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1 INTRODUCTION

So far, we have considered the use of threshold neurons as 2-category pattern
classifiers. Many practical pattern classification tasks involve multiple cate-
gories. A simple-minded extension of 2-category classifiers to M category clas-
sifiers involves the training of each of the M neurons to separate the patterns
corresponding its assigned category from the rest of the patterns in the training
set using linear hyperplanes. However, as we shall see shortly, this falls short of
exploiting the full computational capabilities of a group of M threshold neurons.

Figure 1 An M-category classifier that uses M independent 2-category per-
ceptrons
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Figure 2 An M-category classifier that uses an M-neuron WTA group

2 WTA NETWORKS

In a WTA network, each of the neurons computes its net input as the dot
product of its weight vector with the input pattern. The neuron with the
highest net input outputs a 1, and all other neurons output 0. If there is a
tie, all of the neurons output 0. This mode of operation is inspired by cortical
circuits of neurons which laterally inhibit other neurons in their neighborhood.
This inhibition is thought to play a role in a variety of functions from contrast
enhancement of visual input to learning. We will examine the detailed processes
underlying such competitive interactions among neurons and their implications
in terms of information processing functions of the nervous systems later. For
now, a simplified algorithmic description of the result of such interaction as
outlined above is adequate for our purposes.

Consider a simple network of 3 neurons shown in the figure.

Figure 3 An Example of WTA Network
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Wi =[1-1-1]

Wy =[111]

W3 =[20 0]
T I9 I3 W1 - X Wz - X W3 - X 01 02 03
1 -1 -1 3 -1 2 1 0 0
1 -1 +1 1 1 2 0 0 1
1 +1 -1 1 1 2 0 0 1
1 +1 +1 -1 3 2 0 1 0

Upon closer scrutiny, we see that the third neuron (with output Os) is comput-
ing the exclusive-OR function. Of course, we know that exclusive-OR function
is not a threshold function. Thus, this example establishes that WTA networks
can compute a richer class of functions than a single threshold neuron. We will
see that they still fall short of the computing abilities of arbitrary networks
of threshold neurons, but nevertheless, they offer interesting designs for multi-
category pattern classifiers. We can define the class of functions computed by
the WTA groups (linearly separable functions) as follows:

Let S = {X1...Xp} be a set of pattern vectors.

Suppose each Xy € S belongs to exactly one of M classes: C;...Cp,,. Where
S=CiUCyU...UCy,, C;NC; =0 Vi .

The set S is said to be linearly separable iff 3 weight vectors Wy ... Wy, such
that V classes C;, we have VX € Cj, W - Xy > Wi - Xy Vi £ j.

Note that 2-neuron WTA groups are computationally equivalent to a single
threshold neuron. Thus, WTA groups are interesting only when the number of
neurons in the group is at least 3.

3 TRAING WTA NETWORKS

The learning algorithm for WTA networks is similar to Perceptron learning.
Let: W; = weight vector of neuron i; X = k" input pattern, Xzo = 1; Oy
= output of neuron i for pattern Xy; Oz = 1 iff Wy - X > W5 - Xy Vj # 4,
otherwise O;r = 0.
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As in the case of single neuron training, we cycle through the patterns in the
training set one at a time until all the patterns are correctly classified by the
winner take all group. However, we modify the weights of the wrongly off
neuron and the wrongly on neuron and leave the rest of the weight vectors
unchanged. (This is necessary to guarantee that a solution will be found if one
exists).

Suppose for the input pattern X; belonging to class Cj, the output O;; = 1.
We want O;; to be a 1, so neuron ¢ is wrongly on and neuron j is wrongly off.
We update the corresponding weight vectors as follows:

Wi — Wi — 77Xk

Wj — Wj + nXk

Note that all other weight vectors Wi(l # ¢;{ # j) are left unchanged.

In the event of a tie, we add a fraction of the pattern vector to the weight
vector of the neuron that was wrongly off.

Note that there are clearly other ways to solve an M-category pattern classi-
fication task. For instance, we can transform the problem into one of solving
M 2-category classification problems by attempting to separate each class from
the rest using single neuron training algorithm. However, this solution has the
following drawbacks relative to WTA training:

m  There may be regions in the pattern space for which classification is not
unique (where more than one neuron outputs 1).

m  There are situations where such a strategy fails to find appropriate weight
vectors for a WTA group even if they exist.

Thus it is advantagous to use WTA groups for Multi-category pattern classifi-
cation.
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4 WTA CONVERGENCE THEOREM

If a given multi-category pattern set S is linearly separable then the WTA
algorithm will find the weight vectors W7 ... Wj, that correctly classify S
using a WTA network with the correspondly weight vectors.

Proof Sketch

Suppose X € S and X € C;. So we want:
(W; —W;)- X >0Vj#£i

can be written as:

WPy >0V #£i
where W = [W; ... W; ... Wy,] is obtained by concatenating the individual
weight vectors and {P;;} (j £ ¢, 1 < 1,5 < M) denotes a modified training set
constructed as explained below.

Consider a pattern X that belongs to C;. Then we construct (M — 1) modified
training patterns as follows:

Ppo=[X -X ¢ ¢...9].
Ps;=[X ¢ -X ¢...9].
Piy=[X ¢...6 —X|.

where ¢ denotes a vector of zeros (with the same dimension as X. Thus,
there are M — 1 patterns in the modified training set for each pattern in the
original training set. It is easy to see that the the original M-neuron WTA
group training problem has a solution if and only if the single neuron training
problem has a solution. That is, is a single neuron (perception) training

problem with weight vector W and a modified training set made of {P;;}.

has a solution iff has a solution. So the convergence of the WTA training
algorithm follows from the perceptron convergence proof.

Note that the transformation of the training set outlined above is not a practical
approach to finding the weight vectors for the WTA group (since it requires
processing M — 1 modified patterns for each pattern in the given training set).



