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Computa3onal	Learning	Theory	–	What	is	it	good	for?	

•  To	make	explicit	relevant	aspects	of	the	learner	and	the	
environment	

•  To	iden3fy	easy	and	hard	learning	problems	(and	the	
precise	condi3ons	under	which	they	are	easy	or	hard)	

•  To	guide	the	design	of	learning	systems	
•  To	shed	light	on	natural	learning	systems	
•  To	help	analyze	the	performance	of	learning	systems	
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Computa3onal	Learning	Theory	

•  Model	of	the	Learner:	Computa3onal	capabili3es,	
sensors,	effectors,	knowledge	representa3on,	inference	
mechanisms,	prior	knowledge,	etc.	

•  Model	of	the	Environment:	Tasks	to	be	learned,	
informa3on	sources	(teacher,	queries,	experiments),	
performance	measures	

•  Key	ques3ons:	Can	a	learner	with	a	certain	structure	
learn	a	specified	task	in	a	par3cular	environment?	Can	
the	learner	do	so	efficiently?	If	so,	how?	If	not,	why	not?	
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§  Distribu3on-free	models	of	learning		

§  Probably	Approximately	Correct	(PAC)	Learning	

§  Sample	Complexity	Analysis	of	Concept	Classes	

§  Efficient	PAC	Learners	–	polynomial	sample	learning,	
polynomial	3me	learning	

§  Vapnik-Chervonenkis	(VC)	dimension	and	Sample	Complexity		

§  Occam’s	razor		
§  Learning	under	simple	distribu3ons		

§  Brief	tour	of	other	key	results		

Probably	Approximately	Correct	(PAC)	Learning	
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The	Learning	Game	

•  		
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The	Learning	Game	

•  We	assume		
•  An	instance	space	X 
•  A	concept	space		

•  A	hypothesis	space	

•  An	unknown,	arbitrary,	not	necessarily	computable,	
sta3onary	probability	distribu3on D	over	the	instance	space	X  

C =  c : X→ 0,1{ }  { }

H =  h : X→ 0,1{ }{ }
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Rules	of	the	Game	

•  An	adversary	selects	a	distribu3on	D	over	a	given	instance	
space	X  and	a	target	concept	c	from	a	given	concept	class	C 

•  An	oracle	samples	the	instance	space	according	to	D	and	
provides		a	set	S	of	labeled	examples	of	an	unknown	concept	c	
to	the	learner	

•  The	learner's	task	is	to	output	a	hypothesis	h	from	H that	
closely	approximates	the	unknown	concept	c	based	on	the	
examples	it	has	encountered	

•  The	learner	is	tested	on	samples	drawn	from	the	instance	
space	according	to	the	same	probability	distribu3on	D 
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Measuring	the	error	of	a	hypothesis	

•  The	error	of	a	hypothesis	h	with	respect	to	a	concept	c	and	
distribu3on	D		

( ) ( )( )xhxcherror DxDc ≠= ∈Pr)(,

h
c

error 

X 
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Probably	Approximately	Correct	Learning	–	Why?	

Impossibility	of	learning	with	0%	error	
•  Because	instances	are	sampled	according	to	an	unknown,	

arbitrary	probability	distribu3on	D	over	the	instance	space,	
there	is	no	way	to	be	certain	that	the	learner	will	see	all	the	
necessary	examples	to	exactly	learn	an	unknown	concept	–	
exact	learning	is	impossible!	

Impossibility	of	approximate	learning	with	100%	confidence	
•  Approximate	learning	(with	a	specified	error	ε)	cannot	be	

guaranteed	hundred	percent	of	the	3me	because	of	the	
vagaries	of	the	sampling	process	
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ε-approxima3on	of	a	concept	c  
 

•  We	say	that	a	hypothesis	h	is	an	ε-approxima3on	of	a	concept	
c,	with	respect	to	an	instance		distribu3on	D if	and	only	if	the	
probability	that	h and	c	disagree	on	an	instance	from	the	
instance	space	drawn	at	random	according	to	the	distribu3on	
D is	less	than	ε. That	is,  

ε<)(, herror Dc
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PAC	Learning	–	A	preliminary	defini3on		

•  A	concept	class	C	is	said	to	be	PAC-learnable	using	a	
hypothesis	class	H	if	there	exists	a	learning	algorithm	L	such	
that	for	all	concepts	c	∈	C,	for	all	distribu3ons	D	on	an	
instance	space	X,																																		,		L,	when	allowed	
access	to	the	Example	oracle	(that	is,	a	finite	set	S	of	
labeled	examples	of	a	target	concept	c),	outputs	with	
probability	at	least											,	a	hypothesis	h ∈ H	which	is	an	ε-
approxima3on	of	c.	That	is,					

( )∀ < <ε δ ε δ, ,  0 1

( )1−δ

( ) ( )δ
δεδε

−≥<∈

<<<<∀∈∀∀

⊂ 1)(Pr
,10 ,10:, ,,over  

, herror
CcXD

DcDS

Such	a	learning	algorithm	L	is	called	a	PAC	learning	algorithm	
for	the	concept	class	C 
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Notes	on	the	defini3on	of	PAC	Learnability	

•  The	defini3on	of	PAC	learnability	of	a	specified	concept	class	C	
requires	that	there	be	a	learning	algorithm	L	that	produces	an	
ε-approxima3on	of	any	concept	in	the	concept	class	C,	any	
instance	distribu3on,	and		any	choice	of	the	error	(ε)	and	
confidence	(δ)	parameters.	

	

•  Specifying	a	learning	algorithm	requires	the	choice	of	an	
instance	representa3on,	the	choice	of	a	hypothesis	(concept)	
representa3on,	and	an	algorithm	for	determining	the	
membership	of	an	instance	in	a	hypothesis	(concept).	More	on	
this	later.	
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How	can	we	show	that	a	concept	class	is	PAC	Learnable?	

•  In	order	to	prove	the	PAC	learnability	of	a	concept	class	we	
have	to	demonstrate	the	existence	of	a	learning	algorithm	
which	meets	the	necessary	criteria	specified	in	the	defini3on	of	
PAC	learnability.		

•  It	is	even	beHer	if	we	can	offer	a	construc3ve	proof	–	that	is,	
provide	an	algorithm	that	meets		the	PAC	criteria.	

•  It	turns	out	that	we	can	oden	get	away	with	using	a	rather	
dumb	learning	algorithm	–	one	that	simply	outputs	a	
hypothesis	that	is	consistent	with	the	training	examples.	(We	
assume	that	H	is	expressive	enough	to	guarantee	the	existence	
of	a	consistent	hypothesis).	
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PAC	Learnability	of	finite	concept	classes	

•  Defini3on:	A	consistent	learner	is	one	that	returns	some	
hypothesis	h	∈	H  that		is	consistent	with	a	training	set	S	of	
cardinality	m.	

•  Theorem:	A	consistent	learner	L 	is	a	PAC	learner.	That	is,	
given	a	sufficiently	large		number (m)		of	examples	of	c,	the	
hypothesis	produced	by	L	is	guaranteed,	with	probability	at	
least	1-δ,	to	be	an	ε-approxima3on	of	c – for	any	choice	of c∈ 
C, any	instance	distribu3on D, and	any	choice	of ε, δ	such	
that	0<	ε, δ < 1.		Specifically,	it	suffices	if		

m >
1
ε
ln
H
δ
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A	consistent	learner		

L 
S VH,S h∈ VH,S 

VH,S 

H 

{ } S in examples  with is | , consistenthHhV SH ∈=
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Proof	that	a	consistent	learner	is	a	PAC	
learner	Proof	sketch	

•  There	are	two	kinds	of	hypothesis	in	H,	and	hence	in	the	version	
space	VH,S 
–  good	(ε-approxima3ons	of	the	target	concept)	
–  bad	(not	ε-approxima3ons	of	the	target	concept).	

•  Given	a	sufficiently	large	number	of	examples	of	a	target	concept	c,	
a	sufficiently	large	frac3on	of	the	bad	hypotheses	get	eliminated	
from	the	version	space	maintained	by	a	consistent	learner.	

•  Consequently,	a	randomly	selected	hypothesis	from	VH,S has	a	high	
probability	(at	least	1-δ)	of	being	an	ε-approxima3on	of	the	target	
concept	
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A	consistent	learner	is	a	PAC	learner	

Defini3on:	A	version	space	VH,S	is	said	to	be	ε-exhausted	with	
respect	to	an	instance	distribu3on	D	and	a	concept	c	if	every	
hypothesis	h∈	VH,S	is	an	ε-approxima3on	of	c.	That	is,			

<∈∈∀ )( ,, herrorVh DcSH
	
Our	goal	is	to	make	the	training	set	S	large	enough	to	ensure	
that	the	probability	that	the	version	space	is	not	ε-exhausted	
with	respect	to	c	and	D	is	sufficiently	small	(less	than	δ)	
regardless	of	the	choice	of	c∈	C	and	instance	distribu3on	D	by	
an	adversary.	
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A	consistent	learner	is	a	PAC	learner	

Theorem:	Suppose	H	is	a	finite	hypothesis	space,	and	S	a	set	of	m 
(m ≥1) examples	of	some	c ∈C.	Then	for	any	ε	(0<	ε	≤	1),	the	
probability	that	the		version	space	VH,S  is	not ε-exhausted	with	
respect	to	an	instance	distribu3on	D and	a	concept	c is	at	
most	

Proof:		
•  Let	HBad be	the	subset	of hypothesis	in VH,S		that	are	not	ε-

approxima3ons	of	c.	

meH ε−

ε≥∈∀ )( , , herrorHh DcBad
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A	consistent	learner	is	a	PAC	learner	

•  The	probability	that	a	hypothesis	h ∈ HBad	agrees	with	c	on	a	
random	instance	drawn	according	to	D	is	at	most									

•  The	probability	that	a	hypothesis	h ∈ HBad	is	consistent	m	
independently	drawn	random	examples	is	at	most		

•  The	probability	that	some	hypothesis	in	VH,S	survives 	m	
independently	drawn	random	examples	is	at	most		

•  PAC	learning	requires	that	the	probability	of	L	returning	a	bad	
hypothesis	is	small.	That	is,		

( )1−ε

( )m1−ε

( ) δε <−1 m
H

( ) ( ) HHHH Bad

mm

Bad ⊆≤ −−  since 11 εε
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A	consistent	learner	is	a	PAC	learner	
PAC	learning	requires	that	the	probability	of	L	returning	a	bad	

hypothesis	is	small	(at	most	δ).	That	is,		

⎪
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Hence,	to	ensure	that	a	consistent	
learner	is	a	PAC	learner,	it	suffices	that		
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Sample	complexity	of	PAC	Learning	for	finite	hypothesis	classes	

The	smallest	integer	m	that	sa3sfies	the	inequality		

is	called	the	sample	complexity	of	H.		

δε

H
m ln1>
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PAC-	Easy	and	PAC-Hard	Concept	Classes	for	Consistent	Learners	
Conjunc3ve	concepts	are	easy	to	learn:	How?	
Algorithm	A.1	
•  Ini3alize	L={X1, ~X1, .... XN ~XN} 
•  Predict	according	to	match	between	an	instance	and	the	

conjunc3on	of	literals	in	L 
•  Whenever	a	mistake	is	made	on	a	posi3ve	example,	drop	the	

offending	literals	from	L 
Example		
N=4	
Ini3alize		L	=	{~X1, X1, ~X2, X2, ~X3, X3, ~X4, X4}	
(0111, 1)	will	result	in	L	=	{~X1, X2, X3, X4} 
(1110, 1)	will	yield	L = {X2, X3} 
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PAC-	Easy	and	PAC-Hard	Concept	Classes	for	Consistent	Learners	

•  Conjunc3ve	concepts	are	easy	to	learn	
•  Total	number	of	concepts	considered			

•  Sample	complexity																																				
•  Time	complexity	is	polynomial	in	the	relevant	parameters	of	

interest	
•  The	class	of	all	Boolean	concepts	is	hard	to	learn	(Why?)	
•  Remark:	Polynomial	sample	complexity	is	necessary	but	not	

sufficient	for	efficient	(polynomial	3me)	PAC	learning	–
producing	a	consistent	hypothesis	may	be	NP-Hard		

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎭
⎬
⎫

⎩
⎨
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δ
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Representa3on	

Dis3nc3on	between	a	concept	and	its	representa3on	
•  A	concept	is	simply	a	set	of	instances	–	extensional	defini3on	
•  A	representa3on	of	a	concept	is	a	symbolic	encoding	of	that	set	

–	intensional	defini3on	
Example	
•  A	concept	can	be	represented	as	a	Boolean	formula	φ,	or	a	

Boolean	formula	ϕ	that	is	logically	equivalent	to	φ,	or	a	truth	
table.		
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Representa3on	

•  Different	representa3ons	of	the	same	concept	may	differ	
radically	in	size	

•  Example	
•  Boolean	parity	func3on	

( ) nn xxxxxxf ⊕⊕⊕= ......., 2121

where	⊕	denotes	the	exclusive	OR		

•  can	be	computed	by	a	circuit	of	∧,	∨,	and	¬	gates	whose	size	
is	bounded	by	a	fixed	polynomial	in	n		

•  but	a	DNF	(disjunc3on	of	conjunc3ons)	representa3on	of	the	
same	func3on		has	size	that	is	exponen3al	in	n.
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Representa3on	

•  A	given	target	concept	has	many	representa3ons		

•  The	learner	is	oblivious	to	which,	if	any,	
representa3on	is	being	used	by	the	teacher	or	
adversary	to	encode	the	target	concept	

•  Yet	it	maHers	a	great	deal	which	of	the	many	
representa3ons	of	hypotheses	that	the	learner	
chooses	–	the	size	of	the	representa3on	of	a	
hypothesis	h	is	a	lower	bound	on	the	running	3me	
of	an	algorithm	that	outputs	h	
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Representa3on	

•  A	representa3on	scheme	for	a	concept	class	C	is	a	
func3on																		where	Σ	is	a	finite	alphabet	of	symbols.		

•  Any	string												such	that														is	called	a	
representa3on	of	c	under	R	

•  There	may	be	many	representa3ons	for	a	concept	c	
under	representa3on	R	

•  When	we	need	to	use	real	numbers	to	represent	
concepts,	we	may	allow	

CR →Σ *:

( ) CR →ℜ∪Σ *:

*Σ∈σ ( ) cR =σ
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Representa3on	size	

ℵ→Σ*:size
CR →Σ *: assigns	a	natural	number	size(σ)	to		

each	representa3on	σ	

The	results	obtained	under	a	par3cular	defini3on	of	size	are	
meaningful	only	if	the	defini3on	is	natural.		

Example	

Σ={0,1}	 	size(σ)	is	the	length	of	σ		in	bits	

If	real	numbers	are	used	to	encode	a	concept,	we	may	charge	
one	unit	of	size	to	each	real	number	–	cannot	translate	this	
measure	of	size	into	size	in	bits	unless	the	real	numbers	are	
finite	precision	
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Size	of	a	concept	c	under	a	representa3on	R 

( ) ( ) ( ){ }σσ sizecsize cR ==min

Size	of	a	concept	c	∈	C	under	a	representa3on	scheme		
R	for	C	is	the	size	of	the	smallest	representa3on	of	c	under	R	
	
The	larger	the	value	of	size(c),	the	more	complex	the	concept	c	
under	the	chosen	representa3on	
	
From	now	on,	when	we	speak	of	learning	a	concept	class	C,	we	will	
mean	learning	C	under	a	chosen	representa3on	R	
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Size	of	instances	

•  In	a	Boolean	instance	space																			the	size	of	each	
instance	is	n		

•  In																	the	size	of	each	instance	may	be	taken	to	be	n	
(with	the	usual	caveat).	

•  In																	where	A	is	a	finite	alphabet,	the	size	of	an	
instance	is	the	length	of	the	corresponding	string	(with	
maximum	size	being	n)	

		

{ }nnX 10,=

n
nX ℜ=

n
n ΑX ≤=
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Efficient	(Polynomial	Time)	PAC	Learning	
•  Defini3on:	Let	Cn	be	a	concept	class	over	Xn.  
•  Let	 																				and														

•  C	is	said	to	be	efficiently	PAC-learnable	if	C	is	PAC-learnable	
using	a	learning	algorithm	L which runs	in	3me	that	is	
polynomial	in	n  (size	of	the	instance	representa3on),	
size(c)	(size	of	the	representa3on	of	the	target	concept	c),						
and		

•  We	assume	that	the	learner	is	given	n	and	size(c)	as	input	–	
however,		these	assump3ons	can	be	relaxed	

nn XX 1≥∪=

⎟
⎠

⎞
⎜
⎝

⎛
ε

1

nn CC 1≥∪=

⎟
⎠

⎞
⎜
⎝

⎛
δ

1
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Efficient	(Polynomial	Time)	PAC	Learning	

•  Necessary:	Sample	complexity	must	be	polynomial	in	the	
relevant	parameters		

•  Sufficient:	Polynomial	sample	complexity	and	a	polynomial	
3me	consistent	learner	

•  More	examples	allowed	to	achieve	lower	error	
•  More	examples	allowed	for	achieving	higher	confidence	

•  More	examples	allowed	for	learning	more	complex	concepts	
•  More	examples	allowed	for	learning	from	bigger	instances	
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Conjunc3ve	Concepts	are	Efficiently	PAC	Learnable	

•  Conjunc3ve	concepts	are	efficiently	PAC-learnable	
under	a	natural	representa3on	of	conjunc3ons	

•  Sample	complexity																																				

•  Time	complexity	
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Quick	review	of	computa3onal	complexity	
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P	and	NP,	informally	

•  P	and	NP	are	two	classes	of	problems	that	can	be	solved	by	
computers.	

•  P	problems	can	be	solved	quickly.	
–  Quickly	means	seconds	or	minutes,	maybe	even	hours.	

•  NP	problems	can	be	solved	slowly.	
–  Slowly	can	mean	hundreds	or	thousands	of	years.	
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An	equivalent	ques3on	

•  Is	there	a	clever	way	to	turn	a	slow	algorithm	into	a	fast	one?	
–  If	P=NP,	the	answer	is	yes.	
–  If	P≠NP,	the	answer	is	no.	
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Why	do	we	care?	

•  People	like	things	to	work	fast.	
•  Encryp3ng	informa3on	

–  If	there’s	an	easy	way	to	turn	a	slow	algorithm	into	a	fast	
one,	there’s	an	easy	way	to	crack	encrypted	informa3on.	

–  This	is	bad	for	anyone	in	the	business	of	protec3ng	secrets	
and	for	people	who	like	to	buy	things	online.	
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Currently…	

•  Most	people	think	P≠NP.	
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General	compu3ng	

•  First,	consider	computer	programs	and	what	they	
can	do:	
		

input output 
(we hope) 

Program 
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A	couple	of	things	to	note	

•  There	are	lots	of	programs	for	any	given	problem.	
•  Some	are	faster	than	others.	

–  We	can	always	ar3ficially	slow	them	down.	
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Back	to	P	and	NP	

•  P	and	NP	are	classes	of	solvable	problems.	
•  Solvable	means	that	there’s	a	program	that	takes	an	input,	runs	

for	a	while,	but	eventually	stops	and	gives	the	answer.	
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Computa3on	“trees”	for	solvable	problems	

Program:	
	Input	x	

L1.		 	If	x	>	1,		
			set	x	=	x-2,	
			and	GoTo	L1.	
	If	x	=	0,		
			output	0.	
	If	x	=	1,	
			output	1.	

	

Example computation: 

Input x = 3 

x = 3 - 2 = 1 

x>1, so … 

x=1, so … 

Output 1 
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More	about	the	example…	

•  What	does	this	program	do?	
–  Outputs	0	if	input	is	even,	
–  Outputs	1	if	input	is	odd.	

•  Solves	the	problem	“Is	the	input	even	or	odd?”	
•  The	length	of	the	computa3on	tree	depends	on	the	
input.	
–  Time(3)=	2	
–  Time(4)=	3	
–  Time(x)≤	(x/2)	+	1	
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Solvability	versus	Tractability	

•  A	problem	is	solvable	if	there	is	a	program	that	always	stops	and	
gives	the	answer.	

•  The	number	of	steps	it	takes	depends	on	the	input.		
•  A	problem	is	tractable	or	in	the	class	P	if	it	is	solvable	and	we	can	

say	Time(x)≤(some	polynomial(x)).		
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P	problems	are	“fast”	

•  These	problems	are	compara3vely	fast.	
•  For	example,	consider	a	program	that	has	 	 							

compared	to	one	with		
	 	 					.	

– On	the	input	of	100,	the	computa3on	3mes	compare	
as	follows	

6703,205,379,401,496,600,228,221,267,650,2000,10100 1002 =<<=

2)( xxTime ≤
xxTime 2)( ≤
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Okay…	so	what	about	NP?	

•  The	descrip3on	involves	non-determinisTc	programming.	
–  NP	stands	for	“non-determinis3c,	polynomial-3me	
computable”	

•  The	examples	we’ve	seen	so	far	are	examples	of	determinisTc	
programs.	
–  By	the	way,	P	stands	for	“polynomial-3me	computable”	
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An	example	of	non-determinis3c	programming	

•  Non-determinis3c	programs	use	a	new	kind	of	
command	that	normal	programs	can’t	really	use.			

•  Basically,	they	can	guess	the	answer	and	then	check	to	
see	if	the	guess	was	right.			

•  And	they	can	guess	all	possible	answers	simultaneously	
(as	long	as	there	are	only	finitely	many	of	them).	
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An	example	of	non-determinis3c	programming	

Program:	
Input	x.	
Guess	y	in	{1,	2,	4,	9}.	
If	x+y	>	10,	

	stop	and	output	0.	
Otherwise,		
If	y	is	even,	

	Guess	z	in	{2,	3},	
	If	x+z	is	odd,	stop,		
	output	1.	

Otherwise,	output	0.	
		

Input x = 7 

We branch 
when there’s a 

guess; one 
path for each 

guess. 

guess y = 2 guess y = 1 guess y = 4 guess y = 9 

x+y>10, 

Output 0 

x+y>10, 

Output 0 
x+y<10 

y is odd, 

Output 0 

guess 
z = 2 

guess 
z = 3 

x+z = 9 
is odd, 

Output 1 

x+z = 10 
is even 

Output 0 
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Non-determinis3c	programming	

•  Conven3on:	
–  If	any	computa3on	path	ends	with	a	1,	the	answer	to	the	
problem	is	1	(we	count	this	as	“yes”).	

–  If	all	computa3on	paths	end	with	a	0,	the	answer	to	the	
problem	is	0	(we	count	this	as	“no”).	

–  Otherwise,	we	say	the	computa3on	does	not	converge.	
•  Again,	we’re	only	interested	in	problems	where	this	third	case	

never	happens	–	solvable	problems.	
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The	class	NP	

•  If	the	computa3on	halts	on	input	x,	the	length	of	the	longest	path	
is	NTime(x).	

•  A	problem	is	NP	if	it	is	solvable	and	there	is	a	non-determinis3c	
program	that	computes	it	so	that	NTime(x)≤(Some	polynomia(x)l).	
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Non-determinis3c	→	Determinis3c	

•  A	non-determinis3c	algorithm	can	be	converted	into	a	
determinis3c	algorithm	at	the	cost	of	Tme.	

•  Usually,	the	increase	in	computa3on	3me	is	exponen3al.	
•  This	means,	for	normal	computers,	(determinis3c	ones),	NP	

problems	are	slow.	
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The	picture	so	far…	

All 
solvable 
problems 

P 

NP 
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SAT	(The	problem	of	sa3sfiabity)	

•  Take	a	statement	in	proposi3onal	logic,	(like	
	 							,	for	example).	

•  The	problem	is	to	determine	if	it	is	sa3sfiable.		(In	other	
words,	is	there	a	line	in	the	truth	table	for	this	
statement	that	has	a	“T”	as	its	truth	value.)	

•  This	problem	can	be	solved	in	polynomial	3me	with	a	
non-determinis3c	program.	

qpqp ∧→∨
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SAT,	cont.	

•  The	length	of	each	path	in	the	computa3on	tree	is	a	polynomial	
func3on	of	the	length	of	the	input	statement.			

•  SAT	is	an	NP	problem.	
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NP	completeness	

•  If	P≠NP,	SAT	is	a	witness	of	this	fact,	that	is,	SAT	is	NP	
but	not	P.	

•  It	is	among	the	“hardest”	of	the	NP	problems:	any	
other	NP	problem	can	be	coded	into	it	in	the	following	
sense.	

	
If	R	is	a	non-determinis3c,	polynomial-3me	algorithm	that	solves	another	NP	

problem,	then	for	any	input,	x,	we	can	quickly	find	a	formula,	f,	so	that	f	is	
sa3sfiable	when	R	halts	on	x	with	output	1,	and	f	is	not	sa3sfiable	when	R	
halts	on	x	with	output	0.	
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	NP	complete	problems	

•  Problems	with	this	property	that	all	NP	problems	can	be	coded	
into	them	are	called	NP-hard.			

•  If	they	are	also	NP,	they	are	called	NP-complete.	
•  If	P	and	NP	are	different,	then	the	NP-complete	problems	are	NP,	

but	not	P.	
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The	picture	so	far…	

All 
solvable 
problems 

P 

NP 
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Op3miza3on	&	Decision	Problems	
•  Decision	problems	

–  Given	an	input	and	a	ques3on	regarding	a	problem,	
determine	if	the	answer	is	yes	or	no	

•  Op6miza6on	problems	

–  Find	a	solu3on	with	the	“best”	value	
•  Op3miza3on	problems	can	be	cast	as	decision	problems	that	

are	easier	to	study	
– E.g.: Shortest	path:	G	=	unweighted	directed	graph	

• Find	a	path	between	u	and	v	that	uses	the	fewest	edges	
• Does a path exist from u to v consisting of at most k edges? 
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Algorithmic	vs	Problem	Complexity	

•  The	algorithmic	complexity	of	a	computa3on	is	some	measure	
of	how	difficult	is	to	perform	the	computa3on	(i.e.,	specific	to	an	
algorithm)	

•  The	complexity	of	a	computa6onal	problem	or	task	is	the	
complexity	of	the	algorithm	with	the	lowest	order	of	growth	of	
complexity	for	solving	that	problem	or	performing	that	task.	
–  e.g.	the	problem	of	searching	an	ordered	list	has	at	most	lgn	
3me	complexity.			

•  Computa6onal	Complexity:	deals	with	classifying	problems	by	
how	hard	they	are.	
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Class	of	“P”	Problems	
•  Class	P	consists	of	(decision)	problems	that	are	solvable	in	

polynomial	3me	

•  Polynomial-3me	algorithms	

–  Worst-case	running	3me	is	O(nk),	for	some	constant	k	
•  Examples	of	polynomial	3me:		

–  O(n2),	O(n3),	O(1),	O(n	lg	n)		
•  Examples	of	non-polynomial	3me:		

–  O(2n),	O(nn),	O(n!)	
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Tractable/Intractable	Problems	
•  Problems	in	P	are	also	called	tractable	

•  Problems	not	in	P	are	intractable	

–  Can	be	solved	in	reasonable	3me	only	for	small	inputs	

–  Or,	can	not	be	solved	at	all		
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Examples	of	Intractable	Problems	
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Intractable	Problems	

•  Can	be	classified	in	various	categories	based	on	their	degree	of	
difficulty,	e.g.,	
–  NP	
–  NP-complete	
–  NP-hard	

•  Let’s	define	NP	algorithms	and	NP	problems	…	
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Nondeterminis3c	and	NP	Algorithms	
Nondeterminis6c	algorithm	=	two	stage	procedure:	

1)  Nondeterminis3c	(“guessing”)	stage:		

	generate	randomly	an	arbitrary	string	that	can	be	thought	
of	as	a	candidate	solu3on	(“cer3ficate”)	

2)  Determinis3c	(“verifica3on”)	stage:	

	take	the	cer3ficate	and	the	instance	to	the	problem	and	
returns	YES	if	the	cer3ficate	represents	a	solu3on	

NP	algorithms	(Nondeterminis6c	polynomial)	

	verifica3on	stage	is	polynomial	
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Class	of	“NP”	Problems	
•  Class	NP	consists	of	problems	that	could	be	solved	by	NP	

algorithms		

–  i.e.,	verifiable	in	polynomial	3me	

•  If	we	were	given	a	“cer3ficate”	of	a	solu3on,	we	could	verify	
that	the	cer3ficate	is	correct	in	3me	polynomial	to	the	size	of	
the	input	

•  Warning:	NP	does	not	mean	“non-polynomial”	
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E.g.:	Hamiltonian	Cycle	

•  Given:	a	directed	graph	G	=	(V,	E),	determine	a	simple	cycle	that	
contains	each	vertex	in	V	

–  Each	vertex	can	only	be	visited	once	
•  Cer6ficate:	

–  Sequence:	〈v1,	v2,	v3,	…,	v|V|〉	 hamiltonian 

not  
hamiltonian 
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Is	P	=	NP?	

•  Any	problem	in	P	is	also	in	NP:		

	 	 	 	P	⊆	NP	

•  The	big	(and	open	ques6on)	is	whether	NP	⊆	P	or	P	=	NP	

–  i.e.,	if	it	is	always	easy	to	check	a	solu3on,	should	it	also	be	
easy	to	find	a	solu3on?	

•  Most	computer	scien3sts	believe	that	this	is	false	but	we	do	not	

have	a	proof	…	

P 

NP 
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NP-Completeness	(informally)	

•  NP-complete	problems	are			

			defined	as	the	hardest		

			problems	in	NP	

•  Most	prac3cal	problems	turn	out	to	be	either	P	or	NP-complete.	

•  Study	NP-complete	problems	…	

P 

NP 

NP-complete 
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Reduc3ons	
•  Reduc3on	is	a	way	of	saying	that	one	problem	is	“easier”	than	

another.	
•  We	say	that	problem	A	is	easier	than	problem	B,			 												

(i.e.,	we	write	“A	≤	B”)		if	we	can	solve	A	using	the	algorithm	that	
solves	B.	

•  Idea:	transform	the	inputs	of	A	to	inputs	of	B	

 
 
 

f Problem B 
α β yes 

no 

yes 

no 
Problem A 
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Polynomial	Reduc3ons	

•  Given	two	problems	A,	B,	we	say	that	A	is	polynomially	

reducible	to	B	(A	≤p	B)	if:	

1.  There	exists	a	func3on	f  that	converts	the	input	of	A	to	

inputs	of	B	in	polynomial	3me	

2.  A(i)	=	YES	⇔	B(f(i))	=	YES	
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NP-Completeness	(formally)	

•  A	problem	B	is	NP-complete	if:	

	 	(1)	B	∈	NP	

	 	(2)	A	≤p	B	for	all	A	∈	NP	

•  If	B	sa3sfies	only	property	(2)	we	say	that	B	is	NP-hard	

•  No	polynomial	3me	algorithm	has	been	discovered	for	an	NP-

Complete	problem	

•  No	one	has	ever	proven	that	no	polynomial	3me	algorithm	can	

exist	for	any	NP-Complete	problem	

P 

NP 

NP-complete 
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Implica3ons	of	Reduc3on	

		
					-	If	A	≤p	B	and	B	∈	P,	then	A	∈	P	

					-	if	A	≤p	B	and	A	∉	P,	then	B	∉	P	

				

 
 
 

f Problem B 
α β yes 

no 

yes 

no 
Problem A 
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Proving	Polynomial	Time	

1.  Use	a	polynomial	6me	reduc3on	algorithm	to		

						transform	A	into	B	

2.  Run	a	known	polynomial	6me	algorithm	for	B	

3.  Use	the	answer	for	B	as	the	answer	for	A	

 
 
 

Polynomial time algorithm to decide A 

f Polynomial time  
algorithm to decide B 

α β yes 

no 

yes 

no 
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Proving	NP-Completeness	In	Prac3ce	

•  Prove	that	the	problem	B	is	in	NP	

–  A	randomly	generated	string	can	be	checked	in	polynomial	

3me	to	determine	if	it	represents	a	solu3on	

•  Show	that	one	known	NP-Complete	problem	can	be	transformed	

to	B	in	polynomial	3me	

–  No	need	to	check	that	all	NP-Complete	problems	are	

reducible	to	B	
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Revisit	“Is	P	=	NP?”	

 

 

Theorem:	If	any	NP-Complete	problem	can	be	solved	in	polynomial	

3me	⇒	then	P	=	NP.	

P 

NP 

NP-complete 
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P	&	NP-Complete	Problems	

•  Euler	tour	
–  G	=	(V,	E)	a	connected,	directed	graph	find	a	cycle	that	
traverses	each	edge	of	G	exactly	once	(may	visit	a	vertex	

mul3ple	3mes)		

–  Polynomial	solu3on	O(E)	

•  Hamiltonian	cycle	

–  G	=	(V,	E)	a	connected,	directed	graph	find	a	cycle	that	visits	
each	vertex	of	G	exactly	once	

–  NP-complete	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Sa3sfiability	Problem	(SAT)	
•  Sa6sfiability	problem:	given	a	logical	expression	Φ,	find	an	

assignment	of	values							(F,	T)	to	variables	xi	that	causes	Φ	to	
evaluate				to	T	

	 	Φ	=x1	∨	¬	x2	∧	x3	∨	¬	x4	

•  SAT	was	the	first	problem	shown	to	be	NP-complete!	

	 	 		

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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NP-naming	conven3on		

•  NP-complete	-	means	problems	that	are	'complete'	in	NP,	i.e.	the	
most	difficult	to	solve	in	NP		

•  NP-hard	-	stands	for	'at	least'	as	hard	as	NP	(but	not	necessarily	
in	NP);		

•  NP-easy	-	stands	for	'at	most'	as	hard	as	NP	(but	not	necessarily	
in	NP);		

•  NP-equivalent	-	means	equally	difficult	as	NP,	(but	not	
necessarily	in	NP);		

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Examples	NP-complete	and	NP-hard	problems	

NP-complete 

NP-hard 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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The	picture	so	far…	

All 
solvable 
problems 

P 

NP 

NP-
complete 
problems 

SAT lives 
here 
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Ques3on:	

•  Is	there	a	clever	way	to	change	a	non-determinis3c	
polynomial	3me	algorithm	into	a	determinis3c	
polynomial	3me	algorithm,	without	an	exponen3al	
increase	in	computa3on	3me?	

•  If	we	can	solve	an	NP	complete	problem	quickly	then	all	
NP	problems	are	solvable	in	determinis3c	polynomial	
3me.	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Back	to	COLT	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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3-Term	DNF	concepts	are	not	efficiently	PAC	
learnable	unless	P=RP	

•  Randomized	polynomial	3me	(RP)	is	the	complexity	class	of	problems	
for	which	a	Turing	machine	exists	such	that	the	
–  It	always	runs	in	polynomial	3me	in	the	input	size	
–  If	the	correct	answer	is	NO,	it	always	returns	NO	
–  If	the	correct	answer	is	YES,	then	it	returns	YES	with	probability	at	
least	½	.	

•  Theorem:	3-term	DNF	concept	class	(disjunc3ons	of	at	most	3	
conjunc3ons)	are	not	efficiently	PAC-learnable	using	the	same	
hypothesis	class	unless	P=RP.	

•  Proof:	By	polynomial	3me	reduc3on	of	graph	3-colorability	(an	NP-
complete	problem)	to	the	problem	of	deciding	whether	a	given	set	of	
labeled	examples	is	consistent	with	some	3-term	DNF	formula.	
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Reduc3on	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

•  G	is	3-colorable	iff	SG	is	consistent	with	some	3-term	DNF	Formula	

SG = SG+ ∪ SG−

S
G+ = vi,1( ) | vi has 0 in the ith position and 1s everywhere else{ }
S
G− = eij, 0( ) | eij has 0 in the ith and jth position and 1s everywhere else{ }
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Reduc3on	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

•  Suppose	G	is	3-colorable;	Fix	a	3-coloring	of	G.	
•  Let	R	be	the	set	of	red	ver3ces.	TR		the	conjunc3on	of	literals	whose	indices	don’t	

appear	in	R;	->	vi	must	sa3sfy		TR			

•  No	eij	can	sa3sfy		TR		because	no	two	adjacent	ver3ces	can	be	colored	red	and	at	
least	one	of	xi	and	xj	should	be	in		TR		
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Reduc3on	
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•  Suppose		TR		is	consistent	with	the	data	
•  Define	coloring	as	follows:	color	of	vi	is	red	if	vi	sa3sfies		TR	…		similarly	for	other	

colors	

•  This	yields	a	legal	3	coloring	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Transforming	Hard	Problems	to	Easy	ones	

•  Theorem:	3-term	DNF	concepts	are	efficiently	PAC-learnable	
using	3-CNF	(conjunc3on	of	disjunc3ons	(clauses)	with	at	most	
3	literals	per	clause)	hypothesis	class.	

•  Proof:	
•  Transform	each	example	over	N boolean	variables	into	a	

corresponding	example	over	N3	variables	(one	for	each	
possible	clause	in	a	3-CNF	formula).		

•  The	problem	reduces	to	learning	a	conjunc3ve	concept	over	
the	transformed	instance	space.	

CNF-3 DNF term-3 ⊆

)(
321 ,,321 wvuTTT
TwTvTu

∨∨∧=∨∨
∈∈∈
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Transforming	Hard	Problems	to	Easy	ones	

•  Theorem	For	any													k-term	DNF	are	efficiently	PAC-learnable	
using	the	k-CNF	hypothesis	class.	

•  Remark:	In	this	case,	enlarging	the	search	space	by	using	a	
hypothesis	class	that	is	larger	than	strictly	necessary,	actually	
makes	the	problem	easy!	

•  Remark:	No,	we	have	not	proved	that	P=NP.	
•  Summary:		

k ≥ 2

Hard  Easy                         Hard        Easy          
CNFCNF-k DNF term-k eConjunctiv ⊆⊆⊆
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Occam	Learning	Algorithm	
•  Defini3on:	Let																																be	constants.	A	learning	

algorithm	L	is	said	to	be	an										Occam	algorithm	for	a	concept	
class	C	using	a	hypothesis	class	H	if	L,	given	a	set	S	of	m	random	
examples	of	an	unknown	concept														outputs	a	hypothesis														
such	that		h	is	consistent	with	S	and	

α β≥ ≤ <0 1  0&
β−α

Cc∈

Hh∈

{ }mcNsizehsize βα)()( ≤

Effec3ve	hypothesis	space	size		 ( ) βαmNsize(c)
nmH 2≤
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Occam	Learning	Algorithm	outputs	a	succinct	hypothesis	

{ }
( )( )βα

βα

mcsizeOhsize Nm

hsize mcNsize
)()( ,When  

)( )(
=>>

≤

Thus,	m	labels	have	to	be	compressed	into	O(m)β	bits	
--	a	mild	requirement	because	we	can	always	obtain	a	
Consistent	hypothesis	that	is	O(mn)	bits	long	(why?)	
	

We	have	to	allow	size(h)	to	depend	linearly	on	size(c)		
in	the	event	the	shortest	hypothesis	in	H	may	in	fact	be	the	
target	concept	c.	
	

We	allow	a	generous	dependence	on	m	–	which	oden	makes	
It	easier	to	find	a	consistent	hypothesis	–	finding	the	shortest	
hypothesis	is	oden	computa3onally	intractable		
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Occam	Learning	Algorithm	

•  An	Occam	learning	algorithm	L	for	a	concept	class	C	is	
said	to	be	an	efficient											Occam	learning	algorithm	for		
C				if	its	running	3me	is	bounded	by	a	polynomial	in	n,	m,	
and	size(c).	

•  The	simple	algorithm	we	considered	for	learning	
conjunc3ve	concepts	is	an	efficient	Occam	learning	
algorithm	(Prove	this!).	

α β−
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Sample	complexity	of	an	Occam	Algorithm	

•  Theorem:	An	Occam	algorithm	is	guaranteed	to	be	PAC	
if	the	number	of	samples	

•  Proof:	Led	as	an	exercise.	

( )
m O

Nsize c
= +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

−

1 1

1
1

ε δ ε

α β
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k-decision	lists	

•  k	decision	list	over	Boolean	variables	x1…xN	is	an	
ordered	sequence		

( )bbcbcl ll ),,)...(,( 11=

Where	each	ci	is	a	conjunc3on	of	at	most	k	literals	chosen	from	
x1…xN		(and	their	nega3ons)	and	each	bi	and	b	is	0	or	1.	

On	a	given	N-bit	input,	l	is	evaluated	like	a	nested	if-then-else	
statement	with	b	corresponding	to	the	default	output.	
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Occam	algorithm	is	PAC	for	K-decision	lists	

•  Theorem:	For	any	fixed	k,	the	concept	class	of	k-
decision	lists	is	efficiently	PAC-learnable	using	the	same	
hypothesis	class.	

•  Algorithm	–	Greedily	find	conjunc3ons	of	at	most	k	
literals	that	cover	the	largest	subset	of	examples	with	
the	same	class	label.	

•  Remark:	k-decision	lists	cons3tute	the	most	expressive	
Boolean	concept	class	over	the	Boolean	instance	space	
{0,1}N 	that	are	known	to	be	efficiently	PAC	learnable.	
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•  Outline	
§  Machine	learning	and	theories	of	learning	
§  Mistake	bound	model	of	learning	
§  Mistake	bound	analysis	of	conjunc3ve	concept	learning	
§  Weighted	majority	and	related	mul3plica3ve	update	

algorithms	
§  Applica3ons	

Mistake	and	Loss	Bound	Models	of	Learning	
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Computa3onal	Models	of	Learning	

•  Model	of	the	Learner:	Computa3onal	capabili3es,	sensors,	
effectors,	knowledge	representa3on,	inference	mechanisms,	
prior	knowledge,	etc.	

•  Model	of	the	Environment:	Tasks	to	be	learned,	informa3on	
sources	(teacher,	queries,	experiments),	performance	measures	

•  Key	ques3ons:	Can	a	learner	with	a	certain	structure	learn	a	
specified	task	in	a	par3cular	environment?	Can	the	learner	do	so	
efficiently?	If	so,	how?	If	not,	why	not?	
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•  To	make	explicit	relevant	aspects	of	the	learner	and	the	
environment	

•  To	iden3fy	easy	and	hard	learning	problems	(and	the	
precise	condi3ons	under	which	they	are	easy	or	hard)	

•  To	guide	the	design	of	learning	systems	
•  To	shed	light	on	natural	learning	systems	
•  To	help	analyze	the	performance	of	learning	systems	

Models	of	Learning:	What	are	they	good	for?	
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Mistake	Bound	Analysis	

Example	–	Learning	Conjunc3ve	Concepts	
	

•  Given	an	arbitrary,	noise-free	sequence	of	labeled	examples	
(X1,C(X1)),(X2,C(X2))...(Xm,C(Xm)) of	an	unknown	binary	
conjunc3ve	concept	C over	{0,1}N,	the	learner's	task	is	to	
predict	C(X)	for	a	given	X.	

	
Theorem:	Exact	online	learning	of	conjunc3ve	concepts	can	be	

accomplished	with	at	most	(N+1)	predic3on	mistakes.	
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Online	learning	of	conjunc3ve	concepts	

Algorithm	A.1	
•  Ini3alize	L={X1, ~X1, .... XN ~XN} 
•  Predict	according	to	match	between	an	instance	

and	the	conjunc3on	of	literals	in	L 
•  Whenever	a	mistake	is	made	on	a	posi3ve	

example,	drop	the	offending	literals	from	L 
Example	

 (0111, 1)	will	result	in	L	=	{~X1, X2, X3, X4} 
       (1110, 1)	will	yield	L = {X2, X3} 
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Mistake	bound	analysis	of	conjunc3ve	concept	learning	

Proof	Sketch	
•  No	literal	in	C	is	ever	eliminated	from	L 
•  Each	mistake	eliminates	at	least	one	literal	from	L 
•  The	first	mistake	eliminates	N	of	the	2N	literals	
•  Conjunc3ve	concepts	can	be	learned	with	at	most	(N+1)	

mistakes		

Conclusion	
•  Conjunc3ve	concepts	are	easy	to	learn	in	the	mistake	bound	

model	
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Op3mal	Mistake	Bound	Learning	Algorithms	

Defini3on:	An	opTmal	mistake	bound	mbound(C)	for	a	
concept	classs	C is	the	lowest	possible	mistake	bound	
in	the	worst	case	(considering	all	concepts	in	C,	and		
all	possible	sequences	D of	examples).	

≤≤

( )c*,L,D mistakes          Cmbound
quences Dexample seCc*  Llearners

maxmaxmin)(
∈

=

where	mistakes (c*,L,D) is	the	number	of	mistakes	made	by	
L	in	its	aHempt	to	learn c* based	on	the	sequence	of	
examples	provided.	
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Mistake	Bounds	and	op3mal	mistake	bounds	

≤≤

( ) } this prove  will we   log)(

bounds trivial 
(why?)      )(
(why?)          )(

CC

CC
C

≤

⎪⎭

⎪
⎬
⎫

−≤

≤

mbound

mbound
mbound N

1
2

Defini3on:	An	op3mal	learning	algorithm	for	a	concept	class	C	(in	
the	mistake	bound	framework)	is	one	that	is	guaranteed	to	exactly	
learn	any	concept	in	C,	using	any	noise-free	example	sequence,	
with	at	most	O(mbound(C))	mistakes.	
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Version	space	and	Halving	algorithm	

{ }
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Version	space	
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Defini3on:	The	halving	algorithm	predicts	according	to	the	
majority	of	concepts	in	the	current	version	space	and	a	
mistake	results	in	elimina3on	of	all	the	offending	concepts	
from	the	version	space.	
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The	Halving	Algorithm	

•  Theorem:		 ( )CC log)( ≤mbound

Proof:	The	halving	algorithm	predicts	according	to	majority	of	
concepts	in	the	version	space.	Hence	each	mistake	eliminates	
at	least	half	of	the	candidate	hypotheses	in	the	version	space.	
	

The	halving	algorithm	can	be	computa3onally	feasible	if	there	
is	a	way	to	compactly	represent	and	efficiently	manipulate	the	
version	space.	Otherwise	it	is	not	computa3onally	feasible.	
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The	Halving	Algorithm	

The	halving	algorithm	is	not	op3mal	with	respect	to	the	number	of	
mistakes.		In	order	to	minimize	the	number	of	mistakes,	the	
learner	has	to	guess	according	to	the	subset	of	the	version	space	
that	is	expected	to	yield	the	fewest	mistakes.	

The	op3mal	mistake	bound	algorithm	has	to	predict	1	if		

	

	

and	0	otherwise.	However	this	algorithm	is	even	less	efficient.	

( )( ) ( )( )iiii XVmboundXVmbound ,, 1011 −− ≥ ξξ
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The	Halving	Algorithm	

•  Ques3on:	Are	there	any	efficiently	implementable	
learning	algorithms	with	mistake	bounds	comparable	to	
that	of	the	halving	algorithm?	

•  Answer:	LiHlestone's	algorithm	for	learning	monotone	
disjuncTons	of	at	most	k	of	n	literals	using	the	
hypothesis	class	of	threshold	func3ons	with	at	most	(k 
lg n)	mistakes.	More	on	this	later.	
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Randomized	Halving	Algorithm	

•  The	predic3ons	made	by	the	halving	algorithm	may	not	be	based	
on	any	concept	in	C.		There	may	not	exist	in	C	a	concept	that	is	
consistent	with	the	majority	vote.	

•  The	randomized	halving	algorithm	due	to	Maass	predicts	
according	to	a	randomly	selected	concept	c	∈C		

•  All	concepts	in	C	that	are	inconsistent	with	the	example	are		
eliminated	from	further	considera3on.	

•  Theorem:	The	expected	number	of	mistakes	made	by	the	
randomized	halving	algorithm	is	at	most	log	|C	|	+	O(1)	
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Randomized	Halving	Algorithm	

•  WLOG	assume	that	the	order	of	presenta3on	of	the	examples	is	
independent	of	the	learner’s	ac3ons	

•  Suppose	the	concepts	in	the	version	space	are	ordered	by	when	
they	are	going	to	be	eliminated	by	examples.	

•  Let	c1….cr be	the	order	with	r=|Vi| 
•  Let	Mr be	the	expected	number	of	mistakes	
•  The	algorithm	picks	one	of	the	r concepts	at	random	with	

probability	equal	to	1/r. If cr is	chosen,	there	are	no	further	
mistakes.	One	of	the	other	concepts	is	chosen	with	probability	
(r-1)/r in	which	case,	there	will	be	one	mistake	(at	least)	plus	
the	expected	number	of	mistakes	for	the	remaining	concepts 
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Randomized	Halving	Algorithm	
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Learning	monotone	disjunc3ons	when	irrelevant	aHributes	abound	
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This	can	be	shown	to	be	an	op3mal	mistake	bound		

How	can	we	design	an	algorithm	that	achieves	this	mistake	
bound?	
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Winnow	Algorithm	

•  Idea	–	Use	threshold	neurons	to	learn	monotone	disjunc3ons	
•  (Monotone	disjunc3ons	are	a	subset	of	threshold	func3ons)	

( )
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1   where all double ,0)(but   1)( If
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Theorem	–	Winnow	makes	O(k lg N)	mistakes	
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Winnow	Algorithm	
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Theorem	–	Winnow	makes	
	O(k lg N)	mistakes	

u	–	number	of	3mes	weights	are	doubled	
v		–	number	of	3mes	weights	are	zeroed	out	

Each	weight	doubling	adds	at	most	θ		
to	the	sum	of	weights	and	each	zeroed	
out	weight	subtracts	at	least	θ		from	
the	sum	of	weights	
No	weight	that	is	greater	than	θ		is	ever	
doubled	

Each	weight	doubling	has	to	affect	at	least	
one	of	the	weights.	Each	weight	doubling	
adds	at	least	1	to	the	logarithm	of	the	
weight	that	got	doubled	
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Generaliza3ons	of	Winnow	

•  Winnow	algorithm	and	its	variants	and	generaliza3ons	can	be	
used	to	learn	concepts	from	more	expressive	concept	classes	by	
preprocessing	the	input	paHerns	–	e.g.	by	transforming	an	n-bit	
paHern	into	an	O(nk)	bit	paHern	that	encodes	all	conjunc3ons	of	
at	most	k	literals	(negated	or	un	negated)	

•  Winnow	algorithm	and	its	variants	can	be	made	to	generalize	
beHer	by	incorpora3ng	regulariza3on	
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Weighted	majority	learning	algorithm	(WML)	

Mo3va3ons	

•  Robust	algorithm	for	learning	monotone	disjunc3ons		

•  Suppose	we	have	a	pool	of	predictors	–	features,	experts,	
algorithms	

•  The	op3mal	predictor	–	that	is,	the	predictor	that	makes	the	
fewest	mistakes	depends	on	the	data	and	is	not	known	a	
priori	

•  Basic	idea	–	make	predic3ons	based	on	a	weighted	majority	
of	predic3ons	of	all	predictors	in	the	pool;	if	a	mistake	is	
made,	adjust	the	weights	
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Weighted	majority	learning	algorithm	(WML)	
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Weighted	majority	learning	algorithm	(WML)	

Theorem:	Let	D	be	any	sequence	of	training	examples.	Let	
A={A1	…	An}	be	any	pool	of	n	predictors.	Let	k	be	the	number	
of	mistakes		made	by	the	best	predictor	in	the	pool	A on	the	
sequence	of	examples	D. Then	
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Weighted	majority	learning	algorithm	(WML)	
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Proof:	The	total	weight	associated	with	the	n	predictors	at	any	3me	
is	W = (θ0	+	θ1)	where	θ0	and		θ1	are	as	defined	in	WML	
Consider	an	example	on	which	a	mistake	is	made.	WLOG,	assume	
that	the	predic3on	was	0.	Then	the	total	weight	ader	the	update	is			

Each	mistake	causes	sum	of	weights	ader	an	update	to	be	no	
more	than																	3mes	the	value	before	the	update		
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The	predictors	in	the	weighted	
majority	must	have	held	at	least	

half	the	total	weight.	Ader	update,	
this	por3on	of	the	weight	gets	

reduced	by	a	factor	(1-β)	
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Weighted	majority	learning	algorithm	(WML)	
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The	best	predictor	(say	wj ) makes	k	mistakes	and	hence	
undergoes	k	weight	updates.	So	
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where	m	is	the	number	
of	updates	
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Weighted	majority	learning	algorithm	(WML)	
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Implica3on:	WML	makes	almost	as	few	mistakes	as	the	op3mal	
learner	in	the	pool	–	We	can	use	weighted	majority	when	it	is	
unclear	which	learner	in	the	pool	is	op3mal	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Some	Varia3ons	on	WML	
Selec3on	from	countably	infinite	pool	of	predictors	
•  No	algorithm	(that	halts)	can	obtain	predic3ons	from	an	

infinite	number	of	predictors	
•  However,	we	can	modify	WML	so	that	it	considers	

successively	larger	pools	of	predictors		
•  	The	modified	algorithm	behaves	very	much	like	WML	with	a	

degrada3on	in	mistake	bound	of	the	order	of	(log	i)	where	ith	
predictor	in	the	pool	is	the	op3mal	predictor	
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Some	Varia3ons	on	WML	
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Randomized	predic3ons	

•  Predict	1	with	probability	

•  Predict	0	with	probability	

•  The	update	equa3ons	can	be	modified	
so	that	the	rate	of	mistakes	approaches	
arbitrarily	close	to	the	rate	of	mistakes	
of	the	best	predictor	in	the	pool	
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Some	Varia3ons	on	WML	–	Balanced	Winnow	
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Some	Varia3ons	on	WML	–	Balanced	Winnow	
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Generalized	Perceptron	algorithms	
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See	Grove,	LiHlestone,	Schuurmans	
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Quasi	addi3ve	update	algorithms	for	func3on	approxima3on	
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By	choosing	the	learning	rate	η and	f appropriately,	we	can	
obtain	gradient-based	learning		algorithms	that	work	well	in	
the	presence	of	irrelevant	aHributes	(See	Kivinen	and	
Warmuth) 
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Applica3ons	of	Mul3plica3ve	Update	Algorithms	

Mul3plica3ve	update	algorithms	cons3tute	an	
example	of	theore3cal	analysis	of	simple	
algorithms	leading	to	a	new	powerful	family	of	
algorithms	that	are	useful	in	prac3ce	

•  Spelling	correc3on	
•  Text	processing	(SPAM	filters)	
•  Face	recogni3on	
•  Por{olio	selec3on	
•  Learning	in	game-theore3c	se|ngs	
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PAC	Learnability	of	Infinite	Concept	Classes	

•  How	many	random	examples	does	a	learner	need	to	draw	
before	it	has	sufficient	informa3on	to	learn	an	unknown	
target	concept	chosen	from		a	concept	class	C	?	

•  Sample	complexity	results	derived	previously	answer	this	
ques3on	for	the	case	of	finite	concept	classes.	

•  Are	there	any	non-trivial	infinite	concept	classes	that	are	
PAC	learnable	from	a	finite	set	of	examples?	

•  Can	we	quan3fy	the	complexity	of	an	infinite	concept	
class?	–	yes,	using	Vapnik-Chervonenkis	Dimension!	
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Vapnik-Chervonenkis	(VC)	Dimension	

•  Let	C	be	a	concept	class	over	an	instance	space	X.
•  Both C and X may	be	infinite.	
•  We	need	a	way	to	describe	the	behavior	of	C	on	a	finite	set	

of	points	S ⊆	X.

•  For	any	concept	class C	over	X,	and	any	S ⊆	X,

•  Equivalently,	with	a	liHle	abuse	of	nota3on,	we	can	write		

( ) { }CcScSC ∈∩=Π :

{ }mXXXS ...., 21=

( ) ( ) ( )( ){ }CcXcXcS mC ∈=Π :......1

ΠC(S) is	the	set	of	all	dichotomies	or	behaviors	on S that	are	
	induced	or	realized	by C
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Vapnik-Chervonenkis	(VC)	Dimension	

If																								where												,	or	equivalently,		
																				we	say	that	S	is	shaHered	by	C. 

•  A	set	S of	instances	is	said	to	be	sha\ered	by	a	
hypothesis	class	H if	and	only	if	for	every	dichotomy	
of	S,	there	exists	a	hypothesis	in	H that	is	consistent	
with	the	dichotomy.	

( ) { }mC S 10,=Π mS =

( ) m
C S 2=Π
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VC	Dimension	of	a	hypothesis	class		

•  Defini3on:	The	VC-dimension	V(H),	of	a	hypothesis	class	H	
defined	over	an	instance	space	X	is	the	cardinality	d	of	the	
largest	subset	of	X		that	is	shaHered	by	H.	If	arbitrarily	large	
finite	subsets	of	X can	be	shaHered	by	H,	V(H)=∞

How	can	we	show	that V(H) is	at	least	d? 
•  Find	a	set	of	cardinality	at	least d that	is	shaHered	by H.

•  How	can	we	show	that V(H) = d? 
•  Show	that	V(H) is	at	least	d	and	no	set	of	cardinality	(d+1) can	

be	shaHered  by	H.
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VC	Dimension	of	a	Hypothesis	Class	-	Examples	

•  Example:	Let	the	instance	space	X	be	the	2-dimensional	
Euclidian	space.	Let	the	hypothesis	space	H be	the	set	of	linear	
1-dimensional	hyperplanes	in	the	2-dimensional	Euclidian	
space.	

•  Then	V(H)=3	(a	set	of	3	points	can	be	shaHered	by	a	
hyperplane	as	long	as	they	are	not	co-linear	but	a	set	of		4	
points	cannot	be	shaHered).	For	the	concept	class	of	linear	
hyperplanes,	VC	dimension	is	n+1	
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VC	Dimension	and	Sample	complexity	

•  A	concept	class	C⊆ 2X is	trivial	if	it	contains	a	single	
concept	or	2	disjoint	concepts	which	par33on	X.

Theorem:	Let C be	a	non	trivial	concept	class.		
Then	C is	PAC	learnable	if	and	only	if	V(C)	is	finite.	
If	V(C)=d and	d<∞,	then	the	bounds	on	sample	complexity	of	

C are given	by	
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Some	Useful	Proper3es	of	VC	Dimension		

Proof:	Led	as	an	exercise	
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Sample	complexity	of	a	mul3layer	perceptron	

•  Acyclic,	layered	mul3-layer	networks	of		s	threshold	
logic	units,	each	with	r	inputs,	has	VC	dimension		
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Hence,	we	have:	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Occam	Algorithm	

•  Theorem:	An	Occam	algorithm	is	guaranteed	to	be	PAC	
if	the	number	of	samples	
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Learning	when	the	size	of	the	target	concept	is	
unknown	

•  Results	on	efficient	PAC	learnability	of	concept	classes	are	
derived	under	the	assump3on	that	the	size	of	the	target	
concept	is	one	of	the	inputs	to	the	learning	algorithm	

•  Can	we	guarantee	efficient	PAC	learnability	when	the	size	of	the	
target	concept	is	unknown?	–	Yes,	using	the	doubling	trick	and	
hypothesis	tes3ng	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Aside	–	Hoffding	Bounds	

•  Let	X1…….Xm be	outcomes	of	independent	Bernoulli	
trials	each	with	probability	of	success	p.	Let	
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Aside	–	Chernoff	Bounds	

Let	X1…….Xm be	independent	outcomes	of	
independent	Bernoulli	trials	each	with	probability	of	
success	p.	Let	
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Chernoff	Bounds	are	3ghter	than	Hoffding	Bounds	when	p	< 1/4
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How	to	determine	if	a	hypothesis	is	ε-good	
•  We	cannot	dis3nguish	with	certainty	between	an	ε-good	

hypothesis	and	one	that	has	error	slightly	greater	than	ε	by	
tes3ng	the	hypotheses	on	a	finite	set	of	examples	

•  However,	we	can	dis3nguish	between	an	(ε/2)-good	hypothesis	
and	an	ε-bad	hypothesis	with	high	confidence	
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How	to	determine	if	a	hypothesis	is	ε-good	

Algorithm	Test	(h,n,ε,δ)		
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Learning	when	the	size	of	the	target	concept	is	unknown	

A	–	requires	the	target	concept	size	as	a	parameter	

B	–	works	for	an	unknown	target	concept	size	
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Learning	in	the	presence	of	noise	

•  Types	of	noise	
•  Random	misclassifica3on	noise	
•  Random	aHribute	noise	–	uniform,	non	uniform	
•  Malicious	noise	–	examples	selected	and	corrupted	by	
an	omnipotent	adversary	who	may	have	access	to	the	
internal	state	of	the	learner	

•  ……	
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Learning	in	the	presence	of	random	
misclassifica3on	noise	

•  Random	misclassifica3on	noise	–	with	probability	η	the	instance	
is	correctly	labeled.	With	probability	(1-	η	),	the	label	is	flipped	

( )( )xcx,

Example (x, c(x)) Exampleη

η (1-η )

( )( )xcx,
Concept c ∈ C 

Training Samples x ∈ D 
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Learning	in	the	presence	of	random	misclassifica3on	noise	

•  Assume	WLOG	that	0 ≤ η ≤ η0 <1/2

•  Draw		
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2 examples	from Exampleη

Output	a	hypothesis	h∈C that	minimizes	the	
training	error	
	
The	method	can	be	adapted	to	the	case	of	unknown	η0	
Minimizing	error	can	be	difficult	in	some	cases	
Alterna3ve	methods	are	available	for	specific	concept	classes	
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PAC	learning	using	weak	learners	

Weak	learner		
	Confidence	lower	than	(1-δ	)		
	 	à	Boost	confidence	
	Error	greater	than	ε		
	 	à	Boost	accuracy	
	Error	greater	than	ε	and	Confidence	lower	than	(1-δ	)	
	 	à	Boost	accuracy	and	confidence		

We	can	turn	weak	learners	into	strong	(PAC)	learners	using	
accuracy	and	confidence	boos3ng	algorithms	
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Confidence	Boos3ng	

•  Run	the	algorithm	several	3mes	on	independently	
drawn	training	sets	to	obtain	a	set	of	hypotheses	–	The	
number	of	independent	runs	is	chosen	to	be	large	
enough	to	ensure	that	the	probability	that	at	least	one	
of	the	resul3ng	hypothesis	has	error	less	than	ε	is	at	
least	(1-δ/2)	

•  Use	hypothesis	tes3ng	to	select	the	best	hypothesis	in	
the	pool	with	high	confidence	–	alterna3vely	use	
weighted	majority	classifica3on	
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Accuracy	Boos3ng	

•  Learn	a	sequence	of	hypotheses	
•  the	first	hypothesis	is	based	on	the	training	set		
•  each	subsequent	hypothesis	is	based	on	a	sampling	of	the	

training	set	according	to	a	distribu3on	which	assigns	higher	
probability	to	training	examples	that	were	misclassified	by	the	
previously	learned	hypotheses	and	perhaps	a	different	error	
parameter	

•  Classifica3on	is	based	on	majority	or	weighted	majority	of	the	
hypotheses	
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Accuracy	Boos3ng	Using	Ensemble	Classifiers	

•  Outline	
•  Ensemble	methods	

•  Bagging		
•  Boos3ng	
•  Error-correc3ng	output	coding	
•  Why	does	ensemble	learning	work?	
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Readings	

•  DieHerich:	Ensemble	methods	in	machine	learning	(2000).			
•  Schapire:	A	brief	introduc3on	to	boos3ng	(1999).		
•  Schapire:	The	Boos3ng	Approach	to	Machine	Learning:	An	

Overview	(2002)	
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What is ensemble learning? 

Ensemble	learning	refers	to	a	collec3on	of	methods	that	learn	a	
target	func3on	by	training	a	number	of	individual	learners	and	
combining	their	predic3ons	

[Freund	&	Schapire,	1995]	
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Ensemble	Learning	

•  Intui3on:	Combining	Predic3ons	of	an	ensemble	is	more	
accurate	than	a	single	classifier	

•  	Jus3fica3on:	
–  It	is	easy	to	find	quite	correct	“rules	of	thumb”		
–  It	is	hard	to	find	single	highly	accurate	predic3on	rule	
–  If	the	training	examples	are	few	and	the	hypothesis	space	
is	large	then	there	are	several	equally	accurate	classifiers	

–  Hypothesis	space	does	not	contain	the	true	func3on,	but	it	
has	several	good	approxima3ons	

–  Exhaus3ve	global	search	in	the	hypothesis	space	is	
expensive	so	we	can	combine	the	predic3ons	of	several	
locally	accurate	classifiers	
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Ensemble learning 
 

Classification 
phase  

T 

T1 T2 … TS 

(x, ?) 
h* = F(h1, h2, …, hS) 

(x, y*) 

Learning 
phase  

h1 h2 … hS 

different	
training	sets	
and/or	
learning	
algorithms	
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How to make an effective ensemble? 

Two	basic	ques3ons	in	designing	ensembles:	

•  How	to	generate	the	base	classifiers?	
	h1,	h2,	…	

•  How	to	combine	them?	
	F(h1(x),	h2(x),	…)	
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How	to	combine	classifiers		

Usually	take	a	weighted	vote:	
 

 ensemble(x)	=	sign( ∑i wi hi(x) ) 

•  wi is	the	weight	of	hypothesis	hi 

•  wi >	wj	means	hi	is	more	reliable	than	hj 

•  typically	wi > 0  (though	could	have	wi < 0 meaning	hi	is	
more	oden	wrong	than	right)	

•  Bayesian	averaging	is	an	example	
•  (Fancier	schemes	are	possible	but	uncommon)	
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How	to	generate	base	classifiers	

•  A	variety	of	approaches		
•  Bagging	(Bootstrap	aggrega3on)	
•  Boos3ng	(Specifically,	Adaboost	–	Adap3ve	

Boos3ng	algorithm)	
•  …	
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Bagging	
•  Generate	a	random	sample	from	training	set	by	selec3ng	

elements	with	replacement	
•  Repeat	this	sampling	procedure,	ge|ng	a	sequence	of	k	

independent	training	sets	
•  A	corresponding	sequence	of	classifiers	C1,C2,…,Ck	is	

constructed	from		these	training	sets,	by	using	the	same	
classifica3on	algorithm		

•  To	classify	an	unknown	sample	X,	let	each	classifier	predict	
•  The	Bagged	Classifier	C*	then	combines	the	predic3ons	of	the	

individual	classifiers	to	generate	the	final	outcome.	
(some3mes	combina3on	is	simple	vo3ng)	
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BAGGing	=	Bootstrap	AGGrega3on	(Breiman,	1996)	

•  for	i = 1, 2, …, K :	

–  Ti ß	randomly	select	M	training	instances	
	 	with	replacement	

–  hi	ß	learn (Ti)	

•  Combine	the	Ti using uniform	vo3ng	(wi=1/K for	all	i)	
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CART	-	decision	tree	learning	algorithm	similar	to	ID3	
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shades	of	blue/red	indicate	strength	of	vote	for	par3cular		
classifica3on	
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Ensemble learning 
 

Classification 
phase  

T 

T1 T2 … TS 

(x, ?) 
h* = F(h1, h2, …, hS) 

(x, y*) 

Learning 
phase  

h1 h2 … hS 

different	
training	sets	
and/or	
learning	
algorithms	
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Boos3ng	
•  Boos3ng,	like	bagging,	is	an	ensemble	method.	
•  The	predic3on	generated	by	the	classifier	is	a	combina3on	

of	the	predic3on	of	several	predictors.	
•  What	is	different?	

–  It	is	itera3ve		
–  Boos3ng:	Each	successive	classifier	depends	upon	its	
predecessors	unlike	in	the	case	of	bagging	where	the	
individual	classifiers	were	independent	

–  Training	Examples	may	have	unequal	weights	
–  Look	at	errors	from	previous	classifier	step	to	decide	
how	to	focus	on	next	itera3on	over	data	

–  Set	weights	to	focus	more	on	‘hard’	examples.	(the	ones	
on	which	we	commiHed	mistakes	in	the	previous	
itera3ons)	
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Boos3ng	Algorithm	

•  W(x)	is	the	distribu3on	of	weights	over	the	N	training	points		
∑ W(xi)=1		

•  Ini3ally	assign	uniform	weights	W0(x)	=	1/N	for	all	x,	step	k=0 
•  At	each	itera3on	k	:	

–  Find	best	weak	classifier	Ck(x)	using	samples	obtained		using	
Wk(x)	
§ Resul3ng	error	rate	εk	
§  The	weight	of	the	resul3ng	classifier	Ck	is	αk		
§  For	each	xi	,	update	weights	based	on	εk	to	get	Wk+1(xi )		

•  CFINAL(x) =sign [ ∑ αi Ci (x) ] 
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Boos3ng	(Algorithm)	
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Boosting 

Basic	Idea:	
•  assign	a	weight	to	every	training	set	instance	
•  initally,	all	instances	have	the	same	weight	
•  as	boos3ng	proceeds,	it	adjusts	weights	based	on	how	well	we	

have	predicted	data	points	so	far	
-	data	points	correctly	predicted	àlow	weight	
-	data	points	mispredicted	à	high	weight	

•  Results:	as	learning	proceeds,	the	learner	is	forced	to	focus	on	
por3ons	of	data	space	not	previously	well	predicted	
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AdaBoost	Algorithm	

•  W(x)	is	the	distribu3on	of	weights	over	the	N	training	points	∑ 
W(xi)=1  

•  Ini3ally	assign	uniform	weights	W0(x) = 1/N	for	all	x.	
•  At	each	itera3on	k	:	

–  Find	best	weak	classifier	Ck(x)	using	weights	Wk(x) 
–  Compute	εk	the	error	rate	as		
	εk= [ ∑ W(xi ) · I(yi  ≠ Ck(xi )) ] / [ ∑ W(xi )]  

–  weight	the	classifier	Ck	by	αk		
•  αk = log ((1 – εk )/εk ) 

–  For	each	xi , Wk+1(xi ) = Wk(xi )	·	exp[αk · I(yi  ≠ Ck(xi ))] 
•  CFINAL(x) =sign [ ∑ αi Ci (x) ] 
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AdaBoost	Example	

Original	Training	set	:	Equal	Weights	to	all	training	samples	
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AdaBoost	Example	

ROUND 1 
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AdaBoost	Example	

ROUND 2 
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AdaBoost	Example	

ROUND 3 
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AdaBoost	Example	
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Boos3ng	

•  Suppose	L	is	a	weak	learner		-	one	that	can	learn	a	hypothesis	
that	is	beHer	than	rolling	a	dice	–	but	perhaps	only	a	3ny	bit	
beHer	
–  Theorem:		Boos3ng	L	yields	an	ensemble	with	arbitrarily	
low	error	on	the	training	data!	

size	of	ensemble	
1	2	3	4	5	6	….																	500	

50%	
49%	

ensemble	error	rate	

error	rate	of	L	by	itself	
error	rate	of	flipping	a	coin	
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Boos3ng	performance	
Decision	stumps	are	very	simple	classifiers	that	test	condi3on	on	a	
single	aHribute.	

Suppose	we	use	decision	stumps	as	individual	classifiers	whose	
predic3ons	were	combined	to	generate	the	final	predic3on.	

Suppose	we	plot	the	misclassifica3on	rate	of	the	Boos3ng	algorithm	
against	the	number	of	itera3ons	performed.	
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Boos3ng	performance	

Steep decrease in error 
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Boos3ng	performance	

•  Observa3ons	
–  First	few	(	about	50)	itera3ons	increase	the	accuracy	
substan3ally..	Seen	by	the	steep	decrease	in	misclassifica3on	
rate.	

–  As	itera3ons	increase	training	error	decreases	
–  As	itera3ons	increase,	generaliza3on	error	decreases	?	
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Can	Boos3ng	do	well	if?	

•  Individual	classifiers	are	not	very	accurate	and	have	high	
variance	(e.g.,	decision	stumps)	?	
–  It	can	if	the	individual	classifiers	have	considerable	
mutual	disagreement.	

•  Individual	classifier	is	very	accurate	and	has	low	variance	
(e.g.,	SVM	with	a	good	kernel	func3on)	?	
–  	 No..	
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Boos3ng	as	an	Addi3ve	Model	

•  The	final	predic3on	in	boos3ng	f(x)	can	be	expressed	as	
an	addi3ve	expansion	of	individual	classifiers	

•  The	process	is	itera3ve	and	can	be	expressed	as	follows.	

•  Typically	we	would	try	to	minimize	a	loss	func3on	of	the	
training	examples	
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Boos3ng	as	an	Addi3ve	Model	

•  Simple	case:		Squared-error	loss	

•  Forward	stage-wise	modeling	amounts	to	just	fi|ng	the	
residuals	from	previous	itera3on.	

•  Squared-error	loss	not	robust	for	classifica3on	
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Boos3ng	as	an	Addi3ve	Model	

•  AdaBoost	for	Classifica3on	uses	the	exponen3al	loss	
func3on:			
–  L(y,	f	(x))	=	exp(-y	·	f	(x))			
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Boos3ng	as	an	Addi3ve	Model	
First	assume	that	β	is	constant,	and	minimize	w.r.t.	Gm:	

argmin
β ,Gm

exp(−yi ⋅ fm−1(xi ))exp(−yi ⋅β ⋅Gm (xi ))
i=1

N

∑

= argmin
β ,Gm

wi
(m) ⋅exp(−yi ⋅β ⋅Gm (xi ))

i=1

N

∑ , where wi
(m) = exp(−yi ⋅ fm−1(xi ))

= argmin
Gm

wi
(m) ⋅e−β +

yi=Gm (xi )

N

∑ wi
(m) ⋅eβ

yi≠Gm (xi )

N

∑

= argmin
Gm

(eβ − e−β ) [wi
(m) ⋅ I(yi ≠Gm (xi )

i=1

N

∑ )]+ e−β wi
(m)

i=1

N

∑
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Boos3ng	as	an	Addi3ve	Model	

argmin
Gm

(eβ − e−β )
[wi

(m) ⋅ I(yi ≠G(xi )
i=1

N

∑ )]

wi
(m)

i=1

N

∑
+ e−β

= argmin
Gm

(eβ − e−β ) ⋅errm + e
−β = H (β)

errm: the	training	error	on	the	weighted	samples	

On	each	itera3on	we	must	find	a	classifier	that	minimizes	
the	training	error	on	the	weighted	samples! 
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Boos3ng	as	an	Addi3ve	Model	
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Now	that	we	have	found	G,	we	minimize	w.r.t.	β: 
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=	1/N		

normalize	wt	to	get	a	
probability	distribu3on	pt	

	∑I	pti	=	1	

penalize	mistakes	on	
high-weight	
instances	more	

if	ht	gets	instance	i	right	
			mul3ply	weight	be	βt	<	1	
if	ht	gets	instance	i	wrong	
			mul3ply	weight	by	1	

binary	class	y	∈	{0,1}	

weighted	vote,	
with	wt	=	log(1/β	t)	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Learning	from	weighted	instances?	

•  The	learning	algorithms	we	have	seen	take	as	input	a	set	of	
unweighted	examples	

•  What	if	we	have	weighted	examples	instead?	
•  It	is	easy	to	modify	most	learning	algorithms	to	deal	with	

weighted	instances:	
–  For	example,	replace	counts	of	examples	that	match	some	
specified	criterion	by	sum	of	weights	of	examples	that	
match	the	specified	criterion	

[0,1]	
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AdaBoost	(Characteris3cs)	

•  Why	exponen3al	loss	func3on?	
–  Computa3onal	

• Simple	modular	re-weigh3ng	
• Determining	op3mal	parameters	is	rela3vely	easy	

–  Sta3s3cal		
•  In	a	two	label	case	it	determines	one	half	the	log	odds	of	
P(Y=1|x)		

• We	can	use	the	sign	as	the	classifica3on	rule	
•  Accuracy	depends	upon	number	of	itera3ons	
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Why do ensembles work? 

•  Because	uncorrelated	errors	of	individual	classifiers	can	be	
eliminated	by	averaging.		

•  Assume:	40	base	classifiers,	majority	vo3ng,	each	error	rate	
0.3	

•  Probability	of	ge|ng	r	incorrect	votes	from	40	classifiers	

	
	
	
	
p(Ensemble	is	wrong)	=	p(>20	incorrect	votes)	=	0.01			
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Other	explana3ons?	
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Sta3s3cal	

•  Given	a	finite	amount	of	data,	many	hypothesis	are	typically	
equally	good.		

•  How	can	the	learning	algorithm	select	among	them?	

hypothesis	consistent	with	
training	data	
	
			 hall	hall	=	hypothesis	from	all	data	

	
averaged	h1, h2, …	may	be	beHer	
approxima3on	to	f	than	hall 
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Representational 

The	desired	target	func3on	may	not	be	realizable	using	
individual	classifiers,	but	may	be	approximated	by	
ensemble	averaging	
Consider a binary learning task over [0,1] x [0,1], and 
the hypothesis space H of “discs” 
	
	

h1	
h2	

h3	

h1, h2, h3 ∈ H 
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Representa3onal	(another	example)	

•  Consider	a	binary	learning	task	over	[0,1]	x	[0,1],	and	the	
hypothesis	space	H	of	“discs”	

x1	

x2	

h1	
h2	

h3	

h1, h2, h3 ∈ H 
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Representa3onal	(another	example)	

•  Hensemble	=	vote	together	h1,	h2,	h3	

•  Even	if	target	concept	∉	H,	a	mixture	of	hypothesis	∈	H	
might	be	highly	accurate	

hensemble	∉	H	
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Computa3onal	

•  All	learning	algorithms	do	some	sort	of	
search	through	some	space	of	hypotheses	
to	find	one	that	is	“good	enough”	for	the	
given	training	data	

•  Since	interes3ng	hypothesis	spaces	are	
huge/infinite,	heuris3c	search	is	essen3al	
(e.g.	decision	tree	learner	does	a	greedy	
search	in	space	of	possible	decision	trees)	

•  So	the	learner	might	get	stuck	in	a	local	
minimum	

•  One	strategy	for	avoiding	local	minima:	
repeat	the	search	many	3mes	with	random	
restarts	

	è	bagging	
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Boos3ng	-	Summary	
•  Basic	mo3va3on	–	crea3ng	a	commiHee	of	experts	is	typically	

more	effec3ve	than	trying	to	derive	a	single	super-genius	
•  Boos3ng	provides	a	simple	and	powerful	method	for	turning	

weak	learners	into	strong	learners	
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Boos3ng	-	Varia3ons	
•  The	simple	algorithm	described	here	has	been	extended	to:	

–  classifiers		that	produce	confidences	associated	with	class	
predic3ons	(e.g.,	posterior	probabili3es	as	opposed	to	class	
assignments)	
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Boos3ng	-	Summary	
•  Basic	mo3va3on	–	crea3ng	a	commiHee	of	experts	is	typically	

more	effec3ve	than	trying	to	derive	a	single	super-genius	
•  Boos3ng	provides	a	simple	and	powerful	method	for	turning	

weak	learners	into	strong	learners	
•  The	simple	algorithm	described	here	has	been	extended	to:	

–  mul3-class	classifica3on	problems	
–  classifiers		that	produce	confidences	associated	with	class	
predic3ons	(e.g.,	posterior	probabili3es	as	opposed	to	class	
assignments)	

–  Weak	classifiers	trained	on	subsets	of	aHributes	
–  Recent	theore3cal	results	have	shown	deep	connec3ons	
between	boos3ng	and	maximizing	margin	of	separa3on	
(similar	to	SVM)	
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Boos3ng	-	Varia3ons	
•  The	simple	algorithm	described	here	has	been	extended	to:	

–  Ensembles	of	mul3-class	classifiers	
–  Ensemble	classifiers	trained	on	subsets	of	aHributes	

•  Recent	theore3cal	results	have	shown	deep	connec3ons	
between	boos3ng	and	maximizing	margin	of	separa3on	(similar	
to	SVM)	
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Error	correc3ng	output	codes	(ECOC)	

•  So	far,	we’ve	been	building	the	ensemble	by	tweaking	the	
distribu3on	of	of	training	instances	

•  ECOC	involves	tweaking	the	output	(class)	to	be	learned	
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Example:	HandwriHen	number	recogni3on	

7,	4,	3,	5,	2	

“obvious”	approach:		learn	func3on:	Scribble	à	{0,1,2,…,9}	
	è	doesn’t	work	very	well	(too	hard!)	

	
What	if	we	“decompose”	the	learning	task	into	six	“subproblems”?	

1.	learn	an	ensemble	of	classifiers,	one	specialized	to	each	of	the	6	“sub-problems”	
2.	to	classify	a	new	scribble,	invoke	each	ensemble		member.		then	predict	the	class	whose	
code-word	is	closest	(Hamming	distance)	to	the	predicted	code	
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Error-correc3ng	codes	

Suppose	we	want	to	send	n-bit	messages	through	a	noisy	channel.	
				To	ensure	robustness	to	noise,	we	can	map	each	n-bit	message	
into	an	m-bit	code	(m>n)	–	note	|codes|	>>	|messages|	
				When	receive	a	code,	translate	it	to	message	corresponding	
to	the	“nearest”	(Hamming	distance)	code	
				Key	to	robustness:	assign	the	codes	so	that	each	n-bit	“clean”	
message	is	surrounded	by	a	“buffer	zone”	of	similar	m-bit	codes	to	
which	no	other	n-bit	message	is	mapped.	

blue				=	message	(n	bits)	
yellow	=	code	(m	bits)	
	
white	=	intended	message	
red	=	received	code	
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ISBN		

•  The	Interna3onal	Standard	Book	Number	(ISBN)	system	
iden3fies	every	book	with	a	ten-digit	number,	such	as	
0-226-53420-0.	

•  The	first	nine	digits	are	the	actual	number	but	the	tenth	is	added	
according	to	a	mathema3cal	formula	based	on	the	first	nine.	

•  If	a	single	one	of	the	digits	is	changed,	as	in	a	misprint	when	
ordering	a	book,	a	simple	check	verifies	that	something	is	wrong.	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Designing	code-words	for	ECOC	learning	
Coding:	k	labels	à	m	bit	codewords	
Good	coding:	
•  row	separa3on:	

want	“assigned”	codes	
to	be	well-separated	by	
lots	of	“unassigned”	
codes	

•  column	separa3on:		each	bit	i	
of	the	codes	should	be	
uncorrelated	
with	all	other	bits	j	

Selec3ng	good	codes	is	hard!	
	

class	 1	 2	 3	 4	 5	 6	 7	 8	

Monday	 0	 0	 1	 0	 0	 0	 1	 0	

Tuesday	 0	 0	 1	 1	 1	 0	 0	 1	

Wednesday	 0	 0	 1	 0	 0	 0	 1	 0	

Thursday	 0	 0	 0	 1	 0	 1	 1	 0	

Friday	 0	 1	 1	 1	 1	 0	 0	 0	

Saturday	 1	 1	 1	 1	 0	 0	 0	 1	

Sunday	 1	 1	 1	 1	 0	 0	 1	 1	
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Bad	codes	

class	 1	 2	 3	 4	 5	 6	 7	 8	

Monday	 0	 0	 1	 0	 0	 0	 1	 0	

Tuesday	 0	 0	 1	 1	 1	 0	 0	 1	

Wednesday	 0	 0	 1	 0	 0	 0	 1	 0	

Thursday	 0	 0	 0	 1	 0	 1	 1	 0	

Friday	 0	 1	 1	 1	 1	 0	 0	 0	

Saturday	 1	 1	 1	 1	 0	 0	 0	 1	

Sunday	 1	 1	 1	 1	 0	 0	 1	 1	

correlated	
rows	è	bad	

correlated	
columns	è	bad	
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Performance	of	ECOC	

20%	

%	decrease	in	error	of	ECOC	over	an	ID3-like	learning	algorithm	
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Summary… 
•  Ensembles:	basic	mo3va3on	–	crea3ng	a	commiHee	of	

experts	is	typically	more	effec3ve	than	trying	to	derive	a	
single	super-genius	

•  Key	issues:	
–  Genera3on	of	base	models	
–  Integra3on	of	base	models	

•  Popular	ensemble	techniques	
–  manipulate	training	data:	bagging	and	boos3ng	
(ensemble	of	“experts”,	each	specializing	on	different	
por3ons	of	the	instance	space)	

–  Manipulate	input	feature	space		
–  manipulate	output	values:	error-correc3ng	output	coding	
(ensemble	of	“experts”,	each	predic3ng	1	bit	
of	the	mul3bit	full	class	label)	
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Learning	under	helpful	distribu3ons	

•  PAC	Learning	requires	success	under	all	possible	probability	
distribu3ons	

•  Some	concept	classes	are	hard	to	learn	under	all	distribu3ons	–	
e.g.,	regular	languages	or	determinis3c	finite	state	automata	
(DFA),	yet	they	are	readily	learned	by	humans	

•  Ques3on	–	can	natural	se|ngs	be	modeled	by	more	benign	or	
helpful	distribu3ons?	E.g.,	can	DFA	be	learned	under	helpful	
distribu3ons?	

•  What	precisely	are	helpful	distribu3ons?	
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Digression	–	Kolmogorov	Complexity	

•  Kolmogorov	complexity	K	(x	)	is	a	machine	independent	i.e.	
universal	measure	of	the	complexity	of	descrip3on	of	an	object	

•  K	(x	)	=	the	number	of	bits	in	the	shortest	universal	Turing	
machine	program	for	x		

•  Object	–	01010101010101...0101010101010101	=	(01)500	
•  Program	–	Print	“01”	500	3mes	
•  Object	–	11001101011111…	100101110111	(random	string)	
•  Program	–Print	“11001101	…	01110111”	
•  Simple	objects	have	low	Kolmogorov	complexity	
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Universal	distribu3on	

We	fix	a	universal	Turing	machine	U	

( ) ( )xKxM −∝ 2

{ } )(  |  )(   min) ( α=ππ=α
π

UlengthK

Universal	distribu3on	M assigns	higher	probabili3es	
to	simpler	objects	

)()|(

} ),(|)(  {min)|(

α≤βα

α=βππ=βα
π

KK

UlengthK

( ) ( )α−∝α || xKxM 2
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Learning	Under	Universal	distribu3on	

Universal	distribu3on	M mul3plica3vely	dominates all		
Enumerable	distribu3ons	including	finite	precision	
Poisson,	Gaussian,	and	many	other	distribu3ons	
	
Theorem:	A	concept	class	is	Probably	approximately		
Learnable	under	each	enumerable	distribu3on	iff	it	is		
Probably	approximately	learnable	under	the	universal		
distribu3on	assuming	during	learning	examples	are	drawn	
according	to	M (x)	
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Learning	under	the	universal	distribu3on	
•  Li	and	Vitanyi	(1991)	showed	that	log	n	-term	DNF	are	

learnable	under	M	(x	|	c)	where	c	is	the	target	concept	
•  Parekh	and	Honavar	(1999,	2001)	showed	that	

•  Simple	DFA	(with	encoding	of	size	O	(	log	N	)	where	N	is	the	
number	of	states)	are	efficiently	learnable	under	the	
universal	distribu3on	M	(x)	

•  DFA	are	efficiently	learnable	with	a	helpful	teacher	–	
examples	are	drawn	according	to	M	(x	|	c	)	where	c	is	the	
target	concept	

•  Denis	(2001)	showed	that	DFA	are	efficiently	learnable	from	
posi3ve	examples	alone	under	M	(x	|	c	)	

•  Tu	and	Honavar	(2012)	showed	the	benefits	of	ordering	
examples	according	to	M(x|c)	
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Addi3onal	Possibili3es	

•  PAC	learning	model	assumes	that	target	concepts	are	
selected	uniformly	at	random	from	C

•  Benign	teacher	–	How	about	if	target	concepts	are	selected	
according	to	universal	distribu3on	over	the	concept	class,	
namely M (c)?

•  Occam	Learner	–	Impose	a	preference	bias	over	the	set	of	
consistent	hypotheses	–	Select	hypothesis	h according	to	 
M ( h )

•  Bayesian	learner	–	Assume	priors	given	by	M (	h )
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Summary	of	Distribu3on-Independent	Learning	Theory	

•  PAC-Easy	learning	problems	lend	themselves	to	a	variety	of	
efficient	algorithms.	

•  PAC-Hard	learning	problems	can	oden	be	made	PAC-easy	
through	appropriate	instance	transforma3on	and	choice	of	
hypothesis	space	

•  Occam's	razor	oden	helps	
•  Weak	learning	algorithms	can	oden	be	used	for	PAC	learning	

through	accuracy	and	confidence	boos3ng	
•  Learning	under	restricted	classes	of	instance	distribu3ons	(e.g.,	

universal	distribu3on)	offers	new	possibili3es	


