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Learning	Real-Valued	Func3ons	
	
	

•  Learning	to	approximate	real-valued	func3ons	
•  Bayesian	recipe	for	learning	real-valued	func3ons	
•  Brief	digression	–	con3nuity,	differen3ability,	Taylor	

series	approxima3on	of	func3ons	
•  Learning	linear	func3ons	using	gradient	descent	in	

weight	space	
•  Universal	func3on	approxima3on	theorem	
•  Learning	nonlinear	func3ons	using	gradient	descent	in	

weight	space	
•  Prac3cal	considera3ons	and	examples		
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Review:	Bayesian	Recipe	for	Learning	

•  P	(h)	=	prior	probability	of	hypothesis	h	
•  P	(D)	=	prior	probability	of	training	data	D		
•  P	(h	|	D)	=	probability	of	h	given	D		
•  P	(D	|	h)	=	probability	of	D	given	h	
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Bayesian	recipe	for	learning	

)hypothesis likelihood (Maximum          )|(maxarg

),()(  ,  If
 

)()|(maxarg
)(

)()|(maxarg

)hypothesis  posteriori  a (Maximum           )|(maxarg

hDPh
hPhPHhh

hPhDP
DP

hPhDP

DhPh

Hh
ML

jiji

Hh

Hh

HhMAP

∈

∈

∈

∈

=

=∈∀

=

=

=

Choose	the	most	likely	hypothesis	given	the	data	
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Learning	a	Real	Valued	Func3on	
•  Consider	a	real-valued	target	func3on	f		
•  Training	examples	〈xi,	di〉	,	where	di	is	

noisy	training	value	di	=	f(xi)	+	ei	
•  ei	is	random	variable	(noise)	drawn	

independently	for	each	xi	according	to	
Gaussian	distribu3on	with	zero	mean		

•  ⇒	di		has	mean	f(xi)	and	same	variance	
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Then	the	maximum	likelihood	hypothesis	hML	is	one	that		
minimizes	the	sum	of	squared	error:	
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Learning	a	Real	Valued	Func3on	

€ 

hML = argmax
h∈H

P(h |D)
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Maximize	natural	log	of	this	instead...	
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	Learning	a	Real	Valued	Func3on	
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Maximum	Likelihood	hypothesis	is	one	that	
minimizes	the	mean	squared	error!	
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Approxima3ng	a	linear	func3on	using	a	linear	
neuron	

	
X0	=1	

Input	
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Learning	Task	

  

€ 

W = W0.........Wn[ ]T  is the weight vector 

Xp = X0p ....Xnp[ ]T  is the pth  training sample

y p = Wi
i
∑ Xip =W •  Xp is the output of the neuron  for input Xp

Xp = f Xp( )   is the desired output for input Xp

ep = dp − y p( )     is the error of the neuron on input Xp

S = Xp,dp( ){ }  is`a  (multi) set of training examples

ES W( ) = ES W0,W1,..........Wn( ) =
1
2

ep
2

p
∑  is the estimated 

                                                          error of W on training set S

Goal :  Find W* = argmin
W

ES W( )
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Learning	linear	func3ons	

1w

0w

ES 

The	error	is	a	quadra3c	
func3on	of	the	weights	in	
the	case	of	a	linear	neuron	

tW
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Learning	linear	func3ons	
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Least	Mean	Square	Error	(LMSE)	Learning	Rule	

( ) ip
p

ppii xydηww ∑ −+←  
Batch	Update	

( ) ipppii xydηww  −+←

Per	sample	Update	
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Choice	of	learning	rate	

maxλ
η 10 <<Batch	Update	

2

20
p

η
X

<<Per	sample	Update	

In	theory,	infinitesimally	small	(why?)	

λmax	is	the	largest	Eigen	value	of	the	Hessian	of	ES	(matrix	of	second	
order	par3al	deriva3ves	of	ES	with	respect	to	the	weights)		

Eigen	values	of	a	matrix	A	are	given	by	solu3ons	of		

€ 

A − λI = 0
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Problem	with	Gradient	Descent	

•  Difficult	to	find	the	appropriate	
step	size	
–  Small	η	à	slow	convergence	
–  Large	η	à	oscilla3on		

•  Convergence	condi3ons	
–  Robbins-Monroe	condi3ons	

			

ε 

€ 

ηt
t=0

∞
∑ →∞, ηt

2

t=0

∞
∑ <∞



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

General	Algorithm	

•  Algorithm	(Model	algorithm	for	n-dimensional	
unconstrained	minimiza3on).		Let	xk	be	the	current	
es3mate	of	x*.	
–  [Test	for	convergence]	If	the	condi3ons	for	
convergence	are	sa3sfied,	the	algorithm	terminates	
with	xk	as	the	solu3on.	

–  [Compute	a	search	direc3on]	Compute	a	non-zero	n-
vector	pk,	the	direc3on	of	the	search.	

•  Different	algorithms	differ	primarily	in	their	choice	of	the	
search	direc3on	
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Newton	Method	

•  U3lizing	the	second	order	deriva3ve	
•  Expand	the	objec3ve	func3on	to	the	second	order	around	x0	

•  The	minimum	point	is		
•  Newton	method	for	op3miza3on	

•  Guaranteed	to	converge	when	the	objec3ve	func3on	is	convex	

0 0
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Newton’s	method	
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Newton’s	method	
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Example	
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Newton’s	method	
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Quasi-Newton	methods	
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Quasi-Newton	Methods	

–  Involve	approxima3ng		the	Hessian	matrix	
–  For	example,	we	could	replace	the	Hessian	matrix	with	the	
iden3ty	matrix	I	

–  In	this	case	the	search	direc3on	would	be:	

	
	
–  Ques3on:	What	is	the	resul3ng	algorithm?	

€ 

pk =−I∇ x f (xk )
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Quasi-Newton	Method	

–  Obviously	subs3tu3ng	the	iden3ty	matrix	uses	no	real	
informa3on	from	the	Hessian	matrix.			

–  An	alterna3ve	would	be	to	systema3cally	derive	a	matrix	Hk	
which	uses	curvature	informa3on	akin	to	the	Hessian	matrix.			

–  The	search	direc3on	would	then	be:	

€ 

pk =−Hk
−1∇ x f (xk )
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Quasi-Newton	Methods	
•  One	class	of	Quasi-Newton	methods	“build”	an	approxima3on	of	

the	Hessian	matrix	H	or	B,	the	inverse	of	the	Hessian	matrix	
•  H	is	ini3alized	to	I	
•  Consider	a	Taylor	series	expansion	around	xk	

	

€ 

∇ x f xk+1( )=∇ x f xk( ) +∇ xx
2 f xk( ) xk+1 − xk( )

gk+1 = gk +Hk+1pk
gk+1 − gk =Hk+1pk

qk =Hk+1pk
Let Hk+1

−1 = Bk+1

Then Bk+1qk = pk
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Quasi-Newton	Methods	

•  One	way	to	generate	Bk+1		without	compu3ng	the	second	
deriva3ves	is	to	update	the	current	Bk	using	informa3on	
available	at	the	current	itera3on,	say		

•  There	is	no	unique	solu3on	for	
•  General	form	of	the	update:		

•  Different	methods	differ	in	terms	of	how	Bk	is	updated	(i.e.,	
choice	of	constants	a, b, and	vectors	u, v’)	

•  Quasi-Newton	methods	that	choose	b = 0 yield	rank	1	updates	
•  Quasi-Newton	methods	that	choose	b	≠	0 yield	rank	2	updates	

€ 

Bk
u

€ 

Bk
u

Bk
u = auu '+ bvv '   

subject to Bk+1qk = Bk +Bk
u( )qk = pk
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David	Fletcher	Powell	Method	
•  Rank	one	updates	are	simple,	but	have	limita3ons;	Rank	2	

updates	are	preferred	
•  One	of	the	first	and	perhaps	one	of	the	most	clever	rank	2	

updates	is	due	to	Davidson,	Fletcher,	and	Powell	

	
•  DFP	method	chooses	a, b as	follows:	

•  DFP	update:	

€ 

Bk+1 =Bk +Bk
u = Bk + auu'+bvv'  

pk = Bk + auu'+bvv '  ( )qk

€ 

pk = Bkqk + auu'qk + bvv'qk
u = pk, v = Bkqk , au'qk =1, bv'qk = −1

€ 

Bk+1 = Bk +
pk pk

'
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' qk

−
Bkqkqk

' Bk
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Broyden	Fletcher	Goldfarb	Fano	Method	
•  Recall	that:	
 
•  So	any	formula	for	update	of	B	can	be	transformed	into	one	for	

update	of	H	by	interchanging	the	role	of	p	and	q. 
•  BFGS	update	for	H	is	obtained	from	DFP	update	for	B:	

•  BFGS	update	for	B	is	obtained	from	taking	the	inverse	of	H:	

 € 

Hk+1 =Hk +
qkqk

'

qk
' qk

−
Hk pk pk

' Hk
pk
' Hk pk

'

€ 

qk =Hk+1pk ; Hk+1
−1 qk = pk

Bk+1 =Hk+1
−1 ; Bk+1qk = pk
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1+ qk
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'

qk
' pk
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Conjugate	gradient	method	
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CG	method	
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CG	method	example	
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Example	(cont.)	
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Truncated	Newton	methods	
•  Another	way	to	reduce	work	in	Newton-like	methods	is	to	solve	

linear	system	for	Newton	step	by	itera3ve	method	

•  Small	number	of	itera3ons	may	suffice	to	produce	step	as	useful	
as	true	Newton	step,	especially	far	from	overall	solu3on,	where	
true	Newton	step	may	be	unreliable	anyway	

•  Good	choice	for	linear	itera3ve	solver	is	CG	method,	which	gives	
step	intermediate	between	steepest	descent	and	Newton-like	
step	

•  Since	only	matrix-vector	products	are	required,	explicit	
forma3on	of	Hessian	matrix	can	be	avoided	by	using	finite	
difference	of	gradient	along	given	vector	
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•  Both	DFP	and	BFGS	methods	have	theore3cal	proper3es	that	guarantee	
superlinear	 (fast)	 convergence	 rate	 and	 global	 convergence	 under	
certain	condi3ons.	

•  However,	both	methods	could	fail	for	general	nonlinear	problems.			
•  DFP	is	highly	sensi3ve	to	inaccuracies	in	line	searches.	
•  Both	methods	 can	get	 stuck	on	a	 saddle-point.	 In	Newton's	method,	 a	

saddle-point	can	be	detected	during	modifica3ons	of	the	(true)	Hessian.		
Therefore,	 search	 around	 the	 final	 point	 when	 using	 quasi-Newton	
methods.	

•  Update	 of	 Hessian	 becomes	 "corrupted"	 by	 round-off	 and	 other	
inaccuracies.	

•  All	kind	of	"tricks"	such	as	scaling	and	precondi3oning	exist	to	boost	the	
performance	of	the	methods.	

Remarks	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Nonlinear	Conjugate	Gradient	

•  Even	though	conjugate	gradient	is	derived	for	a	quadra3c	
objec3ve	func3on,	it	can	be	applied	directly	to	other	nonlinear	
func3ons	

•  Several	variants:	
–  Fletcher-Reeves	conjugate	gradient	(FR-CG)	
–  Polak-Ribiere	conjugate	gradient	(PR-CG)	

• More	robust	than	FR-CG	
•  Compared	to	Newton	method	

–  No	need	for	compu3ng	the	Hessian	matrix	
–  No	need	for	storing	the	Hessian	matrix	
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Limited-Memory	Quasi-Newton	

•  Quasi-Newton	
–  Avoid	compu3ng	the	inverse	of	Hessian	matrix	
–  But,	it	s3ll	requires	compu3ng	the	B	matrix	which	is	as	large	
as	the	H	

•  Limited-Memory	Quasi-Newton	(L-BFGS)	
–  Avoids	explicitly	compu3ng	B	matrix	
–  Computes	the	updates	based	on	a	small	history	of	p	and	y	
vectors.	

–  Linear	3me,	linear	space	
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Free	Sopware	

•  hHp://www.ece.northwestern.edu/~nocedal/sopware.html	
–  L-BFGS	
–  L-BFGSB	
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Linear	Conjugate	Gradient	Method	
•  Consider	op3mizing	the	quadra3c	func3on	
•  Conjugate	vectors	

–  The	set	of	vectors	{p1,	p2,	…,	pl}	is	said	to	be	conjugate	with	
respect	to	a	matrix	A	if	

–  Important	property	
• The	quadra3c	func3on	can	be	op3mized	by	simply	
op3mizing	the	func3on	along	individual	direc3ons	in	the	
conjugate	set.	

–  Op3mal	solu3on:		is	the	minimizer	along	the	kth	conjugate	
direc3on	

* argmin
2

T
T

x

x xx b x= +
A

r

r r rr r

0,   for any T
i jp p i j= ≠A
r r

1 1 2 2 ... l lx p p pα α α= + + +
r r r r
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Momentum	update	
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The	momentum	update	allows	effec3ve	learning	rate	to	
increase	when	feasible	and	decrease	when	necessary.	
Converges	for	0≤α<1	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Learning	approxima3ons	of	nonlinear	func3ons	
from	data	–	the	generalized	delta	rule	

•  Mo3va3ons	
•  Universal	func3on	approxima3on	theorem	(UFAT)	
•  Deriva3on	of	the	generalized	delta	rule	
•  Back-propaga3on	algorithm	
•  Prac3cal	considera3ons	
•  Applica3ons		
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Mo3va3ons		

•  Psychology	–	Empirical	inadequacy	of	behaviorist	theories	
of	learning	–	simple	reward-punishment	based	learning	
models	are	incapable	of	learning	func3ons	(e.g.,	exclusive	
OR)	which	are	readily	learned	by	animals	(e.g.,	monkeys)	

•  Ar3ficial	Intelligence	–	the	need	for	learning	highly	
nonlinear	func3ons	where	the	form	of	the	nonlinear	
rela3onship	is	unknown	a-priori	

•  Sta3s3cs	–	Limita3ons	of	linear	regression	in	fivng	data	
when	the	rela3onship	is	highly	nonlinear	and	the	form	of	
the	rela3onship	is	unknown	

•  Control	–	Need	for	nonlinear	control	methods	
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•  Any	con3nuous	func3on																																																							can	be	
expressed	in	the	form	
	
	
	g(x1,..xN ) = gj

i
∑ uij (xi )
⎛

⎝
⎜

⎞

⎠
⎟

j=1

2N+1

∑      ∀(x1,...xN )∈ [0,1]N ;N ≥ 2)

Kolmogorov’s	theorem	(Kolmogorov,	1940)	

	
	
	
		
	

by	choosing	proper	nonlineari3es	gj	and	the		weights	and	uij 
	

g(x1,..xN ) = 0,1[ ]N →ℜ
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Universal	func3on	approxima3on	theorem	(UFAT)	(Cybenko,	1989)	

•  Let	ϕ	:	ℜàℜ	be	a	non-constant,	bounded	(hence	non-linear),	
monotone,	con3nuous	func3on.	Let	IN  be	the	N-dimensional	
unit	hypercube	in	ℜN.		

•  Let	C(IN ) = {f: IN  à ℜ} be	the set	of	all	con3nuous	func3ons	
with	domain	IN  and range	ℜ.	Then	for	any	func3on	f ∈ C(IN ) 
and	any	ε	>	0,	∃	an	integer	L	and	a	sets	of	real	values	θ,	αj, θj, 
wji  (1≤j≤L; 1≤i≤N ) such	that  

F(x1, x2...xN ) = α j
j=1

L

∑ φ wjixi −θ j
i=1

N

∑
⎛

⎝
⎜

⎞

⎠
⎟−θ

is	a	uniform	approxima3on	of	f – that	is,  
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Universal	func3on	approxima3on	theorem	
(UFAT)	

•  Unlike	Kolmogorov’s	theorem,	UFAT	requires	only	one	kind	of	
nonlinearity	to	approximate	any	arbitrary	nonlinear	func3on	to	
any	desired	accuracy	

•  The	sigmoid	func3on	sa3sfies	the	UFAT	requirements	
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Similar	universal	approxima3on	proper3es	can	be	guaranteed	
for	other	func3ons	–	e.g.,	radial	basis	func3ons	
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Universal	func3on	approxima3on	theorem	
•  UFAT	guarantees	the	existence	of	arbitrarily	accurate	

approxima3ons	of	con3nuous	func3ons	defined	over	bounded	
subsets	of	ℜN		

•  UFAT	tells	us	the	representa3onal	power	a	certain	class	of	
mul3-layer	networks	rela3ve	to	the	set	of	con3nuous	func3ons	
defined	on	bounded	subsets	of	ℜN		

•  UFAT	is	not	construc3ve	–	it	does	not	tell	us	how	to	choose	the	
parameters	to	construct	a	desired	func3on		

•  To	learn	an	unknown	func3on	from	data,	we	need	an	
algorithm	to	search	the	hypothesis	space	of	mul3layer	
networks	

•  Generalized	delta	rule		allows	nonlinear	func3on	to	be	learned	
from	the	training	data	
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Alterna3ves	

•  Brute	force	–	select	a	complete		set	of	nonlinear	basis	func3ons	
(e.g.,	all	polynomials	of	degree	from	0	to	N)	to	map	the	N-
dimensional	input	into	a	very	high	dimensional	feature	space	
where	a	linear	mapping	to	desired	outputs	exists	–	needs	too	
many	parameters	to	be	determined	from	a	limited	number	of	
training	samples	

•  Addi3ve	models	–		
•  Select	some	nonlinear	func3ons	and	try	to	adjust	the	parameters	

of	the	chosen	nonlinear	func3ons	to	fit	the	data	–	it	is	hard	to	
know	a	priori	which	nonlinear	func3ons	to	choose		
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Alterna3ves	

•  Projec3on	pursuit	–	closely	related	model	but	differing	in	
algorithmic	details		
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itera3ng	un3l	some	desired	error	criterion	is	met	

different	parameters	are	learned	in	groups	–	first		
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Feed-forward	neural	networks		

•  A	feed-forward	n-layer	network	consists	of	n	layers	of	nodes	
•  1	layer	of	Input	nodes	
•  n-2	layers	of	Hidden	nodes	
•  1	layer	of	Output	nodes	
•  interconnected	by	modifiable	weights	from	input	nodes	to	

the	hidden	nodes	and	the	hidden	nodes	to	the	output	nodes	
•  More	general	topologies	(e.g.,	with	connec3ons	that	skip	

layers,	e.g.,	direct	connec3ons	between	input	and	output	
nodes)	are	possible	
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A	three	layer	network	that	approximates	the	exclusive	or	
func3on	
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Three-layer	feed-forward	neural	network	

•  A	single	bias	unit	is	connected	to	each	unit	other	than	the	
input	units	

•  Net	input		
	
	

•  where	the	subscript	i	indexes	units	in	the	input	layer,	j in	the	
hidden;	wji denotes	the	input-to-hidden	layer	weights	at	the	
hidden	unit	j.		

•  The	output	of	a	hidden	unit	is	a	nonlinear	func3on	of	its	net	
input.	That	is,	yj = f(nj) e.g.,	
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Three-layer	feed-forward	neural	network	

•  Each	output	unit	similarly	computes	its	net	ac3va3on	
based	on	the	hidden	unit	signals	as:	

	
•  where	the	subscript	k indexes	units	in	the	ouput	layer	

and	nH	denotes	the	number	of	hidden	units	
•  The	output	can	be	a	linear	or	nonlinear	func3on	of	the	

net	input		e.g.,		
	

∑ ∑
= =

•==+=
H Hn

j

n

j
kkjjkkjjk wywwyn

1 0
0 ,YW

€ 

zk = nk



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Compu3ng	nonlinear	func3ons	using	a	feed-forward	
neural	network	
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Realizing	non	linearly	separable	class	boundaries	
using	a	3-layer	feed-forward	neural	network	
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•  Given	a	training	set	determine	
•  Network	structure	–	number	of	hidden	nodes	or	more	generally,	

network	topology		
•  Start	small	and	grow	the	network	
•  Start	with	a	sufficiently	large	network	and	prune	away	the	
unnecessary	connec3ons	

•  For	a	given	structure,	determine	the	parameters	(weights)	that	
minimize	the	error	on	the	training	samples	(e.g.,	the	mean	
squared	error)	

•  For	now,	we	focus	on	the	laHer	

Learning	nonlinear	real-valued	func3ons		
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•  Challenge	–	we	know	the	desired	outputs	for	nodes	in	the	output	
layer,	but	not	the	hidden	layer		

•  Need	to	solve	the	credit	assignment	problem	–	dividing	the	credit	
or	blame	for	the	performance	of	the	output	nodes	among	hidden	
nodes		

•  Generalized	delta	rule	offers	an	elegant	solu3on	to	the	credit	
assignment	problem	in	feed-forward	neural	networks	in	which	
each	neuron	computes	a	differen3able	func3on	of	its	inputs	

•  Solu3on	can	be	generalized	to	other	kinds	of	networks,	including	
networks	with	cycles	

Generalized	delta	rule	–	error	back-propaga3on	
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•  Forward	opera3on	(compu3ng	output	for	a	given	input	based	
on	the	current	weights)	

•  Learning	–	modifica3on	of		the	network	parameters	(weights)	
to	minimize	an	appropriate	error	measure	

•  Because	each	neuron	computes	a	differen3able	func3on	of	its	
inputs	
–  	If	error	is	a	differen3able	func3on	of	the	network	outputs,	
the	error	is	a	differen3able	func3on	of	the	weights	in	the	
network	–	so	we	can	perform	gradient	descent!	

Feed-forward	networks	
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A	fully	connected	3-layer	network	
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Generalized	delta	rule	
•  Let	tkp be	the	k-th	target	(or	desired)	output	for	input	paHern	

Xp and	zkp	be	the	output	produced	by		k-th	output	node	and	
let	W represent	all	the	weights	in	the	network	

•  Training	error:	

•  The	weights	are	ini3alized	with	pseudo-random	values	and	are	
changed	in	a	direc3on	that	will	reduce	the	error:	
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Generalized	delta	rule		

η>0	is	a	suitable	the	learning	rate	Wß	W+	ΔW 
	Hidden–to-output	weights	
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Generalized	delta	rule	

Weights	from	input	to	hidden	units	
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Back	propaga3on	algorithm	

•  Start	with	small	random	ini3al	weights	
•  Un3l	desired	stopping	criterion	is	sa3sfied	do	
•  	 Select	a	training	sample	from	S 
•  	 Compute	the	outputs	of	all	nodes	based	on	current	
weights	and	the	input	sample	

•  	 Compute	the	weight	updates	for	output	nodes	
•  	 Compute	the	weight	updates	for	hidden	nodes	
•  	 Update	the	weights	
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Using	neural	networks	for	classifica3on	

kp
k

p zF maxarg)( =X

Classify	a	paHern	by	assigning	it	to	the	class	that	
corresponds	to	the	index	of	the	output	node	with	the	
largest	output	for	the	paHern	

Network	outputs	are	real	valued.		

How	can	we	use	the	networks	for	classifica3on?	
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Training	mul3-layer	networks	–	Some	Useful	Tricks	

•  Ini3alizing	weights	to	small	random	values	that	place	the	
neurons	in	the	linear	por3on	of	their	opera3ng	range	for	
most	of	the	paHerns	in	the	training	set	improves	speed	of	
convergence	e.g.,	
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For	input	to	hidden	layer	weights	with	the	
sign	of	the	weight	chosen	at	random	

For	hidden	to	output	layer	weights	with	
the	sign	of	the	weight	chosen	at	random	
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Some	Useful	Tricks	

•  Use	of	momentum	term	allows	the	effec3ve	learning	rate	for	
each	weight	to	adapt	as	needed	and	helps	speed	up	
convergence	–	in		a	network	with	2	layers	of	weights,	
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Some	Useful	Tricks	

•  Use	sigmoid	func3on	which	sa3sfies	ϕ(–z)=–ϕ(z)	helps	speed	
up	convergence	
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Some	Useful	Tricks	

•  Randomize	the	order	of	presenta3on	of	training	examples	
from	one	pass	to	the	next	helps	avoid	local	minima	

•  Introduce	small	amounts	of	noise	in	the	weight	updates	(or	
into	examples)	during	training	helps	improve	generaliza3on	–	
minimizes	over	fivng,	makes	the	learned	approxima3on	
more	robust	to	noise,	and	helps	avoid	local	minima	

•  If	using	the	suggested	sigmoid	nodes	in	the	output	layer,	set	
target	output	for	output	nodes	to	be	1	for	target	class	and	-1	
for	all	others	
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Some	useful	tricks	

•  Regulariza3on	helps	avoid	over	fivng	and	improves	
generaliza3on	
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Start	with	λ	close	to	1	and	gradually	lower	it	during	training.	
When	λ	<1,	it	tends	to	drive	weights	toward	zero	sevng	up	a	
tension	between	error	reduc3on	and	complexity	minimiza3on	
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Some	Useful	Tricks	

Input	and	output	encodings	
•  Do	not	eliminate	natural	proximity	in	the	input	or	output	

space		
•  Do	not	normalize	input	paHerns	to	be	of	unit	length	if	the	
length	is	likely	to	be	relevant	for	dis3nguishing	between	
classes	

•  Do	not	introduce	unwarranted	proximity	as	an	ar3fact	
•  Do	not	use	log2	M	outputs	to	encode	M	classes,	use	M	
outputs	instead	to	avoid	spurious	proximity	in	the	output	
space	

•  Use	error	correc3ng	codes	when	feasible	
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Some	Useful	Tricks	
Examples	of	a	good	code	
•  Binary	thermometer	codes	for	encoding	real	values	

•  Suppose	we	can	use	10	bits	to	represent	a	value	between	
-1.0	and	+1.0	

•  We	can	quan3ze	the	interval	[-1,	1]	into	10	equal	parts	
•  0.38	in	thermometer	code	is		1111000000	
•  0.60	in	thermometer	code	is		1111110000	
•  Note	values	that	are	close	along	the	real	number	line	have	
thermometer	codes	that	are	close	in	Hamming	distance		

Example	of	a	bad	code		
•  Ordinary	binary	representa3ons	of	integers	
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Some	Useful	Tricks	

•  Normalizing	inputs	–	know	when	and	when	not	to	normalize	
•  Scale	each	component	of	the	input	separately	to	lie	between	

-1	and	1	with	mean	of	0	and	standard	devia3on	of	1		
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Some	Useful	Tricks	

Ini3alizing	weights	(revisited)	
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Some	Useful	Tricks	

•  Normalizing	inputs	–	know	when	and	when	not	to	normalize	
•  Normalizing	each	input	paHern	so	that	it	is	of	unit	length	is	

commonplace,	but	open	inappropriate	

p

p
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X
X ← ω1	

ω2	
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Some	Useful	Tricks	

•  Use	of	problem	specific	informa3on	(if	known)	speeds	up	
convergence	and	improves	generaliza3on		

•  In	networks	designed	for	transla3on-invariant	visual	image	
classifica3on,	building	in	transla3on	invariance	as	a	
constraint	on	the	weights	helps	

•  If	we	know	the	func3on	to	be	approximated	is	smooth,	we	
can	build	that	in	as	part	of	the	criterion	to	be	minimized	–	
minimize	in	addi3on	to	the	error,	the	gradient	of	the	error	
with	respect	to	the	inputs		
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Some	Useful	Tricks	

•  Manufacture	training		data	–	training	networks	with	
translated	and	rotated	paHerns	if	transla3on	and	rota3on	
invariant	recogni3on	is	desired	

•  Incorporate	hints	during	training	
•  Hints	are	used	as	addi3onal	outputs	during	training	to	

help	shape	the	hidden	layer	representa3on	

Hint	nodes	(e.g.,	vowels	versus	
consonants	in	training	a	phoneme	
recognizer)	
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Some	Useful	Tricks	

•  Reducing	the	effec3ve	number	of	free	parameters	
(degrees	of	freedom)	helps	improve	generaliza3on	

•  Regulariza3on	
•  Preprocess	the	data	to	reduce	the	dimensionality	of	the	

input	–	
•  Train	a	neural	network	with	output	same	as	input,	but	
with	fewer	hidden	neurons	than	the	number	of	inputs	

•  Use	the	hidden	layer	outputs	as	inputs	to	a	second	
network	to	do	func3on	approxima3on	
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Some	Useful	Tricks	

•  Choice	of	appropriate	error	func3on	is	cri3cal	–	do	not	blindly	
minimize	sum	squared	error	–	there	are	many	cases	where	other	
criteria	are	appropriate	

•  Example	
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is	appropriate	for	minimizing	the	distance	between	the	
target	probability	distribu3on	over	the	M	output	variables	
and	the	probability	distribu3on	represented	by	the	
network		
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Some	Useful	Tricks	

•  Interpre3ng	the	outputs	as	
class	condi3onal	
probabili3es		

•  Use	exponen3al	output	
nodes	
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Bayes	classifica3on	and	Neural	Networks	
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Bayes	classifica3on	and	Neural	Networks	

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )
!!!!! "!!!!! #$

W

XXXXXXXWX

XXXXWXXXWX

XXWXXXWXW

 oft independen

2

2

22

||

||)(|;

,,;2;

|;)(|1;)(
||

1lim

dPPPdPPg

dPdPgdPg

dPgPdPgPE
S

kikkk

kkkk

kikkikkkSS

∫∫

∫∫∫

∫∫

≠

≠≠
∞→

+−=

+−=

+−=

ωωω

ωω

ωωωω

( ) ( )XWX |; kk Pg ω≈
Because	generalized	delta	rule	minimizes	this	quan3ty		
with	respect	to	W, we	have	

Assuming	that	the	network	is	expressive	enough	to	represent		
( )X|kP ω
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Radial-Basis	Func3on	Networks	

•  A	func3on	is	approximated	as	a	linear	combina3on	
of	radial	basis	func3ons	(RBF).	RBFs	capture	local	
behaviors	of	func3ons.	

	
•  RBFs	represent	local	recep3ve	fields	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Radial	Basis	Func3on	Networks	

•  Hidden	layer	applies	a	non-linear	transforma3on	from	
the	input	space	to	the	hidden	space.	

•  Output	layer	applies	a	linear	transforma3on	from	the	
hidden	space	to	the	output	space.	

x2 

xm 

x1 

y	

wH 

w1 
1ϕ

Hϕ
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φ-separability	of	paHerns	
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Hidden	layer	
representa3on	

A	(binary)	par33on,	also	called	dichotomy,	(C1,C2)	of	the	
training	set	C	is	φ-separable	if	there	is	a	vector	w	of	dimension	
H	such	that:	
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Examples	of	φ-separability	

•  Separa3ng	surface:		
•  Examples	of	separable	par33ons	(C1,C2):	

( ) 0=ϕ• XΑ

Linearly	separable:	

Spherically	separable:	

Quadra3cally	separable:	
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Example	of	a	radial	basis	func3on	

•  Hidden	units:	use	a	radial	basis	func3on				

x2 

x1 

xN 

φσ(	||	X-	W||2)	
	
W	is	called	center	
σ	is	called	spread	
center	and	spread	are	parameters	

σϕ

φσ(	||	X-	W||2)	
the	output	depends	on	the	distance	of		
the	input	x	from	the	center	t	
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Radial	basis	func3on	

•  A	hidden	neuron	is	more	sensi3ve	to	data	points	near	its	
center.	This	sensi3vity	may	be	tuned	by	adjus3ng	the	
spread	σ.	

•  Larger	spread	⇒	less	sensi3vity	

•  Neurons	in	the	visual	cortex	have	locally	tuned	frequency	
responses.	
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Gaussian	Radial	Basis	Func3on	φ	

center	

φ	:	

σ	is	a	measure	of	how	spread	the	curve	is:	

Large	σ	 Small	σ	
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Types	of	φ	

•  Mul3quadrics	

•  Inverse	mul3quadrics	

•  Gaussian	func3ons:	

2
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Implemen3ng	Exclusive	OR	using	an	RBF	network	

•  Input space: 

•  Output	space:	

•  Construct	an	RBF	paHern	classifier	such	that:	
(0,0)	and	(1,1)	are	mapped	to	0,	class	C1	
(1,0)	and	(0,1)	are	mapped	to	1,	class	C2	

(1,1)	
(0,1)	

(0,0)	
(1,0)	

x1	

x2	

y	
1	0	
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In	the	feature	(hidden)	space:	

	
	
When	mapped	into	the	feature	space	<	z1	,	z2	>,	C1	and	C2	become	linearly	

separable.	So	a	linear	classifier	with	ϕ1(x)	and	ϕ2(x)	as	inputs	can	be	used	to	solve	
the	XOR	problem.		

Exclusive	OR	revisited		
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RBF	Learning	Algorithm	
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Depending	on	the	specific	func3on	can	be	
computed	using	the	chain	rule	of	calculus	
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RBF	Learning	Algorithm	
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RBF	Learning	Algorithm	 ( )
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RBF	Learning	Algorithm	
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RBF	Learning	Algorithm	(con3nued)	
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RBF	Learning	Algorithm	
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RBF	Learning	Algorithm	 ( )
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RBF	Learning	Algorithm	(con3nued)	
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More	general	form	of	radial	basis	func3on		

									is	the	inverse	of	an	N×N	covariance	matrix	

Note	that	the	covariance	matrix	is	symmetric	

1−
jC

Exercise:	derive	a	learning	rule	for	an	RBF	network	
with	such	neurons	in	the	hidden	layer	and	linear	
neurons	in	the	output	layer	
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RBF	Learning	Algorithm	(con3nued)	
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RBF	Learning	Algorithm	

•  Ini3alize	the	parameters	--	centers	of	the	hidden	neurons	are	
typically	ini3alized	to	coincide	with	a	subset	of	the	training	set		

•  Use	gradient	descent	to	adjust	the	parameters	using	the	training	
data	un3l	the	desired	performance	criterion	is	sa3sfied	
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From	Neural	Networks	to	Deep	Neural	Networks	



Typical	goal	of	machine	learning	

Label:	“Motorcycle”	
Suggest	tags	
Image	search	
…	

Speech	recogni3on	
Music	classifica3on	
Speaker	iden3fica3on	
…	

Web	search	
An3-spam	
Machine	transla3on	
…		

text	

audio	

images/video	

input	 output	

ML	

ML	

ML	



Typical	goal	of	machine	learning	

Label:	“Motorcycle”	
Suggest	tags	
Image	search	
…	

Speech	recogni3on	
Music	classifica3on	
Speaker	iden3fica3on	
…	

Web	search	
An3-spam	
Machine	transla3on	
…		

text	

audio	

images/video	

input	 output	

ML	

ML	

ML	

Feature	engineering	



Object	classifica3on	

“motorcycle”	ML	



Why	is	this	hard?	

You	see	this:		

But	the	camera	sees	this:	



Pixel-based	representa3on	

Input	

Raw	image	

Motorbikes	
“Non”-Motorbikes	

Learning 
algorithm 

pixel	1	

pi
xe
l	2
	

pixel	1 

pixel	2 



Pixel-based	representa5on	

Input	
Motorbikes	
“Non”-Motorbikes	

Learning 
algorithm 

pixel	1	
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Raw	image	



Pixel-based	representa3on	

Input	
Motorbikes	
“Non”-Motorbikes	

Learning 
algorithm 

pixel	1	

pi
xe
l	2
	

pixel	1 

pixel	2 

Raw	image	



What	we	want	

Input	
Motorbikes	
“Non”-Motorbikes	

Learning 
algorithm 

pixel	1	

pi
xe
l	2
	

Feature 
representation 

handlebars 

wheel 
E.g.,	Does	it	have	Handlebars?		Wheels?		

Handlebars	

W
he

el
s	

Raw	image	 Features	



Some	feature	representa3ons	

SIFT	 Spin	image	

HoG	 RIFT	

Textons	 GLOH	



Some	feature	representa3ons	

SIFT	 Spin	image	

HoG	 RIFT	

Textons	 GLOH	

Coming	up	with	features	is	open	difficult,	3me-
consuming,	and	requires	expert	knowledge.		



The	brain:	inspira3on	for	deep	learning	

[Roe et al., 1992] 

Auditory cortex learns to see! 

Auditory Cortex 



Basic	idea	of	deep	learning	

•  Also	referred	to	as	representa3on	learning	or	unsupervised	
feature	learning	(with	subtle	dis3nc3ons)	

•  Is	there	some	way	to	extract	meaningful	features	from	data	
even	without	knowing	the	task	to	be	performed?	

•  Then,	throw	in	some	hierarchical	structure	to	make	it	‘deep’	



Feature	learning	problem	

• Given	a	14x14	image	patch	x,	can	represent	it	using	196	
real	numbers.		

• Problem:	Can	we	find	a	learn	a	beHer		feature	vector	to	
represent	this?		

255	
98	
93	
87	
89	
91	
48	
…	



First	stage	of	visual	processing:	V1	

V1 is the first stage of visual processing in the brain. 
Neurons in V1 typically modeled as edge detectors:  

Neuron	#1	of	visual	cortex	
(model)	

Neuron	#2	of	visual	cortex	
(model)	



Learning	sensor	representa3ons	

	
Sparse	coding	(Olshausen	&	Field,1996)	
	
Input:	Images	x(1),	x(2),	…,	x(m)	(each in Rn x n)

Learn:	Dic3onary	of	bases	φ1, φ2,	…,	φk (also Rn	x	n),	so	
that	each	input	x	can	be	approximately	decomposed	
as:	
	 	 	x	  	∑	aj φj	

	

													s.t.	aj’s	are	mostly	zero	(“sparse”)		
	



Sparse	coding	illustra3on	
				Natural	Images	 Learned	bases	(φ1	,	…,	φ64):		“Edges”	
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≈ 0.8 *                   + 0.3 *                     + 0.5 * 

     x      ≈ 0.8 *       φ
36         +  0.3 *        φ42          

+ 0.5 *       φ63	
[a1,	…,	a64]	=	[0,	0,	…,	0,	0.8,	0,	…,	0,	0.3,	0,	…,	0,	0.5,	0]		
(feature	representa3on)		

Test	example 



Sparse	coding	illustra3on	

     0.6 *                  + 0.8 *                  + 0.4 * 

                                    φ15                                 φ28                                                 
φ

37  

     1.3 *                  + 0.9 *                  + 0.3 * 

                                   φ5                                   φ18                                               
φ

29  

• Method “invents” edge detection 
•  Automatically learns to represent an image in terms of the edges that 

appear in it. Gives a more succinct, higher-level representation than the 
raw pixels.  

•  Quantitatively similar to primary visual cortex (area V1) in brain.  

Represent	as:	[a5=1.3,	a18=0.9,	a29	=	0.3]	

Represent	as:	[a15=0.6,	a28=0.8,	a37	=	0.4]	



Going	deep	

pixels	

edges	

object	parts	
(combina3on		
of	edges)	

object	models	

Training	set:	Aligned	
images	of	faces.		

Early	work:		
Uhr	and	students	(recogni3on	cones)	
Fukushima	(neocognitron)	



Why	deep	learning?	

Method	 Accuracy	

Hessian	+	ESURF	[Williems	et	al	2008]	 38%	

Harris3D	+	HOG/HOF	[Laptev	et	al	2003,	2004]	 45%	

Cuboids	+	HOG/HOF		[Dollar	et	al	2005,	Laptev	2004]	 46%	

Hessian	+	HOG/HOF	[Laptev	2004,	Williems	et	al	2008]	 46%	

Dense	+	HOG	/	HOF	[Laptev	2004]	 47%	

Cuboids	+	HOG3D	[Klaser	2008,	Dollar	et	al	2005]	 46%	

Unsupervised	feature	learning	(our	method)	 52%	

[Le,	Zhou	&	Ng,	2011]	

Task:	video	ac3vity	recogni3on	



TIMIT	Phone	classifica5on	 Accuracy	
Prior	art	(Clarkson	et	al.,1999)	 79.6%	
Feature	learning	 80.3%	

TIMIT	Speaker	iden5fica5on	 Accuracy	
Prior	art	(Reynolds,	1995)	 99.7%	
Feature	learning	 100.0%	

Audio	

Images	

Mul3modal	(audio/video)	

CIFAR	Object	classifica5on	 Accuracy	
Prior	art	(Ciresan	et	al.,	2011)		 80.5%	
Feature	learning	 82.0%	

NORB	Object	classifica5on	 Accuracy	
Prior	art	(Scherer	et	al.,	2010)	 94.4%	
Feature	learning	 95.0%	

AVLebers	Lip	reading	 Accuracy	
Prior	art	(Zhao	et	al.,	2009)	 58.9%	
Stanford	Feature	learning	 65.8%	

Galaxy	

Hollywood2	Classifica5on	 Accuracy	
Prior	art	(Laptev	et	al.,	2004)	 48%	
Feature	learning	 53%	

KTH	 Accuracy	
Prior	art	(Wang	et	al.,	2010)	 92.1%	
Feature	learning	 93.9%	

UCF	 Accuracy	
Prior	art	(Wang	et	al.,	2010)	 85.6%	
Feature	learning	 86.5%	

YouTube	 Accuracy	
Prior	art	(Liu	et	al.,	2009)	 71.2%	
Feature	learning	 75.8%	

Video	

Text/NLP	
Paraphrase	detec5on	 Accuracy	
Prior	art	(Das	&	Smith,	2009)		 76.1%	
Feature	learning	 76.4%	

Sen5ment	(MR/MPQA	data)	 Accuracy	
Prior	art	(Nakagawa	et	al.,	2010)		 77.3%	
Feature	learning	 77.7%	



Impact	on	speech	recogni3on	



Applica3on	to	Google	Streetview	



ImageNet	classifica3on:	22,000	classes	
…	
smoothhound,	smoothhound	shark,	Mustelus	mustelus	
American	smooth	dogfish,	Mustelus	canis	
Florida	smoothhound,	Mustelus	norrisi	
white3p	shark,	reef	white3p	shark,	Triaenodon	obseus	
Atlan3c	spiny	dogfish,	Squalus	acanthias	
Pacific	spiny	dogfish,	Squalus	suckleyi	
hammerhead,	hammerhead	shark	
smooth	hammerhead,	Sphyrna	zygaena	
smalleye	hammerhead,	Sphyrna	tudes	
shovelhead,	bonnethead,	bonnet	shark,	Sphyrna	3buro	
angel	shark,	angelfish,	Squa3na	squa3na,	monkfish	
electric	ray,	crampfish,	numbfish,	torpedo	
smalltooth	sawfish,	Pris3s	pec3natus	
guitarfish	
roughtail	s3ngray,	Dasya3s	centroura	
buHerfly	ray	
eagle	ray	
spoHed	eagle	ray,	spoHed	ray,	Aetobatus	narinari	
cownose	ray,	cow-nosed	ray,	Rhinoptera	bonasus	
manta,	manta	ray,	devilfish	
Atlan3c	manta,	Manta	birostris	
devil	ray,	Mobula	hypostoma	
grey	skate,	gray	skate,	Raja	ba3s	
liHle	skate,	Raja	erinacea	
…	

S3ngray	

Mantaray	



0.005%	
Random	guess	

9.5%	 ?	
Feature	learning		
From	raw	pixels	

State-of-the-art	
(Weston,	Bengio	‘11)	

Le,	et	al.,	Building	high-level	features	using	large-scale	unsupervised	learning.	ICML	2012	

ImageNet	Classifica3on:	14M	images,	22k	categories	



0.005%	
Random	guess	

9.5%	 21.3%	
Feature	learning		
From	raw	pixels	

State-of-the-art	
(Weston,	Bengio	‘11)	

Le,	et	al.,	Building	high-level	features	using	large-scale	unsupervised	learning.	ICML	2012	

ImageNet	Classifica3on:	14M	images,	22k	categories	



But…	deep	neural	networks	can	be	easily	fooled	



Some	common	deep	architectures	

• Autoencoders	
• Deep	belief	networks	(DBNs)	
• Convolu3onal	variants	
• Sparse	coding	
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Unsupervised feature learning with a neural network

x4	

x5	

x6	

+1	

Layer	1	

Layer	2	

x1	

x2	

x3	

x4	

x5	

x6	

x1	

x2	

x3	

+1	

Layer	3	

Autoencoder.

Network is trained to 
output the input (learn 
identify function). 

Trivial solution unless:
-  Constrain number of 
units in Layer 2 (learn 
compressed 
representation), or
-  Constrain Layer 2 to 
be sparse. 

a1	

a2	

a3	
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Unsupervised feature learning with a neural network
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Unsupervised feature learning with a neural network
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New representation for input. 
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Unsupervised feature learning with a neural network
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Unsupervised feature learning with a neural network
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Train parameters so that                  ,
 subject to bi’s being sparse. 
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Unsupervised feature learning with a neural network
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Unsupervised feature learning with a neural network
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Unsupervised feature learning with a neural network
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Unsupervised feature learning with a neural network
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Unsupervised feature learning with a neural network
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Unsupervised feature learning with a neural network
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+1	
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New representation 
for input. 

Use [c1, c3, c3] as representation to feed to learning algorithm.
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Deep Belief Net

Deep Belief Net (DBN) is another algorithm 
for learning a feature hierarchy. 

Building block: 2-layer graphical model 
(Restricted Boltzmann Machine).

 

Can then learn additional layers one at a 
time. 
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Restricted Boltzmann machine (RBM) 

Input [x1, x2, x3, x4] 

Layer 2. [a1, a2, a3] 
(binary-valued)  

MRF with joint distribution: 

Use Gibbs sampling for inference.

Given observed inputs x, want maximum likelihood estimation: 

 

x4	x1	 x2	 x3	

a2	 a3	a1	
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Restricted Boltzmann machine (RBM) 

Input [x1, x2, x3, x4] 

Layer 2. [a1, a2, a3] 
(binary-valued)  

Gradient ascent on log P(x) :

[xiaj]obs  from fixing x to observed value, and sampling a from P(a|x).

[xiaj]prior from running Gibbs sampling to convergence. 

Adding sparsity constraint on ai’s usually improves results. 

x4	x1	 x2	 x3	

a2	 a3	a1	
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Deep Belief Network

Input [x1, x2, x3, x4] 

Layer 2. [a1, a2, a3] 

Layer 3. [b1, b2, b3] 
 

Similar to a sparse autoencoder in many ways. 
Stack RBMs on top of each other to get DBN. 

Train with approximate maximum likelihood (often with 
sparsity constraint on ai’s): 
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Deep Belief Network

 
 
 
 
 

Input [x1, x2, x3, x4] 

Layer 2. [a1, a2, a3] 

Layer 3. [b1, b2, b3] 
 

Layer 4. [c1, c2, c3] 
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Convolutional DBN for audio

Spectrogram

Detection units

Max pooling unit
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Convolutional DBN for audio

Spectrogram
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Convolutional DBN for Images

Wk	

Detec3on	layer	H 

Max-pooling	layer	P 

Hidden	nodes	(binary)	

“Filter”	weights	(shared)	

‘’max-pooling’’	node	(binary)	

Input	data	V


