3

PERCEPTRON ALGORITHM

Vasant Honavar

Artificial Intelligence Research Group
Department of Computer Science
Towa State University

Ames, Towa 50011

(©Vasant Honavar, 1996.

1 LEARNING THRESHOLD FUNCTIONS
FROM EXAMPLES

As we saw in the previous chapter, an n-input McCulloch-Pitts neuron can
compute an interesting subset of the set of functions {¢ : £ — {0,1}}. Since
the set of functions that are computable by an n-input threshold neuron include
many functions of practical interest (including boolean threshold functions)
which find applications in pattern classification tasks (e.g., diagnosis), a natural
question to ask is whether it is possible to learn particular threshold functions
from ezxamples of the desired input—output mapping. This chapter explores a
simple algorithm — the so-called perceptron algorithm due to Rosenblatt (among
others) that can be used to train a threshold neuron to compute a function
implicitly specified using a set of training examples.

We start with a few definitions.

A training example & is an ordered pair (Xj, ¢) where X = [2zog, - -, Znk] 18
a pattern vector (Vkaor = 1) and ¢ = 0 or 1 (depending on the desired output
of the neuron for input pattern Xj. A training set £ is simply a set of training
examples & = {&;}.

Let 8t = {Xi|& = (Xk,cr) € E,¢cx = 1} denote the set of ‘positive’ pat-
terns (i.e., the training patterns for which the desired output is 1) and &~ =

2 CHAPTER 3

{X5|& = (X, cr) € €, ¢, = 0} denote the set of ‘negative’ patterns (i.e., the

training patterns for which the desired output is 0).

Learning Task: Given a training set £, find a weight vector W, = [wox, - -, Wna]
such that

VX5 €S+,W* Xp>0and VX, € S, W, - X <0

It goes without saying that we can hope to find such a weight vector W, only
if one exists, that is, iff £ implicitly defines a threshold function.

2 PERCEPTRON ALGORITHM

Having defined the learning task, we now examine a relatively simple algorithm
— more specifically, the fized correction rule, popularly known as the perceptron
algorithm, for training a threshold neuron.

Intialize W —[0...0]
until a complete pass through the training set results in no

weight updates do: {
1. Select an example & = (Xj,cx) and compute W X,

the output of the neuron oy =1 if W X >0
=0 otherwise
2.
W — W+ U(Ck — Ok)Xk
}
W, — W

note: 1 =learning rate > @

Example

The following example illustrates the working of the perceptron algorithm using
a 2-input threshold neuron and a set of training examples for the boolean OR
function.

Perceptron Algorithm 3

Xe |2z | 21 | 22 ||
X |1 010 0
X, | 1 0 1 1
X3 | 1 1 0 1
X, |1 1 1 1

Assume that patterns are selected by cyclic order (i.e., X1, X2, X3, X4, X1,)
and n = 1 always.

initialize: W = [0 0 0]

step I: W-X;=[000]-[100]=0= 01 =0 =r¢; (no change in W)
step 1: W-X,=[000]-[101]=0=0,=0#¢>

step 22 W=[000]+(1—-0)[101]=[101]

step I: W-X3=[101]-[110]=1= 03 =1=cs (no change in W)
step I: WXy =[101]-[111]=2= 04 =1 = ¢4 (no change in W)
step I: W-X;=[101]-[100=1=01=1#0c1

step 22 W=[101]4+(0—-1)[100]=[001]

step I: W-X3=[001]-[101]=1= 02 =1 = ¢y (no change in W)
step I: W -X3=[001]-[110]=0=03=0#cs

step 2: W=[001]+(1—0)110]=[L11]

step I: WXy =[111]-[111]=3= 04 =1= ¢4 (no change in W)
step : W-X;=[111]-[100]=1=01=1#c1
step 22 W=[111]+(0—-1)[100]=[011]

step I: W-X3=[011]-[101]=1= 02 =1 = ¢y (no change in W)
step I: W-X3=[011]-[110]=1= 03 =1=cs (no change in W)
step I: WXy =[011]-[111]=2= 04 =1 = ¢4 (no change in W)

step I: W-X;=[011]-[100]=0= 01 =0 =r¢; (no change in W)

4 CHAPTER 3

Thus, a complete pass through the training set in the last four pattern presen-
tations shown above results in no changes in W. So the process terminates with
the final weight vector W, = [0 1 1] which implements the function specified
by the training set.

3 PERCEPTRON CONVERGENCE
THEOREM

As we saw in the preceding example, the algorithm appears to successfully
perform the learning task. But it is not obvious as to whether it would work
in general. In particular, it is not obvious that weight changes that correct the
output for some of the patterns do not for ever cause some other previously
correct outputs to be changed (as a result of the weight changes). Fortunately
however, it turns out that we can prove (after Novikoff) that the perceptron
algorithm is guranteed to find a solution to the learning task outlined above
whenever a solution exists. Obviously, no algorithm can be expected to find a
solution that does not exist. In particular, if the function to be learned is not a
threshold function (e.g., exclusive OR), it cannot be computed by a threshold
neuron and so no algorithm can train a threshold neuron to compute it. We
will consider more powerful learning algorithms that work with networks of
neurons to deal with this problem later. But first, we prove the perceptron
convergence theorem.

Theorem:

Given a training set consisting of +ve and -ve samples (St and S~ respectively)
the perceptron learning algorithm is guaranteed to find a weight vector W such
that VX, € S+(Ck = 1),W* - X > 6 and VX, € S_(Ck = 0),W* - X < =6,
for some 6 > 0, whenever such a W, exists.

Proof)

The basic idea behind the proof is to exploit the geometric fact that the cosine
of the angle between any two vectors is at most 1. In particular, this has to
hold for the solution vector W, and the weight vector being manipulated by
the perceptron algorithm. We will use this fact, along with some observations
regarding the weight updates performed by the perceptron algorithm, to prove
the convergence theorem.

First, without loss of generality, assume that W, - X (the solution hyperplane)
passes through the origin of the pattern space spanned by the co-ordinates
Zy1- - Z,. In other words, wg. = 0. This simplifies the proof considerably

Perceptron Algorithm 5

without sacrificing its generality for the following reason: If there is a solution
hyperplane which does not pass through the origin, we can make it pass through
the origin simply by moving the origin by an appropriate amount. Second, we
simplify matters by transforming the learning task so that we only have to
consider positive samples:

LetZ, = XkaCkII(W*Xk>(S<:>W*ZkZ(S)
= —Xp ikaIO(W*~Xk§—(S<:>W*'ZkZ(S)

So the modified training set will consist of only +ve examples {(Zy,1)}. Let
Z = {Z;}. In order to prove the theorem, we need to show that the perceptron
algorithm is guaranteed to find a W, such that VZy € Z W, - Z;, > 6.

Let W; = weight vector after ¢ weight updates. (If the weights do not change
as a result of a pattern presentation, then it does not qualify as an update).
Let W41 = weight vector after ¢t + 1 weight updates. Let Wy = [0---0]. (It
is easy to extend the proof so that it works for the case where Wy is initialized
to an arbitrary weight vector).

Wi = Wi+ n(ew —or) Zy
———
always 1
= W;+nZ;
W. Wi = W, - (Wi+nZy)
——
>5
> W, W, +né
It follows that:
W, W, >tnb (3.1)

Now let us examine how the length of the weight vector changes as a result of
weight updates:

[Wept]? = Wipr - Wi

(Wi +nZ) - (Wy +0Zy)

W, W, +2yW, - Zj, + °Zy, - Zy,

= |IWill* + 20 W, - Zi 7|2
N

<0

6 CHAPTER 3

Now we note that given any finite training set, the length of the training pat-
terns is bounded. That is, VZ, ||Zg|| < L. It follows that:

IW[]* < tn*L? (3.2)

We use the above results to show that the number of updates, ¢, is bounded.
Consider: tnd < W, - W
6 < [[W.[[[Wel| cos 0 < [[W.|||[We]|.

Substituting for ||W¢|| we have: tné < |[W.|VtnL
2
1< (wg L) .
Thus, t is bounded. This proves the theorem.

Remarks:

m Note that the learning rate does not appear in the bound we just derived
for the number of weight updates. So the convergence theorem holds for
any bounded learning rate n > 0.

m The bound that we have established is not useful in terminating the algo-
rithm in practice (since ||[W,]| is not known until we have found a solu-
tion.).

The perceptron algorithm is quite robust as a learning model. It can be shown
that the algorithm converges even when 7 is allowed to flucuate arbitrarily over
time as long as 0 < n; < B where B is the upper bound on the learning rate.

Corollary: Suppose the training patterns are binary:

Xy = [Xog- - Xnk] whereX;r, = 0 or 1. Thus we have: L =+/n+1. If
the patterns can be seperated (i.e., W, -Zx > é where § > 0) then there
exists a W, that seperates patterns with § = 1. It follows that: t <

(IWAE) or b [WL|P(n+1).

Perceptron Algorithm 7

4 VARIANTS OF THE PERCEPTRON
ALGORITHM

Perceptron algorithm offers a simple, provably convergent procedure for find-
ing a weight vector that corresponds to a separating hyperplane whenever the
training set is linearly separable. A number of variants of the perceptron al-
gorithm that converge faster to a solution than the simple algorithm discussed
in this chapter are available. One such algorithm is based on the so-called
fractional correction rule. It is better understood in terms of an alternative
representation of a threshold neuron called the weight space representation.
Any choice of weights say Wy = [Wo, - - - Wy,p] can be thought of as a point
in an (n + 1)-dimensional “weight space” with coordinate axes (wg - --wy). In
weight space, a pattern vector Xy = [Xog - - - Xpni] defines a hyperplane given
by W - Xj = 0 where W = [wq - - wy,].

Thus, in the weight space represenatation is the dual of the pattern space
representation.

Wi

W X; =0 W-X1=0

Wo

Weights are fixed after training, but learning modifies the weights.

The idea is to find the weight coordinates that lie on the correct side of all
the pattern-defined hyperplanes. Thus, starting from some initial location, the
point that defines the weights moves in the weight space as weights are updated
according to some learning rule.

8 CHAPTER 3

Wi

WX:[:O

X3

W

If a weight vector Wy incorrectly classifies a pattern Xy (corresponding to
pattern hyperplane W¢ - Xi = 0) all we need to do is to change Wy so that it
moves across the hyperplane.

The quickest way to move a point accross a pattern hyperplane defined by a
pattern that is incorrectly classified is along the normal to that hyperplane.
X is the normal to the hyperplane W - X; =0

The learning rate 1 in the perceptron learning rule controls how far W is moved.

The perceptron algorithm discussed earlier changes W, as follows:
Wit — Wy X}, (where > 0 is constant).

What if we allow the learning rate to vary? Suppose we choose 1 such that at
each weight update, we correct for the entire error in one shot.

Wi - X = (We + 0 Xg) - Xy
We then choose 7; such that
Wt+1 Xk > Olth Xk < 0 and Cp = 1.

So

| WX
= | X Xs

This gives the so-called absolute correction rule.

Alternatively, we could choose 7 to be

Perceptron Algorithm 9

A |[W X
X X

where 0 < A <2

This gives the fractional correction rule. Both absolute correction and fractional
correction rules are provably convergent. We omit the proofs here but the
interested reader is refered to [Nilsson, 1965].

5 DISCUSSION

The perceptron algorithm is poorly behaved on training sets that are not lin-
early separable. A number of better-behaved variants of the perceptron algo-
rithm have been proposed to address this problem so that we can find a rea-
sonably good solution when a perfect solution (i.e., a separating hyperplane)
does not exist.

There are clearly practical pattern classification problems that are not amenable
to solution using a single threshold neuron. Thus, we need to consider algo-
rithms for constructing and/or training networks of neurons.

Alternatively, given some prior knowledge about the pattern classification task,
one might be able to transform the patterns so that they become linearly sep-

arable.

Some of these topics will be addressed in subsequent chapters.

