computational tools for i
assisting policymakers to identify effective policies jmes We use aKripke structure(Clarke, Grumberg, and Peled
cific scenarios. 2000) to model the transitions between the configurations.

Given an arbitrary grapté(V, E') and the infection prop- Definition 2 (Kripke Structure) A Kripke structure is a tu-
agation functiong andg that specify the evolution of the  ple (S, Sy, T, L) whereS is a set of states described by the



valuations of a set of propositional variablés Sy C Sisa
set ofinitial states;I” C S x S is a transition relation induc-
ing directed edges between states such'that S : 3s’ €
S:(s,s') € T,andL : S — 2% is a labeling function such
thatVs € S : L(s) is set of propositions that atteuein s.

Given a graphG(V, E) with a setV = {vy,...v,} of
nodes, a set of stateés of the nodes of the graph, and the
propagation functiong, g, a Kripke structure<s that cap-
tures all the possible transitions between the configuratio
of the graph (with respect tf) is constructed as follows.

1. The state§ of K are defined by the valuations of propo-
sitionsP = {o(v;) | v; € V}, where eaclv(v;) € X in-
dicates the state (e.g., open, infected or protected) of the
corresponding node; € V in the graph. A state € S
is represented by the tuple= (o(v1),...0(v,)). Thus,
each state in the Kripke structure corresponds to a unique
configuration of the grapy.

. The transition relationl’ is defined as follows. For
any two statess,s’ € S, define(s,s’) € T (de-
noteds — s')if s = (o(v1),...0(v,)) and s’ =

<f(g(’01)), s f(g(vn)»

. The set of start state% of K correspond to the initial
configurations of the grapi, based on the type of query
that is posed to the model checker. For example, if the
query type Q1 is to be answered, then each initially in-
fected node); € I is set to the state(v;) =i nf ect ed
and in the case of Q2, each initially protected node P
is set to the state(v;) = pr ot ect ed.This restricts the
state space explored by the model checker to only con-
sider the required initial configurations.

. The labeling function in this construction is simply
the tuple of valuations of the state variabldgs) =
(o(v1),...0(v,)), l.e., we identify the states of the
Kripke structure precisely by the states of the nodes in
the graph.

In the above encoding of the Kripke structure, the transi-
tion rules ensure that the infection spreads exactly as spec
ified by the infection propagation functions, i.e., the tran
sitions in K correspond to the change of configurations
in the graphG in a single time step. The specification of
initial statesS, identifies the set of nodes that are infected

and/or the set of nodes that are protected. The model checker

considers every possible instantiation of the Kripke striec
corresponding to the set of initial statégin order to verify

a desired property. Note for the spread problems considered

in this paper, given an initial configuration of the graph (a
state in.Sy), there is exactly one possible evolution of the
graph (a path in the corresponding Kripke structure).

The Kripke structure corresponding to the graph in Exam-
ple 1 is given byK¢ = (S, Sp, T, L) as follows. Each state
is atuples = (o(v1)...0(vn)) € Swhereo(v;) € X rep-
resents the state of the nodgin the graph. Note that if at
least one of the neighborsofis currently infected, then the
state ofv; must be infected in the target state of any transi-
tion from s in K, as dictated by the functionsandg (see
Example 1). Hence, transitions in the Kripke structure cor-
respond to changes in the configurations of the graph, e.g.,

the transition0010010000000000 — 01111110010000000
(where0 and1 represent the stategpen andi nf ect ed
respectively), corresponds to the change of configuration
fromt¢ = 0 tot = 1 in the graph when there are no pro-
tected nodes to start with.

The above Kripke structure can be encoded in the lan-
guage of the model checker Spin (Spin 2010).We now show
how the model checker can be used to find and verify inter-
vention policies for containing the spread of infections.

Finding & Verifying Policies using LTL

Given a Kripke structurd( that encodes the spread of in-
fection in a graph=(V, E), finding and verifying policies
can be reduced to verifying corresponding temporal prop-
erties in LTL (linear temporal logic, see (Vardi 1996)). The
syntax of LTL is defined over a set of propositioRsop

and temporal operatods andU as follows.

p—true|Prop|—¢|eVe|Xe|pUp

The semantics of LTL is defined in terms of the set of
paths that satisfy the formula. L&be a path wheré[i] de-
notes the-th state in the path anid denotes the suffix of the
path starting fromd[i] (6° = §). Any path satisfies r ue, a
pathé satisfiesdPr op iff §[0] satisfiesPr op; a path satisfies
- iff it does not satisfyp; and a path satisfies; V ¢ iff it
satisfies either of the disjuncts. A patbatisfies<y (nexty)
iff ' satisfiesp and a path§ satisfiesp; Ups (1 until o)
iff there existsj > 0 : 67 satisfiesp, and for alli < j : &°
satisfiesp;. Other temporal operators in LTL are described
in terms of the above. In particuldy = t r ueUy (a path
J satisfies the propertgventuallyiff 35 > 0 : ¢/ satisfies
¢); Gy = —-F—y (a pathd satisfies the properiylobally iff
Vi > 0 : §° satisfiesp). A Kripke structure satisfies an LTL
formulay iff all paths starting from all its start states satisfy
.

We consider the LTL properties that correspond to queries
of the type Q1 or Q2 shown below. For each of the
query types, the initial states, i.e., the set off ect ed or
pr ot ect ed nodes in the graph, are pre-specified. For ex-
ample, in a query of type Q1, the segives the nodes that
are initiallyi nf ect ed which correspond to the set of start
statesS, in the Kripke structuré<s. This guides the model
checker to only explore those paths in the Kripke structure
that start from one of the states gy. Other queries may
specify instead, the maximum number of infected or pro-
tected nodes in the graph. This implies that different com-
binations of nodes in the graph can be infected or protected
at the start of the spread. We encode this information by al-
lowing the model checker to non-deterministically initial
the states of the nodes in the graph while ensuring that the
constraints on the number of infected or protected nodes are
respected.

Q1: Finding an intervention policy In this case, the set
I C V of initially infected nodes, and a fixed number
of nodes that can be initially protected are pre-specified.
Hence, we encode the set of start states as follows.
So = {<O’(U1)...U(Un)> |V’UZ‘ el: O’(’UZ‘) =infected
A{v; | o(v;) = prot ect ed}| =m}



The query condition specifies aumber m of nodes
that are initially protected, rather than the precise nodes
that are protected. Thus requires considering differemt-co
binations of m nodes in the graph that could be ini-
tialized to pr ot ect ed state. The term{v; | o(v;) =
prot ect ed}| m in the above definition models
this condition, and allows the model checker to non-
deterministically initialize the start states accordingl

Let total; be the total number of infected nodes at any
given time step. In order to find a polieysuch that at most
I nodes are infected, we use the LTL formylaF(total; >
1). The Kripke structure satisfies the LTL formulaif and
only if in every path beginning from all the possible ini-
tial states (i.e., all states ifiy), there exists a state where
total; > 1 holds. Note that the satisfaction of this LTL for-
mula implies that no policy exists, i.e., any combination of
m nodes that are protected at the start of the spread will
lead to at least + 1 nodes being infected over time. On
the other hand, if the LTL formula is not satisfied, it implies
the existence of an initial configuration (start stateSi)
such thatotal; < [ holds in each of the states along a path
starting from the initial configuration (recall that theseeix-
actly one path from each start state). In this case, the model
checker returns a counter-example specifying an initakst
s = {(o(v1)...0(v,)) and a path starting from this initial
state in which every state satisfiggal; < [. The desired
policy = can be constructed from the counter-example re-
turned by the model checker by assigning to the ngdbe
statepr ot ect ed, if o(v;) = prot ect ed in s.

The formulap can be used to find policies for controlling
the spread of infection when the functiofandg are mono-

Q2: Verifying a preventive policy In this query, a policy
m specifying a seP C V of initially protected nodes, and
a fixed numbern of nodes that may be initially infected are
pre-specified. The set of start states is encoded similéieto t
case of Q1 as follows.

So = {(o(v1)...0(vs)) | Vv; € P:o(v;) = protected
AH{v; | o(v;) =1 nfected}| =m}

As in Q1, the condition{v; | o(v;) = pr ot ect ed}| =
m allows the model checker to non-deterministically explore
all possible combinations ef, nodes to be initially infected.
Thus the policy is modeled along with all possible scenarios
of initial infections.

Verification of a given policyr can be achieved using the
LTL formulavy : G(total; < ). 1) is satisfied if and only
if in every path beginning from all the possible initial st
(i.e., all states irby), total; < I always holds. This implies
that protecting the nodes initially according to the giveh p
icy can successfully control the infection from spreading t
more thanl nodes, regardless of which combinationof
nodes are infected at the start of the spread. On the other
hand, if+ is not satisfied, then the model checker returns
a counter example specifying a path starting from a state
s € Sy in the Kripke structure where a combinationsof
nodes are initially infected, for which the policy failse.,
the infection spreads to at ledst 1 nodes. The counter ex-
ample specifies a scenario of initial infection outbreakia t
graph, which may be used by the policymakers to change the
policy.

As in the case of Q1, queries of type Q2 posed against
models where the transmission functions are non-monotonic
(e.g., for spread using-Reversiblek-threshold processes),

tonic, i.e., a node can never become open after it has beenthe policymaker may look for verifying if the given policy

infected. This means thabtal; never decreases (see Ex-
amplel). However, in the case ofReversiblek-threshold

will satisfy the stability condition that' the total numbef
infected nodes is at mostalways,after a certain number

process a node changes state to open after it has been inOf time stepsThe policy can be verified against this new

fected forr time steps, i.e., the transmission functipis not
monotonic. Consequentlyptal; may increase or decrease
at each time step, as seen in Fig@rgsee policyrs Exam-
ple 2) wheretotal; changes fromto3to2 att = 1,2, 3.

In this case, instead of finding a poligysuch that at most
I nodes are infected at any time step, the policymaker might
seek to stabilize the the total number of infected nodes,
i.e., “Is there a policyr such that the total number of in-
fected nodes is at mostalways, after a certain number
of time step®” In this case, we can use the LTL formula
¢ GF(total; > 1). The Kripke structure satisfies the
LTL formula ¢’ if and only if in every path beginning from
each possible initial state (i.e., all statesS§), total; > 1
holds infinitely often. As in the previous query, the satis-
faction of this LTL formula implies that no policy such ex-
ists; and its non-satisfaction implies that the desiredcgol
exists. Specifically, non-satisfiability @f implies the exis-

tence of a start state such that the path from that state sat-

isfiesFG(total; < 1) (recall that there is exactly one path

criteria using the formul@’ : FG(total; <1).If ¢ is satis-
fied, it means that the policy is successful in containing the
infection to at most nodes eventually, after a certain num-
ber of time steps. On the other handyif is not satisfied,

the model checker provides a counter-example specifying
an initial configuration (start state i$y,) havingm infected
nodes resulting in a a path in which the total number of in-
fected nodes is> [ infinitely often. The counter example
may be used by the policymakers to examine the cause of
the policy’s failure and develop alternative policies.

Implementation and Experiments

We now proceed to describe results of preliminary experi-
ments that demonstrate the feasibility of the proposed imode
checking approach to finding intervention policies and ver-
ifying prevention policies. We have implemented a prepro-
cessor (in Java) that accepts as input, the network, the ini-
tial configuration, and optionally the policy to be verified,
and provides a Kripke model encoding of the problem in
Promela, the input language for the Spin model checker

from each start state). The policy can be obtained by from (Spin 2010). The preprocessor generates the input model
the counter example returned by the model checker as in the such that the model checker only explores states where the
case of the irreversible-threshold process. query conditiorntotal; < [ is satisfied; this is sufficient for



g | States €10°) Time (secs) | Memory (GB) distance between the nodes in the network being considered
0 [ 20 0 [ 2 0 | 20 (i.e., non existence of intervention policy is proved). §hi

40 | 082 |107% 254 11077 1007 1077 strategy guides model exploration in a manner that ensures
(1077) |(107°) |(107%) |(10°%) |(10~7) (10 that an intervention policy (if one exists) is obtained (¢}

so | 1224 1070|5220 | 002 | 108 1077 with minimal exploration of the parts of the model state-
(1077 a0 7) J1077) 1(0-02) 107 (10”7 space that do not contribute to finding an intervention golic

60 42.01 0.10 201.98 | 0.43 3.68 0.01 ] )
(6.14) [(0.12) [(12.76) |(0.23) |[(0.51) |(0.01) Single-Step Search to Detect Non-existence of Pdfitle

70 | 5917 [ 062 [270.20 [ 275 | 518 | 005 number of nodes that can get infected in one step exceeds
(30.73) |(0.02) |(87.38) |(0.05) |(2.53) |(10~%) the number of nodes that can be protected at the outset by

go | 56:33 | 45.66 |272.00 |193.04 | 4.99 | 4.05 more than the specified threshold for the intervention golic
(25.93) |(23.46) |(65.00) [(49.47) |(2.14) |(1.93) then we can infer the non existence of an intervention policy

Table 1: Results for random networks with nodes. (without having to deploy the model checker).

Node Merging This optimization is based on a simple ob-
servation that when two adjacent nodgsandn, in G are

are uninfected and unprotected, and one of the nodes (say
n9) has no neighbors other than, thenns can be merged
with n; without affecting the answer to the query. When
nodes adjacent ta; are thus merged with;, we annotate

the noden; with ¢ to denote the fact that #; gets infected

at (discrete) time stef then each of thénodes adjacent to

ny in G are infected at at time steép- 1. While this optimiza-

tion reduces the number of states in the model, solutions ob-
F(total; > 1) with I = 10 andl = 20. The results show tained for the optim!zed model remain valid fo_r thg origir_1a|
that the model checker is able to identify interventionpoli Model. Note that this strategy cannot be applied in settings
cies, when one exists, within a minute for many of the test where nodes can be protected after the spread of infection is
cases. The number of states explored by the model checkeralready underway.

increases with increase in the number of edges (for a fixed Effectiveness of Optimizations. We performed a new set
value ofl). This is because increasing number of edges leads of experiments by applying the above optimizations on ran-
to increase in the number of possible ways the infection can dom graphs with the same parameters as shown in Table 1.
spread in the network. On the other hand, the number of The new results (in terms of size of the state-space, time and
states explored by the model checker decreases with icreas memory usage) are presented along with the results obtained
in I (for a fixed value of edges). This is because increasing without the optimizations in parenthesis. The optimizagio

the model checker to produce correct solutions for the model
checking problem because reachability of a state where the
guery condition is not satisfied implies the non-existerfce o
intervention policy or unsatisfiability of prevention poi
along that path.

Table * shows the results of our implementation for
networks havingt0 nodes andl0, 50, 60, 70 and 80 edges
(F) randomly generated such that the maximum degree of
each node i< 5. We tested each network with query Q1

l increases the number of intervention policies that are ef-
fective and the model checker terminates exploration of the
model as soon as it identifies one such policy. We observe
similar trends with respect to memory usage.

Optimizations to Improve Scalability

We developed several optimizations that can be incorptrate
into the preprocessing step. These optimizations arefspeci
cally designed to allow faster search for interventiongies

in settings where the spread of infection is irreversible.

Iterative Bounded SearciThe main idea here is to itera-
tively search for an intervention policy, each time chogsin
the nodes to protect in a specific order. In iteratiome con-
sider all the non-infected nodes that aré edges away from
the infected nodes asindidatedo be protected (rather than
consideringall non-infected nodes). This strategy yields a
trivial intervention policy if we are able to protect all than-
didate nodes, i.e., when number of candidatebe number

of nodes that can be protected at the outset (Protecting eac
of the neighbors of each infected node ensures that the in-

resulted in abous0% reduction in the number of states ex-
plored by the model checker, the time taken, and the amount
of memory used. The optimizations made it possible to find
intervention policies for random networks witt) to 100
nodes, which was not possible without the optimizations.

It should be noted that real world networks (e.g., social
networks, the Internet, the power grid), tend to exhibitesca
free topologies and and hierarchical modularity (Ravask an
Barabasi 2003). Due to the existence of a fewb nodes
that have a relatively high degree of connectivity, the degr
distribution of the nodes in such networks generally follow
a power law distribution (Ravasz and Barabasi 2003).

We have conducted preliminary experiments to assess the
effectiveness of our approach to finding policies in scale-
free networks. In our experiments, we used randomly gen-
erated scale-free networks wid to 100 nodes ¥), with
two combinations of initial configurations { infected,20
protected nodes; arl infected,10 protected nodes), and

pthreshold values df0 and40. The corresponding results are

presented in Table 2.

fection cannot spread to any as yet uninfected nodes). The AS compared to random networks of similar size (results

iteration is continued (foé = 1,2,...) until an interven-
tion policy is obtained or the is larger than the maximum

LAll experiments were conducted using Intel i7 3.528 GHz pro-
cessor with 6GB memory on 64 bit Kubuntu 10.10 OS.

not shown), the performance of our approach (as measured
by the size of the state space, time, and memory used) is
at least an order of magnitude (and sometimes two orders of
magnitude) better in the case of scale-free networks. e not

that the space and time usage is extremely low for some of



v £ States 10%) | Time (secs.)| Memory (GB)
30 | 40 30 [ 40 30 | 40

10 Infected nodes, 20 protected nodes

80 | 119.53 [0.07 | 10~* [0.18 |107° [1072 |[107°

90 | 138.00 |3.46 | 6.76 [0.83 [27.98 |1072 | 0.63

100 | 149.43 |5.46 | 102 [29.00 |10~2 |0.51 | 1073
20 Infected nodes, 10 protected nodes

80 | 120.97 [12.29 | 29.33 [26.59 [112.66 [1.01 | 2.46

90 | 133.67 [6.14 | 30.04 [13.61 [149.10 [0.51 | 2.53

100 | 151.53 107% | 27.99 |0.00 [146.67 [10~2 | 2.53

Table 2: Results for scale-free networks.

the generated problem instances (e.g., see TahlgdZyode
networks with20 initially infected, 10 protected nodes and

a threshold oB0). This suggests that in the case of these in-
stances the non-existence of a policy was determined in the
preprocessor stage, without the need for invoking the model
checker to explore to the state space.

The scalability of our approach can also be further im-
proved by taking advantage of the advances in model check-
ing such as abstraction, symmetry reduction and bounded
model checking (Clarke 2008; Biere et al. 1999; Cook
and Sharygina 2005). Alternative techniques based on SAT
solvers (Biere et al. 2006) would be interesting to explore
and compare with our approach.

Conclusion

We have presented a practical solution to the problem of
finding and verifying policies for controlling the spread of
infections (diseases, ideas, etc.) in networks. Our amproa
encodes the spread of infection in a network using a Kripke
structure, where each change in the configuration (the set of
infected or protected nodes in the network) corresponds to
a transition in the Kripke structure. This allows us to regluc
the problem of verifying the effectiveness of preventiofipo
cies to the problem of model checking temporal properties
of the Kripke structure. Furthermore, we we can take ad-
vantage of the ability of model checkers to identify counter
examples that demonstrate that a given temporal property
is not satisfied by the model to derive the desired policies
from the counter-example by verifying temporal properties
that violate the conditions that need to be satisfied by the
policies.

Using the Spin model checker, we have used LTL model
checking techniques to (a) find an intervention policy (i€on
exists) for containing an infection break; and (b) verify a
prevention policy (i.e., a strategy to protect a subset ef th
nodes before the onset of an outbreak) where the policies
are required to control the spread to at mosbdes in the
network. The model of spread we considered is quite gen-
eral: The details of how the nodes in the network respond to
the spread of infection are specified by the infection propa-
gation functionsf andg. Hence, the techniques introduced
here are equally applicable to settings that involve theasgbr
of infections in a population, the spread of viruses or mal-
ware in a computer network, or the spread of opinions or
rumors in a social network. As part of future work, we plan
to investigate strategies to model and analyze spread prob-
lems with probabilistic and real time constraints (Newman
2003).
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