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Maximum	margin	classifiers	

•  Discrimina3ve	classifiers	that	maximize	the	margin	of	separa3on	
•  Support	Vector	Machines	

–  Feature	spaces	
–  Kernel	machines	
–  VC	Theory	and	generaliza3on	bounds	
–  Maximum	margin	classifiers	

•  Comparisons	with	condi3onally	trained	discrimina3ve	classifiers	
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Perceptrons	revisited	

Perceptrons		
•  Can	only	compute	threshold	func3ons	
•  Can	only	represent	linear	decision	surfaces	
•  Can	only	learn	to	classify	linearly	separable	training	data	
How	can	we	deal	with	non	linearly	separable	data?	
•  Map	data	into	a	typically	higher	dimensional	feature	space	

where	the	classes	become	separable	
Two	problems	must	be	solved:	
•  Computa3onal	problem	of	working	with	high	dimensional	

feature	space	
•  OverfiVng	problem	in	high	dimensional	feature	spaces	
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Maximum	margin	model	

We	cannot	outperform	Bayes	op3mal	classifier	when	
•  The	genera3ve	model	assumed	is	correct	
•  The	data	set	is	large	enough	to	ensure	reliable	es3ma3on	of	

parameters	of	the	models	
But	discrimina3ve	models	may	be	beHer	than	genera3ve	

models	when	
•  The	correct	genera3ve	model	is	seldom	known	
•  The	data	set	is	oXen	simply	not	large	enough	
	
Maximum	margin	classifiers	are		a	kind	of	discrimina3ve	

classifiers	designed	to	circumvent	the	overfi3ng	problem	
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	Extending	Linear	Classifiers	–	Feature	spaces	
     

     
     

Map	data	into	a	feature	space	where	they	are	linearly	
separable	

( )ϕ→x x
x ( )ϕ x

X Φ
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Linear	Separability	in	Feature	spaces	

The	original	input	space	can	always	be	mapped	to	some	higher-
dimensional	feature	space	where	the	training	data	become	
separable:	

Φ:  x → φ(x) 
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																					Learning	in	the	Feature	Spaces	

High	dimensional	Feature	spaces	
	
	
where	typically	d	> > n	solve	the	problem	of	expressing	complex	

func3ons	
	
But	this	introduces	a	
•  computa3onal	problem	(working	with	very		large	vectors)	
•  generaliza3on	problem	(curse	of	dimensionality)	

SVM	offer	an	elegant	solu3on	to	both	problems	

     

     
     

	
	
	

( ) ( ) ( ) ( ) ( )( )xxxxx dnxxx ϕϕϕ=ϕ→= ,....,...., 2121
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								The	Perceptron	Algorithm	Revisited	

•  The	perceptron	works	by	adding	misclassified	posi3ve	or	
subtrac3ng	misclassified	nega3ve	examples	to	an	arbitrary	
weight	vector,	which	(without	loss	of	generality)	we	
assumed	to	be	the	zero	vector.		

•  The	final	weight	vector	is	a	linear	combina3on	of	training	
points	

where,	since	the	sign	of	the	coefficient	of									is	given	by	label	
yi,		the								are	posi3ve	values,	propor3onal	to	the	number	
of	3mes,	misclassifica3on	of					has	caused	the	weight	to	be	
updated.	It	is	called	the	embedding	strength	of	the	
paHern								.		

•  											
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																						Dual	Representa3on	

The	decision	func3on	can	be	rewriHen	as:	
	
	
	
	
	
									
	
The	update	rule	is:	
	
	
WLOG,	we	can	take		
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													Implica3ons	of	Dual	Representa3on	
     

     
     

 
When	Linear	Learning	Machines	are	represented	in	the	dual	

form	
	
	
	
Data	appear	only	inside	dot	products	(in	decision		
				func3on	and	in	training	algorithm)	
	
The	matrix																															which	is	the	matrix	of	pair-wise	

dot	products	between	training	samples	is	called	the	Gram	
matrix	
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Implicit	Mapping	to	Feature	Space		

     

     
     

Kernel	Machines	
•  Solve	the	computa3onal	problem	of	working	with	many	

dimensions	
•  Can	make	it	possible	to	use	infinite	dimensions	efficiently		
•  Offer	other	advantages,	both	prac3cal	and	conceptual	
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Kernel-Induced	Feature	Spaces		

Φ→ϕ X:
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where																												is	a	non-linear	map	from	input	space	to	
feature	space	

	

In	the	dual	representa3on,	the	data	points	only	appear	inside	
dot	products	
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	Kernels	
     

     
     

•  Kernel	func3on	returns	the	value	of	the	dot	product	
between	the	images	of	the	two	arguments	

•  When	using	kernels,	the	dimensionality	of	the	feature	
space	Φ	is	not	necessarily	important	because		of	the	special	
proper3es	of	kernel	func3ons	

	
•  Given	a	func3on	K,	it	is	possible	to	verify	that	it	is	a	kernel	

(we	will	return	to	this	later)	

1 2 1 2( , ) ( ), ( )K x x x xϕ ϕ=
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	 	 	Kernel	Machines	
     

     
     

	
We	can	use	perceptron	learning	algorithm	in	the	feature	

space	by	taking	its	dual	representa3on	and	replacing	dot	
products	with	kernels:	

1 2 1 2 1 2, ( , ) ( ), ( )x x K x x x xϕ ϕ← =
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Example:	Polynomial	Kernels	
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The	Kernel	Matrix	
     

     
     

 
 
 
 
 
K= 

K(1,1) K(1,2) K(1,3) … K(1,l) 

K(2,1) K(2,2) K(2,3) … K(2,l) 

… … … … … 

K(l,1) K(l,2) K(l,3) … K(l,l) 

Kernel	matrix	is	the	Gram	matrix	in	the	feature	space	Φ	

(the	matrix	of	pair-wise	dot	products	between	feature	vectors	
corresponding	to	the	training	samples)	
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Proper3es	of	Kernel	Matrices	
	

     

     
     

It	is	easy	to	show	that	the	Gram	matrix	(and	hence	the	kernel	
matrix)	is		

•  A	Square	matrix		
•  Symmetric	(K	T	=	K)	
•  Posi3ve	semi-definite	(all	eigenvalues	of	K	are	non-nega3ve	

–	Recall	that	Eigen	values	of	a	square	matrix	A	are	given	by	
values	of	λ	that	sa3sfy	|	A-λI	|=0)	

Any	symmetric	posi3ve	semi	definite	matrix	can	be	regarded	
as	a	kernel	matrix,	that	is,	as	an	inner	product	matrix	in	
some		feature	space	Φ	

( ) ( ) ( )jiji xxxxK ϕϕ= ,,



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Mercer’s	Theorem:	Characteriza3on	of	Kernel	Func3ons	
     

     
     

A	func3on	K	:	X×Xà	ℜ	is	said	to	be	(finitely)	posi3ve	semi-
definite	if		

•  K	is	a	symmetric	func3on:	K(x,y)	=	K(y,x)		
•  Matrices	formed	by	restric3ng	K		to	any	finite	subset	of	the	

space	X	are	posi3ve	semi-definite	
Characteriza3on	of	Kernel	Func3ons		
Every	(finitely)	posi3ve	semi	definite,	symmetric	func3on	is	a	

kernel:	i.e.	there	exists	a	mapping		ϕ				such	that	it	is	
possible	to	write:	

 ( ) ( ) ( )jijiK xxxx ϕϕ= ,,



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Proper3es	of	Kernel	Func3ons	-	Mercer’s	Theorem	
     

     
     

Eigenvalues	of	the	Gram	Matrix	define	an	expansion	of	
Kernels:	

That	is,	the	eigenvalues	act	as	features!			
	
Recall	that	the	eigenvalues	of	a		
square	matrix	A	correspond	to		
solu3ons	of		
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Examples	of	Kernels	
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Simple	examples	of	kernels: 
  

( ) dK zxzx ,, =
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Example:	Polynomial	Kernels	
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Making	Kernels	–	Closure	Proper3es	
     

     
     

The	set	of	kernels	is	closed	under	some	opera3ons.	If	
K1 , K2	are	kernels	over	X×X,	then	the	following	are	kernels:		
	
	
	
	
	
	
	
	
	
	
We	can	make	complex	kernels	from	simple	ones:	modularity!	
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Kernels	

•  We	can	define	Kernels	over	arbitrary	instance	spaces	including	
•  Finite	dimensional	vector	spaces,		
•  Boolean	spaces	
•  ∑*	where	∑	is	a	finite	alphabet	
•  Documents,	graphs,	etc.	

•  Kernels	need	not	always	be	expressed	by	a	closed	form	formula.		
•  Many	useful	kernels	can	be	computed	by	complex	algorithms	

(e.g.,	diffusion	kernels	over	graphs).	
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Kernels	on	Sets	and	Mul3-Sets	

( ) kernel. a is  , Then

, Let
 domain fixed some for  Let

212

2

21

21

AA

V

AAK

XAA
VX

∩=

∈

⊆

Exercise:	Define	a	Kernel	on	the	space	of	mul3-sets	
whose	elements	are	drawn	from		a	finite	domain	V	
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String	Kernel	(p-spectrum	Kernel)	

•  The	p-spectrum	of	a	string	is	the	histogram	–		vector	of	
number	of	occurrences	of	all	possible	con3guous	substrings	–		
of	length	p

•  We	can	define	a	kernel	func3on	K(s, t)	over	∑*	×	∑*		as		the	
inner	product	of	the	p-spectra	of	s and	t.

€ 

s = statistics
t = computation
p = 3
Common substrings :  tat, ati
K(s,t) = 2
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Kernel	Machines	
     

     
     

Kernel	Machines	are	Linear	Learning	Machines	that	:	
•  Use	a	dual	representa3on	
•  Operate	in	a	kernel	induced	feature	space	(that	is	a	linear	

func3on	in	the	feature	space	implicitly	defined	by	the	gram	
matrix	corresponding	to	the	data	set	K)	
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Kernels	–	the	good,	the	bad,	and	the	ugly	     

     
     

Bad	kernel	–	A	kernel	whose	Gram	(kernel)	matrix	is	mostly	
diagonal	--		all	data	points	are	orthogonal	to	each	other,	
and	hence	the	machine	is	unable	to	detect	hidden	
structure	in	the	data	

1	 0	 0	 …	 0	
0	 1	 0	 …	 0	

1	
…	 …	 …	 …	 …	
0	 0	 0	 …	 1	
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Kernels	–	the	good,	the	bad,	and	the	ugly	     

     
     

Good	kernel	–	Corresponds	to	a	Gram	(kernel)	matrix	in	which	
subsets	of	data	points	belonging	to	the	same	class	are	
similar	to	each	other,	and	hence	the	machine	can		detect	
hidden	structure	in	the	data	

3	 2	 0	 0	 0	
2	 3	 0	 0	 0	
0	 0	 4	 3	 3	
0	 0	 3	 4	 2	
0	 0	 3	 2	 4	

Class 1 

 

Class 2 
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Kernels	–	the	good,	the	bad,	and	the	ugly	
     

     
     

•  In	mapping	in	a	space	with	too	many	irrelevant	features,	
kernel	matrix	becomes	diagonal	

•  Need	some	prior	knowledge	of	target	so	choose	a	good	
kernel		
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																					Learning	in	the	Feature	Spaces	

High	dimensional	Feature	spaces	
	
	
where	typically	d	> > n	solve	the	problem	of	expressing	complex	

func3ons	
	
But	this	introduces	a	
•  computa3onal	problem	(working	with	very		large	vectors)	–	

solved	by	the	kernel	trick	–	implicit	computa3on	of	dot	
products	in	kernel	induced	feature	spaces	via	dot	products	in	
the	input	space	

•  generaliza3on	problem	(curse	of	dimensionality)	

     

     
     

	
	
	

( ) ( ) ( ) ( ) ( )( )xxxxx dnxxx ϕϕϕ=ϕ→= ,....,...., 2121
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The	Generaliza3on	Problem	     

     
     

•  The	curse	of	dimensionality	
•  It	is	easy	to	overfit	in	high	dimensional	spaces	

•  The	Learning	problem	is	ill	posed		
•  There	are	infinitely	many	hyperplanes	that	separate	the	
training	data		

•  Need	a	principled	approach	to	choose	an	op3mal	
hyperplane	
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The	Generaliza3on	Problem	
     

     
     

•  “Capacity”	of	the	machine	–	ability	to	learn	any	training	
set	without	error	–	related	to	VC	dimension	

•  Excellent	memory	is	not	an	asset	when	it	comes	to	
learning	from	limited	data		

	“A	machine	with	too	much	capacity	is	like	a	botanist		with	
a	photographic	memory	who,	when	presented	with	a	
new	tree,	concludes	that	it	is	not	a	tree	because	it	has	a	
different	number	of	leaves	from	anything	she	has	seen	
before;	a	machine	with	too	liHle	capacity	is	like	the	
botanist’s	lazy	brother,	who	declares	that		if	it’s	green,	
it’s	a	tree”		

																																																	C.	Burges	
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History	of	Key	Developments	leading	to	SVM	

1958 	Perceptron	(RosenblaH)	
	
1963	 		Margin	(Vapnik)	
	
1964 		Kernel	Trick	(Aizerman)	
	
1965 		Op3miza3on	formula3on	(Mangasarian)	
	
1971 		Kernels	(Wahba)	
	
1992-1994 	SVM	(Vapnik)	
1996	–	present 	Rapid	growth,	numerous	applica3ons	

	 	 	 	Extensions	to	other	problems		
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A	LiHle	Learning	Theory	
     

     
     

				Suppose:		
•  We	are	given	l	training	examples	
•  Train	and	test	points	drawn	randomly	(i.i.d)	from	some	
unknown	probability	distribu3on	D(x,y)		

•  The	machine	learns	the	mapping															and	outputs	a	
hypothesis													.		

•  A	par3cular	choice		of													specifies	“trained	machine”	
•  The	expecta3on	of	the	test	error	or	expected	risk	is	

( , ).i iy  x

i iy→x

( ) ( ) ( )∫ −= ydDbhybR ,,,
2
1, xαxα  

€ 

h x,α,b( )
α,b( )
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A	Bound	on	the		Generaliza3on	Performance	
     The	empirical	risk	is:	

	
Choose	some					such	that																.	With	probability																the	

following	bound	–	risk	bound	of	h(x,a)	for	distribu3on	D	–	holds	
(Vapnik,1995):	

				
	
where											is	called	VC	dimension	is	a	measure	of		“capacity”	of	

machine.		
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A	Bound	on	the		Generaliza3on	Performance	
     

     
     

The	second	term	in	the	right-hand	side	is	called	VC	confidence.	
Three	key	points	about	the	actual	risk	bound:	

•  It	is	independent	of			D(x,y)															
•  It	is	usually	not	possible	to	compute	the	leX	hand	side.	
•  If	we	know	d,	we	can	compute	the	right	hand	side.	

	
The	risk	bound	gives	us	a	way	to	compare	learning	machines!	
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The	VC	Dimension	     

Defini3on:	the	VC	dimension	of	a	set	of	func3ons																

					is	d	if	and	only	if	there	exists	a	set	of	points		d		data	points	
that	is	shaHered	by	H	

That	is,	each	of	the	2d	possible	labelings	(dichotomies)	of	the	d	
data	points,	can	be	realized	using	some	member	of	H	but	
that	no	set		of	size	d+1	or	greater		sa3sfying	this	property	
exists.	

				

H = h x,α,b( ){ }
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The	VC	Dimension		

     	VC	dimension	of	H	is	size	of	largest	subset	of	X	shaHered	by	
H.	VC	dimension	measures	the	capacity	of	a	set	H	of	
hypotheses	(func3ons).	

If	for	any	number	N,	it	is	possible	to	find	N	points								
																							that	can	be	separated	in	all	the	2N	possible	ways,	

we	will	say	that	the	VC-dimension	of	the	set	is	infinite										
1,.., Nx x
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The	VC	Dimension	Example	

     •  Suppose	that	the	data	live	in							space,	and	the	set													
consists	of	oriented	straight	lines,	(linear	discriminants).		

•  It	is	possible	to	find	three	points	that	can	be	shaHered	by	this	set	
of	func3ons	

•  It	is	not	possible	to	find	four.		
•  So	the	VC	dimension	of	the	set	of	linear	discriminants	in										is	

three.	

2R { ( , )}h αx

2R
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The	VC	Dimension	of	Hyperplanes	
     
Theorem	1		Consider	some	set	of	m	points	in							.	Choose	any	

one	of	the	points	as	origin.	Then	the	m	points	can	be	
shaHered	by	oriented	hyperplanes	if	and	only	if	the	
posi3on	vectors	of	the	remaining	points	are	linearly	
independent.	

Corollary:	The	VC	dimension	of	the	set	of	oriented	
hyperplanes	in							is	n+1,	since	we	can	always	choose	n+1	
points,	and	then	choose	one	of	the	points	as	origin,	such	
that	the	posi3on	vectors	of	the	remaining	points	are	
linearly	independent,	but	can	never	choose	n+2	points		

nR

nR
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VC	Dimension	
     

VC	dimension	can	be	infinite	even	when	the	number	of	
parameters	of	the	set																	of	hypothesis	func3ons		is	
very	small.	

Example:		
					For	any	integer	l	with	any	labels		
					we	can	find	l	points																			and	parameter	α			such	that	

those	points	can	be	shaHered	by	
				Those	points	are:	
	
				and	parameter	α		is:	

{ ( , )}h αx

( , ) sgn(sin( )), ,h α α α≡        ∈x x x R
1,..., , { 1,1}l iy y y       ∈ −

1,..., lx x
( , )h αx

10 , 1,..., .i
ix i l−=      =

1

(1 )10(1 )
2

il
i

i

y
α π

=

−
= +∑
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Vapnik-Chervonenkis	(VC)	Dimension	

•  Let	H	be	a	hypothesis	class	over	an	instance	space	X.	
•  Both	H	and	X	may	be	infinite.	
•  We	need	a	way	to	describe	the	behavior	of	H	on	a	finite	set	of	

points	S	⊆	X.	

•  For	any	concept	class	H	over	X,	and	any	S	⊆	X,	

•  Equivalently,	with	a	liHle	abuse	of	nota3on,	we	can	write		
( ) { }HhShSH ∈∩=Π :

{ }mXXXS ...., 21=

( ) ( ) ( )( ){ }HhXhXhS mH ∈=Π :......1

ΠH(S)	is	the	set	of	all	dichotomies	or	behaviors	on	S	that	are	
	induced	or	realized	by	H	
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Vapnik-Chervonenkis	(VC)	Dimension	

•  If																								where												,	or	equivalently,		
•  we	say	that	S	is	shaHered	by	H. 

•  A	set	S of	instances	is	said	to	be	sha:ered	by	a	hypothesis	
class	H if	and	only	if	for	every	dichotomy	of	S,	there	exists	a	
hypothesis	in	H that	is	consistent	with	the	dichotomy.	

( ) { }mH S 10,=Π mS = ( ) m
H S 2=Π
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VC	Dimension	of	a	hypothesis	class		

Defini3on:	The	VC-dimension	V(H),	of	a	hypothesis	class	H	
defined	over	an	instance	space	X	is	the	cardinality	d	of	the	
largest	subset	of	X		that	is	shaHered	by	H.	If	arbitrarily	
large	finite	subsets	of	X	can	be	shaHered	by	H,	V(H)=∞

How	can	we	show	that	V(H)	is	at	least	d?		
•  Find	a	set	of	cardinality	at	least	d	that	is	shaHered	by	H.	
How	can	we	show	that	V(H) = d?		
•  Show	that	V(H)	is	at	least	d	and	no	set	of	cardinality	

(d+1)	can	be	shaHered		by	H.	
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VC	Dimension	of	a	Hypothesis	Class	-	Examples	

•  Example:	Let	the	instance	space	X	be	the	2-dimensional	
Euclidian	space.	Let	the	hypothesis	space	H	be	the	set	of	axis	
parallel	rectangles	in	the	plane.	

•  V(H)=4	(there	exists	a	set	of	4	points	that	can	be	shaHered	by	
a	set	of	axis	parallel	rectangles	but	no	set	of	5	points	can	be	
shaHered	by	H).		



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Some	Useful	Proper3es	of	VC	Dimension		

Proof:	LeX	as	an	exercise	

( ) ( ) ( )

{ }( ) ( ) ( )
( ) ( ) ( ) ( )

( )
{ }

( )
( ) ( ) ( ) dmmOmΦdmmΦ

mΦm
mSSmdVH

llHVOHVH
 lH

HVHVHVHHH
HVHVHhhXH

HHVH
HVHVHH

d
d

m
d

dH

HH

l

l

<=≥=

≤Π

=Π=Π=

=

++≤⇒∪=

=⇒∈−=

≤

≤⇒⊆

 if   and  if       
 where)(     

,:)(max)( , If
)lg)(( , from concepts    
of onintersecti or union aby  formed is  If

  :

lg)( class, concept finite a is   If

2

12121

2121



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Risk	Bound	
     

What	is	VC	dimension		and	empirical	risk	of	the	nearest	neighbor	
classifier?	

Any	number	of	points,	labeled	arbitrarily,	can	be	shaHered	by	a	
nearest-neighbor	classifier,	thus														and	empirical	risk	=0	.	

				So	the	bound	provide	no	useful	informa3on	in	this	case.	

	

d = ∞
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Minimizing	the	Bound	by	Minimizing	d 

•  VC	confidence	(second	term)		depends	on	d/l			
•  One	should	choose	that	learning	machine	with	minimal	d	
•  For	large	values	of	d/l	the	bound	is	not	3ght	
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Bounds	on	Error	of	Classifica3on	

The	classifica3on	error	
•  depends	on	the	VC	dimension	of	the	hypothesis	class		
•  is	independent	of	the	dimensionality	of	the	feature	space	

	

     Vapnik	proved	that	the	error		ε		of	of	classifica3on	func3on	h	for	
separable	data	sets	is																						

	
	
where	d	is	the	VC	dimension	of	the	hypothesis	class	and	l	is	the	

number	of	training	examples	

dO
l

ε ⎛ ⎞= ⎜ ⎟
⎝ ⎠
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Structural	Risk	Minimiza3on	
     Finding	a	learning	machine	with	the	minimum	upper	bound	on	the	
actual	risk		

•  leads	us	to	a	method	of	choosing	an	op3mal	machine	for	a	given	
task	

•  essen3al	idea	of	the	structural	risk	minimiza3on	(SRM).	
	
Let																																	be	a	sequence	of	nested	subsets	of	

hypotheses	whose	VC	dimensions	sa3sfy	d1	<	d2	<	d3	<	…		
•  SRM		involves		finding	that	subset	of	func3ons	which	minimizes	

the	upper	bound	on	the	actual	risk	
•  SRM	involves	training	a	series	of	classifiers,	and	choosing	a	

classifier	from	the	series	for	which	the	sum	of	empirical	risk	and	
VC	confidence	is	minimal.	

1 2 3 ...H H H⊂ ⊂ ⊂
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Margin	Based	Bounds	on	Error	of	Classifica3on	
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Margin	based	bound	

Important	insight	

Error	of	the	classifier	trained	on	a	separable	data	set	is	
inversely	propor3onal	to	its	margin,	and	is	independent	of	the	
dimensionality	of	the	input	space!	
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	Maximal	Margin	Classifier	     

§  The	bounds	on	error	of	classifica3on	suggest	the	possibility	
of	improving	generaliza3on	by	maximizing	the	margin		

§  Minimize	the	risk	of	overfiVng	by	choosing	the	maximal	
margin	hyperplane	in	feature	space	

§  SVMs	control	capacity	by	increasing	the	margin,	regardless	
of	the	dimensionality	of	the	feature	space	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

							
																																	

																					

1	

1	

1	

1	

1	

1	

1	

1	

	
Linear	separa3on	of	the		
input	space	
	
 
 
	

( )
( ) ( )( )xx

xwx
fsignh
bf

=

+= ,

w

w
b



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

																				Func3onal	and	Geometric	Margin	

 
•  The	func3onal	margin	of	a	linear	discriminant	(w,b)	w.r.t.	a	

labeled	paHern																																									is	defined	as		
											

•  If	the	func3onal	margin	is	nega3ve,	then	the	paHern	is	
incorrectly	classified,	if	it	is	posi3ve	then	the	classifier	predicts	
the	correct	label.	

•  The	larger									the	further	away	xi	is	from	the	discriminant	
•  This	is	made	more	precise	in	the	no3on	of	the	geometric	

margin		

( , )i i iy bγ ≡ +w x

| |iγ

|| ||
i

i
γ

γ ≡
w

which	measures	the		
Euclidean	distance	of	a	point		
from	the	decision	boundary.	

( ) { }1,1, −×ℜ∈ d
ii yx
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Geometric	Margin	

+∈SiX

     

iγjγ

     
     

				The	geometric	margin	of	two	points	

−∈ SjX
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Geometric	Margin	

+∈ SX i

−∈ SX j
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Margin	of	a	training	set	

ii
γγ min=

     

γ

     
     

The	func3onal	margin	of	a	
training	set		

The	geometric	margin	of	a	
training	set		

ii
γγ min=
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Maximum	Margin	Separa3ng	Hyperplane	
	
The	margin	of	a	training	set	S	is	the	maximum	geometric	margin	

over	all	hyperplanes.	A	hyperplane	realizing	this	maximum	is	a	
maximal	margin	hyperplane.	

                               
   Maximal	Margin	Hyperplane	
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VC	Dimension	of							-	margin	hyperplanes	

•  If	data	samples	belong	to	a	sphere	of	radius	R,	then	the	set	
of					-	margin	hyperplanes	has	VC	dimension	bounded	by	

•  WLOG,	we	can	make	R=1	by	normalizing	data	points	of	each	
class	so	that	they	lie	within	a	sphere	of	radius	R.		

•  For	large	margin	hyperplanes,	VC-dimension	is	controlled	
independent	of	dimensionality	n		of	the	feature	space	

Δ

Δ

1),/min()( 22 +Δ≤ nRHVC
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																							Maximal	Margin	Classifier	
     

§  The	bounds	on	error	of	classifica3on	suggest	the	possibility	
of	improving	generaliza3on	by	maximizing	the	margin		

§  Minimize	the	risk	of	overfiVng	by	choosing	the	maximal	
margin	hyperplane	in	feature	space	

§  SVMs	control	capacity	by	increasing	the	margin,	regardless	
of	the	dimensionality	of	the	feature	space	
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Maximizing		Margin	à	Minimizing	||W|| 
     

     
     

§  Defini3on	of	hyperplane	(w,b)	does	not	change	if	we	rescale	
it	to	(σw,	σb),	for	σ>0	

§  Func3onal	margin	depends	on	scaling,	but	geometric	margin						
does	not	

§  If	we	fix	(by	rescaling)	the	func3onal	margin	to	1,	the	
geometric	margin	will	be	equal	1/||w||		

§  We	can	maximize	the	margin	by	minimizing	the	norm		||w||	

γ
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											Maximizing	Margin	à	Minimizing	||w|| 
     

     
     

	Let	x+	and	x-	be	the	nearest	data	points	in	the	sample	
space.	Then	we	have,	by	fixing	the	distance	from	the	
hyperplane	to	be	1:		

o
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																							Learning	as	op3miza3on	     

     
     

	
Minimize	
     
 
    subject	to:	

ww,

( ) 1≥+b,y ii xw
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Constrained	Op3miza3on	

•  Primal	op3miza3on	problem	
•  Given	func3ons	f, gi, i=1…k; hj  j=1..m; defined	on	a	domain	Ω 
⊆ ℜn,

( )
( )
( )

{
{
{ sconstraintquality e 

sconstraint inequality 
function bjectiveo 

      
...10

,...10subject to
   minimize

mjh
kig
Ωf

j

i
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w
w
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( ) ( ) ...m jhh

...k igg
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Op3miza3on	problems	

•  Linear	program	–	objec3ve	func3on	as	well	as	equality	and	
inequality	constraints	are	linear	

•  Quadra3c	program	–	objec3ve	func3on	is	quadra3c,	and	
the	equality	and	inequality	constraints	are	linear	

•  Inequality	constraints	gi(w) ≤ 0	can	be	ac3ve	i.e.	gi(w) = 0	
or	inac3ve	i.e.	gi(w) < 0.		

•  Inequality	constraints	are	oXen	transformed	into	equality	
constraints	using	slack	variables	
		gi(w) ≤ 0	↔	 		gi(w) +ξi = 0 with	ξi ≥ 0

•  We	will	be	interested	primarily	in	convex	op3miza3on	
problems	
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																Convex	op3miza3on	problem	     

     
     

If	func3on	f		is	convex,	any	local	minimum								of	an	unconstrained	
op3miza3on	problem	with	objec3ve	func3on	f		is	also	a	global	
minimum,	since	for	any	

	
A	set																is	called	convex	if	,																						and	for	any																				

the	point	
	
A	convex	op3miza3on	problem	is	one	in	which	the	set						,	the	

objec3ve	func3on	and	all	the	constraints	are	convex	

*w

*≠u w *( ) ( )f f≤w u

Ω

nΩ⊂R ,∀ ∈Ωw u (0,1),θ ∈

( (1 ) )θ θ+ − ∈Ωw u
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Lagrangian	Theory		
Given	an	op3miza3on	problem	with	an	objec3ve	func3on	f (w)	and	

equality	constraints	hj (w) = 0  	j = 1..m, we	define	a	Lagrangian	
as	

( ) ( ) ( )∑
=

+=
m

j
jjhβfL

1
wwβw,

where	βj		are	called	the	Lagrange	mul3pliers.	The	necessary	
Condi3ons	for	w*	to	be	minimum	of	f	(w)		subject	to	the		
Constraints	hj	(w)	=	0			j	=	1..m	is	given	by	

( ) ( ) 00 =
∂

∂
=

∂

∂

β
βw

w
βw **** ,  ,, LL

The	condi3on	is	sufficient	if	L(w,β*)	is	a	convex	func3on	of	w	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Lagrangian	Theory		
Example	

  

€ 

Minimize f x,y( ) = x + 2y

Subject to :    x2 + y2 − 4 = 0

L x,y,λ( ) = x + 2y + x2 + y2 − 4( )λ
∂L x,y,λ( )

∂x
=1+ 2λx = 0

∂L x,y,λ( )
∂y

= 2 + 2λy = 0

∂L x,y,λ( )
∂λ

= x2 + y2 − 4 = 0

Solving the above, we have :

λ = ±
5

4
     x = ∓

2
5

     y = ∓
4
5

f is minimized when x = −
2
5

,  y = −
4
5
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Lagrangian	theory	–	example	

Find	the	lengths	u,	v,	w	of	sides	of	the	box	that	has	the	largest	
volume	for	a	given	surface	area	c		

€ 

minimize -uvw  

subject to       wu + uv + vw =
c
2

L = −uvw +β wu + uv + vw − c
2

$ 
% 
& 

' 
( 
) 

∂L
∂w

= 0 = −uv +β(u + v);∂L
∂u

= 0 = −vw +β(v + w);∂L
∂v

= 0 = −wu +β(u + w);

∂L
∂β

= 0 = wu + uv + vw − c
2

;

u = v = w =
c
6
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Lagrangian	Op3miza3on	-	Example	

•  The	entropy	of	a	probability	distribu3on	p=(p1...pn) 
over a	finite	set	{1, 2,...n	} is	defined	as	

•  The	maximum	entropy	distribu3on	can	be	found	by	
minimizing	–H(p) subject	to	the	constraints	

( ) i

n

i
i ppH 2

1
log∑

=

−=p

0

1
1

≥∀

=∑
=

i

n

i
i

pi

p
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Generalized	Lagrangian	Theory		
Given	an	op3miza3on	problem	with	domain	Ω	⊆	ℜn	

( ) ( ) ( ) ( )∑∑
==

++=
m

j
jj

k

i
ii hβgαfL

11
,, wwwβαw

where	f	is	convex,	and	gi and hj are	affine,	we can	define	the		
generalized	Lagrangian	func3on	as:	

( )
( )
( )

{
{
{ sconstraintquality e 

sconstraint inequality 
function bjectiveo 

      
...10

,...10subject to
   minimize

mjh
kig
Ωf

j

i

==

=≤

∈

w
w

ww

F(x)	is	affine	if	F(x)=G(x)+b	where	G(x)	is	a	linear	func3on	of	x	and	
b	is	a	constant	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Generalized	Lagrangian	Theory:	KKT	Condi3ons	
Given	an	op3miza3on	problem	with	domain	Ω	⊆	ℜn	

where	f	is	convex,	and	gi	and	hj	are	affine.	The	necessary	and	
Sufficient	condi3ons	for	w*	to	be	an	op3mum	are	the	existence		
of	α*	and	β*	such	that	

( ) ( )

( ) ( ) kigg

LL

iiii ...;; ;

  ,,  ,,

****

**,***,*

1000

00

=≥α≤=α

=
∂

∂
=

∂

∂

ww
β
βαw

w
βαw

€ 

minimize   f w( ) w∈ Ω

subject to gi w( ) ≤ 0 i =1...k,
h j w( ) = 0 j =1...m

      
 o{ bjective function
 inequality constraints{
 e{ quality constraints
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€ 

Minimize f x,y( ) = x −1( )2 + y − 3( )2  
Subject to : x + y ≤ 2; x − y ≤ 0

L = x −1( )2 + y − 3( )2 + λ1 x + y − 2( ) + λ 2 x − y( )
∂L
∂x

= 2 x −1( ) + λ1 + λ 2 = 0

∂L
∂y

= 2 y − 3( ) + λ1 − λ 2 = 0;    λ1 x + y − 2( ) = 0;  λ 2 x − y( ) = 0

λ1 ≥ 0, λ 2 ≥ 0, x + y ≤ 2; x − y ≤ 0
Case 1: λ1 = 0, λ 2 = 0;  ⇒ 2 x −1( ) = 0;  2 y − 3( ) = 0⇒ x =1; y = 3
This is not  a feasible solution because it violates  x + y ≤ 2
Similarly,case 2 :  λ1 = 0, λ 2 ≠ 0 does not yield a feasible solution
Case 3 :  λ1 ≠ 0, λ 2 = 0⇒ 2 x −1( ) + λ1 = 0; 2 y − 3( ) + λ1 = 0; λ1 x + y − 2( ) = 0

which yields x =
2 − λ1

2
; y =

6 − λ1

2
; λ1

2 − λ1

2
+

6 − λ1

2
− 2

) 
* 
+ 

, 
- 
. = 0⇒ λ1 = 2, x = 0;y = 2

which is a feasible solution
Case 4 λ1 ≠ 0, λ 2 ≠ 0 does not yield a feasible solution
Hence, the solution is x = 0; y = 2
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Dual	op3miza3on	problem	

A	primal	problem	can	be	transformed	into	a	dual	by	simply	seVng	
to	zero,	the	deriva3ves	of	the	Lagrangian	with	respect	to	the	
primal	variables	and	subs3tu3ng	the	results	back	into	the	
Lagrangian	to	remove	dependence	on	the	primal	variables,	
resul3ng	in		

	
( ) ( )βαwβα

w
,,inf, L

Ω∈
=θ

which	contains	only	dual	variables	and	needs	to	be	maximized	
under	simpler	constraints	

The	infimum	of	a	set	S	of	real	numbers	is	denoted	by	inf(S)	and	is	
defined	to	be	the	largest	real	number	that	is	smaller	than	or	
equal	to	every	number	in	S.	If	no	such	number	exists	then	inf(S)	
=	−∞.		
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																							Maximum	Margin	Hyperplane	
     

     
     

§  The	problem	of	finding	the	maximal	margin	hyperplane	is	a	
constrained	op3miza3on	problem	

§  Use	Lagrange	theory	(extended	by	Karush,	Kuhn,	and	
Tucker	–	KKT)	

	
Lagrangian:	

( ) ( )[ ]

0

1,,
2
1

≥

−+−= ∑

i

ii
i

ip byL

α

α xwwww
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												From	Primal	to	Dual	

     

     
     

Minimize	Lp(w) with	respect	to (w,b) requiring	that		
deriva3ves	of Lp(w) with	respect	to					all		vanish, subject	to	the	

constraints		
Differen3a3ng Lp(w) : 
      

iα
0iα ≥

Subs3tu3ng	the	equality	
constraints	back	into	Lp(w)	
we	obtain	a	dual	problem.	

0

0

0

=

=

=
∂

∂

=
∂

∂

∑

∑

i
ii

i
iii

p

p

y

y
b
L

L

α

α xw

w
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																														The		Dual	Problem	
          Maximize:	

							
      

1 1max ( ) min ( )
2

i iy i y ib =− =⋅ + ⋅
= −

w x w x

( )

sconstraint primal using solved be to has 

 and   to Subject

b

αyα

yy

ybyyyy

byy

yyL

ii
i
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i
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ij
jijiji
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ii
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i

ij
jijiji

ij
jijiji

i
j

jjji
i

i

j
jjj

i
iiiD

00

,
2
1
2
1
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2
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⎥
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⎢
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																										Karush-Kuhn-Tucker	Condi3ons	
     

     
     

	

	
	
	
	
Solving	for	the	SVM	is	equivalent	to	finding	a	solu3on	to	the	KKT	

condi3ons	

( ) ( )[ ]

( )
( )[ ]
0

01,

01,

00

0

1,,
2
1

≥

=−+

≥−+

=⇒=
∂

∂

=⇒=
∂

∂

−+−=

∑

∑

∑

i

iii

ii

i
ii

p

i
iii

p

ii
i

ip

by

by

y
b
L

y
L

byL

α

α

α

α

α

xw

xw

xw
w

xwwww
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														Karush-Kuhn-Tucker	Condi3ons	for	SVM	
     

     
     

§  The	KKT	condi3ons	state	that	op3mal	solu3ons																		
must	sa3sfy	

§  Only	the	training	samples	xi	for	which	the	func3onal	margin	
=	1	can	have	nonzero	αi.	They	are	called	Support	Vectors.	

§  The	op3mal	hyperplane	can	be	expressed	in	the	dual	
representa3on	in	terms	of	this	subset	of		training	samples	–	
the	support	vectors	

( , )i bα w

1 sv
( , , )

l

i i i i i i
i i

f b y b y bα α
= ∈

= ⋅ + = ⋅ +∑ ∑x α x x x x

( )[ ] 01, =−+by iii xwα
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Support	Vector	Machines	Yield	Sparse	Solu3ons                             

γ Support	
vectors	
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	Example:	XOR	

∑∑∑

∑

= ==

=

−=

−+−=

=Φ

N

i

N

j
j

T
ijiji

N

i
i

N

i
i

T
ii

T

T

yyQ

bybL

1 1
2
1

1

1
2
1

2
1

)(

]1)([),,(

)(

xx

xwwww

www

αααα

αα 0 11

1

X                y 

[-1,-1]              -1 

[-1,+1]             +1 

[+1,-1]             +1 

[+1,+1]             -1 

 
2)1(),( j

T
ijiK xxxx +=

Txxxxxx ]2,2,,2,,1[)( 21
2
221

2
1=xϕ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=      

9
1
1
1

1
9
1
1

1
1
9
1

1
1
1
9

K



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Example:	XOR	
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Not	surprisingly,	each	of	the	training	sa
mples	is	a	support	vector	
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SeVng	deriva3ve	of	Q	wrt	the	
dual	variables	to	0	
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Example	–	Two	Spirals		
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Summary	of	Maximal		margin	classifier	

•  Good	generaliza3on	when	the	training	data	is	noise	free	and	
separable	in	the	kernel-induced	feature	space	

•  Excessively	large	Lagrange	mul3pliers	oXen	signal	outliers	–	data	
points	that	are	most	difficult	to	classify		
	–	SVM	can	be	used	for	iden3fying	outliers	

•  Focuses	on	boundary	points	If	the	boundary	points	are	
mislabeled	(noisy	training	data)	
–  the	result	is	a	terrible	classifier	if	the	training	set	is	separable		
–  Noisy	training	data	oXen	makes	the	training	set	non	
separable		

–  Use	of	highly	nonlinear	kernels	to	make	the	training	set	
separable	increases	the	likelihood	of	over	fiVng	–	despite	
maximizing	the	margin	
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		Non-Separable	Case	
     

     
     

•  In	the	case	of	non-separable	data	in	feature	space,	the	
objec3ve	func3on	grows	arbitrarily	large.		

•  Solu3on:	Relax	the	constraint	that	all	training	data	be	
correctly	classified	but	only	when	necessary	to	do	so	

•  Cortes	and	Vapnik,	1995	introduced	slack	variables																							
in	the	constraints:	

, 1,..,i i lξ    =

( )( )b,y iii +−= xwγξ ,0max
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	Non-Separable	Case	
     

																																							
Generaliza3on	error	can	be	
shown	to	be	

                             

iξ

jξ

max(0, ( , )).i i iy x bξ γ= − +w
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ε ≤
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l
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	Non-Separable	Case	     

     
     

	
§  For	error	to	occur,	the	corresponding									must	exceed							

(which	was	chosen	to	be	unity)		
§  So														is	an	upper	bound	on	the	number	of	training	errors.		
§  So	the	objec3ve	func3on	is	changed	from								to																																							
	 	 	 	 	where	C	and	k	are	parameters		

	
	
	
(typically	k=1	or	2	and	C	is	a	large	posi3ve	constant			

ii
ξ∑

γ

∑+
⎟
⎟
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		The	SoX-Margin	Classifier	

     
     

Minimize:	
	
 
Subject	to:	
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		The	SoX-Margin	Classifier:	KKT	Condi3ons	
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From	primal	to	dual	
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		Implementa3on	Techniques	     

     
     

Maximizing	a	quadra3c	func3on,	subject	to	a	linear	equality	
and	inequality	constraints	
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On-line	algorithm	for	the	1-norm	soX	margin	(bias b=0)	
     

     
     

     Given	training	set	D	
					
					repeat   

   for i=1 to l  
   
 
                          

    else						
	
																						
	 	 	end	for 
 un3l	stopping	criterion	sa3sfied	

					return α                      

←α 0

(1 ( , ))i i i i j j i j
j

y y K x xα α η α← + − ∑
if 0 then 0i iα α    <         ←

if theni iC Cα α    >     ←

( )ii
i K xx ,

1
=η

In	the	general	seVng, b ≠ 0 
and	we	need	to	solve	for b 
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		Implementa3on	Techniques	
     

     
     

•  Use	QP	packages	(MINOS,	LOQO,	quadprog	from	MATLAB	
op3miza3on	toolbox).	They	are	not	online	and	require	that	
the	data	are	held	in	memory	in	the	form	of	kernel	matrix	

•  Stochas3c	Gradient	Ascent.	Sequen3ally	update	1	weight	at	
the	3me.	So	it	is	online.	Gives	excellent	approxima3on	in	
most	cases	

 
                             

1ˆ 1 ( , )
( , )i i i j j i j

ji i

y y K x x
K x x

α α α
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		Chunking	and	Decomposi3on	  

     
     

 
Given	training	set	D 
	
Select	an	arbitrary	working	set		
repeat	
											solve	op3miza3on	problem	on	
							select	new	working	set	from	data	not	sa3sfying	KKT							

										condi3ons		
un3l	stopping	criterion	sa3sfied	
return																														

←α 0
D̂ D⊂

D̂

α
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		Sequen3al	Minimal	Op3miza3on	S.M.O.	     

     
     

	
§  At	each	step	SMO:	op3mize		two	weights													

simultaneously	in	order	not	to	violate	the	linear	constraint	
§  Op3miza3on	of	the	two	weights	is	performed	analy3cally	
§  Realizes	gradient	descent	without	leaving	the	linear	

constraint	(J.PlaH)	
§  Online	versions	exist	(Li,	Long;	Gen3le)	

0i i
i

yα =∑
,i jα α
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								The	Perceptron	Algorithm	Revisited	

•  The	perceptron	works	by	adding	misclassified	posi3ve	or	
subtrac3ng	misclassified	nega3ve	examples	to	an	arbitrary	
weight	vector,	which	(without	loss	of	generality)	we	
assumed	to	be	the	zero	vector.		

•  The	final	weight	vector	is	a	linear	combina3on	of	training	
points	

where,	since	the	sign	of	the	coefficient	of									is	given	by	label	
yi,		the								are	posi3ve	values,	propor3onal	to	the	number	
of	3mes,	misclassifica3on	of					has	caused	the	weight	to	be	
updated.	It	is	called	the	embedding	strength	of	the	
paHern								.		

•  											

1
,

l

i i i
i

yα
=

=∑w x

ix

iα
ix

ix

α i ←α i +η(di − yi )xi
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•  Recall	that	SVM	op3miza3on	problem	has	the	added	
requirement	that:

•  Therefore	if	we	increase	one	α	by	an	amount	η,	in	
either	direc3on,	then	we	have	to	change	another	α 
by	an	equal	amount	in	the	opposite	direc3on	
(rela3ve	to	class	value).		We	can	accomplish	this	by	
changing:									

•  But	because	of	the	constraint,	we	also	adjust	αj	such		
that	yiαi	+	yjαj	stays	same	
	

αi←αi +η(di − yi )xi
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First	of	Two	Other	Changes	

•  We	set	η =

•  For	a	given	difference	in	error	between	two	examples,	the	
step	size	is	larger	when	the	two	examples	are	more	similar.		
When	x1	and	x2	are	similar,	K(x1,x2)	is	larger	(for	typical	
kernels,	including	dot	product).		Hence	the	denominator	is	
smaller	and	step	size	is	larger.

 	

),(2),(),(
1

212211 xxKxxKxxK −+
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Second	of	Two	Other	Changes	

•  Recall	our	formula3on	had	an	addi3onal	constraint:	

•  Therefore,	we	“clip”	any	change	we	make	to	any	α	to	respect	
this	constraint	

•  This	yields	the	SMO	algorithm	(PlaH,		
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Problem	of	finding	the	p-norm	maximum	margin	hyperplane	

[Mangasarian	99] 
 
	

)1(			1y
	:to	sub.

2
1	minarg

j

2

	

T,...j)b(

.)b,(

j

qb,

**

=≥+⋅

=

xw

ww
w

0	

Given:		(linearly	separable)	S=((x1,y1),…,(xT,yT)),		

	
	
	
	
		
	

Goal:	Find	an	approximate	solu3on	of	(w*,b*)　			

　			We	want	an	online	alg.	solving	the	problem	with	
small	#	of	updates.	

q-norm	(dual	norm)	
1/p+1/q=1	

E.g.	
p=2,		q=2	
p=∞,	q=1	
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(Relaxed	Online	Maximum	Margin	Algorithm)[Li&Long,’02]	

2

2t

t

2

21

																												

,1)(y				:to	sub.												
2
1	.minarg

t

t

t

www

xw

ww
w

≥⋅

≥⋅

=+

Given:	S=((x1,y1),…,(xt-1,yt-1)),	xt,	
1.  Predict	ŷt=sign(wt·xt),	and	receive	yt	
2.  If	yt(wt	·xt	)<1-δ		(margin	is	“insufficient”),		
3.  update:	

	
	
	
	
	
	
		
	

Constraint	over	the	last		
Example	which	causes	an	update	

Constraint over the last hyperplane 

2	constraints	

NOTE:	bias	is	fixed	with	0	

4.	Otherwise,	wt+1=wt	
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ROMMA	[Li&Long,’02]	
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weight	space	
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feasible	region	of	SVM	
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Solu3on	of	ROMMA	
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Solu3on	of	ROMMA	is	an	addi3ve	update:				
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PUMMA	[Hatano,	2008]	
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bias	is	
opZmized	

q-norm	
(1/p+1/
q=1)	
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t, xneg

t
    

: last positive and  
negative examples  
which incur updates 

2
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= q

q

q

qii wwsign
f
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link	funcZon		[Grove	et	
al.	97]	

	
	

Given:	S=((x1,y1),…,(xt-1,yt-1)),	xt,	
1. Predict	ŷt=sign(wt·xt),	and	receive	yt	
2. If	yt(wt	·xt	+bt)>1-δ,	update:	

3. Otherwise,	wt+1=wt	
	

○	
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tt www ≥⋅

ROMMA	
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Solu3on	of	PUMMA	

Observa3on:	
For	p=2,	the	solu3on	is	the	same	as	that	of	ROMMA		for	zt	=	xtpos	–	xtneg.	

.)(
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Solu3on	of	PUMMA	is	found	numerically:				
		
	
	
	
	
	
		
	

xpos
t, xneg

t
    

: last positive and  
negative examples  
which incur updates 
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SVM	Implementa3ons	

•  Details	of	op3miza3on	and	Quadra3c	Programming	
•  SVMLight	–	one	of	the	first	prac3cal	implementa3ons	of	SVM	

(PlaH)		

•  Matlab	toolboxes	for	SVM	
•  LIBSVM	–	one	of	the	best	SVM	implementa3ons	is	by	Chih-Chung	

Chang	and	Chih-Jen	Lin	of	the	Na3onal	University	of	Singapore	
hHp://www.csie.ntu.edu.tw/~cjlin/libsvm/	

•  WLSVM	–	LIBSVM	integrated	with	WEKA	machine	learning	
toolbox	Yasser	El-Manzalawy	(at	ISU	AI	lab)		

hHp://www.codeforge.com/read/204900/WLSVM.java__html		
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Why	does	SVM	Work?	
•  The	feature	space	is	oXen	very	high	dimensional.	Why	don’t	we	

have	the	curse	of	dimensionality?	
•  A	classifier	in	a	high-dimensional	space	has	many	parameters	

and	is	hard	to	es3mate	
•  Vapnik	argues	that	the	fundamental	problem	is	not	the	number	

of	parameters	to	be	es3mated.	Rather,	the	problem	is	the	
capacity	of	a	classifier	

•  Typically,	a	classifier	with	many	parameters	is	very	flexible,	but	
there	are	also	excep3ons	
–  Let	xi=10i	where	i	ranges	from	1	to	n.	The	classifier	
	 	 	 	can	classify	all	xi	correctly	for	all	possible	
combina3on	of	class	labels	on	xi	

–  This	1-parameter	classifier	is	very	flexible	
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Why	does	SVM	work?	

•  Vapnik	argues	that	the	capacity	of	a	classifier	should	not	be	
characterized	by	the	number	of	parameters,	but	by	the	
capacity	of	a	classifier	
–  This	is	formalized	by	the	“VC-dimension”	of	a	classifier	

•  The	minimiza3on	of	||w||2		subject	to	the	condi3on	that	the	
geometric	margin	=1	has	the	effect	of	restric3ng	the	VC-
dimension	of	the	classifier	in	the	feature	space	

•  The	SVM	performs	structural	risk	minimiza3on:	the	empirical	
risk	(training	error),	plus	a	term	related	to	the	generaliza3on	
ability	of	the	classifier,	is	minimized	

•  SVM	loss	func3on	behaves	like		ridge	regression.		
–  The	term	½||w||2	“shrinks”	the	parameters	towards	zero	
to	avoid	overfiVng	
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Choosing	the	Kernel	Func3on	
•  Probably	the	most	tricky	part	of	using	SVM	
•  The	kernel	func3on	should	maximize	the	similarity	among	

instances	within	a	class	while	accentua3ng	the	differences	
between	classes	

•  A	variety	of	kernels	have	been	proposed	(diffusion	kernel,	Fisher	
kernel,	string	kernel,	…)	for	different	types	of	data	-		

•  In	prac3ce,	a	low	degree	polynomial	kernel	or	RBF	kernel	with	a	
reasonable	width	is	a	good	ini3al	try	for	data	that	live	in	a	fixed	
dimensional	input	space	

•  Low	order	Markov	kernels	and	its	rela3ves	are	good	ones	to	
consider	for	structured	data	–	strings,	images,	etc.	
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Other	Aspects	of	SVM	

•  How	to	use	SVM	for	mul3-class	classifica3on?	
–  One	can	change	the	QP	formula3on	to	become	mul3-class	
–  More	oXen,	mul3ple	binary	classifiers	are	combined	
–  One	can	train	mul3ple	one-versus-all	classifiers,	or	combine	
mul3ple	pairwise	classifiers	“intelligently”	

•  How	to	interpret	the	SVM	discriminant	func3on	value	as	
probability?	
–  By	performing	logis3c	regression	on	the	SVM	output	of	a	set	
of	data	that	is	not	used	for	training	

•  Some	SVM	soXware	(like	libsvm)	have	these	features	built-in	
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Recap:	How	to	Use	SVM	

•  Prepare	the	data	set	
•  Select	the	kernel	func3on	to	use	
•  Select	the	parameter	of	the	kernel	func3on	and	the	value	of	

C		
–  You	can	use	the	values	suggested	by	the	SVM	soXware	
–  You	can	use	a	tuning	set	to	tune	C 

•  Execute	the	training	algorithm	and	obtain	αι  and	b 
•  Unseen	data	can	be	classified	using	the	αi,	the	support	

vectors,	and b 
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Strengths	and	Weaknesses	of	SVM	

•  Strengths	
–  Training	is	rela3vely	easy		

•  	No	local	op3ma	
–  It	scales	rela3vely	well	to	high	dimensional	data	
–  Tradeoff	between	classifier	complexity	and	error	can	be	
controlled	explicitly	

–  Non-tradi3onal	data	like	strings	and	trees	can	be	used	as	
input	to	SVM,	instead	of	feature	vectors	

•  Weaknesses	
–  Need	to	choose	a	“good”	kernel	func3on.	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Recent	developments	

•  BeHer	understanding	of	the	rela3on	between	SVM	and	
regularized	discrimina3ve	classifiers	(logis3c	regression)	

•  Knowledge-based	SVM	–	incorpora3ng	prior	knowledge	as	
constraints	in	SVM	op3miza3on	(Shavlik	et	al)	

•  A	zoo	of	kernel	func3ons	
•  Extensions	of	SVM	to	mul3-class	and	structured	label	

classifica3on	tasks		
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Representa3ve	Applica3ons	of	SVM	

•  HandwriHen	leHer	classifica3on	
•  Text	classifica3on	
•  Image	classifica3on	–	e.g.,	face	recogni3on	
•  Bioinforma3cs	

–  Gene	expression	based	3ssue	classifica3on	
–  Protein	func3on	classifica3on	
–  Protein	structure	classifica3on	
–  Protein	sub-cellular	localiza3on	

•  ….	
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Kernel	Logis3c	Regression	

•  We	saw	that	under	fairly	general	assump3ons	concerning	the	
underlying	genera3ve	model,	the	posterior	probability	of	class	
given	x	can	be	expressed	in	the	form	of	a	logis3c	func3on	of	an	
affine	or	polynomial	(in	the	simplest	case,	linear)	func3on	of	x	in	
the	case	of	a	binary	classifica3on	task.	

	where		

€ 

P y =1 | x( ) =
1

1+ e− w,G(x )
=

1
1+ e−η x,w( ) = µ x,w( )

€ 

η x,w( ) = wTG x( ) = w,G x( )
Simplest case :  G(x) = x
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Logis3c	Regression	
Note	that	the	posterior	probability	of	Y=1	is	same	as	the	

condi3onal	expecta3on	of	y	given	x: 

	
where		

	
Hence	es3ma3ng	P(Y=1|x) is	equivalent	to	performing	logis3c	

regression		

€ 

E(y | x) =1⋅ P y =1 | x( ) + 0 ⋅ P y = 0 | x( )

= P y =1 | x( ) = µ x,w( ) = µ x,w( )( )y 1−µ x,w( )( )1−y

€ 

µ x,w( ) =
1

1+ e−η x,w( ) =
1

1+ e−w
Tx
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Kernel	logis3c	regression	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

€ 

η x,w( ) = wiϕ i
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∑ x( )
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Linear regression :  ϕ i x( ) = xi

η x,w( ) = wixi
i=0

k
∑ = w0 + wixi
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k
∑

Kernel regression :  ϕ i x( ) = K x,xi( )

η x,w( ) = w0 + wiK x,xi( )
i=1

N
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Maximum	likelihood	es3ma3on	of	w 

€ 

D =  xn ,yn( ) { };  yn ∈ 0,1{ };  n =1..N

ηn = wTxn;   µn =
1
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Log	likelihood	

We	need	to	find	w that	maximizes	log likelihood	
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Maximum	likelihood	es3ma3on	of	w 
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Regularized	kernel	logis3c	regression	

•  Maximum	likelihood	models	can	over-fit	training	data	
•  We	can	regularize	the	models	by	imposing	a	penalty	in	the	

es3ma3on	criterion	that	encourages	||w ||	to	remain	small	
•  Maximum	penalized	log	likelihood	criterion:	

			where	larger	values	of	λ	impose	stronger	regulariza3on.	

€ 

LL(w :D,λ) = log p(yi | xi;w) −
λ
2i=1

N∑ ||w ||2

€ 

wi ← wi + ρ
∂LL w :D( )

∂wi
− λwi

wi ← wi + yn −µn( )K(xi,xn
n=1

N
∑ ) − λwi


