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Computational Learning Theory — What is it good for?

e To make explicit relevant aspects of the learner and the
environment

e To identify easy and hard learning problems (and the
precise conditions under which they are easy or hard)

e To guide the design of learning systems
e To shed light on natural learning systems
e To help analyze the performance of learning systems
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Computational Learning Theory

e Model of the Learner: Computational capabilities,
sensors, effectors, knowledge representation, inference
mechanisms, prior knowledge, etc.

e Model of the Environment: Tasks to be learned,
information sources (teacher, queries, experiments),
performance measures

e Key questions: Can a learner with a certain structure
learn a specified task in a particular environment? Can
the learner do so efficiently? If so, how? If not, why not?
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Probably Approximately Correct (PAC) Learning

= Distribution-free models of learning
= Probably Approximately Correct (PAC) Learning
= Sample Complexity Analysis of Concept Classes

= Efficient PAC Learners — polynomial sample learning,
polynomial time learning

= Vapnik-Chervonenkis (VC) dimension and Sample Complexity
= Occam’ s razor
= Learning under simple distributions

= Brief tour of other key results
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The Learning Game .‘ H
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The Learning Game

e We assume
e Aninstance space X

e A concept space C={ C:X%{O,l} }

e A hypothesis space H ={ h:X— {0’1}}

e An unknown, arbitrary, not necessarily computable,
stationary probability distribution D over the instance space X
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Rules of the Game

e An adversary selects a distribution D over a given instance
space X and a target concept ¢ from a given concept class C

e An oracle samples the instance space according to D and

provides a set .S of labeled examples of an unknown concept ¢
to the learner

e The learner's task is to output a hypothesis 4 from H that

closely approximates the unknown concept ¢ based on the
examples it has encountered

e The learner is tested on samples drawn from the instance
space according to the same probability distribution D
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Measuring the error of a hypothesis

e The error of a hypothesis h with respect to a concept ¢ and
distribution D

error, ,(h) = Pr, (c(x) = h(x))
N

\ c )
-
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Probably Approximately Correct Learning — Why?

Impossibility of learning with 0% error

e Because instances are sampled according to an unknown,
arbitrary probability distribution D over the instance space,
there is no way to be certain that the learner will see all the
necessary examples to exactly learn an unknown concept —

exact learning is impossible!
Impossibility of approximate learning with 100% confidence

e Approximate learning (with a specified error €) cannot be
guaranteed hundred percent of the time because of the
vagaries of the sampling process
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g-approximation of a concept c

e We say that a hypothesis /1 is an e-approximation of a concept
c, with respect to an instance distribution D if and only if the
probability that /2 and c disagree on an instance from the

instance space drawn at random according to the distribution
D is less than €. That is,

error. p(h) <
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PAC Learning — A preliminary definition

e A concept class Cis said to be PAC-learnable using a
hypothesis class H if there exists a learning algorithm L such
that for all concepts ¢ € C, for all distributions D on an
instance space X, Ve&,6 (O < &,0< 1), L, when allowed
access to the Example oracle (that is, a finite set S of
labeled examples of a target concept c¢), outputs with

probability at least (1 — 0), a hypothesis # € H which is an ¢-
approximation of c. That is,

VDover X,Vee(C,Ve,0:0<e<1,0<0 <1,
Pr., (error(:, »(h) <E)2 (1 =)

Such a learning algorithm L is called a PAC learning algorithm
for the concept class C
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Notes on the definition of PAC Learnability

e The definition of PAC learnability of a specified concept class C
requires that there be a learning algorithm L that produces an
g-approximation of any concept in the concept class C, any
instance distribution, and any choice of the error (¢) and
confidence (0) parameters.

e Specifying a learning algorithm requires the choice of an
instance representation, the choice of a hypothesis (concept)
representation, and an algorithm for determining the

membership of an instance in a hypothesis (concept). More on
this later.

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

How can we show that a concept class is PAC Learnable?

e |n order to prove the PAC learnability of a concept class we
have to demonstrate the existence of a learning algorithm
which meets the necessary criteria specified in the definition of
PAC learnability.

e |tis even better if we can offer a constructive proof — that is,
provide an algorithm that meets the PAC criteria.

e |t turns out that we can often get away with using a rather
dumb learning algorithm — one that simply outputs a
hypothesis that is consistent with the training examples. (We
assume that H is expressive enough to guarantee the existence
of a consistent hypothesis).
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PAC Learnability of finite concept classes

e Definition: A consistent learner is one that returns some
hypothesis # € H that is consistent with a training set S of
cardinality m.

e Theorem: A consistent learner L is a PAC learner. That is,
given a sufficiently large number (m) of examples of ¢, the
hypothesis produced by L is guaranteed, with probability at
least 1-0, to be an g-approximation of ¢ — for any choice of c&
C, any instance distribution D, and any choice of €, 0 such
that O< g, 0 < 1. Specifically, it suffices if

1, |H
m>—In—

£ O
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A consistent learner

Vs = {h € H | his consistent with examples in S }

.
S Vis| = hE Vys
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Proof that a consistent learner is a PAC

Proof sketch learner
e There are two kinds of hypothesis in H, and hence in the version
space Vi g

— good (e-approximations of the target concept)
— bad (not e-approximations of the target concept).

e Given a sufficiently large number of examples of a target concept c,
a sufficiently large fraction of the bad hypotheses get eliminated
from the version space maintained by a consistent learner.

e Consequently, a randomly selected hypothesis from V, ¢ has a high
probability (at least 1-0) of being an g-approximation of the target
concept
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A consistent learner is a PAC learner

Definition: A version space V sis said to be e-exhausted with
respect to an instance distribution D and a concept c if every
hypothesis h& V,, ¢ is an g-approximation of c. That is,

VheV,  error, ,(h) <€

Our goal is to make the training set S large enough to ensure
that the probability that the version space is not e-exhausted
with respect to c and D is sufficiently small (less than 0)
regardless of the choice of c& C and instance distribution D by
an adversary.
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A consistent learner is a PAC learner

Theorem: Suppose H is a finite hypothesis space, and S a set of m
(m =1) examples of some ¢ €C. Then for any € (0< € < 1), the
probability that the version space V, ¢ is not g-exhausted with
respect to an instance distribution D and a concept c is at

most
—Em
‘H ‘e
Proof:

* Let Hp, be the subset of hypothesis in V}, ¢ that are not e-
approximations of c.

VheH,,,, error, ,(h)z¢
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A consistent learner is a PAC learner

e The probability that a hypothesis 7 € Hy , agrees with con a
random instance drawn according to D is at most (1 - ¢)

e The probability that a hypothesis 7 € Hy , is consistent m
independently drawn random examples is at most (1_5)’”

* The probability that some hypothesis in V;; ¢ survives m
independently drawn random examples is at most

(1-¢) <lt(1-¢) since 1, c 1

e PAC learning requires that the probability of L returning a bad
hypothesis is small. That is, ‘H‘ (1_8)” <5

‘HBad
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A consistent learner is a PAC learner

PAC learning requires that the probability of L returning a bad
hypothesis is small (at most 0). That is,

‘H‘(l—g)”sﬁ ‘H‘e‘émsé
(O<ssl)=>{(l—a)se‘e} :(H)Sem
o)
-
o)
= &m zln(H]

)
Hence, to ensure that a consistent (1 Inf |+ In 1
learner is a PAC learner, it suffices that _(g) ( )
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Sample complexity of PAC Learning for finite hypothesis classes

The smallest integer m that satisfies the inequality

m>lln@
£

is called the sample complexity of H._
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PAC- Easy and PAC-Hard Concept Classes for Consistent Learners
Conjunctive concepts are easy to learn: How?

Algorithm A.1

e Initialize L={X,, ~X,, .... Xy ~Xy}

e Predict according to match between an instance and the
conjunction of literals in L

e Whenever a mistake is made on a positive example, drop the
offending literals from L

Example

N=4

Initialize L = {~X,, X}, ~X,, X, ~X;, X, ~X, X}
(OI11, ) will resultin L = {~X,, X, X;, X/}
(1110, 1) will yield L = {X,, X}
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PAC- Easy and PAC-Hard Concept Classes for Consistent Learners

e Conjunctive concepts are easy to learn
. N
e Total number of concepts considered ‘H‘ =3

e Sample complexity O(é{N'”P’ > '”%})

e Time complexity is polynomial in the relevant parameters of
interest

e The class of all Boolean concepts is hard to learn (Why?)

e Remark: Polynomial sample complexity is necessary but not
sufficient for efficient (polynomial time) PAC learning —
producing a consistent hypothesis may be NP-Hard
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Representation

Distinction between a concept and its representation
e A conceptis simply a set of instances — extensional definition

e Arepresentation of a concept is a symbolic encoding of that set
— intensional definition

Example

e A concept can be represented as a Boolean formula ¢, or a
Boolean formula @ that is logically equivalent to ¢, or a truth
table.
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Representation

e Different representations of the same concept may differ
radically in size

e Example

e Boolean parity function

f(xl,xz....xn)= X, ®x,P..Dx,

where @ denotes the exclusive OR

e can be computed by a circuit of A, v, and = gates whose size
is bounded by a fixed polynomial in n

* but a DNF (disjunction of conjunctions) representation of the
same function has size that is exponential in n.
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Representation

e A given target concept has many representations

e The learner is oblivious to which, if any,
representation is being used by the teacher or
adversary to encode the target concept

e Yet it matters a great deal which of the many
representations of hypotheses that the learner
chooses — the size of the representation of a
hypothesis h is a lower bound on the running time
of an algorithm that outputs h
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Representation

e Arepresentation scheme for a concept class Cis a
function r:x" - ¢ where X2 is a finite alphabet of symbols.

e Any string €3 such that R(c)=c is called a
representation of c under R

e There may be many representations for a concept ¢
under representation R

e When we need to use real numbers to represent
concepts, we may allow R: (2 U 9‘{) —
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Representation size

Riz —=C assigns a natural number size(0) to
size - Z* — X each representation o

The results obtained under a particular definition of size are
meaningful only if the definition is natural.

Example
2={0,1} size(0) is the length of o in bits

If real numbers are used to encode a concept, we may charge
one unit of size to each real number — cannot translate this
measure of size into size in bits unless the real numbers are
finite precision

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar



Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Size of a concept c under a representation R
size (c) = MiN 5, {Size (0)}

Size of a concept ¢ € C under a representation scheme
R for Cis the size of the smallest representation of c under R

The larger the value of size(c), the more complex the concept ¢
under the chosen representation

From now on, when we speak of learning a concept class C, we will
mean learning C under a chosen representation R
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Size of instances

* InaBoolean instance spaceX = {()J}”the size of each
instance is n

n
e |n Xn =N the size of each instance may be taken to be n
(with the usual caveat).

e In X»=4Where Ais a finite alphabet, the size of an

instance is the length of the corresponding string (with
maximum size being n)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Efficient (Polynomial Time) PAC Learning

Definition: Let C, be a concept class over X .

letX=U X and Cc=U_C,

n=1

C is said to be efficiently PAC-learnable if C is PAC-learnable
using a learning algorithm L which runs in time that is
polynomial in n (size of the instance representation),
size(c) (size of the representation of the target concept ¢),
and (l)

€
We assume that the learner is given n and size(c) as input —
however, these assumptions can be relaxed

1

;
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Efficient (Polynomial Time) PAC Learning

e Necessary: Sample complexity must be polynomial in the
relevant parameters

e Sufficient: Polynomial sample complexity and a polynomial
time consistent learner

e More examples allowed to achieve lower error
e More examples allowed for achieving higher confidence
e More examples allowed for learning more complex concepts

e More examples allowed for learning from bigger instances
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Conjunctive Concepts are Efficiently PAC Learnable

e Conjunctive concepts are efficiently PAC-learnable
under a natural representation of conjunctions

)

e Time complexity O(l<fN|n3+|n(l)})
o)

e Sample complexity

€

~
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Quick review of computational complexity
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P and NP, informally

e P and NP are two classes of problems that can be solved by
computers.

e P problems can be solved quickly.

— Quickly means seconds or minutes, maybe even hours.
e NP problems can be solved slowly.

— Slowly can mean hundreds or thousands of years.
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An equivalent question

e |sthere aclever way to turn a slow algorithm into a fast one?
— |f P=NP, the answer is yes.
— If P#NP, the answer is no.
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Why do we care?

e People like things to work fast.
e Encrypting information

— If there’ s an easy way to turn a slow algorithm into a fast
one, there’ s an easy way to crack encrypted information.

— This is bad for anyone in the business of protecting secrets
and for people who like to buy things online.
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Currently...

e Most people think P#NP.
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General computing

e First, consider computer programs and what they
can do:

input —— —+ output

(we hope)
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A couple of things to note

e There are lots of programs for any given problem.
e Some are faster than others.
— We can always artificially slow them down.
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Back to P and NP

e P and NP are classes of solvable problems.

e Solvable means that there’ s a program that takes an input, runs
for a while, but eventually stops and gives the answer.
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Computation “trees’ for solvable problems

Program:
Input x
L1. Ifx>1,

set x = x-2,

If x =0,
output 0.

If x =1,
output 1.

and GoTo L1.

Example computation:

Input x = 3
— x>1, so ...

x=3-2=1
— x=1, so ...

Output 1
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More about the example...

e What does this program do?
— Outputs O if input is even,
— Outputs 1 if input is odd.

e Solves the problem “Is the input even or odd?”

e The length of the computation tree depends on the
input.
— Time(3)=2
— Time(4)= 3
— Time(x)< (x/2) + 1
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Solvability versus Tractability

e A problem is solvable if there is a program that always stops and
gives the answer.

e The number of steps it takes depends on the input.

e A problem is tractable or in the class P if it is solvable and we can
say Time(x)<(some polynomial(x)).
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P problems are “fast”

e These problems are comparatively fast.
e For example, consider a program that has Time(x) < x°
compared to one with Time(x) < ¥

— On the input of 100, the computation times compare
as follows

100* =10,000 << 2" =1,267,650,600,228,229,401,496,703,205,376
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Okay... so what about NP?

e The description involves non-deterministic programming.

— NP stands for “non-deterministic, polynomial-time
computable”

e The examples we’ ve seen so far are examples of deterministic
programes.

— By the way, P stands for “polynomial-time computable”

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




College of Information Sciences and Technology
Artificial Intelligence Research Laboratory

Pennsylvania State University

An example of non-deterministic programming

e Non-deterministic programs use a new kind of
command that normal programs can’ t really use.

e Basically, they can guess the answer and then check to
see if the guess was right.

e And they can guess all possible answers simultaneously
(as long as there are only finitely many of them).
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An example of non-deterministic programming

We branch
when there's a
guess, one

Program . Inputx =7 path for each
| guess.
Input x.
GueSS y in {11 2: 41 9} guessy = Ji guessy = 2 guessy — 4 guess y = 9
If x+y > 10,
stop and output O. / \
Otherwise, x+y<10 x+y>10), x+y>10,
. guess guess
If y is even, =) 2=3 Output 0 Output 0
Guess zin {2, 3},
If x+z is odd, stop, y is odd,
xtz=9 x+z=10
Otherwise, output 0.
Output 1
Output ()
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Non-deterministic programming

e Convention:

— If any computation path ends with a 1, the answer to the
problem is 1 (we count this as “yes”).

— If all computation paths end with a 0, the answer to the
problem is 0 (we count this as “no”).

— Otherwise, we say the computation does not converge.

e Again, we’ re only interested in problems where this third case
never happens — solvable problems.
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The class NP

e |f the computation halts on input x, the length of the longest path
is NTime(x).

e A problemis NP if it is solvable and there is a non-deterministic
program that computes it so that NTime(x)<(Some polynomia(x)l).
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Non-deterministic > Deterministic

e A non-deterministic algorithm can be converted into a
deterministic algorithm at the cost of time.

e Usually, the increase in computation time is exponential.

e This means, for normal computers, (deterministic ones), NP
problems are slow.
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The picture so far...

NP

All
solvable
problems
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SAT (The problem of satisfiabity)

e Take a statement in propositional logic, (like
pVvqg— pAqgforexample).
e The problem is to determine if it is satisfiable. (In other

words, is there a line in the truth table for this
statement that has a “T~ as its truth value.)

e This problem can be solved in polynomial time with a
non-deterministic program.
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SAT, cont.

e The length of each path in the computation tree is a polynomial
function of the length of the input statement.

e SAT is an NP problem.
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NP completeness

e |f P£NP, SAT is a witness of this fact, that is, SAT is NP
but not P.

e Itis among the “hardest” of the NP problems: any
other NP problem can be coded into it in the following

Sense.

If R is @ non-deterministic, polynomial-time algorithm that solves another NP
problem, then for any input, x, we can quickly find a formula, f, so that fis
satisfiable when R halts on x with output 1, and f is not satisfiable when R
halts on x with output O.
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NP complete problems

e Problems with this property that all NP problems can be coded
into them are called NP-hard.

e |f they are also NP, they are called NP-complete.

e |f P and NP are different, then the NP-complete problems are NP,
but not P.
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The picture so far...

NP

All
solvable
problems
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Optimization & Decision Problems
e Decision problems

— Given an input and a question regarding a problem,
determine if the answer is yes or no

e Optimization problems
— Find a solution with the “best” value

e Optimization problems can be cast as decision problems that
are easier to study

—.g.: Shortest path: G = unweighted directed graph
e Find a path between u and v that uses the fewest edges

® Does a path exist from u to v consisting of at most K edges?
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Algorithmic vs Problem Complexity

e The algorithmic complexity of a computation is some measure
of how difficult is to perform the computation (i.e., specific to an
algorithm)

e The complexity of a computational problem or task is the
complexity of the algorithm with the lowest order of growth of
complexity for solving that problem or performing that task.

— e.g. the problem of searching an ordered list has at most Ign
time complexity.

e Computational Complexity: deals with classifying problems by
how hard they are.
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Class of “P” Problems

e Class P consists of (decision) problems that are solvable in

polynomial time
e Polynomial-time algorithms

— Worst-case running time is O(nk), for some constant k
e Examples of polynomial time:

— 0(n?), O(n3), O(1), O(n Ig n)
e Examples of non-polynomial time:

— 0(2"), O(n"), O(n!)
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Tractable/Intractable Problems
e Problemsin P are also called tractable
e Problems notin P are intractable
— Can be solved in reasonable time only for small inputs

— Or, can not be solved at all
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Examples of Intractable Problems

Hamiltonian Paths

Optimization Problem: Given a graph. find a path that passes through
every vertex exactly once

Decision Problem: Does a given graph have a Hamiltonian Path ?

Traveling Salesman

Optimization Problem: Find a minimum weight Hamiltonian Path

Decision Problem: Given a graph and an integer k. 1s there a Hamil-
tonian Path with a total weight at most k& ?
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Intractable Problems

e (Can be classified in various categories based on their degree of
difficulty, e.g.,

— NP
— NP-complete
— NP-hard
e Let’ s define NP algorithms and NP problems ...
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Nondeterministic and NP Algorithms
Nondeterministic algorithm = two stage procedure:
1) Nondeterministic (“guessing”) stage:

generate randomly an arbitrary string that can be thought

of as a candidate solution (“certificate”)
2) Deterministic (“verification”) stage:

take the certificate and the instance to the problem and

returns YES if the certificate represents a solution
NP algorithms (Nondeterministic polynomial)

verification stage is polynomial
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Class of “NP” Problems

e Class NP consists of problems that could be solved by NP

algorithms
— i.e., verifiable in polynomial time

e If we were given a “certificate” of a solution, we could verify

that the certificate is correct in time polynomial to the size of
the input

e Warning: NP does not mean “non-polynomial”
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E.g.: Hamiltonian Cycle

e Given: a directed graph G = (V, E), determine a simple cycle that
contains each vertex in V

— Each vertex can only be visited once

e Certificate: /\

— Sequence: (Vy, Vy, Vs, ..., Vjy)

hamiltonian

not
hamiltonian
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s P = NP?
e Any problemin P is also in NP: @
PC NP y

e The big (and open question) is whether NP C P or P = NP

— i.e,, if it is always easy to check a solution, should it also be

easy to find a solution?

e Most computer scientists believe that this is false but we do not

have a proof ...
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NP-Completeness (informally)

e NP-complete problems are

defined as the hardest

problems in NP
e Most practical problems turn out to be either P or NP-complete.

e Study NP-complete problems ...
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Reductions
e Reduction is a way of saying that one problem is “easier” than
another.

e We say that problem A is easier than problem B,
(i.e., we write “A < B”) if we can solve A using the algorithm that
solves B.

e |dea: transform the inputs of A to inputs of B

A 4

¢ /3 Problem B }5/’
roblem
f \_no_.

no
Problem A
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Polynomial Reductions

e Given two problems A, B, we say that A is polynomially

reducible to B (A </ B) if:

1. There exists a function f that converts the input of A to

inputs of B in polynomial time

2. A(i) = YES < B(f(i)) = YES
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NP-Completeness (formally)

e A problem B is NP-complete if:

(1) B E NP

(2) A<, Bforall A& NP
e |f B satisfies only property (2) we say that B is NP-hard

e No polynomial time algorithm has been discovered for an NP-

Complete problem

e No one has ever proven that no polynomial time algorithm can

exist for any NP-Complete problem
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Implications of Reduction

o i p

_ves ,
Y
Problem B /es/

no

A 4

Problem A

—IfAspBand B&EP,thenAEP

-ifA< Band A& P, thenB&P
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Proving Polynomial Time

O{ b Polynomial time - yes—
f algorithm to decide B }‘ no

Polynomial time algorithm to decide A

1. Use a polynomial time reduction algorithm to
transform A into B
2. Run a known polynomial time algorithm for B

3. Use the answer for B as the answer for A
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Proving NP-Completeness In Practice

e Prove that the problem B is in NP

— A randomly generated string can be checked in polynomial

time to determine if it represents a solution

e Show that one known NP-Complete problem can be transformed

to B in polynomial time

— No need to check that all NP-Complete problems are

reducible to B
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Revisit “Is P = NP?”

Theorem: If any NP-Complete problem can be solved in polynomial

time = then P = NP.
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P & NP-Complete Problems

e Euler tour

— G =(V, E) a connected, directed graph find a cycle that

traverses each edge of G exactly once (may visit a vertex

multiple times)

— Polynomial solution O(E)

e Hamiltonian cycle

— G =(V, E) a connected, directed graph find a cycle that visits

each vertex of G exactly once

— NP-complete
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Satisfiability Problem (SAT)

e Satisfiability problem: given a logical expression @, find an
assighment of values  (F, T) to variables x. that causes @ to
evaluate toT

D=X;,V = X, AX3 V 7 X,

e SAT was the first problem shown to be NP-complete!
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NP-naming convention

e NP-complete - means problems that are '‘complete' in NP, i.e. the
most difficult to solve in NP

e NP-hard - stands for 'at least' as hard as NP (but not necessarily
in NP);

e NP-easy - stands for 'at most' as hard as NP (but not necessarily
in NP);

e NP-equivalent - means equally difficult as NP, (but not
necessarily in NP);
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Examples NP-complete and NP-hard problems

Hamiltonian Paths NP-complete

Optimization Problem: Given a graph. find a path that passes through
every vertex exactly once

Decision Problem: Does a given graph have a Hamiltonian Path ?

Traveling Salesman NP-hard

Optimization Problem: Find a minimum weight Hamiltonian Path

Decision Problem: Given a graph and an integer k. 1s there a Hamil-
tonian Path with a total weight at most k& ?
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The picture so far...

SAT lives
here
NP-
complete
problems,
All
solvable
problems
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Question:

e |sthere aclever way to change a non-deterministic
polynomial time algorithm into a deterministic
polynomial time algorithm, without an exponential
increase in computation time?

e |f we can solve an NP complete problem quickly then all
NP problems are solvable in deterministic polynomial
time.
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Back to COLT
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3-Term DNF concepts are not efficiently PAC

learnable unless P=RP

e Randomized polynomial time (RP) is the complexity class of problems
for which a Turing machine exists such that the

— It always runs in polynomial time in the input size
— |If the correct answer is NO, it always returns NO

— |If the correct answer is YES, then it returns YES with probability at
least % .

e Theorem: 3-term DNF concept class (disjunctions of at most 3
conjunctions) are not efficiently PAC-learnable using the same
hypothesis class unless P=RP.

e Proof: By polynomial time reduction of graph 3-colorability (an NP-
complete problem) to the problem of deciding whether a given set of
labeled examples is consistent with some 3-term DNF formula.
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Reduction
Sa Sa
<011111,1> <001111,0>
<101111,1> <011011,0>»
<110111,1> <011101,0>
<111011,1> <100111,0>
<111101,1> <101110,0>
<111110,1> <«110110,0>

<111100,0>
TR=Xa AXgAXgAXg
TB=X1AX3I\XG
Ty =Xy AXo AXgAXg AXg

A {(vi,l) lv. has O in the ith position and 1s everywhere else}

S, = {(el.j,O) le,; has O in the ith and jth position and 1s everywhere else}

e G is 3-colorable iff S-is consistent with some 3-term DNF Formula
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Reduction

Sa Sa
<011111,1> <001111,0>
<1011111> <011011,0>»
110111,1> <011101,0>
111011,1> <100111,0>
111101,1> <101110,0>
11M11110,1> <110110,0>
<111100,0>

TR=Xa AXgAXgAXg
TB=X1AX3I\XG
Ty =Xy AXo AXgAXg AXg

e Suppose G is 3-colorable; Fix a 3-coloring of G.

e Let R be the set of red vertices. T, the conjunction of literals whose indices don’t
appear in R; -> v, must satisfy T,

* Noe;can satisfy T, because no two adjacent vertices can be colored red and at
least one of x; and x; should be in T,
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Reduction
Sa Sa
<011111,1> <001111,0>
<101111,1> <011011,0>
<110111,1> <011101,0>
<111011,1> <100111,0>
<111101,1> <101110,0>
<111110,1> <110110,0>

<111100,0>
Ta=Xo AXgAXgAXg
TB=X1AX3AXG
Ty =Xy AXo AXgAXg AXg

e Suppose T, is consistent with the data

e Define coloring as follows: color of v; is red if v, satisfies T, similarly for other
colors

e Thisyields alegal 3 coloring
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Transforming Hard Problems to Easy ones

e Theorem: 3-term DNF concepts are efficiently PAC-learnable
using 3-CNF (conjunction of disjunctions (clauses) with at most
3 literals per clause) hypothesis class.

* Proof: 3_term DNF C 3-CNF

e Transform each example over N boolean variables into a
corresponding example over N’ variables (one for each
possible clause in a 3-CNF formula).

I,vI,vT, = A (uvvvw)
usl VeI, Weliy

e The problem reduces to learning a conjunctive concept over
the transformed instance space.
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Transforming Hard Problems to Easy ones

e Theorem For any k = 2 k-term DNF are efficiently PAC-learnable
using the k-CNF hypothesis class.

e Remark: In this case, enlarging the search space by using a
hypothesis class that is larger than strictly necessary, actually
makes the problem easy!

e Remark: No, we have not proved that P=NP.

e Summary:

Conjunctive C k - term DNF C k - CNF C CNF
Easy Hard Easy Hard
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Occam Learning Algorithm

e Definition: let =0 & 0<f <1 be constants. A learning
algorithm L is said to be an a-f Occam algorithm for a concept

class C using a hypothesis class H if L, given a set S of m random
examples of an unknown concept ¢ & C outputs a hypothesis
such that his consistent with S and

he H
. 5 o ﬁ
size(h) < {NSZZQ(C‘)} m

Effective hypothesis space size [—[nm < 2(NSI'Z€(C))“ m’
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Occam Learning Algorithm outputs a succinct hypothesis

size(h) = {Nsize(c)}a m’
When m >> N, size(h) = O((Size(c))oC mﬂ)

Thus, m labels have to be compressed into O(m)? bits
-- a mild requirement because we can always obtain a
Consistent hypothesis that is O(mn) bits long (why?)

We have to allow size(h) to depend linearly on size(c)
in the event the shortest hypothesis in H may in fact be the
target concept c.

We allow a generous dependence on m —which often makes
It easier to find a consistent hypothesis — finding the shortest
hypothesis is often computationally intractable
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Occam Learning Algorithm

e An Occam learning algorithm L for a concept class Cis
said to be an efficient a- Occam learning algorithm for
C ifits running time is bounded by a polynomial in n, m,
and size(c).

e The simple algorithm we considered for learning
conjunctive concepts is an efficient Occam learning
algorithm (Prove this!).
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Sample complexity of an Occam Algorithm

e Theorem: An Occam algorithm is guaranteed to be PAC
if the number of samples

/ Ly

11 -(Nsize(c))a-
m=0 zlg5+

E

\ - )

e Proof: Left as an exercise.
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k-decision lists

e kdecision list over Boolean variables x,...x, is an
ordered sequence

I = ((C1ab1)---(czvbz),b)

Where each c;is a conjunction of at most k literals chosen from
X;...Xy (and their negations) and each b,and b is 0 or 1.

On a given N-bit input, / is evaluated like a nested if-then-else
statement with b corresponding to the default output.
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Occam algorithm is PAC for K-decision lists

e Theorem: For any fixed k, the concept class of k-
decision lists is efficiently PAC-learnable using the same
hypothesis class.

e Algorithm — Greedily find conjunctions of at most k

literals that cover the largest subset of examples with
the same class label.

e Remark: k-decision lists constitute the most expressive
Boolean concept class over the Boolean instance space
{0,1}" that are known to be efficiently PAC learnable.
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Mistake and Loss Bound Models of Learning

e Qutline

= Machine learning and theories of learning

= Mistake bound model of learning

= Mistake bound analysis of conjunctive concept learning

= Weighted majority and related multiplicative update
algorithms

= Applications
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Computational Models of Learning

e Model of the Learner: Computational capabilities, sensors,
effectors, knowledge representation, inference mechanisms,

prior knowledge, etc.

e Model of the Environment: Tasks to be learned, information
sources (teacher, queries, experiments), performance measures

e Key questions: Can a learner with a certain structure learn a
specified task in a particular environment? Can the learner do so
efficiently? If so, how? If not, why not?
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Models of Learning: What are they good for?

e To make explicit relevant aspects of the learner and the
environment

e To identify easy and hard learning problems (and the
precise conditions under which they are easy or hard)

e To guide the design of learning systems
e To shed light on natural learning systems
e To help analyze the performance of learning systems
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Mistake Bound Analysis

Example — Learning Conjunctive Concepts

e Given an arbitrary, noise-free sequence of labeled examples
(X,C(X)),(X,,C(X)))...(X,,C(X,)) of an unknown binary
conjunctive concept C over {0,1}?, the learner's task is to
predict C(X) for a given X.

Theorem: Exact online learning of conjunctive concepts can be
accomplished with at most (NV+1) prediction mistakes.
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Online learning of conjunctive concepts

Algorithm A.1

e Initialize L={X,, ~X, .... Xy ~Xy}

e Predict according to match between an instance
and the conjunction of literals in L

e Whenever a mistake is made on a positive
example, drop the offending literals from L

Example
(0111, 1) will resultin L = {~X,, X,, X;, X/}
(1110, 1) will yield L = {X,, X,}
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Mistake bound analysis of conjunctive concept learning

Proof Sketch

e Noliteralin Cis ever eliminated from L

e Each mistake eliminates at least one literal from L
e The first mistake eliminates N of the 2N literals

e Conjunctive concepts can be learned with at most (N+1)
mistakes

Conclusion

e Conjunctive concepts are easy to learn in the mistake bound
model
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Optimal Mistake Bound Learning Algorithms

Definition: An optimal mistake bound mbound(C) for a
concept classs C is the lowest possible mistake bound
in the worst case (considering all concepts in C, and
all possible sequences D of examples).

mbound(C) = min max max mistakes (c * L, D)

learners L cr*eC example sequences D

where mistakes (c* L,D) is the number of mistakes made by
L in its attempt to learn ¢* based on the sequence of
examples provided.
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Mistake Bounds and optimal mistake bounds

mbound(C) < 2" (why?)
mbound (C) = ‘C‘ -1 (why?)
mbound (C) < Iog(]C\) }we will prove this

. trivial bounds

Definition: An optimal learning algorithm for a concept class C (in
the mistake bound framework) is one that is guaranteed to exactly

learn any concept in C, using any noise-free example sequence,
with at most O(mbound(C)) mistakes.
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Version space and Halving algorithm

V, = {c EC | cis consistent with the first i examples |
V, =C

g,(C,.x)={cec:c(x)=0}

g (C,x)={cec:c(x)=1}

{zo(Vil,X,-)ifc*(X,-)= 0

T T T g (L x it e () =

l

Halving Algorithm : On input X, Predict 1 if

g (Vo X ) =[E. (VL. X, )
and O otherwise. Eliminate the concepts
(majority or minority) that were wrong
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Version space

Definition: The halving algorithm predicts according to the
majority of concepts in the current version space and a
mistake results in elimination of all the offending concepts

from the version space.
V, = {cEC | cis consistent with the first i examples}
V,=C
EO(C,X)= {CEC ; C(X)= O}
EI(C,X)= {CEC ; C(X)= 1}
g, (V. X, )if e*(x,)=0
e (v, X, )ifc*(x,)=1

Z_

Fori>O0, Vl.={
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The Halving Algorithm

e Theorem: mbound(C)slog(IC‘)

Proof: The halving algorithm predicts according to majority of
concepts in the version space. Hence each mistake eliminates
at least half of the candidate hypotheses in the version space.

The halving algorithm can be computationally feasible if there
is @ way to compactly represent and efficiently manipulate the
version space. Otherwise it is not computationally feasible.
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The Halving Algorithm

The halving algorithm is not optimal with respect to the number of
mistakes. In order to minimize the number of mistakes, the
learner has to guess according to the subset of the version space
that is expected to yield the fewest mistakes.

The optimal mistake bound algorithm has to predict 1 if

mbound (51 (Vi—l , X, )) = mbound (g:o (Vi—l , X ))

and 0 otherwise. However this algorithm is even less efficient.
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The Halving Algorithm

e (Question: Are there any efficiently implementable
learning algorithms with mistake bounds comparable to
that of the halving algorithm?

e Answer: Littlestone's algorithm for learning monotone
disjunctions of at most k of n literals using the
hypothesis class of threshold functions with at most (£
lg n) mistakes. More on this later.
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Randomized Halving Algorithm

e The predictions made by the halving algorithm may not be based
on any concept in C. There may not exist in C a concept that is
consistent with the majority vote.

e The randomized halving algorithm due to Maass predicts
according to a randomly selected concept c €C

e All concepts in C that are inconsistent with the example are
eliminated from further consideration.

e Theorem: The expected number of mistakes made by the
randomized halving algorithm is at most log |C | + O(1)
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Randomized Halving Algorithm

e WLOG assume that the order of presentation of the examples is
independent of the learner’ s actions

e Suppose the concepts in the version space are ordered by when
they are going to be eliminated by examples.

e letc,....c.be the order with r=|V]
e Let M, be the expected number of mistakes

e The algorithm picks one of the » concepts at random with
probability equal to 1/r. If ¢, is chosen, there are no further
mistakes. One of the other concepts is chosen with probability
(r-1)/r in which case, there will be one mistake (at least) plus
the expected number of mistakes for the remaining concepts
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Randomized Halving Algorithm
M, =0

r—l)
\ / \ /

r-1

r=2
M. =(r-1)+ Y M;; (r—l)Mr_1=(r—2)+2Ml.

r—1 \ r-1
M =(r— )1+ = =(r— )+ =]

r<Mr_Mr—1)+Mr—1 =1+Mr—1
1

Mr =Mr—1+_
r

M. = 2(1) —In7+0(1)
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Learning monotone disjunctions when irrelevant attributes abound

C=1, vx, V..x, i E{L.N};jE{L. k)

N N N

Cl= + + ..
k k-1 0

1g|C

Il
©
o=
=)
=

This can be shown to be an optimal mistake bound

How can we design an algorithm that achieves this mistake
bound?
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Winnow Algorithm

e |dea — Use threshold neurons to learn monotone disjunctions
e (Monotone disjunctions are a subset of threshold functions)

Initialize & = (g) w=(l...1)

Predict y(X) =1 1ff W.X > 6 otherwise predict y(X) =0
If ¢(X) =1 but y(X) =0, double all w, wherex, =1
If ¢(X) =0 but y(X) =1, zero out all w, wherex, =1

Theorem — Winnow makes O(k 1g N) mistakes
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u —number of times weights are doubled

Winnow Algorithm _ ,
v —number of times weights are zeroed out

N
< E w, | < (N + 140 — v@) «——FEach weight doubling adds at most 6
- to the sum of weights and each zeroed

out weight subtracts at least 6 from

Yi w. <26
l \the sum of weights
Elw |9 w, ( ) No weight that is greater than 6 is ever

u
k doubled
Each weight doubling has to affect at least
( ) (Ig W ) = (lg 0+ 1) one of the weights. Each weight doubling
adds at least 1 to the logarithm of the
U< k(lg@ + 1) weight that got doubled
v<( )+k(lg@+1)
0 Theorem — Winnow makes
(u +v)s 2+2kIgN O(k 1g N) mistakes
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Generalizations of Winnow

e Winnow algorithm and its variants and generalizations can be
used to learn concepts from more expressive concept classes by
preprocessing the input patterns — e.g. by transforming an n-bit
pattern into an O(x*) bit pattern that encodes all conjunctions of
at most k literals (negated or un negated)

e Winnow algorithm and its variants can be made to generalize
better by incorporating regularization
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Weighted majority learning algorithm (WML)

Motivations

Robust algorithm for learning monotone disjunctions

Suppose we have a pool of predictors — features, experts,
algorithms

The optimal predictor — that is, the predictor that makes the
fewest mistakes depends on the data and is not known a
priori

Basic idea — make predictions based on a weighted majority

of predictions of all predictors in the pool; if a mistake is
made, adjust the weights
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Weighted majority learning algorithm (WML)

Initialize W =(l...1; 8,=6 =0
For each training example (X, ¢(X))

If x,
If x,
Pred

Pred

=0, §,<06,+w,

=1, 6, <6 +w,

ict y(X)=11f 6, > 6,
ict y(X) =01t 6, <6,

Pred

ict y(X) = Random({1,0})1f 6, =6,

If ¢(X) = y(X), w, < pw. (0= <1)
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Weighted majority learning algorithm (WML)

Theorem: Let D be any sequence of training examples. Let
A={A, ... A,} be any pool of n predictors. Let k£ be the number
of mistakes made by the best predictor in the pool 4 on the
sequence of examples D. Then

1 )

(
klog | — |+log n
B

m = mbound ,,, <

log 2
\ (“/3) /
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Weighted majority learning algorithm (WML)

Proof: The total weight associated with the n predictors at any time
is W= (6,+ 0,) where ¢,and 6, are as defined in WML

Consider an example on which a mistake is made. WLOG, assume
that the prediction was 0. Then the total weight after the update is

The predictors in the weighted

> reduced by a factor (1-p)

W < (@ +0 )_ (1 _ﬁ)( 6, +0, ) (why?) majority must have held at least
after 0 1 2 .
half the total weight. After update,
W, < (1+ ﬁ)(@ O ) (1 + ﬂ)Wbefore this portion of the weight gets

Each mistake causes sum of weights after an update to be no
more than (1+ ﬁ) times the value before the update

2
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Weighted majority learning algorithm (WML)

1 \
Waﬁer = / . ﬁ Wbefore .
2 where m is the number
m m of updates
VVﬁnalS 1+ﬂ VVinit=(1+ﬂ) n
2 2

The best predictor (say w; ) makes k mistakes and hence

d k weight updates. S
undergoes k weight updates. So meal _ ,Bk
Clearly, the weight of the best predictor can be no greater
than the sum of weights ) 1+ 8 m
b = 5 n
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Weighted majority learning algorithm (WML)
{ﬁk } (“ﬂ)mn}: {(ﬂ) s (1+ﬂ)’"% {() : (2)}
2 n 2 B 1+ 5
= {(logn —klog,B)z mlog(lfﬂ)} = {(logn + klog(/lj)) > mlog(lfﬁ)}

1))
1 klog| —
ogn + og(/j)

log( 2 )
. 1+p )

— m =

Implication: WML makes almost as few mistakes as the optimal
learner in the pool — We can use weighted majority when it is
unclear which learner in the pool is optimal
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Some Variations on WML

Selection from countably infinite pool of predictors

* No algorithm (that halts) can obtain predictions from an
infinite number of predictors

e However, we can modify WML so that it considers
successively larger pools of predictors

e The modified algorithm behaves very much like WML with a
degradation in mistake bound of the order of (log i) where ith
predictor in the pool is the optimal predictor

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar



Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Some Variations on WML

Randomized predictions

v,
e Predict 1 with probability (9 4_1(9 )
1 0

e Predict O with probability (90
0, +0,

e The update equations can be modified
so that the rate of mistakes approaches

arbitrarily close to the rate of mistakes
of the best predictor in the pool
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Some Variations on WML — Balanced Winnow

Inputs and outputs are bipolar
Balanced Winnow (W+ LW, (X, y))
O0<p <l
If Sign(W+ *X-W'e X);t h%
fy=1, Vi w <w +p7"w ,w < w + 7w

. + + Xi .- - —-X; -
[fy=-1L Vi w <w +B8"W;w <w +["w,
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Some Variations on WML — Balanced Winnow

Balanced Winnow is equivalent to keeping a scaled
sum of updates as perceptron does but with a scale
factor of 1

n=log| —
p

Balanced Winnow (W, Z, (X, Y ))
0<p <l
If Sign(W . X) =y

1
1Z.<—7+y|log— X

p

W < 2sinh(Z) (That is, Vi w, < 2sinh z, = " —e™™)
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Generalized Perceptron algorithms

Generalized Perceptron (W, Z, 1, (X, y))
If Sign(W = X) # Y

1 <— 1.+ nyX

W < f(Z) (Thatis, Vi w, < f(z.))

See Grove, Littlestone, Schuurmans
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Quasi additive update algorithms for function approximation

Generalized Gradient Descent (W, Z,f1, (X, y))
y<—WeX

1.<— 7 +nyX

W < f(Z) (Thatis, Vi w, < f(z,))

By choosing the learning rate 1 and f appropriately, we can
obtain gradient-based learning algorithms that work well in

the presence of irrelevant attributes (See Kivinen and
Warmuth)
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Applications of Multiplicative Update Algorithms

Multiplicative update algorithms constitute an
example of theoretical analysis of simple
algorithms leading to a new powerful family of
algorithms that are useful in practice

e Spelling correction

e Text processing (SPAM filters)

e Face recognition

e Portfolio selection

e Learning in game-theoretic settings
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PAC Learnability of Infinite Concept Classes

e How many random examples does a learner need to draw
before it has sufficient information to learn an unknown
target concept chosen from a concept class C ?

e Sample complexity results derived previously answer this
qguestion for the case of finite concept classes.

e Are there any non-trivial infinite concept classes that are
PAC learnable from a finite set of examples?

e Can we quantify the complexity of an infinite concept
class? —yes, using Vapnik-Chervonenkis Dimension!
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Vapnik-Chervonenkis (VC) Dimension

e Let C be a concept class over an instance space X.
e Both C and X may be infinite.
e We need a way to describe the behavior of C on a finite set

. - _
of points § C X. S _{XI’X2""Xm}
e For any concept class C over X, and any S C X,

HC(S)={CHS:CEC}

e Equivalently, with a little abuse of notation, we can write

HC(S)= {(C(Xl) ...... C(Xm )) CEC}

IT(S) is the set of all dichotomies or behaviors on § that are
induced or realized by C
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Vapnik-Chervonenkis (VC) Dimension

If 11,(5)=1{01}" where |S|=m, or equivalently,
11.(s) =2~ we say that§is shattered by C.

e Aset.S of instances is said to be shattered by a
hypothesis class H if and only if for every dichotomy
of S, there exists a hypothesis in H that is consistent
with the dichotomy.
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VC Dimension of a hypothesis class

e Definition: The VC-dimension V(H), of a hypothesis class H
defined over an instance space X is the cardinality d of the
largest subset of X that is shattered by H. If arbitrarily large
finite subsets of X can be shattered by H, V(H)=

How can we show that V(H) is at least d?
e Find a set of cardinality at least d that is shattered by H.

e How can we show that V(H) =d?

e Show that V(H) is at least d and no set of cardinality (d+1) can
be shattered by H.
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VC Dimension of a Hypothesis Class - Examples

e Example: Let the instance space X be the 2-dimensional
Euclidian space. Let the hypothesis space H be the set of linear
1-dimensional hyperplanes in the 2-dimensional Euclidian
space.

e o
e o e ~ o e ©

®
® o o e

e Then V(H)=3 (a set of 3 points can be shattered by a
hyperplane as long as they are not co-linear but a set of 4
points cannot be shattered). For the concept class of linear
hyperplanes, VC dimension is n+1
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VC Dimension and Sample complexity

e A concept class CC 2X is trivial if it contains a single
concept or 2 disjoint concepts which partition X.

Theorem: Let C be a non trivial concept class.

Then C is PAC learnable if and only if V(C) is finite.
If V(C)=d and d<x, then the bounds on sample complexity of
C are given by

o)

"

Proof: See Readings
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Some Useful Properties of VC Dimension

(Cl C Cz):> V(Cl)s V(Cz)

If Cisa finite concept class, V(C)=<IgC

(5 = {X—c ; CEC})=> V(C)= V(G)

(c=c,uc,)=r(C)sv(c,)+V(C,)+1

If C, is formed by a union or intersection of /
concepts from C, V( ) oW (C)lgl)

It 7(C) = d, T, (m) = max{[ I1.(S):[S] = m}
[M.(m)<®, (m)where
@d(m)= 2" if m=d and cbd(m)= O(md)if m<d

Proof: Left as an exercise
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Sample complexity of a multilayer perceptron

e Acyclic, layered multi-layer networks of s threshold
logic units, each with r inputs, has VC dimension

d =0(r+1)slg(s)

Hence, we have:

fl o))
[ ()
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Occam Algorithm

e Theorem: An Occam algorithm is guaranteed to be PAC
if the number of samples

1,1 _(Nsize(c))a_

E 0 £
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Learning when the size of the target concept is
unknown

e Results on efficient PAC learnability of concept classes are
derived under the assumption that the size of the target
concept is one of the inputs to the learning algorithm

e Can we guarantee efficient PAC learnability when the size of the
target concept is unknown? — Yes, using the doubling trick and

hypothesis testing
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Aside — Hoffding Bounds

e LetX,...... X be outcomes of independent Bernoulli
trials each with probability of success p. Let

S = iX,- >0 E(S)=pm

_2mt?

Pr(Sme+t)se

~2m(a-p)’

Pr(Szam)se wherea = p

Pr(S < O{WI)

~2m(a-p)

IA

e wherea < p
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Aside — Chernoff Bounds

Let X,....... X, be independent outcomes of
independent Bernoulli trials each with probability of
success p. Let g _ ' v

Z ,

LE(p,m,r) = Pr(S = r)
GE(p,m,r) = Pr(S = r)

LE(p,m, (1 — a)pm) < e—Otzmplz )
GE(p, m, (1 + O!.)pm) < e‘azmp/3

and

O<sa=l

J

Chernoff Bounds are tighter than Hoffding Bounds when p < 1/4
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How to determine if a hypothesis is e-good

e We cannot distinguish with certainty between an &-good
hypothesis and one that has error slightly greater than € by
testing the hypotheses on a finite set of examples

* However, we can distinguish between an (g/2)-good hypothesis
and an &-bad hypothesis with high confidence
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How to determine if a hypothesis is e-good

Algorithm Test (h,n,¢,0)

1. Make m 32 T 2 calls to Example(c,D)
€ d (n is the size of the instances)
2. Accept h if it misclassifies at most 3¢)  examples;

m
4

Otherwise, reject h

Test (h,n,e,0) has the property:
If error, , (h)> g, then Pr(h IS accepted) (26 )

If error, D(h) (2) then Pr(h IS rejected < (

)
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Learning when the size of the target concept is unknown

Algorithm B(n,e.d)

| p i ()

2 UNTIL h is accepted by Test(h,n,€,8) DO

3 )bt 4]

Y - \.-)(}E-l)/lmi)

) }z « hypothesis output by A(n,s,¢/2,1/2)

6 Qutput 12. = h;

A —requires the target concept size as a parameter

B — works for an unknown target concept size
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Learning in the presence of noise

e Types of noise
e Random misclassification noise
e Random attribute noise — uniform, non uniform

e Malicious noise — examples selected and corrupted by
an omnipotent adversary who may have access to the
internal state of the learner
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Learning in the presence of random

misclassification noise
e Random misclassification noise — with probability 7 the instance

is correctly labeled. With probability (1- 77), the label is flipped

Example (x, c(x))

Conceptc € C
Training Samples x € D
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Learning in the presence of random misclassification noise

e Assume WLOG that0 =n =< n,<l1/2

e Draw ) 2‘C‘
m = In| —

- &’ (l - 2n, )2 o) examples from Example,,

Output a hypothesis Z#&C that minimizes the
training error

The method can be adapted to the case of unknown 7,
Minimizing error can be difficult in some cases
Alternative methods are available for specific concept classes
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PAC learning using weak learners

Weak learner
Confidence lower than (1-9)
— Boost confidence
Error greater than ¢
- Boost accuracy
Error greater than € and Confidence lower than (1-96)
— Boost accuracy and confidence

We can turn weak learners into strong (PAC) learners using
accuracy and confidence boosting algorithms

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Confidence Boosting

e Run the algorithm several times on independently
drawn training sets to obtain a set of hypotheses — The
number of independent runs is chosen to be large
enough to ensure that the probability that at least one
of the resulting hypothesis has error less than ¢is at
least (1-6/2)

e Use hypothesis testing to select the best hypothesis in
the pool with high confidence — alternatively use
weighted majority classification
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Accuracy Boosting

e Learn a sequence of hypotheses
e the first hypothesis is based on the training set

e each subsequent hypothesis is based on a sampling of the
training set according to a distribution which assigns higher
probability to training examples that were misclassified by the
previously learned hypotheses and perhaps a different error
parameter

e C(lassification is based on majority or weighted majority of the
hypotheses
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Accuracy Boosting Using Ensemble Classifiers

e QOutline

e Ensemble methods

e Bagging

e Boosting

e Error-correcting output coding

e Why does ensemble learning work?
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Readings

e Dietterich: Ensemble methods in machine learning (2000).
e Schapire: A brief introduction to boosting (1999).

e Schapire: The Boosting Approach to Machine Learning: An
Overview (2002)
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What is ensemble learning?

Ensemble learning refers to a collection of methods that learn a
target function by training a number of individual learners and
combining their predictions

A gambler, frustrated by persistent horse-racing losses and envious of his friends’ winnings,
decides to allow a group of his fellow gamblers to make bets on his behalf. He decides he will
wager a fixed sum of money in every race, but that he will apportion his money among his
friends based on how well they are doing. Certainly, if he knew psychically ahead of time which
of his friends would win the most, he would naturally have that friend handle all his wagers.
Lacking such clairvoyance, however, he attempts to allocate each race’s wager in such a way
that his total winnings for the season will be reasonably close to what he would have won had
he bet everything with the luckiest of his friends.

[Freund & Schapire, 1995]
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Ensemble Learning

e |ntuition: Combining Predictions of an ensemble is more
accurate than a single classifier

e Justification:
— Itis easy to find quite correct “rules of thumb”
— It is hard to find single highly accurate prediction rule

— If the training examples are few and the hypothesis space
is large then there are several equally accurate classifiers

— Hypothesis space does not contain the true function, but it
has several good approximations

— Exhaustive global search in the hypothesis space is
expensive so we can combine the predictions of several
locally accurate classifiers
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Ensemble learning

T, 7, . T
{ | | !
mo| | hs

SR [ —

h* :F(hl, hz, ..

9 hS)

Classification
phase

4 L

(x, y*)
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How to make an effective ensemble?

Two basic questions in designing ensembles:

e How to generate the base classifiers?
hl, h2, ...

e How to combine them?
F(h1(x), h2(x), ...)
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How to combine classifiers

Usually take a weighted vote:

ensemble(x) = sign( Y. w, h(x))

* w,is the weight of hypothesis 4,
* w;>w;means /i, is more reliable than #,

e typically w,> 0 (though could have w;< 0 meaning A; is

more often wrong than right)

e Bayesian averaging is an example
e (Fancier schemes are possible but uncommon)
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How to generate base classifiers

e A variety of approaches
e Bagging (Bootstrap aggregation)

e Boosting (Specifically, Adaboost — Adaptive
Boosting algorithm)
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Bagging

e Generate a random sample from training set by selecting
elements with replacement

e Repeat this sampling procedure, getting a sequence of k
independent training sets

e A corresponding sequence of classifiers C,,C,,...,C, is
constructed from these training sets, by using the same
classification algorithm

e To classify an unknown sample X, let each classifier predict

e The Bagged Classifier C* then combines the predictions of the
individual classifiers to generate the final outcome.
(sometimes combination is simple voting)
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BAGGing = Bootstrap AGGregation (Breiman, 1996)

o fori=1,2,...,K:

— T. € randomly select M training instances
with replacement

— h, €< learn (T)

e Combine the T; using uniform voting (w=1/K for all i)
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Bagging Example
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CART decision boundary
S

o
-

"

0.5

0.0

-1.0

-1.0 -0.5 0.0 0.5 1.0

CART - decision tree learning algorithm similar to ID3
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100 bagged trees
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shades of blue/red indicate strength of vote for particular
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Classification results

Misclassification rates

CART
Bagged CART

Diabetes Breast lonosphere Heart Soybean Glass Waveform
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Bagging References

* Leo Breiman’s homepage
www.stat.berkeley.edu/users/breiman/

* Breiman, L. (1996) “Bagging Predictors,”
Machine Learning, 26:2, 123-140.

* Friedman, J. and P. Hall (1999) “On

Bagging and Nonlinear Estimation™
www.stat.stanford.edu/~jhf
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Ensemble learning

T, 7, . T
{ | | !
mo| | hs

SR [ —

h* :F(hl, hz, ..

9 hS)

Classification
phase

4 L

(x, y*)
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Boosting

e Boosting, like bagging, is an ensemble method.

e The prediction generated by the classifier is a combination
of the prediction of several predictors.

e \What is different?
— |t is iterative

— Boosting: Each successive classifier depends upon its
predecessors unlike in the case of bagging where the
individual classifiers were independent

— Training Examples may have unequal weights

— Look at errors from previous classifier step to decide
how to focus on next iteration over data

— Set weights to focus more on ‘hard’” examples. (the ones
on which we committed mistakes in the previous
iterations)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Boosting Algorithm

 Wi(x)is the distribution of weights over the N training points
2, Wx)=1

e Initially assign uniform weights W,(x) = 1/N for all x, step k=0

e At each iterationk:

— Find best weak classifier C,(x) using samples obtained using
W, (x)

= Resulting error rate g,
* The weight of the resulting classifier C, is a,
" For each x;, update weights based on g, to get W ,(x;)

Crivar(x) =sign [ > a, C;(x) ]

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Boosting (Algorithm) y
C(x)= Eochj(x)
7=

Weighted Sample > CM
Weighted Sample
@ted Samp? = C2

A

1

v
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Boosting

Basic ldea:
e assign a weight to every training set instance
e initally, all instances have the same weight

e as boosting proceeds, it adjusts weights based on how well we
have predicted data points so far

- data points correctly predicted 2 low weight
- data points mispredicted = high weight

e Results: as learning proceeds, the learner is forced to focus on
portions of data space not previously well predicted

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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AdaBoost Algorithm

 Wi(x)is the distribution of weights over the N training points >’
Wx)=1
e Initially assign uniform weights W,(x) = 1/N for all x.
e At each iterationk:
— Find best weak classifier C,(x) using weights ¥, (x)
— Compute g, the error rate as
=12 W) 10, # Cu(x,) 11 [ 2 W(x;)]
— weight the classifier C, by o,
* o= log ((1 — &, )/g;)
— Foreachx;, Wy (x;) = Wi(x;) - exploy - 1(y; # Cy(x;))]
Crnva () =sign [ 2 a, C;(x) ]
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AdaBoost Example

Original Training set : Equal Weights to all training samples
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AdaBoost Example

ROUND 1
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AdaBoost Example

ROUND 2
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AdaBoost Example

ROUND 3
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AdaBoost Example
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Boosting 50%

49% | [

error rate of flipping a coin
error rate of L by itself

ensemble error rate

v

123456.... 500

size of ensemble

e Suppose L is a weak learner - one that can learn a hypothesis
that is better than rolling a dice — but perhaps only a tiny bit

better

— Theorem: Boosting L yields an ensemble with arbitrarily

low error on the training data!

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Boosting performance

Decision stumps are very simple classifiers that test condition on a
single attribute.

Suppose we use decision stumps as individual classifiers whose
predictions were combined to generate the final prediction.

Suppose we plot the misclassification rate of the Boosting algorithm
against the number of iterations performed.

( eye color = brown ? l [hcight > 5 feet ? J

.~ yes NO ™ ,~yes no-,

{prcdict\ {prcdictl {prcdict prcdict}

~ - ~

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Misclassification rates
Friedman, Hastie, Tibshirani [1998§]

CART
AdaBoost CART
LogitBoost CART

Breast lonosphere Glass Sonar Waveform

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Boosting performance

= 7 Single Stump

S - / Steep decrease in error
‘c:‘> = 400 Node Tree
po
li-) o™~

1 I I 1
0 100 200 300 400
Boosting lterations
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Boosting performance

e Observations

— First few ( about 50) iterations increase the accuracy
substantially.. Seen by the steep decrease in misclassification
rate.

— As iterations increase training error decreases

— As iterations increase, generalization error decreases ?

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Can Boosting do well if?

e |ndividual classifiers are not very accurate and have high
variance (e.g., decision stumps) ?
— It can if the individual classifiers have considerable
mutual disagreement.

e |ndividual classifier is very accurate and has low variance
(e.g., SVM with a good kernel function) ?

— No..

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Boosting as an Additive Model

e The final prediction in boosting f(x) can be expressed as
an additive expansion of individual classifiers

fx = B,6(x7,)

e The process is iterative and can be expressed as follows.
JfuX) = f,(X)+ B,b(x;7,,)

e Typically we would try to minimize a loss function of the
training examples

N

M
mln L yl’Eﬂmb(Xﬂym)
m=1

BVl 4=t

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Boosting as an Additive Model

e Simple case: Squared-error loss

LG s x)) =5 (= s )Y

e Forward stage-wise modeling amounts to just fitting the
residuals from previous iteration.

L(y.f,(x; )+ Bb(x,:7))
= (v, = S (x,)= B(x; Jy,,, )
= (r,,, - Bb(x,37,,))

e Squared-error loss not robust for classification

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Boosting as an Additive Model

e AdaBoost for Classification uses the exponential loss
function:

= L(y, f (x)) = exp(-y - f (x))
X
argmin 3 Ly f(x,)
i=1
N
= argmin 2 exp(-y; [/, (X)) +f-G,(x,)])
I ECTE

-argmmzeXp( Vi Jua (X)) exXp(=y; - -G, (X;))

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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E(e ¥¥()) is minimized at

P(y = 1|x)
F(x ——lo
() =38 Bly=—1x)
eF(x)
P(y - ].lx) — e—F(I) +eF'(x)’
e—F(x)
P(y=—1|x) =

e—p(x) 4 eF(I) '

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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PrROOF. While E entails expectation over the joint distribution of y and x,
it is sufficient to minimize the criterion conditional on x:

E(e—J'F(x)Ix) = P(y = llx)e—F(x) + P(y = —1|x)eF("),

JE (e~ 7F)|x)

- _ —F(x) . F(x)
IF(x) =—P(y=1|x)e + P(y = —1|x)e""™.

The result follows by setting the derivative to zero. D

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Boosting as an Additive Model

First assume that f is constant, and minimize w.r.t. G, :

a;gmmEexp( Y, fur (X ))exp(=y, - B- G, (X,))

= argmmzw -exp(-y;* -G, (x,)), where w™ =exp(-y, " f,_,(X,))

B.G, g
= argmin E w™ e P 4 E w™ - e
O 3=G,(x) 3i%G, (x7)
N N
= argmin (e’ —e™” )E[wl.(m) Iy, =G, (X;))]+ e_/’)Ewl.(m)
G i=1 i=1
N
Y Iw™ Iy, =G, (x))]
= argmin (e’ —e™")L=L = +e”

Gm
S
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Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Boosting as an Additive Model

S w1y, = G(x,))]

argmin (e’ —e " )- —
- S

=argmin (¢’ —e)terr)| +e” = H(B)
G

4 e

m

err,: the training error on the weighted samples

On each iteration we must find a classifier that minimizes
the training error on the weighted samples!

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Boosting as an Additive Model

Now that we have found G, we minimize w.r.t. f:
H(B)=err, (e’ —e")+e”
% =err, (e’ +e’)-e’ =0
1-e’-err (e’ +e”)=0
1-e** -err, —err, =0

l—err, 54

=e
err,
5= llog l-err,
2 err

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Input: sequence of N labeled examples ((zy,y1),...,(zNn,yn))
distribution D over the N examples
weak learning algorithm WeakLearn

binary class y € {0,1}

integer 1" specilying number of iterations

=1/N
Initialize the weight vector: w! = D(i) fori=1,..., N.
Dofort=1,2,....,T
] normalize w! to get a
1. Set Wt probability distribution p*
b _ : PR SIpti=1
’ Z?—l w;
2. Call WeakLearn, providing it with the distribution p’; get back a hypothesis h; : X —
0, 1].
3. Calculate the error of h;: ¢ = Ef\=1 plhe@:) — yil- e E?gf;ic:;glts’takes on
1. Set By = e/(1 — &). instances more
. _ if h, gets instance i right
. Set the new weights vector to be multiply weight be 3t < 1
t+1 = |he (i) —yi | -if h, gets instance i wrong
w; = wify TR multiply weight by 1

Output the hypothesis

weighted vote,

-with w, = log(1/f t)

hy(z) = { Lot Zthl (log ﬁ)ht(r) 2 %Zthl 3 .
0 otherwise -
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Learning from weighted instances?
2. Call WeakLearn, providing it with the distribution p*; get back a hypothesis h; : X — [0,1]

e The learning algorithms we have seen take as input a set of
unweighted examples

e What if we have weighted examples instead?

e |[tis easy to modify most learning algorithms to deal with
weighted instances:

— For example, replace counts of examples that match some
specified criterion by sum of weights of examples that
match the specified criterion

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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AdaBoost (Characteristics)

e Why exponential loss function?
— Computational
e Simple modular re-weighting
e Determining optimal parameters is relatively easy
— Statistical

e In a two label case it determines one half the log odds of
P(Y=1]x)
e \We can use the sign as the classification rule
e Accuracy depends upon number of iterations

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Why do ensembles work?

e Because uncorrelated errors of individual classifiers can be
eliminated by averaging.

e Assume: 40 base classifiers, majority voting, each error rate
0.3

e Probability of getting r incorrect votes from 40 classifiers

o4 Binomial distribution for n =40, p =0.3

0.12f | . _ n! r n-r
P(r)= error, (h)" (1-error,(h))
0.1f ] . rl(n-r)!

0.08} N _ _
0.06 -

0.04 E
0.02F .
0 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40

P(r)

p(Ensemble is wrong) = p(>20 incorrect votes) = 0.01

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Other explanations?

Statistical Computational

Representational

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Statistical
e Given a finite amount of data, many hypothesis are typically

equally good.
e How can the learning algorithm select among them?

hypothesis consistent with
training data

h ;= hypothesis from all data

averaged h,, h,, ... may be better
approximation to f than £,

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Representational

The desired target function may not be realizable using
individual classifiers, but may be approximated by
ensemble averaging

Consider a binary learning task over [0,1] x [0,1], and
the hypothesis space H of “discs”

hy, hy hy €H

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Representational (another example)

e Consider a binary learning task over [0,1] x [0,1], and the
hypothesis space H of “discs”

hl hl, h2, h3€ H

x1

h3

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Representational (another example)

e H = vote together h,, h,, h,

ensemble

" hensemble % H

e Even if target concept & H, a mixture of hypothesis € H
might be highly accurate

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Computational

e All learning algorithms do some sort of
search through some space of hypotheses
to find one that is “good enough” for the
given training data

e Since interesting hypothesis spaces are
huge/infinite, heuristic search is essential
(e.g. decision tree learner does a greedy
search in space of possible decision trees)

e So the learner might get stuck in a local
minimum

e One strategy for avoiding local minima:
repeat the search many times with random
restarts

=>» bagging

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Boosting - Summary

e Basic motivation — creating a committee of experts is typically
more effective than trying to derive a single super-genius

e Boosting provides a simple and powerful method for turning
weak learners into strong learners

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Boosting - Variations
e The simple algorithm described here has been extended to:

— classifiers that produce confidences associated with class
predictions (e.g., posterior probabilities as opposed to class

assignments)

Real AdaBoost

1. Start with weights w; =1/N,i=1,2,..., N.
2. Repeat form=1,2,..., M:

(a) Fit the classifier to obtain a class probability estimate p,,(x) = 13u( y=

1|x) € [0, 1], using weights w; on the training data.

(b) Set f,,(x) < +1og pu(x)/(1— Pp(x)) € R.
(c) Set w; « w;exp[—y;fm(x;)], i =1,2,..., N, and renormalize so that

2iw; =1
3. Output the classifier sign[y"¥ | £, (x)].

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Boosting - Summary
e Basic motivation — creating a committee of experts is typically
more effective than trying to derive a single super-genius

e Boosting provides a simple and powerful method for turning
weak learners into strong learners

e The simple algorithm described here has been extended to:

— multi-class classification problems

— classifiers that produce confidences associated with class
predictions (e.g., posterior probabilities as opposed to class
assignments)

— Weak classifiers trained on subsets of attributes

— Recent theoretical results have shown deep connections
between boosting and maximizing margin of separation
(similar to SVM)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Boosting - Variations
e The simple algorithm described here has been extended to:
— Ensembles of multi-class classifiers
— Ensemble classifiers trained on subsets of attributes

e Recent theoretical results have shown deep connections
between boosting and maximizing margin of separation (similar
to SVM)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Error correcting output codes (ECOC)

e So far, we've been building the ensemble by tweaking the
distribution of of training instances

e ECOC involves tweaking the output (class) to be learned

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Example: Handwritten number recognition
F17 38112 — 74352

“obvious” approach: learn function: Scribble = {0,1,2,...,9}
=» doesn’t work very well (too hard!)

What if we “decompose” the learning task into six “subproblems”?

Code Word
Class [ v1 | h1 | dl | ce | ol | or Abbreviation Meaning
0 0O(0]1O0] 1010 vl contains vertical line
1 trlololololo hl contains horizontal line
2 O(1f{1[O0[1]O0 dl contains diagonal line
3 0O(0[O0O[O0O |1 ][O ce contains closed curve
4 tLl1rlolololo ol contains curve open to left
5 1111010110 or contains curve open to right
6 O[O0 (1 [1]0]|1
7 O[O0 1]0([0]O0
8 0O(0[O0O[1T]0O0]|DO
9 O[O0 (11|00

1. learn an ensemble of classifiers, one specialized to each of the 6 “sub-problems”
2. to classify a new scribble, invoke each ensemble member. then predict the class whose
code-word is closest (Hamming distance) to the predicted code

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Error-correcting codes

Suppose we want to send n-bit messages through a noisy channel.
To ensure robustness to noise, we can map each n-bit message
into an m-bit code (m>n) — note |codes| >> | messages|
When receive a code, translate it to message corresponding
to the “nearest” (Hamming distance) code
Key to robustness: assign the codes so that each n-bit “clean”
message is surrounded by a “buffer zone” of similar m-bit codes to
which no other n-bit message is mapped.

The corrupted word
still lies 1n 1ts original
unit sphere. The center - :
of this sphere 1s the blue = Message (n bItS)

corrected word. yeI low = code (m b itS)

white = intended message
red = received code

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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ISBN

e The International Standard Book Number (ISBN) system

identifies every book with a ten-digit number, such as
0-226-53420-0.

e The first nine digits are the actual number but the tenth is added
according to a mathematical formula based on the first nine.

e |f asingle one of the digits is changed, as in a misprint when
ordering a book, a simple check verifies that something is wrong.

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Designing code-words for ECOC learning
Coding: k labels = m bit codewords

COdeS Saturday

Good coding: class 1 2 3 4 5 6 7 8
. Monday 0 0 1 0 0 0 1 0

* row Separahon: Tuesday 0 0 1 1 1 0 0 1
want “assigned” codes Wednesday 0 ©0 1 ©0 0 0 1 0
to be well-separated by Thursday 0 0 0 1 0 1 1 0
lots of “unassigned” Friday o 1 1 1 1 0 0 0

1 1 1 1 0 0 0 1

1 1 1 1 0 0 1 1

Sunday

e column separation: each biti
of the codes should be
uncorrelated
with all other bits j

Selecting good codes is hard!

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Bad codes
class 3 4 5 6 7 8
Monday 0 0 1 0 0 0 1 0
Tuesday 0 0 1 1 1 0 0 1
Wednesday 0 0 1 0 0 0 1 0
Thursday 0 0 0 1 0 1 1 0
Friday 0 1 1 + 1 0 0 0
Saturday 1 1 1 1 0 0 ﬁ) correlated
Sunday 1 1 1 0 0 1 14 rows =>» bad
NS —
correlated

columns =» bad

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Performance of ECOC

N
S &L s N4
w06 X O L o W g §F S

10 —

% decrease in error of ECOC over an ID3-like learning algorithm
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Summary...

e Ensembles: basic motivation — creating a committee of
experts is typically more effective than trying to derive a
single super-genius

e Key issues:

— Generation of base models
— Integration of base models
e Popular ensemble techniques

— manipulate training data: bagging and boosting
(ensemble of “experts”, each specializing on different
portions of the instance space)

— Manipulate input feature space

— manipulate output values: error-correcting output coding
(ensemble of “experts”, each predicting 1 bit
of the multibit full class label)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Learning under helpful distributions

e PAC Learning requires success under all possible probability
distributions

e Some concept classes are hard to learn under all distributions —
e.g., regular languages or deterministic finite state automata
(DFA), yet they are readily learned by humans

e (Question — can natural settings be modeled by more benign or
helpful distributions? E.g., can DFA be learned under helpful
distributions?

e What precisely are helpful distributions?

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Digression — Kolmogorov Complexity

e Kolmogorov complexity K (x ) is a machine independent i.e.
universal measure of the complexity of description of an object

e K (x)=the number of bits in the shortest universal Turing
machine program for x

e Object—01010101010101...0101010101010101 = (01)>%°

e Program — Print “01” 500 times

e QObject—11001101011111... 100101110111 (random string)
e Program —Print “11001101 ... 01110111”

e Simple objects have low Kolmogorov complexity

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Universal distribution
We fix a universal Turing machine U
K(a)=min {length(n) | U(m)= o |
K{(ou|B) = min{ length () | U(m. ) = o}
K(o|B) = K(a)

Universal distribution M assigns higher probabilities
to simpler objects

M()C) oC 2—K(x) M(x | OL) o 2—K(x|oc)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Learning Under Universal distribution

Universal distribution M multiplicatively dominates all
Enumerable distributions including finite precision
Poisson, Gaussian, and many other distributions

Theorem: A concept class is Probably approximately
Learnable under each enumerable distribution iff it is
Probably approximately learnable under the universal
distribution assuming during learning examples are drawn
according to M (x)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Learning under the universal distribution
e Liand Vitanyi (1991) showed that log n -term DNF are
learnable under M (x | ¢) where cis the target concept
e Parekh and Honavar (1999, 2001) showed that

e Simple DFA (with encoding of size O ( log N ) where N is the
number of states) are efficiently learnable under the
universal distribution M (x)

e DFA are efficiently learnable with a helpful teacher —
examples are drawn according to M (x | ¢ ) where c is the
target concept

e Denis (2001) showed that DFA are efficiently learnable from
positive examples alone under M (x | ¢)

e Tu and Honavar (2012) showed the benefits of ordering
examples according to M(x|c)
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Additional Possibilities

e PAC learning model assumes that target concepts are
selected uniformly at random from C

e Benign teacher — How about if target concepts are selected
according to universal distribution over the concept class,
namely M (c¢)?

e Occam Learner —Impose a preference bias over the set of
consistent hypotheses — Select hypothesis i according to
M(h)

e Bayesian learner — Assume priors given by M ( /)
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Summary of Distribution-Independent Learning Theory

e PAC-Easy learning problems lend themselves to a variety of
efficient algorithms.

e PAC-Hard learning problems can often be made PAC-easy
through appropriate instance transformation and choice of
hypothesis space

e Occam's razor often helps

e Weak learning algorithms can often be used for PAC learning
through accuracy and confidence boosting

e Learning under restricted classes of instance distributions (e.g.,
universal distribution) offers new possibilities
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