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Probabilistic Graphical Models

e The assumption that variables are independent (e.g., Naive
Bayes assumption that the variables are independent given

the class) can be too restrictive

e But representing the joint distributions is intractable without
some independence assumptions

e Probabilistic graphical models e.g., Bayes networks, explicitly
model conditional independence among subsets of variables
to yield a graphical representation of probability distributions
that admit such independence
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Bayesian network

e Bayesian network is a directed acyclic graph (DAG) in which
the nodes represent random variables

e Each node is annotated with a probability distribution P (X,
| Parents(X.) ) representing the dependency of that node
on its parents in the DAG

e Each node is asserted to be conditionally independent of its
non-descendants, given its immediate predecessors

e Arcs represent direct dependencies
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Conditional Independence

e Xis conditionally independent of Y given Z if the probability

distribution governing X is independent of the value of Y
given the value of Z:

e P(X|Y,Z)=P(X|Z)thatis,

(in’yj’zk)P(X=xi |Y=ijZ=Zk)=P(X=xi | Z=2,)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar



Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Nalve Bayes
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Bayesian Networks
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Efficient factorized representation of probability distributions via
conditional independence
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Bayesian Networks ~ Quantitative part

e (Qualitative part
statistical
independence
statements
represented in the
form of a directed
acyclic graph
(DAG)

e Nodes - random <
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e Edges —direct
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Conditional probability
distributions — one for each
random variable conditioned on
its parents
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Qualitative part

e Nodes are independent of non-
descendants given their parents

d-separation:

e a graph theoretic criterion
for reading independence statements

e can be computed in linear time (in the
number of edges)
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Directed graphs and joint probabilities

e Let {Xl,Xz....Xn} be a set of random variables
e Let parents(X;) be the set of parents of Xl.

e Associate a vertex in the directed a-cyclic graph with a random
variable and a function of the form fi(xi,xm )
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What independences does a Bayes Net model?

e |n order for a Bayesian network to model a probability
distribution, the following must be true by definition:

e Each variable is conditionally independent of all its non-
descendants in the graph given the value of all its parents.

This implies

P(X,...X )= ]l‘[P(XZ. | parents(X,))

P(E?B7R’A’C) =
P(E)P(B)P(RIE)P(AIE,B)P(C1A)
But what else does it imply?
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What Independences does a Bayes Network model?

Example: Given Y, does learning the value of Z tell us
nothing new about X?
i.e., is P(X]Y, Z) equal to P(X | Y)?
v Yes. Since we know the value of all of X' s
parents (namely, Y), and Z is not a

descendant of X, X is conditionally

<> independent of Z.
X

Also, since independence is symmetric,
P(Z|Y, X) =P(Z|Y).
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What Independences does a Bayes Network model?

e Let/(X,Y,Z) represent X and Z being conditionally independent
given Y.

« I(X,Y,Z)? Yes, just as in previous example: All X’ s parents
given, and Z is not a descendant.
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What Independences does a Bayes Network model?
* [(X,{U},2)? No.

« I(X,{U,V},2)? Yes.
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Dependency induced by V-structures

« X has no parents, so we know all its parents’ values trivially
e« Zisnotadescendant of X

e So, I[(X,{},Z2), even though there is a undirected path from X
to Z through an unknown variable Y.

e What if we do know the value of Y ? Or one of its
descendants?
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The Burglar Alarm example

Qurglar
Alarm

\ 4

e Your house has a twitchy burglar alarm that is also sometimes
triggered by earthquakes.

e Earth arguably doesn’t care whether your house is currently
being burgled

e While you are on vacation, one of your neighbors calls and
tells you your home’ s burglar alarm is ringing.
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<Eh0ne CallD

. But now suppose you learn that there was a medium-sized
earthquake in your neighborhood. ...Probably not a burglar

after all.
e  Earthquake “explains away” the hypothetical burglar.
. But then it must NOT be the case that

I(Burglar, {Phone Call}, Earthquake),

even though I(Burglar,{}, Earthquake)!
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d-separation

e Fortunately, there is a relatively simple algorithm for
determining whether two variables in a Bayesian network are

conditionally independent given some other variables:

» d-separation.
e Two variables are independent if all paths between them are
blocked by evidence

e Three cases:
» Common cause
> Intermediate cause

» Common Effect
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d-separation
Evidence may be transmitted
through a diverging connection

* Two variables are unless it is instantiated.
independent if all paths
between them are Blocked Unblocked

blocked by evidence
e Three cases:

e Common cause
e Intermediate cause * |If we do not know whether an earthquake

e Common Effect occurred, then radio announcement can
influence our belief about the alarm having
gone off.

* If we know that earthquake occurred, then
radio announcement gives no information
about the alarm
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d-separation

Blocked Unblocked

Common cause
Intermediate cause
Common Effect ?

O

Evidence may be transmitted through
a serial connection unless it is blocked
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d-separation Blocked Unblocked

Common cause éif
Intermediate cause @

Common Effect

Cab

Evidence may be transmitted through a converging
connection only if either the variable or one of its
descendants has received evidence
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Example

" /[(X)Y,7Z)denotes Xand Z are
independent given Y

— Dot indicates evidence available
— Surely I(R,{E,A} B)

— Possibly —I(R,A,B)

— Possibly =I(R,B,C)

— Surely I(R,B)
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d-separation

= Definition: X and Z are d-separated by a set of
evidence variables E iff every undirected path from X
to Zis “blocked” by evidence E
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d-separation

e Theorem [Verma & Pearl, 1998]: If a set of evidence variables E d-
separates X and Z in a Bayesian network’ s graph, then I(X, E, 7).

e d-separation can be computed in linear time using a depth-first
search like algorithm.

e We now have a fast algorithm for automatically inferring whether
finding out about the value of one variable might give us any
additional hints about some other variable, given what we already
know.

e d-separation of X and Z by E is sufficient for asserting I(X, E, Z), but
not necessary.

— Variables may actually be independent when they are not d-
separated, depending on the actual probabilities involved
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d-separation

I(C, {}, D)?

I(C, {A}, D)?

I(C, {4, B}, D)?
I(C, {4, B, J}, D)?

o

o
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Markov Blanket

e A nodeis conditionally independent of all other nodes in the
network given its parents, children, and children’ s parents -

Burglary is independent of John Calls and Mary Calls given Alarm
and Earth Quake
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Bayesian Networks: Summary

e Bayesian networks offer an efficient representation of
probability distributions

e Efficient:
e |Local models
e Independence (d-separation)
e Effective: Algorithms take advantage of structure to
e Compute posterior probabilities
e Compute most probable instantiation
e Decision making
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Inference in Bayesian network

Bad news:

e —Exact inference problem in BNs is NP-hard (Cooper)

e — Approximate inference is NP-hard (Dagum, Luby)

In practice, things are not so bad

e Exactinference —

. . . \Burglary/ - Earthquake
— Inference in Simple Chains \ e
— Variable elimination
\ Alarm/
— Clustering / join tree algorithms / \\
e _\— ——
e Approximate inference (ohncalls (marycalls

— Stochastic simulation / sampling methods
— Markov chain Monte Carlo methods
— Mean field theory

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar



Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Computing joint probability distributions using a
Bayesian network

= Any entry in the joint probability distribution can be calculated
from the Bayesian network.

= We’ re just using the chain rule and conditional independence.

P(J,M,A,~B,~E)=P(J|M,A,~B,~E)P(M,A,~B,-E)
= P(J| A)P(M | A4,~B,~E)P(4,~B,~E)
= P(J| A)P(M | A)P(A| ~B,~E)P(~B,~E)
= P(J| A)P(M | A)P(A| ~B,~E)P(~B)P(~E)
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Computing joint probabilities

General formula:
P(X,.....X,) = P(X)| | P(X; | Parents(X,)
i=2

e Joint distribution can be used to answer any query about the
domain.

e Bayesian network represents the joint distribution
e Any query about the domain can be answered using a BN

e Tradeoff: A BN can be much more concise, but you need to
calculate, rather than look up in a table, probabilities from the
joint distribution
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Inference in Bayesian Networks

e Bayesian networks are a compact encoding of the full joint probability
distribution over N variables that makes conditional independence
assumptions between these variables explicit.

e \We can use Bayesian networks to compute any probability of interest
over the given variables.

e Now we look at Inference in more detail
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Inference in Bayesian Networks

Find P(O=q|E=e¢)
- 0 the query variable(s)
- E set of evidence variables

P(qle) = P(q.e)/ Ple)
X,,.. X, are network variables except Q£

Plg,e)= E(q,e,Xl,Xz...Xn)

X113 Xy X
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Basic Inference

OO

P(b)=?

P(b) = EP(a, b) = EP(b |a)P(a)
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Basic Inference

DO

P(b) = ' P(a,b) = 3 P(b|a) P(a) P(c) = ZP (c[b)P(b)

P(c) = ZP(a b,c) = Zp(c |b,a)P(b| a)P(a)
2 P(c|b)P(b|a)P(a)
Zp(c | b)P(b)
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Inference in trees
@0@/ %

=EP(X,Y1,Y EPXlYl,Y)PYl,Y EPXIK,Y)P( Y, )P(Y,)

Y152 Y12 V1,2
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Polytrees

= A network is singly connected (a polytree) if it contains
no undirected loops.

Not a polytree Polytree

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar



Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Inference in polytrees

e Theorem: Inference in polytrees can be performed in time that is
polynomial in the number of variables.

e Main idea: in variable elimination, need only maintain
distributions over single nodes.
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Inference with Bayesian Networks

e |nference in polytrees can be performed efficiently
e |Inference with DAG is NP-Hard

— Proof by reduction of SAT to Bayesian network
inference

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Approaches to inference

e Exact inference
— Inference in Simple Chains
— Variable elimination
— Clustering / join tree algorithms
e Approximate inference
— Stochastic simulation / sampling methods
— Markov chain Monte Carlo methods
— Mean field theory
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Variable Elimination

e General idea:
e Write query in the form

P(Y,.€)= 3 S TP | pa)

e |teratively
— Move all irrelevant terms outside of innermost sum
— Perform innermost sum, getting a new term
— Insert the new term into the product
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Variable Elimination

e A factor over Xis a function from Domain(X) to numbers in the
interval [0,1]

e A conditional probability table is a factor
e Ajoint distribution is a factor
e Bayesian network inference
— Factors are multiplied to generate new ones
— Variables in factors are summed out (marginalization)

— A variable can be summed out as soon as all the factors in
which the variable appears have been multiplied

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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A More Complex Example
Visit to
Asia
G
Abnormality
in Chest
<>
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e We want to compute P(d)
e Need to eliminate: v,.s,x,1,/a b

P(v) P(s) P(t|v) P(l|s) P(D|s) P(a|tl)P(x|a)P(d|a,b)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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e We want to compute P(d) (D (L)

e Need to eliminate: v,s.x,t./a b

e |nitial factors o e

PWIP(S)PTVIP(/ | $)P(b | s)P(alt./)P(x | a)P(d | a,b)

Eliminate: v

Compute: 7,(1) = E'D (Pt |v)

= £(NP(s)P(/ | 5)P(b | 5)P(alt,/)P(x | a)P(d | a,b)
Note: £,(1) = A(t)

In general, result of elimination is not necessarily a probability
term

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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e We want to compute P(d)
e Need to eliminate: s,x,t,/a,b
e I|nitial factors

PWP(s)P(t |V)P(/ | 8)P(b | s)P(a | t,P(x | a)P(d | a,b)

= £ (1)P(s)P(/1s)P(b] s)P(alt.)P(x | a)P(d | a,b)
Eliminate: s
Compute: 7.(b,/) = EP(S)'D(b | $)P(/ | 5)

= F(E(Db,)P(al t,1)P(x | a)P(d | a,b)

Summing on s results in a factor with two arguments 7 (b,/)
In general, result of elimination may be a function of several
variables.

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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e We want to compute P(d)
e Need to eliminate: x,1,/a, b
e |nitial factors

PWP(s)P(t |V)P(/ | s)P(b| s)P(al t,/)P(x|a)P(d | a,b)
= £ (H)P(s)P(/ | s)P(b|s)P(alt,)P(x|a)P(d|a,b)
= £ (1).(b,/)P(al|t,N)P(x|a)P(d | a,b)

Eliminate: X

Compute: 7.(a) = E'D(X | a)

= 1,(N(b,)f (a)P(alt./)P(d | a,b)

Note: f,(a) = 1for all values of a

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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e We want to compute P(d)
e Need to eliminate: t,/a,b
Initial factors

X W
PWP(S)P(H V)P s)P(b | 5)P(alt./)P(x | a)P(d | a,b)
= 1,(NP(s)P/ | s)P(b| s)P(alt./)P(x | a)P(d | a,b)
= £(NE(b,1)P(al t,1)P(x | a)P(d | a,b)
= 1,(N1(b.))f (a)P(alt./)P(d | a,b)

Eliminate: T

Compute: f:(a/) = va(f)/o(a |7./)

= 1.(b.N)f (a)t,(a,/)P(d | a,b)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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e We want to compute P(d)
e Need to eliminate: /a,b

e |nitial factors

PWP(s)P(t |V)P(/ | 8)P(b | s)P(a | t,NP(x | a)P(d | a,b)
= £(HP(s)P(/ | s)P(b|s)P(alt,/)P(x|a)P(d|a,b)

= £ (H).(b,1)P(a|t,)P(x|a)P(d | a,b)

= 1,(1).(b,/)f (a)P(alt,/)P(d | a,b)

= 1.(b,/)f, (a)f.(a./)P(d | a,b)

Eliminate: |

Compute: 7(a,b)= Zé(b,/)ﬁ(a:/)
= 1,(a,b)f, (a)P(d | a,b)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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e We want to compute P(d)
e Need to eliminate: b
e |nitial factors

PWP(s)P(t|V)P(/ | s)P(b| s)P(alt,)P(x | a)P(d | a,b)

= L(1.(b,))f (a)P(alt,/)P(d | a,b)
= £.(b./), (a),(a,/)P(d | a,b)
= fla-b)e(a)Pld ] ab) s f(b,d) = £ (d)

Eliminate: a,b

Compute:

£(6.0) = Sflab)ilpld|at) f(d)= r(bd)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Basic operations

e Multiplying two factors
e Summing out a variable from a product of factors — marginalization

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Multiplying factors: Pointwise product

A |B |filAB)|B C LBC) A |B |C f:(A.B.C) |
T T 0.3 T T 0.2 T T |T (0.3)(0.2) |
T F 0.7 T I 0.8 T T F (0.3)(0.8) |
- T 09 |F T 0.6 T F T (0.7)(0.6)
1 I 0.1 F I 0.4

e Pointwise product is NOT
— matrix multiplication
— element by element multiplication

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Dealing with evidence

e How do we deal with evidence?
e Suppose getevidence V=1, 5=0 D=1
e WewanttocomputeP(L, V=1,5=0 D=1)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Dealing with Evidence 12 &

e We start by writing the factors:
y WHHNS <o >

PWP(s)P(t |V)P(/ | 8)P(b | s)P(a | t,NP(x | a)P(d | a,b)

e Since we know that V/ = 1, we don’ t need to eliminate V
e Instead, we can replace the factors P(V)and P(T/V)with

fP(V) =P(V=1) fp(T|V)(T)=P(T|V=1)

e These “select” the appropriate parts of the original factors
given the evidence

e Note that fp(v) is a constant, and thus does not appear in
elimination of other variables

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Variable Elimination

e We now understand variable elimination as a sequence of
rewriting operations

e Actual computation is done in elimination step
e Computation depends on order of elimination

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Dealing with Evidence

by @S
< L
e Givenevidence V=1, 5=0 D=1
e ComputeP(L,V=1,5=0D=1) (A (>
e |nitial factors, after setting evidence: XD ®D )

oot Toi) Doy DV ousy (BIP(a | 1.)P(x | a)Fy 1, 1) (a. 6)
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Dealing with Evidence

I @s)>
e Givenevidence V=1, 5=0 D=1
’ ’ (D LD
e ComputeP(L,V=1,5=0D-=1)
e |nitial factors, after setting evidence: (A B0
O 8D )

B ooy o) iy (DIP(a | #,1)P(x | @)F, ), 1) (a, D)

e Eliminating x, we get /
Tot ot oo PV ogns) U oy (BIP(a | 1.1)E. (@) (0. 5)
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Dealing with Evidence

I @s)>
e Givenevidence V=1, 5=0 D=1 D W
e ComputeP(L,V=15=0D=1) LD &
e |nitial factors, after setting evidence: QO 8D )

e Eliminating x, we get
ﬂ(v)fo(s)fo(ﬂv)(f)fo(/ls)(/ o015 (D)P(a | #./)P(x | ) 10.0)(a. D)

e Eliminating , we get

fP(v)fP(s)fP(t|v) (t)fP(l|s) (Z)fP(bls) (b)P(a|tl)f, (a)fP(d|a,b) (a,b)

LOLELIP\ QPR CACHY AC) APNCE)
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Dealing with Evidence > @5
e Givenevidence V=1 5=0 D=1 (D D
e ComputeP(L,V=1,5=0D=1) CA D (B

e |nitial factors, after setting evidence:

GO P
B ooy o) (o0 (DIP(a | #,1)P(x | @)F, ), 1) (a, D)
e Eliminating x, we get

I rr S o) F ey (O S pis) U f pgey (DYP(a | ,0) 1 (@) [ pgjany (@ D)

e Eliminating f, we get

LOLE LR LR CIACHY AC) AERNCR)

e Eliminating a, we get

ﬁ(v)é(s)éms)(/ )fD(bls)(b ACHY

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar



College of Information Sciences and Technology
Artificial Intelligence Research Laboratory

Pennsylvania State University

Variable Elimination Algorithm

e LetX,.., X, bean ordering on the non-query variables

E EZ HP(Xf | Parents(X ;))

X, X,
e Fori=m, ..., 1
e Leave in the summation for X;only factors mentioning X;

e Multiply the factors, getting a factor that contains a number
for each value of the variables mentioned, including X,

e Sum out X, getting a factor f that contains a number for each
value of the variables mentioned, not including X,

e Replace the multiplied factor in the summation
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Complexity of variable elimination
e Suppose in one elimination step we compute

iy = D (X )
Foe (X Vi i) = Hﬁ(xt)’m, V)

e This requires m-‘Domain(X)‘-ﬂ‘Domain(Yi ) multiplications

e Complexity is (not surprisingly) exponential in number of
variables in the intermediate factor!
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Variable Elimination

e We want to select “good” elimination orderings that
reduce complexity

e This can be done be examining a graph theoretic property
of the “induced” graph.

e This reduces the problem of finding good ordering to
graph-theoretic operation that is well-understood—
unfortunately computing it is NP-hard!

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar



Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Bayesian Network Inference in polytrees — Message
Passing algorithm
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Decomposing the probabilities

e Suppose we want P(X; | E) where E is some set of evidence
variables.

e Let ssplit Einto two parts:

— E;is the part consisting of assignments to variables in the
subtree rooted at X,

— E*is the rest of the variablesin E
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Decomposing the probabilities
P(X, |E)=P(X.|E ,E )
P(E. | X, ,E")P(X,|E")
- MEE)
P(E; | X, )P(X, | E])
- P(E|E)
= an( X NX,)

Where:
* o is a constant independent of X,

e 7(X,) = P(X; |E;")
 MX) = P(E;| X)
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Using the decomposition for inference

e We can use this decomposition to do inference as follows. First, compute
MX) = P(E;| X)) for all X recursively, using the leaves of the tree as the base
case.
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Quick aside: “Virtual evidence”

For theoretical simplicity, but without loss of generality, let us assume
that all variables in E (the evidence set) are leaves in the tree.

Observe X; Equivalent to X *) Observe X, ’

Where P(X; | X)) =1 if X," =X, 0 otherwise
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Calculating A(X) for non-leaves

e Suppose X; has one child, X, =X @
e Then:

)\(Xi)=P(Ei_ |Xi)= EP(Ei_’Xj le)
= EP(X] | X))P(E; | X,, X ;)
— ;P(Xj | X )PCE; | X ;)

=XEP(XJ |XZ)A(XJ)
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Calculating A(X;) for non-leaves

* Now, suppose X; has a set of children, C.

e Since X; d-separates each of its subtrees, the contribution of each subtree to
A(X;) is independent:

MX) = P(E]1X) = | [A,(X)

= ]l Y P(X; | X)MX)

* where A(X)) is the contribution to P(E; | X)) of the part of the
evidence lying in the subtree rooted at one of X;’s children X..
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Recursive computation of A

e We have a way to recursively compute all the M(X))" s, starting from the root
and using the leaves as the base case.

e We can think of each node in the network as an autonomous processor that
passes a little “A message” to its parent.
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Computing m(X))
w(X;)=P(X,|E) = EP(XiaXp [ E)
X

PO B )
X

= S PG X,P(X, | ED)

P(X,|E)
P p
"R PSS
- 2 P(X, | X,)m,(X,)

P(X,|E)
* Where (X)) is defined as 7\4()( )
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Bayesian network inference in trees

e Thus we can compute all the :n:(X,.)’ s, and, in turn, all the P(X/]
E) s.

e Can think of nodes as autonomous processors passing A and
7T messages to their neighbors
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Polytrees

e Previous technique can be generalized to polytrees:
undirected versions of the graphs are still trees, but
nodes can have more than one parent
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Dealing with cycles

e Can deal with undirected cycles in graph by

e clustering variables together

Set to 1 .,
b

4
J
U
(J
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Dealing with cycles

e Can deal with undirected cycles in graph by
e clustering variables together

o @
G 1O wmmp GO
O ®
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Clustering Methods

e Clustering methods transform an multiply connected BN (MCBN)
into a “probabilistically equivalent” poly-tree

— Such a transformation is done by merging several RVs in

MCBNSs into a single compound RV in order to break the
information flow over multiple paths

— “Probabilistic equivalence” is guaranteed by computing the
joint probability distribution of the RVs that are merged into a
compound RV
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Ad hoc clustering example

a| P(b|a)
0.9
0.25

P(“bc” | a)
TT TF FT FF
0.63 0.27 0.07 0.03

045 0.2 0.15 0.6

bc | P(d]|byc) “be” | P(d | “be”)
T, T 0.8 TT 0.8
T, F 0.6 TF 0.6
ET 06 FT 0.6
F, F 0.1 FF 0.1
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After Clustering

e Once we cluster the events of an MCN, we can use any exact
inference algorithms developed for singly-connected networks

e C(Clustering reduces the size of the network, sometimes
exponentially

e However the computation required for inference is not
necessarily reduced

— Building the compound CPTs may still take exponential time
in the worst case
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Junction Trees

e The transformation in the clustering example we have
discussed is “ad hoc”

— We just looked at the network and merged RVs such that

we avoided information flow to the same RV through
multiple paths

e The motivation behind the junction tree methods is to provide
a systematic and an efficient way to do clustering

— Moralization 0

— Triangulation e e

— Restructuring
— Belief Update @
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Join trees or junction trees

Arbitrary Bayesian network can be transformed via a graph-theoretic
trick into a join tree (also used in databases).

m—)

-

In the worst case the join tree nodes must take on values whose
number grows exponentially with the number of nodes that are
clustered together, but this often works well in practice

when the number of nodes per cluster is small
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Building Junction Trees

DAG

Moral Graph

Iriangulated Graph

Identifying Cliqgues

Junction Tree
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Moralization & Triangulation

e Considering the undirected network, “marry” the parent nodes
that have a common child

(a)

e Triangulate every cycle produced from marriages
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Restructuring

e |dentify all maximal cliques in the network
— In this example, we have
e “abc”, “bed”, bde”, and “df”

e |dentify the “separators” between the maximal cliques
— “bc” between “abc” and “bed”
— “bd” between “bed” and “bde”
— “d” between (1) “bde” and “df”, and (2) “becd” and “df”
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Restructuring

e Create a new network where the cliques of the original networks
are compound nodes

(abe)
T G G
Car

Generated network is always a poly-tree
(or a poly-graph), called a Junction Tree
(or a Junction graph)
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Belief Update in Junction Trees

e The CPTs for the nodes in the junction tree are computed by the
cross-products of the CPTs from the original network

Example: @

“abc" P(“bcd”l “abc")

i) G
TTF 0.6

TFT 0.6

TFF 0.1 @
FTT 0.8 — Pb|a)P(cla) P(]|bc)

FTF 0.6

FFT 0.6

FFF 0.1

e Then, the belief update can be done by using exact inference
methods for singly-connected trees
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Building Junction Trees

DAG

Moral Graph

Iriangulated Graph

Identifying Cliqgues

Junction Tree
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Constructing the Moral Graph

@
B ©O—@

0 E—E
G
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Constructing The Moral Graph

e Add undirected edges to all co-
parents which are not currently @

joined —Marrying parents
B ©O—©G

D)—E—H
G
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Constructing The Moral Graph

e Add undirected edges to all co-
parents which are not currently @
joined —Marrying parents

e Drop the directions of the arcs (B) (C) (G)

0)—E—W
G
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Triangulating

e An undirected graph is triangulated iff every cycle of length >3 contains
an edge that connects two nonadjacent nodes
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ldentifying Cliques

e Acliqueis a subgraph of an undirected graph that is complete (has an
edge between each pair of vertices) and maximal

®
©
@

4
OIS
06 e

G ABD
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Junction Tree

e A junction tree is a subgraph of the clique graph
that

— isatree @ @

— contains all the cliques

— satisfies the junction tree property

e Junction tree property: For each pair U, V of

cliqgues with intersection S, all cliques on the path

between U and V contain S.

ABD AD @ AE CE
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Properties of Junction Tree
e An undirected tree
e Each node is a cluster (honempty set) of variables
e Running intersection property:
— Given two clusters X and Y clusters on the path

between X and Y contain XN Y

e Separator sets (sepsets):
— Intersection of the adjacent cluster

ABD AD E

—~~—"
Cluster

28D Sepset

DE
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Properties of Junction Tree

e Belief potentials:

— Map each instantiation of clusters or sepsets into a real
number

e Constraints:
— Consistency: for each cluster X and neighboring sepset S

— The joint distribution Z Oy = s
K°S

o ff
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Properties of Junction Tree

e |f ajunction tree satisfies these properties, it follows that:
— For each cluster (or sepset) X

— The probability distribution of any variable V" using any
cluster (or sepset) X at contains V

¢X = P(X)

P (V) = ¢X
Vi

X
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Inference

e Choose aroot

e For each distribution (CPT) in the original Bayes Net, put this
distribution into one of the clique nodes that contains all the
variables referenced by the CPT. (At least one such node must
exist because of the moralization step).

e For each clique node, take the product of the distributions (as in
variable elimination).
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Moralization & Triangulation

e Considering the undirected network, “marry” the parent nodes
that have a common child

(a)

e Triangulate every cycle produced from marriages
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Restructuring

e |dentify all maximal cliques in the network
— In this example, we have
e “abc”, “bed”, bde”, and “df”

e |dentify the “separators” between the maximal cliques
— “bc” between “abc” and “bed”
— “bd” between “bed” and “bde”
— “d” between (1) “bde” and “df”, and (2) “becd” and “df”
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Restructuring

e Create a new network where the cliques of the original networks
are compound nodes

(abe)
T G G
Car

Generated network is always a poly-tree
(or a poly-graph), called a Junction Tree
(or a Junction graph)
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Belief Update in Junction Trees

e The CPTs for the nodes in the junction tree are computed by the
cross-products of the CPTs from the original network

Example: @

“abc" P(“bcd”l “abc")

i) G
TTF 0.6

TFT 0.6

TFF 0.1 @
FTT 0.8 — Pb|a)P(cla) P(]|bc)

FTF 0.6

FFT 0.6

FFF 0.1

e Then, the belief update can be done by using exact inference
methods for singly-connected trees
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Building Junction Trees

DAG

Moral Graph

Iriangulated Graph

Identifying Cliqgues

Junction Tree
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Inference in Bayesian network

Exact inference algorithms:

e Variable elimination

e Symbolic inference (D’ Ambrosio)

e Message passing algorithm (Pearl)

e Clustering and join tree approach (Lauritzen, Spiegelhalter)
Approximate inference algorithms:

e Monte Carlo methods:

e Forward sampling, Likelihood sampling

e Variational methods
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Approximate Inference

e With large and highly connected graphical models, the
associated cliques for the junction tree algorithm or the
intermediate factors in the variable elimination algorithm will
grow in size, generating an exponential blowup in the number of
computations performed
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Approximate Inference: Stochastic simulation

e Suppose you are given values for some subset of the variables,
G, and want to infer values for unknown variables, U

e Randomly generate a very large number of instantiations from
the BN

e Generate instantiations for all variables — start at root
variables and work your way “forward”

e Only keep those instantiations that are consistent with the
values for G

e Use the frequency of values for U to get estimated probabilities

e Accuracy of the results depends on the size of the sample
(asymptotically approaches exact results)
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Cloudy> Stochastic Simulation

Sprinkler> ~ Rai>  P(WetGrass| Cloudy)?

P(WetGrass[Cloudy)
“WetGrass = P(WetGrass, Cloudy) / P(Cloudy)

1. Draw N samples from the BN by repeating 1.1 and 1.2
1.1. Guess Cloudy at random according to P(Cloudy)
1.2. For each guess of Cloudy, guess
Sprinkler and Rain, then WetGrass
2. Compute the ratio of the # runs where
WetGrass and Cloudy are True
over the # runs where Cloudy is True
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Stochastic simulation

e The probability is approximated using sample frequencies

BN sampling:
e Generate sample in a top down manner, following the links in BN
e A sample is an assignment of values to all

variables
(OB (OE
N
CJA
VAR
S ;o OM
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BN Sampling Example

Goal: 1o infer

P(B\J=T,M =F)

P(B) P(E)
| T F o T F
<Bur lar ) 0.001 0.999 (Earth uakn; 0.002 0.998
- g "f/ . b b Ee q _f___/ . £ e b
R P
N " P(A|B,E)
\ / B E| T F
RS A T T | 0.95 0.05
C Alarm ) | T F | 094 0.06
N~ < | F T 020 071
~| F F 0.001 0.999
POIA) ™\ P(M|A)
L Al T F >4__ . A T F
P ..
'@nhn{:all;- T10.90 0.1 '\xMaryCaII;] T|0.7 0.3
— F| 0,05 093 ™~_ -~ F| 001 0.99
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BN Sampling Example

P(B) P(E)
— T F e T F
@rglary/} 0.001 0.999 -iEarthquake} 0.002 0.998
RN P
F N ~ P(A|B,E)
\/ BE| T F
- ~ | T T ]095 005
S F T 029 071
~.| F F | 0.0010.999
P(JA) \ P(M|A)
P Al T F . Al T F
~ - B
'"’fJohnCaIIs T10.90 0.1 @arytallé T|0.7 0.3
S~ [F] 005095 ~_" " | F|001 0.99
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BN Sampling Example

P(B) P(E)
T F — T F
Burglary /| 0.001 0.999 <Earthquake; 0.002 0.998
F -~ P(AIB,E) F
\ / B E| T F
e T T |0.95 0.05
O Alarm ) | T F | 094 0.06
N~ < | F T 029 0.71
~] F F | 0.0010.999
P(JIA) P(M|A)
A 7N N S [ Y I -
p :
'@nhn{:all;' T10.90 0.1 '\xMaryCaII;J T|0.7 0.3
— F | 0.05 0.95 — Fl| 0.01 0.99
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BN Sampling Example

P(B) P(E)
T - — T F
Burglary )| 0.001 0.999 | ( Earthquake ) |0.002 0.998
F N\ " P(A|B,E) F
\\\; T B E] T F
I T T | 0.95 0.05
F( Alarm ) | T F | 094 0.06
| F T |02 0.71
] F F | 0.0010.999 | ¢==
P(J|A) ‘“‘M P(M|A)
A Al T F S Al T F
T | e
JohnCaIIsf T10.90 0.1 KMaryCaIIs) T|07 0.3
| F [ 005 095 ~_ "~ -~ F| 0.01 0.99
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BN Sampling Example

P(B) P(E)
T F I T F
@rglar]r> 0.001 0.999 (Earthqua@ 0.002 0.998
F " P(A|B,E) F
B E T F
T T | 0.95 0.05
F T F | 0.94 0.06
F T | 0.29 0.71
| F F | 0.001 0.999
POIA) ™ P(M|A)
— Al T F Ca A T F
(3ohncalls) | T| 0.90 0.1 | (Marycalls) | T| 0.7 0.3
N I F|o0.05 0.95=—_ " _— | F| 001 0099
F
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BN Sampling Example

P(B) P(E)
T  F T F
Burglary )| 0.001 0.999 | ( Earthquake ) [0.002 0.998
‘\\ Y
F . -~ P(A|B,E) F

B E T F
T T | 0.95 0.05
T F | 0.94 0.06
F T | 0.29 0.71
F F | 0.001 0.999

POIA) \ P(M]A)
Al T F S A T F

@ T10.90 0.1 l/MaryCaI@' 0.7 0.3
F|0.05 095 ~—__ " 001 090 ¢=

m -
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Rejection Sampling

Rejection sampling:
e Generate sample for the full joint by sampling BN

e Use only samples that agree with the condition, the remaining
samples are rejected

e Problem: many samples can be rejected
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Likelihood weighting

e Avoids inefficiencies of rejection sampling

e |dea: generate only samples consistent with an evidence (or
conditioning event)

e |f the value is set by evidence, there is no sampling

e Problem: using simple counts is not enough since these may
occur with different probabilities

e Likelihood weighting: with every sample keep a weight with
which it should count towards the estimate
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Likelihood weighting Example

P(B) P(E)
— T F — T F

@rglarv} 0.001 0.999 'f:Earthquakg} 0.002 0.998

_."‘.-.

" P(A|B,E)

T
B E T -
T T | 0.95 0.05
T F | 0.94 0.06
F T | 0,20 0.71
F F | 0.001 0.999
P(M|A)
A Al T -
T - T 0.7 0.3
F - : F| 0.01 0.99
J=T (set ! M=F (set!!!)
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Likelihood weighting Example

P(B) P(E)
T F e —— T F
"‘*\1
Burglary /| 0.001 0.999 Cl?rthquaig/ 0.002 0.998
S j,,f"—"'
T O " P(A|B,E) F
/f’ B E| T F
e T T | 0.95 0.05
¢ Alarm ) | T F | 0.94 0.06
N~ < | FT]020 071
.| F F | 0.0010.999
P(M|A)
A Al T F
T T| 0.7 0.3
F| 0. - F | 0.01 0.99
J=T (set !!!) M =F (set!!!)
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Likelihood weighting Example

P(B) P(E)
T F T F
Burglary /| 0.001 0.999 | {_ Earthquake ) |0.002 0.998
" P(A|B,E) F
B E T F
T T | 0.95 0.05
T F | 0,94 0.06 | <{mmmm
F T | 0.29 0.71
F F | 0.001 0.999
\ P(M|A)
A T F
07 03
: : F | 0.01 0.99
J=T (set!!!) M =F (set !!!)
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Likelihood weighting Example

P(B) P(E)
T F T F
Burglary /| 0.001 0.999 | { Earthquake ) [0.002 0.998
T P(A|B,E) F
B E| T F
T T | 095 0.05
TY Alarm T F | 0.94 0.06
F T | 0.29 0.71
F F | 0.001 0.999
P(J|A) \ P(M|A)
AN F Al T F
Tl 0.1 T|07 0.3
7| 0.050.95 - F| 0.01 0.99
J=T (set!!! M=F (set!!!)
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Likelihood weighting Example

P(B) P(E)
g T F T F
_Burglary )| 0.001 0.999 _Ear‘thquakei 0.002 0.998
T\ " P(AIB,E) F
/"' B E| T F
| T T | 0.95 0.05
TY Alarm T F | 0.94 0.06
F T | 029 0.71
.| F F | 0.0010.999
P(JIA) P(M|A)
'- \T F T F
v 0.1 0.7 =
0.050.95 6701 0.99
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Likelihood weighting Example

P(B) P(E)

— T F T F
@rglaw) 0.001 0.999 Earthqu@ 0.002 0.998
—— _,—'-"H-

N “pAlB,H
T N - | 1 Sample:

0.¢ T F

Ei ]

M= T |m

0.
0.
0

'|~I II‘ ..l'l

A
T F “\ | F

A T
Johncalls I| 0.1 (MaryCalls | T | 0.7
-] 0.050.95 F.—-0701 0.99
)

J=T (set ") SI=F (set 1'T)y —

._:; L
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Likelihood weighting Example

P(B) P(E)
T F T F
0. 0.002 0.998
Evidence J=T.M=F
T in combination with B=T,E=F,A=T F

.95 0.05
0.94 0.06
0.29 0.71
0.001 0.999

P(M|A)
T F
0.1 0.7
70.050.95 601 0.99
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Likelihood weighting Example
Second sample
P(B) P(E)
— T F o — T =
@urglary) 0.001 0.999 | (Earthquake) [0.002 0.998

" P(A|B,E)

BE| T F

T T {0095 005

T F | 094 0.06

F T |029 071

F F | 0.0010.999

P(M|A)
Al T F
T|07 03
F | 0.01 0.99

J=T (set!!) M=F (set!!!)
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Likelihood weighting Example

Second sample

P(B) P(E)
T F o T F
Burglary )| 0.001 0.999 -@Erthqua_lf} 0.002 0.998
F o\ " p(ale.) F
B E T F
T T | 0.95 0.05
T F | 0.94 0.06
F T | 0.29 0.71
F F | 0.001 0.999
AN P(M|A)
. Al T F
@Eel® | |07 o
: : F | 001 0.99
J=T (set !l M=F (set!!!)
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Likelihood weighting Example

Second sample

P(B) P(E)
T F _ T F
Burglary )|0.001 0.999 Eart@ 0.002 0.998

hS

" P(A|B,E) F

B E T F
T T | 0.95 0.05
T F | 0.94 0.06
F T | 0.20 0.71
F F | 0.001 0.999 | <==mm
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Likelihood weighting Example

Second sample

P(B) P(E)
— T F T T +
@rgla@ 0.001 0.999 @hq@ 0.002 0.998
F \.."‘-,,_\HH.'" -ff_/‘ - p ( A | B ' E ) F
\‘\._"‘ _‘,-ﬂ"-f 4
N B E| T F
- & T T | 0.95 0.05
S N\
QF\&,;,“\ T F |0.94 0.06
A /| F T 029 071
~ | F F | 0.001 0.999
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Likelihood weighting Example

Second sample

P(B) P(E)
T F T F
Burglary /| 0.001 0.999 | { Earthquake ) [0.002 0.998
F P(A|B,E) F
B E T F
T | 0.95 0.05
F | 0.94 0.06
T [ 0.29 0.71
F F | 0.001 0.999

P(M|A)
T F
0

(0 7._0.3
. 0.01
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Likelihood weighting Example

Second sample

P(B) P(E)
T F T F
urgla|ry> 0.001 0.999 \E |rthqua\k> 0.002 0.998
F \ " P(A|B,E ,.
\ 5 E ] Sample:
4 TTloy F F

» _'.."lnhmrlCalls_'f :
(T =T (set 1) "M =F (set Ty
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Likelihood weighting Example

Second sample

P(B) P(E)
T F B T F
70-9"’/ 0.002 0.998
Evidence J=T.M=F
F in combination with B=F,E=F,A=F F

veight = 0.05%0.99=0.0495F
.95 0.05

_W T F | 0094 006
o F T |02 071
F F | 0.0010.999

POJIA) P(M|A)
\I@ F T F
090 0.1

0.95 E\Zﬁm
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Likelihood Sampling

* Assume we have generated the following M samples:

.....M

» If we calculate the estunate: ; ]
= n itMB=T
PB=T|J=T.M=F)= e ]
#total sample

a less likely sample from P(X) mayv be generated more often.

* For example. sample
P(X)

1s generated more often than in

So the samples are not consistent with P(X).
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Likelihood Sampling

* Assume we have generated the following M samples:

How to make the samples consistent?

Weight each sample by probability with which 1t agrees with the
conditioning evidence P(e).

+— Weight 0.0495 +— Weight 0.27
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Likelihood Weighting

« How to compute weights for the sample?

* Assumethe query pip_7|7=7.M = F)

« Likelihood weighting:
— With every sample keep a weight with which it should
count towards the estimate

M )
Z].EBI:I — T}H_I__r,
B(B=T|J=T.M=F)==L__
Z.H.[}}
i=1

Z Wg_r

-
i

JE'[:.B —T J=T.M = F} _ samples with B=I and J=T M=F

Z Wp_,

samples with any value of B and J=T M
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Learning Bayesian networks

Data + L
Prior information -ECA-LE&
0.9 0.1
0.2 0.8
0.9 0.1
0.01 0.99
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The Learning Problem

Known Structure | Unknown Structure

Complete Data Statistical Discrete optimization
parameter over structures
estimation (discrete search)

(closed-form eq.)

Incomplete Data Parametric Combined
optimization (Structural EM, mixture
(EM, gradient models...)
descent...)
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Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric | Discrete optimization over
Data estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric Combined
Dat optimization (Structural EM, mixture
ard (EM, gradient descent...) models...)
E,B,A
<Y,N,N> [ Y\
<VY,Y,Y>
E B E‘A ZEQZ <N,N,Y>
e bl > > NYY> = L D £ BIP(AJER)
5l > 5 ' > e bl09 0.1
e .
— b 5 5 <N,Y,Y> e B 0.2 0.8
e : -
- e bl09 0.1
bl ? 2 -
—— 2 5|0.01 0.99
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Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
Data estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
Data (EM, gradient descent...) (Structural EM, mixture
models...)
E,B,A
<Y,N,N> [ Y\
<VY,Y,Y>
E BlP(A | FR <N,N,Y>
e b| 2 2 <NY.Y> = 1 P E BlpAlER)
e Bl > > ) > e bl09 0.1
_e b ? ? <N,Y,Y> e B 0.2 0.8
252 » O @ ) e blo9 0.1
_Q 50.01 0.99
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Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
Data estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
Data (EM, gradient descent...) (Structural EM, mixture
models...)
E,B,A
<Y,N,?> [
<Y,?,Y>
E BlP(A | FR <N,N,Y>
e bl 2 2 <Y.¥> = 7 B £ BIPAEB)
e Bl > > ) > e b|0.9 0.1
_e b ? ? <N,?,Y> e B 0.2 0.8
~ 52> » | @B y e blo9 0.1
\ e B|0.01 0.99
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Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
Data estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
Data (EM, gradient descent...) (Structural EM, mixture
models...)
E, B, A
<Y,N,?> [
<Y,?,Y>
E BlP(A | FR <N,N,Y>
e bl 2 2 <Y.¥> = 7 B £ BIPAEB)
e Bl > > ' > e bl09 0.1
_e b ? ? <N'?'Y> e B 02 08
252 » O @ ) e blo.9 0.1
_Q 50.01 0.99
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Learning Bayesian Networks

Known Structure Unknown Structure

Complete data -

Incomplete data

» Parameter learning: Complete data (Review)
e Statistical parametric fitting
e Maximum likelihood estimation
e Bayesian inference

e Parameter learning: Incomplete data

e Structure learning: Complete data

e Application: classification

e Structure learning: Incomplete data
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Learning Parameters

e Estimation relies on sufficient statistics
e For multinomial these are of the form N (x;,pa,)
e Parameter estimation

é _N(xiapai) é _Ot(xi,pai)+N(xi,pai)
wipe T N(pa,) % lpa, a(pa,) + N(pa,)

MLE

Bayesian (Dirichlet)

e Bayesian methods also require choice of priors

e Both MLE and Bayesian estimates are asymptotically equivalent
and consistent but the latter work better with small samples

e Both can be implemented in an on-line manner by accumulating
sufficient statistics
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Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
Data estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
Data (EM, gradient descent...) (Structural EM, mixture
models...)
E,B,A
<Y,N,N> [ Y\
<VY,Y,Y>
E BlP(A | FR <N,N,Y>
e b| 2 2 <NY.Y> = 1 P E BlpAlER)
e Bl > > ) > e bl09 0.1
_e b ? ? <N,Y,Y> e B 0.2 0.8
252 » O @ ) e blo9 0.1
_Q 50.01 0.99
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Why do we need accurate structure?

Missing an arc Extraneous arc

e Cannot be compensated for by e Increases the number of
fitting parameters parameters to be estimated

e Incorrect independence * Incorrect independence
assumptions assumptions
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Approaches to BN Structure Learning

e Score based methods

— assign a score to each candidate BN structure using a suitable
scoring function

— Search the space of candidate network structures for a BN
structure with the maximum score

e |ndependence testing based methods

— Use independence tests to determine the structure of the
network
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Score-based BN Structure Learning

Define a scoring function that evaluates how well a structure
matches the data

W 4
<N,N,Y> 9
CEY B | |l

<N,Y,Y> o ,
N CAS o A2

Search for a structure that maximizes the score
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Basic idea: Minimum description length (MDL) principle

Ryap = argmax P(h | D)
hEH

P(DI|h)P(h)
argmax
hEH P(D)
= argmax P(D|h)P(h)
heH

hyp = argmin(-logP(D|h)-logP(h))

heH

hyp =  argmin(Cp,(D1h)+ C,(h))

heH

We need to design a scoring function that minimizes the sum of the
description length of the hypothesis and the description length of
the data given the hypothesis.

In this case, the hypothesis is a Bayesian network which represents a
joint probability distribution
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Scoring function

A BN scoring function consists of

e A term that corresponds to the number of bits needed to encode
the BN structure and parameters

e A term that corresponds to the number of bits needed to encode
the data given the BN
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Encoding a Bayesian Network

It suffices to

® |ist the parents of each node
e record the conditional probabilities associated with each node

Consider a BN with n variables.

e Consider a node i with k; parents.

e We need £, log, n bits to list its parents.

e Suppose the node i (variable X)) takes s; distinct values.

* Suppose the jth parent takes s; distinct values.

e Suppose we use d bits to store each conditional probability.
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Encoding a Bayesian Network

e Under the encoding scheme described, the description
length of a particular Bayesian network is given by

n

2

i=1

(

\

k.- log, \n)+dl\s. -1 S .
I g2( ) ( I )Xjep;!;,!:mé(i)/
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Encoding the Data

e Suppose we have M independent observations
(instantiations) of the random variables Y X
. ¢

Let V;be the domain of random variable .x;

Each observation corresponds to an atomic event
e, €V, xV, x.V
Let p, be the probability of e,

When M is large, we expect M p, occurrences of ¢, among the M
observations. Under optimal encoding, the number of bits

needed to encode the data is
-M E P Iogz(pk )

e, &V x..V,
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Encoding the Data ..using a Bayesian network

e But.. We do not know p, - the probability of ¢,!

e What we have instead is a Bayesian network which
assigns a probability g, to e,

e When we use the learned network to encode the data,
the number of bits needed to encode the network (and

hence the data using the network) is

-M Epk Iogz(%)

ekEI/l X... Vn
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Encoding the Data ..using a Bayesian network

Theorem (Gibbs):

-M Epk |092(pk)5 -M Epk Iogz(Qk)

e, x..V, e, &V x..V,

e with equality holding if and only if . _

Vip, =g,

e Number of bits needed to encode the data if true
probabilities of each atomic event are known is less than
or equal to the number of bits needed to encode the
data using a code based on the estimated probabilities.
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Putting the two together

e MDL principle recommends minimizing the sum of the
encoding lengths of the model (Bayes network) and the
encoding length of the data using the model

N

Z k, |ng(n)+d(Si—1) ns - M Epk |ogz(qk)

J
X ;€EParents(X;) e, &V x..V,

e Problems with evaluating the second term:
— We do not know the probabilities p,
— The second term requires summation over all atomic
events (all instantiations of the n random variables)

[Lam and Bacchus, 1994]

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Kullback-Leibler Divergence to the rescue!

e Let Pand Q be two probability distributions over the same
event space such that an event e, is assigned probability p; by
Pandg; by QO

KL(P Q) =3 p, log| P&
k qr

= %Pk (lOg Pr — loqu)

KL(P110) =0
KL(PIIQ)=0iff P=Q
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Kullback-Leibler Divergence to the rescue!

e Theorem: The encoding length of the data (distributed
according to P) given the model (distribution Q) is a
monotonically increasing function of KL(P Il Q)

e Proof: From Gibbs Theorem and the definition of KL divergence

e Hence, we can use the estimated KL divergence as a proxy for
the encoding length of the data (given a model) to score a
model.

e We can use local computations over a Bayes network to

evaluate KL(P I Q)
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Applying the MDL Principle

e Exhaustive search over the space of all networks infeasible!
e Evaluating KL-divergence directly is infeasible!

e Hence we need to
e Resort to a heuristic search to find a network with a near
minimal description length

e Develop a more efficient method of evaluating KL
divergence of a candidate network
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Heuristic search

A possible search strategy

There can be between 0 and n(n-1)/2 arcs in a DAG with n
nodes

For each possible number of arcs, we search heuristically for
networks with low KL divergence

We then examine the resulting networks and pick one that has
minimum description length
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Learning Tree-Structured Bayes Networks

* |If we measured a distribution P, what is the tree-dependent
distribution Pt that best approximates P?

e Search Space: All possible spanning trees

* Goal: From all possible spanning trees find the one
closest to P

* Closeness Measure: Kullback—Leibler divergence
* Operators/Procedure
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Kullback-Leibler divergence

e For probability distributions P and Q of a discrete random
variable the K-L divergence of Q from P is defined to be

P(x)

Dt (P,Q) = ) P()log (5e3)

e [t can be seen from the definition of the Kullback-Leibler
divergence that

Da(P,Q) = — ) P og(0()) + ). P log(P(x)

= H(P,Q)— H(P)

e where H(P,Q) is called the cross entropy of P and Q, and H(P) is
the entropy of P.

e Non negative measure (by Gibb’s inequality)
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Evaluating KL divergence for a network

e Theorem (Chou and Liu, 1969). Suppose we define mutual
information between any two nodes X;and X, as

P(X,;.X;)
W(X.,X:)= 3 P(X,X;)lo —
( J) (X X) ( J) gzP(Xl)P(X])
e Then the cross entropy KL(P||Q) over all tree-structured
distributions is minimized when the graph representing
O(X, .. X)) is a maximum weight spanning tree of the graph

where the edge between nodes X’ and X;is assigned the weight
equal to W(X;, X;).
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Mutual information

= The mutual information of 2 random variables is a

quantity that measures the mutual dependence of the two
variables

» [ntuitively, mutual information measures the information
that X and Y share.
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The algorithm

e Use Kruskal to find Maximum spanning tree with weights
given by :

> P(X.X ;)1 PIX..X))
oy S p(x)P(X )

=

S
e
T

o« Compute Pt
- Select an arbitrary root node and compute

P = P(X, | Parent,(X,))
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Kruskal Algorithm

2
A B

ah'd
RERS

E F
3
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Kruskal Algorithm
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Kruskal Algorithm
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Kruskal Algorithm
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Kruskal Algorithm
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Theorem 1 : If we Force the probabilities along the branches of
the tree t to coincide with those computed from P, we get the
best t-dependent approximation of P

D, (P,P) = EP(X)Elog (x; 1 parent(x,))+ ¥ P(X)log P(X)

EP(X)E log x | parent(x, )) -H(X)

=E E ( )P(x Ix)log( (x Ix))—H(X)

i=1 x; X j=parent (x; )

The proof follows from Gibbs’ inequality
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Gibbs' inequality

D (P, Q) = —
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From theorem 1, we have:

Dy (PP} = -z z P(x;, Jg) log(P:(x:|x ) H{X

i=1 x5x jzparents(xl)

maximizes D«

After assignment:
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Evaluating KL divergence for a network

e Theorem (Chou and Liu, 1969). Suppose we define mutual
information between any two nodes X;and X, as

P(X,;.X;)
W(X.,X:)= 3 P(X,X;)lo —
( J) (X X) ( J) gzP(Xl)P(X])
e Then the cross entropy KL(P||Q) over all tree-structured
distributions is minimized when the graph representing
O(X, .. X)) is a maximum weight spanning tree of the graph

where the edge between nodes X’ and X;is assigned the weight
equal to W(X;, X;).
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Chow-Liu (CL) Results

e |f distribution P is tree-structured, CL finds CORRECT one

e |f distribution P is NOT tree-structured, CL finds tree structured Q
that has minimal KL-divergence — argming KL(P; Q)

e Even though 2%nlogn) trees, CL finds BEST one in
poly time O(n? [m + log n])
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Evaluating KL divergence for a network

e Theorem (Lam and Bacchus, 1994). Suppose we define the weight
between a nodes X and a set of arbitrary parents Parents(X,)

P(Xi,Parents(Xi))
W (X;,Parents(X;)) = > P(X,,Parents(X;))log,
(X, Parents(X ) P(X;)P(Parents(X;))
e Then the cross entropy KL(P||Q) for a Bayesian network
representing O(X, .. X)) is a monotonically decreasing function of

) W (X;,Parents(X.))
i=1,Parents(X )=

e Hence, KL(P||Q) is minimized if and only if this sum of weights is
maximized
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Learning BN Structure

e |f we find a Bayes network that maximizes

W(Xl., ParentS(Xl.))
i=1,Parents(X; )=
e Then the probability distribution Q modeled by network will be

closest to the underlying distribution P from which the data have
been sampled with respect to KL(P| | Q)

e |tis possible to decrease KL(P||Q) by adding arcs to the network
— not a good idea

e Hence the need for MDL!
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Score-based Bayesian Network Learning

e We need to find a Bayes network that maximizes

i W(X . Parents(X ))
i=1,Parents( X, )=J

e While minimizing

ﬁ k. Iogz(n)+ a’(sl. —1) ns.

J
i=1 X ,€Parents (X;)
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Alternative Scoring Functions - Notation

Fach X, takes r, distinct values

S, = I”j

XjEParentS(Xl- )

0

ijk

= probability that X, takes the jth valuein its domain

given the kth instantiation of its parent set Parents(X,)

1, are the pseudocounts (from the Dirichlet prior)

N, are the observed counts for the corresponding instantiation

Nik = ENijk; M = Enyk;
J J
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Bayesian scoring function

e Let B= (G,G) be a Bayesian network with graph structure G
and probability distribution parameterized by 0 over a set of n
random variables X,,---.X

n

e Prior probability distribution p(B) over the networks = p(G, 9)
e Posterior probability given data D is given by

p(Gop)=2GOP)_ nGOD) _ pD.GOH)
p(D) 3 p(GO.D) 3 p(D,G.5)
GPo GH
p(G)p(6D,G) p(D|G.0)
5> p(G.8)p(DIG,9)
GP
« p(G)p(6lD,G)p(DG.6)
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Bayesian scoring function

p(D|G,6) X ﬁlﬁ ﬁaljk
i=1j=1k=1

where n 1s the number of random variables
r; 1s the number of parents of node i
s; 1S the number of instantiations of the parents of node i

0,, = the probability of the jth value of the ith RV

given the kth instantiation of its parents

N = the corresponding counts estimated from D
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Bayesian scoring function

p(DIG.0)  [1T1 116}

i=1j=1k=1

N = the corresponding counts estimated from D

p(0G) < [1 11 110},

i=1j=1k
p(0/G.D) < I1 T neN .-l
i=1j=1k=1

Nk = the corresponding pseudocounts
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Standard Bayesian Measure

e Standard Bayesian Measure for a BN with graph G and
parameters ©

QBayeS (G> D) = lOg p(G)

SRR ( i'k+77i'k_1)
+EEZ( o e =g N, +10- ;1)
— %Dim(G)log N

where Dim(G)is the number of parameters in the BN
and N is the sample size

%logN is the average number of bits needed to store

anumber betweenland N
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Geiger Heckerman Scoring Function

e Geiger-Heckerman Measure for a BN with graph G and
parameters ©

Oy (G,D) =log p(G) +logf p(D1G,0)p(© 1G)d®

n| s , r I'in... +N..
=logp(G)+ 34 3 4{log aun + 3 log (M3 + Nz )
k=t Ty + Ny) r(nijk)

e Can choose p(G) to penalize complex networks
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Cooper-Herskovits Scoring Function

e Cooper-Herskovits Measure for a BN with graph G and
parameters ©

0...(G,D)=log p(G E {Z {log Yf])vik j* 210g {1+ N, )}}

e (Can choose p(G) to penalize complex networks
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Standard Bayesian Measure — Asymptotic version

e Asymptotic version of the standard Bayesian Measure for a
BN with graph G and parameters ®

QAsymBayes (G’ D) = QMDL (G9 D)

= log p(G)+ " 3 iNl.jk log( all ) — (l)Dim(G)logN
=1 j=1 k=1
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Asymptotic Information Measures
Q,(B,D) =1log p(G)

+333N,, log N
A N

ik

-dim(G) f (/D))
where f (|D]) is a non - negative penalty function
f (/D) =0 for maximum likelihood information criterion

f(|D) =1 for Akaike information criterion

(D)= ;(log N) for Schwartz information criterion

Note : MDL 1s a special case of this measure
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Structure Search as Optimization

e |[nput:
e Training data
e Scoring function
e Set of possible structures

e QOutput:
e A network that maximizes the score
e Key Computational Property: Decomposability:
score(G) = ) score ( “family” of X in G)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Tree-Structured Networks

Trees:

e At most one parent per variable
Why trees?

e Elegant mathematics

e \We can exactly and efficiently
solve the optimization problem

e Sparse parameterization
e Avoid overfitting

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Learning Trees

e Let Pa; denote parent of X,
e \We can write the Bayesian score as

Score(G : D) = ESCOF€(XZ- : Pa;)

= E(Score(Xi : Pa,) - Score(X;)) + 2 Score(X;)

Improvement over Score of “empty”
“empty” network ~armask

e Score = sum of edge scores + constant

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Learning Trees

* Set w(j—i) =Score( X; —= X ) - Score(X))

e Find tree (or forest) with maximal weight --Standard max
spanning tree algorithm — O(n? log n)

e Theorem: This procedure finds tree with max score

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Beyond Trees

e When we consider more complex network, the problem is not as
easy

e Suppose we allow at most two parents per node

e A greedy algorithm is no longer guaranteed to find the optimal
network

e Theorem: Finding maximal scoring structure with at most &
parents per node is NP-hard for k > I

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Heuristic Search

e Define a search space:

e search states are possible structures

e operators make small changes to structure
e Traverse space looking for high-scoring structures
e Search techniques:

e Greedy hill-climbing

e Best first search

e Simulated Annealing

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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K2 Algorithm (Cooper and Herskovits)

e Start with an ordered list of random variables

e For each variable X;add to its parent set, a node that is lower
numbered than X;and yields the maximum improvement in
score

» Repeat until score does not improve or a complete network
IS obtained

« Disadvantage: Requires an ordered list of nodes

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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B Algorithm (Buntine)

e Start with the parent set for each random variables initialized to
an empty set

« At each step, add a link (a node to the parent set of some

node), that does not introduce a cycle and yields the
maximum improvement in score

 Repeat until score does not improve or a complete network
IS obtained
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Local Search

e Start with a given network
— empty network
— best tree
— a random network
e At each iteration
— Evaluate all possible changes
— Apply change based on score
e Stop when no modification improves score

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Heuristic Search

e Typical operations:

e To update score after
local change, only re-

Ascore =

score families that S({C,E} —D)
changed - S({E} —=D)
CS%‘@@
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KL Divergence from

true distribution

15

05 p

Learning in Practice: Alarm network

Structure known, fit parameters

Learn both structure and parameters

#samples

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Local Search: Possible Pitfalls

e Local search can get stuck in:
e Local Maxima — All one-edge changes reduce the score

e Plateau — Some one-edge changes leave the score
unchanged

e Standard techniques can be used to cope with both
e Random restarts
e TABU search

e Simulated annealing

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Independence Based Methods

e Rely on independence tests to decide whether to add links
between nodes in the structure search phase

e Need to penalize for complex structures — Hard to beat a fully
connected network!

e |n the most general setting, there are too many independence
tests to consider

e Sometimes it is possible to infer additional independences based
on known (or inferred) independences (See Bromberg et al.,
2009 and references cited therein)
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Structure Search: Summary

e Discrete optimization problem

e |n some cases, optimization problem is easy
e Example: learning trees

e |n general, NP-Hard
e Need to resort to heuristic search

e Or restrict connectivity — each node assumed to have no
more than / parents where [ is much smaller than »

e Stochastic search — e.g., simulated annealing, genetic
algorithms

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Structure Discovery

e Task: Discover structural properties
e |sthere a direct connection between X & Y
e Does X separate between two “subsystems”
e Does X causally effect Y
e Example: scientific data mining
e Disease properties and symptoms
e Interactions between the expression of genes

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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P(6|D) Score based Structure Discovery

e Model selection
— Pick a single high-scoring model
— Use that model to infer domain structure

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Bayesian Structure Discovery
P(G|D)

O o O O O
OO Ol O D> G O
CgD O > D), <>

e Problem
— Small sample size = many high scoring models
— Individual models often unreliable
— Look for features shared across many models

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Bayesian Approach

e Posterior distribution over structures
e Estimate probability of features

— Edge X—=Y Bayesian score
— PathX—.. = Y ol

P(f| D)= }; f(G)P(G| D)

Feature of G,
e.g., X—=Y

Indicator function
for feature 1

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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MCMC over Networks

e Cannot enumerate structures, so sample structures
e MCMC Sampling

e Define Markov chain over BNs

e Run chain to get samples from posterior P(G | D)

P(f(G)| D)~ %2]‘(@)

e Huge (super-exponential) number of networks

e Possible pitfalls

e Time for chain to converge to posterior is unknown
e |slands of high posterior, connected by low bridges

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Fixed Ordering

e Suppose that ~
e We know the ordering of variables
- say, X, > X, > X;> X, > L > X, >2k‘"'108”
parents for X, must be in X, ..., X, , networks
e Limit number of parents per nodes to k&

: _/
Intuition: Order decouples choice of parents

e Choice of Pa(X,) does not restrict choice of Pa(X,,)
Upshot: Can compute efficiently in closed form

e Likelihood P(D | <)

e Feature probability P(f| D, <)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Sample Orderings
* We can write P(f|D)= EP(f <, D)P(<| D)

e Sample orderings and approximate

P(f|D)= Y P(f|<,,D)
e MCMC Sampling =l

— Define Markov chain over orderings
— Run chain to get samples from posterior P (< | D)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Application: Gene expression Data Analysis

Friedman et al., 2001

e |Input: Measurement of gene expression under different
conditions

— Thousands of genes
— Hundreds of experiments

e QOutput: Model of gene interaction
— Uncover pathways

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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“Mating response” Substructure

e Automatically constructed sub-network of high-confidence
edges

e Almost exact reconstruction of yeast mating pathway

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
estimation structures
(closed-form eq.) (discrete search)
Incomplete Parametric optimization Combined
(EM, gradient descent...) (Structural EM, mixture
models...)
E,B,A
<Y,N,N> ~
<Y,?,Y>
NN,Y> & &
<N,Y,?>
>:> L ) Ca> HE-alpa | Ea)
E_RIP(A | ER) .
. b ‘_) ' _) QY,Y> e b| . 9 1
- e b| .7 .3
e b| ? ? CeD (8D -
- _/ e b|] .8 .2
? ? -
_e f ) <P - b|.99 .01
e bl ? ?
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Incomplete Data

e Data are often incomplete
e Some variables of interest are not assigned values

This phenomenon occurs when we have
e Missing values

e Some variables unobserved in some instances
e Hidden variables

e Some variables are never observed

e \We might not even know they exist

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Hidden (Latent) Variables

e Why should we care about hidden variables?

@@
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Incomplete Data

e |n the presence of incomplete data, the likelihood can have
multiple maxima

EH—D

e |f H has two values, likelihood has two maxima

e Example:

e |n practice, many local maxima

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Expectation Maximization (EM)

e A general purpose method for learning from incomplete data

Intuition:

If we had true counts, we could estimate parameters
But with missing values, counts are unknown

We “complete” counts using probabilistic inference based on
current parameter assignment

We use completed counts (as if they were actual counts) to re-
estimate parameters

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Expectation Maximization (EM)

Expected Counts
[P(Y:HIX:H, Z-T ©) = 0.3 Dafa P

/ XYz N(XY)
Hl2|T vz

Current T2 12
del A HIH| L3
mode HIR) TIH|04
\ H{T|T Tl L7
TIT|H TI7| 1.6

| P(Y=HIX=T, Z=T, ©) = 0.4
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Expectation Maximization (EM)

Iterate
Initial network (G,0,) Updated network (6,0,)
D
. Computation Reparameterize
> Expected Counts
n N(X1)
@ (E-Step) | N(X,) (M-Step)
+ N(X;3)
/\ N(H, Xl, Xz, X3)
— N(yll H)
Training mgz Eg
Data >
N~
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Expectation Maximization (EM)

e Formal Guarantees
. L(6,:D) = L(6,D)
— Each iteration improves the likelihood
e If ©,=0,,then O, is a stationary point of L(©:D)

— Usually, this means a local maximum

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Expectation Maximization (EM)

e Computational bottleneck:
e Computation of expected counts in E-Step
e Need to compute posterior for each unobserved variable in
each instance of training set
e All posteriors for an instance can be derived from one pass of
standard BN inference

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Summary of Parameter Learning from Incomplete Data

e |ncomplete data makes parameter estimation hard
e Likelihood function

— Does not have closed form

— Is multimodal
e Finding max likelihood parameters:

— EM

— Gradient ascent

e Both exploit inference procedures for Bayesian networks to
compute expected sufficient statistics

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Learning Problem

Known Structure Unknown Structure
Complete Statistical parametric Discrete optimization over
estimation structures
(closed-form eq.) (discrete search)
E, B, A
<Y,N,N> Incomplete Parametric optimization Combined
<Y,?,Y> (EM, gradient descent...) (Structural EM, mixture
<N,N,Y> models...)
<?Y,Y>
: )
<N)Y, >
CED &
E_RIP(A | ER)
E _Rlp(4 | ER) > D T
T e b|] .9 .1
e bl ?2 ? -
- e bl .7 .3
ebl? 2 | T -
- _/ e b| .8 .2
2 2 S
i f o D ~ 5].99 .01
e bl ? ?
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Incomplete Data: Structure Scores

e Recall, Bayesian score:
P(G| D) « P(G)P(D|G)
= P(G)[P(D|G,©)P(©|G)db

e With incomplete data:
e Cannot evaluate marginal likelihood in closed form
e We have to resort to approximations:

e Evaluate score around MAP parameters

e Need to find MAP parameters (e.g., EM)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Structural EM

e Recall, in the case of complete data we had
Decomposition =2 efficient search

ldea:
e |nstead of optimizing the real score...
e Find decomposable alternative score

e Such that maximizing the alternative score yields
improvement in real score

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Structural EM

ldea:
e Use current model to help evaluate new structures

Outline:

e Perform search in (Structure, Parameters) space

e At each iteration, use current model for finding either:
— Better scoring parameters: “parametric” EM step
or
— Better scoring structure: “structural” EM step

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar
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Ilterate

Computation Sc:g)(r'e
& Expected Counts Parameterize
: e ®
R NS "
H
7 N(H? X1, Xl, X3) ﬁ
@ T
N(Y1, H) D
/—I—\ N(Y,, H)
\ NG H)
S
Tl N(Xz X;)
Training mgc ))((1';(3)
et NOYz, Vi, H)

N
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Probabilistic Relational Models
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Probabilistic models of sequence data — A special case of

Bayesian Networks
Outline Y

e Applications of sequence classification

e Bag of words, n-grams, and related models
e Markov models

e Hidden Markov models

e Higher order Markov models

e Variations on Hidden Markov Models

e Applications
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Applications of Sequence Models

e Speech recognition
e Natural language processing
e Text processing
e Gesture recognition
e Biological sequence analysis
e gene identification
e protein classification
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Bag of words, n-grams and related models

Map arbitrary length sequences to fixed length feature
representations

Bag of words — represent sequences by feature vectors with as
many components as there are words in the vocabulary

n-grams — short subsequences of n letters
lgnore relative ordering of words or n-grams along the sequence

“cat chased the mouse” and “mouse chased the cat” have identical
bag of words representations
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Bag of words, n-grams and related models

Fixed length feature representations make it possible to
apply machine learning methods that work with feature-

based representations

Features
e Given (as in the case of words English vocabulary)

e Discovered from data —statistics of occurrence of n-grams
in data

e |f variable length n-grams are allowed, need to take
into account possible overlaps

e Computation of n-gram frequencies can be made
efficient using dynamic programming — if a string
appears k times in a piece of text, any substring of the
string appears at least £ times in the text
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Markov models (Markov Chains)

A Markov model is a probabilistic model of symbol sequences
in which the probability of the current event is depends
only on the immediately preceding event.

Consider a sequence of random variables Xl, X, ..., Xy Think of
the subscripts as indicating word position in a sentence or a
letter position in a sequence

Recall that a random variable is a function

e |n the case of sentences made of words, the range of the
random variables is the vocabulary of the language.

e |n the case of DNA sequences, the random variables take on
values from a 4-letter alphabet {A, C, G, T}
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Simple Model - Markov Chains

Markov Property: The state of the system at time #+1 only
depends on the state of the system at time ¢

P[)(Hl - ‘xt+1 /Xt - ‘xt ’ X

= PX,=x,1X =x1]

G =X, X =X, X=X, ]

t+1
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Markov chains

The fact that subscript “1” appears on both the X and the x
in “X, =x," is a bit abusive of notation. It might be better
to write:

P(X, =x,,X,=x,..,X, =x)

) t

where VY ijE{vl.........vL}=Range(Xj)

In what follows, we will abuse notation
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Markov Chains

Stationarity -- Probabilities are independent of ¢ when the
process is stationary.

P[Xt+1 = xj |Xt

xi]=aij

This means that if system is in state i, the probability that
the system will transition to state j is p, regardless of the
value of ¢
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Describing a Markov Chain

A Markov chain can be described by the transition matrix 4
and initial state probabilities Q:

a, =P(X,, = j| X, =i)

y

q; =P(X1 =i)

T-1
P(X,,... X} )= P(X)P(X, | X,)...P(Xp | Xp) =gy | [A(X,X0)
i=1
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Markov chains

Current symbol 7 7

A B C

Next Al T
Symbol 2

ol N | W
3)

C
Sample string: CCBBAAAAABAABACBABAAA
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The probability of generating a string

Product of probabilities,
one for each term in the
sequence I

PN = plx >]i[ p(X,1X,.)

This comes from
the table of initial

probabilities
This means a This is a
sequence of transition
symbols from probability

time 1totme T
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The fundamental questions

« Likelihood — Given a model u = (4,0), how can we
efficiently compute the likelihood of an observation P (X |

w)?
For any state sequence (X,,...,X;):
P(X,,...X;)=¢q,a, a._ ~a

XX

« Learning — Given a set of observation sequences X, and a
generic model, how can we estimate the parameters that
define the best model to describe the data?

* Use standard estimation methods — ML, MAP or Bayesian
estimates discussed earlier in the course
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Simple Example of a Markov model

Weather
raining today mmmp  rain tomorrow a,=0.4
raining today mmm)p no rain tomorrow a,=0.6
no raining todaym»  rain tomorrow a,, = 0.2
no raining todaymm®»  no rain tomorrow a.,.=0.8
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Simple Example of a Markov model

0.4 0.6 0 0.3
0.2 0.8 0.7

 Note that both the transition matrix and the initial state
matrix are Stochastic Matrices (rows sum to 1)

* Note that in general, the transition probabilities
between two states need not be symmetric (a;= a;, )
and the probability of transition from a state to |tself
( a; ) need not be zero
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Types of Markov models — Ergodic models

Ergodic model - Strongly connected — directed path with
positive probabilities from each state i to each state j
(but not necessarily a complete directed graph). That
is, for all i,j a;>0; a;>0

ain a2 a3 Aap

asl 4z asz az
asl Q42 Q43 Qa4
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Types of Models — LR models

Left-to-Right (LR) model -- Index of state non-decreasing
with time
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Markov models with absorbing states

At each play
» Gambler wins $1 with probability p or
» Gambler loses $1 with probability 1-p

Game ends when gambler goes broke, or gains a
fortune of $100 -- Both $0 and $100 are absorbing states

D p p p .

I-p 1-p 1-p |1 1-p
Start
(108)
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Coke vs. Pepsi

Given that a person’s last cola purchase was Coke,
there is a 90% chance that her next cola purchase will
also be Coke.

If a person’s last cola purchase was Pepsi, there is an
80% chance that her next cola purchase will also be
Pepsi.

0.9 0.1 0.8

OIS

0.2
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Coke vs. Pepsi

Given that a person is currently a Pepsi purchaser,
what is the probability that she will purchase Coke
two purchases from now?

The transition matrix is:

y 0.9 0.1 (Corresponding to one
= 02 028 purchase ahead)

0.9 0.11]0.9 0.1] [0.83 0.17

02 08[[02 0.8 (039 0.66

=,
|
|
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Coke vs. Pepsi

Given that a person is currently a Coke drinker,
what is the probability that she will purchase Pepsi
three purchases from now?

0.9 0.1][0.83 0.17] [0.781 (0.219)
0.2 0.8]]10.34 0.66 0.438 0.562
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Coke vs. Pepsi

Assume each person makes one cola purchase
per week. Suppose 60% of all people now drink
Coke, and 40% drink Pepsi.

What fraction of people will be drinking Coke
three weeks from now?

Let (¢,,9,)=(0.6,0.4) be the initial probabilities. ’

We will denote Coke by 0 and Pepsi by 1| [0-9 0-1}
We want to find P(X,=0) 0.2 0.3

1
P(X, =0)= 2 g.a® =q,a +4q,q% =(0.6)0.781)+(0.4)0.438) = 0.6438

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Equilibrium distribution
p(x, =i)= Y p(x, =ilx = Hp(x._ = j)

P, (1) =1lim p(x, =1)

If p.()=limp(x, =0)js independent of the initial distribution, we
call the resulting distribution the equilibrium distribution of the MC
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Example: PageRank

e Defineamatrix A _. 1 1f website j links to web site
Y 0 otherwise
) A
e Construct a Markov Transition Matrix M .. -

e The equilibrium distribution of the resulting Markov chain P-(})
corresponds to the probability of visiting website i

e A crude search engine works as follows:
* For each website, collect a list of words that appear on it
 For each word, make a list of websites that contain the word

 Respond to a query with a list of websites that contain the
query word, ordered by their p_(i) values
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Learning the conditional probability table

Naive: Just observe a lot of
strings and set the o
conditional probabilities p(B| A) =

2 occurrences of AB

ings

equal to observed E occurrences of A
probabilities SIrings

Better: add 1 to top and
number of symbols to I+ E#AB
bottom - a weak uniform p(B|A)= e y
prior over the transition Nsymbols + szn:

probabilities.
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Hidden Markov Models
Reading: Poritz, 1988
In many scenarios states cannot be directly observed.
We need an extension -- Hidden Markov Models

byy + byt b3+ byy=1,

Observations a; are state transition probabilities.

b, are
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Hidden Markov Models

We introduce hidden states to get a hidden Markov model:

— The next hidden state depends only on the current hidden
state

— The current symbol depends only on the current hidden
state.
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Example: Dishonest Casino

0.95 0.9

1/6
1/6
1/6
1/6
1/6
1/6

Fair Loaded

ansON =

 What is hidden in this model? — State sequences

* You are allowed to see the outcome of a die roll

* You do not know which outcomes were obtained by a fair die
and which outcomes were obtained by a loaded die
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What is an HMM?

e Green circles are hidden states

e Each hidden state is dependent only on the previous state:
Markov process

* “The past is independent of the future given the present.”
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What is an HMM?

O O C

e Purple nodes are observed states

e Each observed state is dependent only on the
corresponding hidden state
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Specifying HMM

Pennsylvania State University

* {XO,[L. 4, B}

e II={x} are the initial state probabilities

e 4= {al.j} are the state transition probabilities
 B={b,}arethe observation state probabilities
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A hidden Markov model
7 7

437 /6 )

cJele @ ®OC
Y 2 .8
DO C

Each hidden node has a vector of transition probabilities
and a vector of output probabilities.
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Coin-Tossing Example

L tosses —

DT> > o> —

Head/Tail

Query: what are the most likely values in the X-nodes to
generate the given data?
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Fundamental problems

¢ 606 o

e Filtering: Inferring the present Compute the probability of a
hidden state given the observations p(xlo,)

e Prediction: Inferring the future  p(xlo,) t>s
e Smoothing: Inferring the past p(xlo,) t<u

e Likelihood — Compute the probability of an observation sequence
given a model (HMM) p(oy)

e Decoding — Given an observation sequence, and a model,
compute the most likely hidden state sequence
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Generating a string from an HMM

It is easy to generate strings if we know the parameters of
the model.

At each time step, make two random choices:

e Use the transition probabilities from the current
hidden node to pick the next hidden node.

e Use the output probabilities from the current hidden
node to pick the current symbol to output.
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Pennsylvania State University

Generating a string from an HMM

It is easy to generate strings if we know the parameters
of the model.

= First produce a hidden sequence

" From each hidden state in the sequence, produce an
output symbol.

e Hidden nodes only depend on previous hidden
nodes

e The probability of generating a hidden sequence
does not depend on the output sequence that it

generates.
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The probability of generating a hidden sequence

Product of probabilities, one
for each term in the sequence

!
p(X,.)=pX)] | p(X, 1X,.)

From the table of \

initial This is a transition
probabilities of probability between
A sequence of hidden states hidden states
hidden nodes from p
time 1 totime T Al-j = p(X =j| X,_=i)
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Fundamental problems

¢ 606 o

e Filtering: Inferring the present Compute the probability of a
hidden state given the observations p(xlo,)

e Prediction: Inferring the future  p(xlo,) t>s
e Smoothing: Inferring the past p(xlo,) t<u

e Likelihood — Compute the probability of an observation sequence
given a model (HMM) p(oy)

e Decoding — Given an observation sequence, and a model,
compute the most likely hidden state sequence
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Filtering

p('xtaolzt) = Ep('xt’xt—l’olzt—l’ot)
= E p(o,lo, ,x,x_)p(x, o, ,x_)p(x_,0.)
- EP(O, | xt )p(’xt | xt—l )p('xt—l’olzt—l)

-1

a(xt) = p(o, Ixt)z plx, Ix_Da(x,_ ) t>1
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Smoothing

p('xt ’ OI:T) = p(’xt ’ OI:t ’ Ot+1:T)
= p(‘xt ’OI:t )p(0t+1:T l ‘xt ’Oltt)

= past future
=a(x)B(x)

B(x.)= P07 1)

po,1x, )= E P(0,50,75%, 1x,.,)

= EP(O, | x, )p(0t+1:T Ixt)p(x, le-l)

[J’(xt_l)=2p(0tIxt)p(xtlxt_l)[a’(xt) 2=<t=<T
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Computing the pair-wise marginal (needed for learning)

p(x,x, log)xp(o,,x,x,,)
= P(01430,,1,0, 075X, X,,)
= P07 101,50, %,,X,,)P(0,,,0,,1, X, X,,;)
= P07 1 X)) D0, 10y XX, ) PO, X, X )
= p(0,or 1 X)) P(0,, 1 X, )P0y, X, X, )
= (0,7 1 X,,))P(0,, | X, )D(x,,, L0, X, ) ploy,, X,)
= (0,7 1 X,,)P(0,, | X, ) D(x,, 1 X)) p(X,,0,)
= p(x,,)p(o,, 1 X, )p(x,, 1 x,)o(x,)
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Computing the likelihood

po.;)= E p(x,,0.,)= Ea (x ) from smoothing
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Most likely path given the observation sequence
(Viterbi algorithm)

maXHp 0, Ix x lx,_, {Hp 0, Ix x Ixt_l)}maxp(oTIxT)p(lexT_l)

- /

Vo

u(xr_p)

u(x, ) =maxp(o, lx,)p(x 1x )ulx) 2st<T

M(XT) =1
x>1k = argmax p(o, |xl)p(xl)u(xl)

X1

x, = argmax p(o, | x,)p(x, 1x., )u(x,)

Xy
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Learning HMM — Parameter Estimation

e Given an observation sequence, find the model that is
most likely to produce that sequence.

e Given a model and observation sequence, update the
model parameters to better fit the observations.
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Learning HMM

e Given a data set of i.i.d observed sequences

0" =0, 1isthen" observation sequence of length T

e We seek the HMM transition matrix A, emission matrix B, and
initial vector a that are most likely to have generated the data

e We assume for simplicity that we know the number of hidden
states and the number of observed states

e Approaches:
— Expectation maximization
— Gradient ascent

e Beware of multiple optima
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Learning HMM

e Given a data set of i.i.d observed sequences

0" =0, 1isthen" observation sequence of length T

e We seek the HMM transition matrix A, emission matrix B, and
initial vector a that are most likely to have generated the data

e We assume for simplicity that we know the number of hidden
states and the number of observed states
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Learning HMM from data

e Parameter estimation

e |f we knew the state sequence it would be easy to estimate the
parameters

e But we need to work with hidden state sequences
e Use “expected” counts of state transitions
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Learning without hidden information

e Transition probabilities

Number of transitions from state k to state |

n_,

S

ll

a, =

e Emission probabilities

Number of times c is emitted from k

nkc

n.,=
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Learning in the presence of hidden states

e Since we don’t know the true hidden sequence for each
observation sequence, consider all possible hidden sequences

aH H

A H

e Estimate parameters through a procedure that counts the
expected number of times each parameter is used across the
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The Baum-Welch algorithm

e Also known as Forward-backward algorithm

e An Expectation Maximization (EM) algorithm

EM is a family of algorithms for learning probabilistic models in
problems that involve hidden states

Expectation: Estimate the “expected” number of times there are
transitions and emissions (using current values of parameters)

Maximization: Estimate parameters given expected counts
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Learning parameters: the Baum-Welch algorithm

e algorithm sketch:
— initialize parameters of model
— iterate until convergence

e E-step: calculate the expected number of times
each transition or emission is used

e M-step: adjust the parameters to maximize the
likelihood of these expected values
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EM algorithm

M-step: Maximize:

N
n n n n n n
E<10gp(01 20y 0, X, Xy X, >p"’d(xﬁT Io") wrt. A, B, a.

n=1
which because of the form of the HMM is same as maximizing

n

T -1 T,
> {<log paD) ) Y (log p(x;., 1 x, )>p0,d<x;, ) ¥ Y (log p(o] 1 x; >po,d(xflon)}
' t=1 =l

n=1

Optimizing the above with respect to p(x;)1.e., a,
new new . 1 - old n . n
a’” =p"(x =l)=ﬁ2p (x, =ilo")
n=1

which is simply the averaged number of times (with respect to p”“) that the first hidden

variable is in state i.
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EM algorithm

M-step: Maximize:

n T,-1 T,
;{<10gp(xl )>pold(xﬁ|0 ) §<10g p('xt+1 | xt)> old X lo” + L <10gp(0t |'xt >pold(x;10n)}
Optimizing the above with respect to A
N T,-1
A = " (=l =) Y Y pM (=i, = jlo”)
n=1 t=1

which is simply the number of times a transition from hidden state j to i occurs
averaged over all times (*.© of stationarity) and all training sequences.

Normalizing, we have:

N T,-1
old n . N . n
EE p(x =i,x , =jlo")
new _ p=1 t=1
A]l - N T,-1
SO P =i, =10
j n=1 t=1
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EM algorithm

e M-step: Maximize:

n T,-1 T,
E{<logp (x?)>p01d(xﬁlo) E<10gp (X 13,) > (7 " + <10g ploy 1x/ >p01d(x,”|0n)}

n=1 t=1 r=1

Optimizing the above with respect to B

N T,
B =p"(0,=klx, =i)x EEI[O;“ =k]p™(x' =ilo")

n=1 t=1
which is the expected number of times observation k£ occurs when the hidden state is i

Normalizing, we have:

N T,
EEI[O;’ =k]p0’d(xt” =ilo")

new __ nltl
Bk,i -

EEEI[O =klp™(x'=ilo")

n=1 =1
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EM Algorithm

E-step: Calculate
p* (xf‘ =1 0”) smoothing (inferring the past)
p™ (xf =0,x., =]l 0”) the pairwise marginal

p* (xf =il 0”) smoothing (inferring the past)
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E-step

p(o,.;,x, =1)= oa(x, =i) B(x, =1i)

p(0,;,X,=1) _ a(x, =1) B(x, =1)
p(o,z) p(oyr)

p(x=ilo.) =

a(x, =1)a; bj,OHlﬁ(le =j)
p(or)

p(‘xt= i’xt+1=j | OI:T) =
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EM Algorithm

Parameter initialization
e EM algorithm converges to a local maximum of the likelihood

e |n general, there is no guarantee that the algorithm will find a
global maximum

e The number of local maxima can be exponential in the number
of hidden states

e Parameter initialization can be critical for the quality of solution
e |n practice:
— Try different random initializations

— Randomize the order of presentation of training examples
and perform online update

— Initialize emission parameters based on results of fitting a
simpler (non temporal) mixture model
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HMM Parameter estimation in practice

Sparseness of data requires

Smoothing of estimates using priors — replace ML estimates by
MAP estimates

Domain specific tricks — Feature decomposition (capitalized?,
number?, etc. in text processing)

Shrinkage allows pooling of estimates over multiple states of
same type

Well designed (or learned) HMM topology
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HMM Variations

Continuous vector-valued observations

e Need a model rlo,!x) mapping the hidden state attime tto a
distribution over outputs

e Does not change any of the update equations for filtering,
smoothing, etc.

e However, for learning, we need the normalization constant.
Mixture emissions

e Emission probability is a mixture: P |xt)=;p(0t ko, )p (K, 1x,)
e EM algorithm has a nested “emission” EM loop.

HMM-GMM

e plolk.x)=2 (o1, .5, )
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Dynamic Bayesian Networks

p(x,x. )= [ | px@1x,@),x¢-1))

t=1 i=1
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Probabilistic relational models

e QObservation: the world consists of many distinct entities with
similar properties and relations

e First order logic exploits this redundancy to make concise
statements about the world

e Vs&S VceC Student(s,c) and Easy(c)= Happy(s)

e Unfortunately, the real world is not so clear-cut

e Need a probabilistic counterpart of First order logic

e Bayes networks : Propositional logic :: ? : First order logic?

e ? = Probabilistic Relational Models (under the finite domain
assumption as in relational databases)
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PRMs

e Developed by Daphne Koller’ s group at Stanford
— representation: Avi Pfeffer

e Builds on work in KBMC (knowledge-based model
construction) by Haddawy, Poole, Wellman and others...

e Object Oriented Bayesian Networks
e Relational Probability Models
— Learning: Lise Getoor, Nir Friedman, Avi Pfeffer, Ben Taskar
e Attribute Uncertainty
e Structural Uncertainty
e Class Uncertainty
e |dentity Uncertainty
— Undirected models: Ben Taskar, Eran Segal
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Probabilistic Relational Models
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Why PRM?

Contact
Patient

Traditional approaches
— Flat representation
— Fixed number of features

— |ID Samples

Problems:
— Introduce statistical skew
— Discard relational structure
— Must fix features in advance
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Bayesian Networks

nodes = random variables

edges = direct probabilistic >
fluence @g Infiltrates

Network structure encodes independence assumptions:
XRay conditionally independent of Pneumonia given Infiltrates
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Bayesian Networks

Lung Infi ltmtes
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BN Semantics

E, conditional local full joint

independencies + probability = distribution

@ @ in BN structure models over domain

P(p,t,i,x,s)=P(p)P(t)P(lp,t)
P(xli)P(s lt)
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Full joint distribution specifies answer to any query:
P(variable | evidence about others)
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BN Learning

I[I:> Inclucezr
QO D

e BN models can be learned from empirical data
— parameter estimation via numerical optimization
— structure learning via combinatorial search.

e BN hypothesis space biased towards distributions with
independence structure.
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Probabilistic Relational Models

e Combine advantages of relational representations and Bayesian
networks:

— World models that represent: objects, properties, relations
— Compact, natural probability models
— Integrate uncertainty with relational model:

* Properties of objects can depend on properties of related
objects

e Can model uncertainty over the relational structure of
domain
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Motivation

B Unfortunately, the real world is not so clear-cut

B Need a probabilistic version of FOL
B Proposal: PRMs

Propositional g Bayes
Logic Nets
\ Y

First-order g
Logic
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Example

a set of students, § = {s1, 57,53}

a set of professors, P = {p1, p2, p3}
Well-Funded, Famous : P — {true, false}
Student-0f: S x P — {true, false}
Successful : § — {true, false}
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Example

We can express a certain self-evident fact in one
sentence of FOL:

VseS VpeP
Famous(p) and Student-0£(s, p)
= Successful(s)
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Example

The same sentence converted to propositional

logic:

(—(p1_famous and student_of _sy_pq sy_successful) and
(—(p1_famous and student_of _s>_p1 _success ful) and
(—(p1_famous and student_of _s3_p1 _success ful) and
(—(p2_famous and student_of _sy_pq
( _success ful) and

(= (po_famous and student_of _s3_pq

r

r

r

r sy_successful) and
r

r s3_success ful) and
r

(—(pa_famous and student_of _s1_p1
(= (pa_famous and student_of _s>_p1

s1_successful) and
successful) and
_success ful )

'JA

)o
)o
o
)o
—(po_famous and student_of _sy_pq) 0
) o
) o
) o
) o

(= (pa_famous and student_of _s3_py
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Example

B Unfortunately, the real world is not so clear-cut

B Need a probabilistic version of FOL
B Proposal: PRMs

Propositional g Bayes
Logic Nets
\ Y

First-order g
Logic
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Motivation

e Most real-world data are stored in relational DBMS

e Few learning algorithms are capable of handling data in
its relational form; thus we have to resort to
“flattening” the data in order to do analysis

e As aresult, we lose relational information which might
be crucial to understanding the data
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Motivation

m The world consists of base entities, partitioned
into classes X1, X», ..., X,,

B Elements of these classes share connections via
a collection of relations Ry, Ro, ..., R,,

B Each entity type is characterized by a set of
attributes, A(X;). Each attribute A; € A(X;)

assumes values from a fixed domain, V(A j)

B Defines the schema of a relational model
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Motivation

We can modify the domain previously given to this
new framework:

m 2 classes: S, P

B 1 relation: Student-0f C S x P
m A(S) = {Success}

m A(P) = {Wwell-Funded, Famous}
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Motivation

An instantiation 7 of the relational schema defines

B a concrete set of base entities O (X;) for each
class X;

B values for the attributes of each base entity for
each class

B R;(Xy,..,Xx) C OF(Xq) x ... x OF(Xy) for each

R;.
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What are PRMs?

e The starting point of this work is the structured

representation of probabilistic models of Bayesian
networks (BNs).

— BNs for a given domain involves a pre-specified set
of attributes whose relationship to each other is
fixed in advance

e PRMs conceptually extend BNs to allow the
specification of a probability model for classes of
objects rather than a fixed set of attributes

e PRMs also allow properties of an entity to depend
probabilistically on properties of other related entities
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Mapping PRMs from Relational Models

e The representation of PRMs is a direct mapping
from that of relational databases

e A relational model consists of a set of classes X,
...X,, and a set of relations R,,...,R, where each
relation R is typed

e Each class or entity type (corresponding to a
single relational table) is associated with a set of
attributes _4(X.) and a set of reference slots ® (X)
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PRM Semantics

e Reference slots correspond to attributes that are
foreign keys (key attributes of another table)

e X.p, is used to denote reference slot p of X. Each
reference slot p is typed according to the relation that it
references
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University Domain Example - Relational Schema

: M 1
Primary  --4-+ Professor Student ==-§--;
.key. S are \.\‘ Name Name
}”0‘;{23‘”@ » [ Popularity Intelligence ,
é’ty a é% . . . ) = | Indicates
any-io- | 1\ NTeaching-Ability Ranking .
r%%ygl . E one-to-
relationship| _: 1 Reqistrati . many
— ] - EEER d n . .
asned | N - RegID = | attributes
lines | =jl@me . =
. =====%Course . are
indicate| o Instructor M .
M ] Studen EEEEEEEEEEEN reference
the types Rating M
P Grade slots of the
Satisfaction class
referenced
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PRM Semantics Continued

 Each attribute A, € _4X;) takes on values in some fixed
domain of possible values denoted V(A;). We assume
that value spaces are finite

o Attribute A of class X is denoted X.A

e For example, the Student class has an Intelligence
attribute and the value space or domain for
Student./ntelligence might be {high, low}
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PRM Semantics Continued

e An instance Iof a schema specifies a set of objects x,
partitioned into classes; such that there is a value for
each attribute x.A and a value for each reference slot
X.p

e 41(x) is used as a shorthand for 4(X), where x is of class X.
For each object x in the instance and each of its
attributes A, we use |, to denote the value of x. Ain/
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Jniversity Domain Example — An [nstance of the
Schema

{ Professor \

Name
Student
Prof. Gump Nl;nfg
Populqrity Jane Doe
. high - Intelligence
Teaching-Ability high
\ m‘e dium j K Ranking
" .0
One '-“
professor . | |
is the Registration Jane Doe is registered
/ SO or only one course,
mstructo Registration P}{ 1101 Y hile th ;
v for bot : RegID l , While tne other
courses Di f% #5639 student is registered for
fficulty Grade both courses
low A
Satisfaction
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University Domain Example

{ Professor \
Name \

Prof. Vincent Student
Populqrity b K Name
~ high R John Doe
Teaching-Ability & . Intelligence
N high 4ty S high
« medium v S Rankin
There are - : j : : J
two % 3
rofessors -
p : . There are three
instructing Course Registration students in the
a cours Name RegID .
g\ Phil201 45723 Phil201 course
Difficulty

low A

Satisfaction
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PRM Semantics Continued

e Some attributes, such as name or social security
number, are fully determined. Such attributes are

labeled as fixed. Assume that they are known in any
instantiation of the schema

e The other attributes are called probabilistic
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University Domain Example - Relational Schema

<

Student ==§--:

Name

B Professo

Intelligence

Teaching-Ability Ranking

1
Course """+ -
Py . r%baég,lzstl
Probabeéldstic ame -
heldst AR

TUOUIES; M K- are s hown in

awf&lf&ézwwm Rating i

: Grade in regufar

Satisfaction

font
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PRM Semantics Continued

e A skeleton structure o of a relational schema is a partial
specification of an instance of the schema. It specifies
the set of objects (X)) for each class, the values of the
fixed attributes of these objects, and the relations that
hold between the objects

e The values of probabilistic attributes are left
unspecified

e A completion | of the skeleton structure o extends the
skeleton by also specifying the values of the
probabilistic attributes
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University Domain Example — Relational Skeleton

{ Professor \

Name Student
Prof. Gump N
Popularity ame
P 005 o~ Jane Doe
L/ .
A oy Intelligence
Teaching-Ability .:: 299
- ,??? J ~ :' . Ranking
:‘ o . 3
-“ 8
PR Registrag’on.

Registration

Course Registration

Name RegID
Phil101 #5639

Difficulty "EEnaafafha Grade

?2?2? ?2?2?
Rating Satisfaction

2?77 099
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Jniversity Domain Example — The Completion
Instance /
{ Professor \
Name
Prof. Gump Sﬁﬁfgt
Pop uﬁ; 'gy & Jane Doe
% Intelli
Teaching-Ability B nee '%?é},ce
\ me dium ) S Ranking
v * o :
" A .

Registration

Name
Phil101 #5639
Difficulty Grade
low A
Satisfaction
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e — Another relationa

Jniversity Domain Examp

Skeleton
f Professor \
Name \
Prof. Vincent Student
Popularity ) K Name
_ 7?77? B Ry John Doe
Teaching-Ability & . Intelligence
\_ 272 Ay R 292
\ ",—- 297 j I Ranking

?2?77?

e 0
L W
an
on

Course

PRMSs allow

Registration

Name RegID ] :
Phil201 #5723 | multiple possible
Difficulty Grade
297 2o skeletons
Rating Satisfaction

2?77 099
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Jniversity Domain Example — The Completion
Instance /

{ Professor \
Name \

Prof. Vincent Student
Populqrity ) K Name
_ high B R John Doe
Teaching-Ability & . Intelligence
\_ high jy KA high
\ % medium j :’ o Ranking
It ~ ¢
s v

o
-

Course

PRMSs also allow

Registration

Name RegID ] :
Phil201 #5723 | multiple possible
Difficulty .
low P instances and
Satisfaction values
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More PRM Semantics

e For each reference slot p, we define an inverse
slot, p1, which is the inverse function of p

e For example, we can define an inverse slot for the
Student slot of Registration and call it Registered-
In. Since the original relation is a one-to-many
relation, it returns a set of Registration objects

e A final definition is the notion of a slot chain
T=p,..p,,, Which is a sequence of reference slots
that defines functions from objects to other
objects to which they are indirectly related. For
example, Student.Registered-In.Course.Instructor
can be used to denote a student’ s set of
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Definition of PRMs

e The probabilistic model consists of two
components: the qualitative dependency

structure, S, and the parameters associated with
it, O

e The dependency structure is defined by
associating with each attribute X.A a set of
parents Pa(X.A); parents are attributes that are

“direct influences” on X.A. This dependency
holds for any object of class X
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Definition of PRMs Cont’ d

e The attribute X.A can depend on another
probabilistic attribute B of X. This dependence
induces a corresponding dependency for
individual objects

e The attribute X.A can also depend on attributes of
related objects X.t7.B, where tis a slot chain

e For example, given any Registration object r and
the corresponding Professor object p for that
instance, r.Satisfaction will depend

probabilistically on r.Grade as well as p.Teaching-
Ability
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PRM Dependency Structure for the University Domain

Edges correspond
Professo ~  to probabilistic
I (Teaching-Abili dependency for

objects in that class

Edges from
one class to
another are routed
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Dependency Structure in PRMs

e As mentioned earlier, x.t represents the set of objects
that are t-relatives of x. Except in cases where the slot

cha

in is guaranteed to be single-valued, we must

specify the probabilistic dependence of x.A on the
multiset {y.B:y € x.t}

e The notion of aggregation from database theory gives

ust
pro

ne tool to address this issue; i.e., x.a will depend
pabilistically on some aggregate property of this

mu

tiset
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Aggregation in PRMs

e Examples of aggregation are: the mode of the set
(most frequently occurring value); mean value of
the set (if values are numerical); median,
maximum, or minimum (if values are ordered);
cardinality of the set; etc

e An aggregate essentially takes a multiset of values
of some ground type and returns a summary of it

e The type of the aggregate can be the same as that
of its arguments, or any type returned by an
aggregate. X.A can have y(X.t.B) as a parent; the
semantics is that for any x € X, x.a will depend on

the value of y(x.t.b), V(y(x.T.b))
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PRM Dependency Structure

M
E IIIIIIIIIIIIIIIIIIIII PrOfessor
Teaching-A biIE A Stud?nt may take
multiple courses
M m ¥ Student
Course ............. ]. ....E ; ntelligence
s _ . Mo Ranking
— s Reglstrat’o ..........
Difficulty AVG
A course ratin AVG :
p y " ranking depends
epenas on e av;rage Grade on the average
Satzsfc.zctzon of students of his grades
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Parameters of PRMs

e A PRM contains a conditional probability distribution
(CPD) P(X.A|Pa(X.A)) for each attribute X.A of each class

e More precisely, let U be the set of parents of X.A. For
each tuple of values u € V(U), the CPD specifies a

distribution P(X.A|u) over V(X.A). The parameters in all
of these CPDs comprise 0,
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CPDs in PRMs

Professor

eaching-Ability>

opulari

________
N

Student
telligenc

KD.I A B C av
hh| 0.5 04 0.1 A 101 02 07
?}f gé g ; gjl B 102 04 04
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Parameters of PRMs Continued

e Given a skeleton structure for our schema, we want to
use these local probability models to define a
probability distribution over all completions of the
skeleton

e Note that the objects and relations between objects in
a skeleton are always specified by o, hence we are
disallowing uncertainty over the relational structure of
the model

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Parameters of PRMs Continued

e To define a coherent probabilistic model, we must
ensure that our probabilistic dependencies are acyclic,
so that a random variable does not depend, directly or
indirectly, on its own value

e A dependency structure Sis acyclic relative to a
skeleton o if the directed graph over all the parents of
the variables x.A is acyclic

e |f Sis acyclic relative to g, then the following defines a
distribution over completions / of o: P(/|0,5,0 ) =

DAEIAQ@HX{;U”“ Lraea))
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Class Dependency Graph for the University Domain

@rse. Diffic@ Student.lntellige@
@fesson Teaching-A b@ @istra tion.Grade

@fessor,PopulariE @istratian.Satisfaction

l

@urse. Ra tin)
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Ensuring Acyclic Dependencies

e |n general, however, a cycle in the class dependency
graph does not imply that all skeletons induce cyclic
dependencies

e A model may appear to be cyclic at the class level,
however, this cyclicity is always resolved at the level of
individual objects

e The ability to guarantee that the cyclicity is resolved
relies on some prior knowledge about the domain. The
user can specify that certain slots are guaranteed
acyclic
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PRM for the Genetics Domain

e (FGHher). .. e (Mother).................. .
Persori i Person

QoodTyD QoodTyD
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Dependency Graph for Genetics Domain
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Learning PRMs: Parameter Estimation

e Assume that the qualitative dependency structure
S of the PRM is known

e The parameters are estimated using the likelihood
function which gives an estimate of the
probability of the data given the model

e The likelihood function used is the same as that
for Bayesian network parameter estimation. The
only difference is that parameters for different
nodes in the network — those corresponding to
the x.A for different objects x from the same class
— are forced to be identical
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Learning PRMs: Parameter Estimation

e Ourgoalis to find the parameter setting 6, that maximizes
the likelihood L(8,| 1,0,8) for a given |, o and $: L(6,|/,0,5)
=P(l]/0,5,8,). Working with the logarithm of this function:
I(6,]1,0,8) =log P(I]0,5,0) =

E Z Z log P(]X.A | [Pa(x.A))
X, AEA(X;)

xE0™ (X))

e This estimation is simplified by the decomposition of log-
likelihood function into a summation of terms
corresponding to the various attributes of the different
classes. Each of the terms in the square brackets can be
maximized independently of the rest

e Parameter priors can also be incorporated
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Learning PRMs: Structure Learning

e We now move to the more challenging problem
of learning a dependency structure automatically

e There are three important issues that need to be
addressed: hypothesis space, scoring function,
and search algorithm

e Our hypothesis specifies a set of parents for each
attribute X.A. Note that this hypothesis space is
infinite. Our hypothesis space is restricted by
ensuring that the structure we are learning will
generate a consistent probability model for any
skeleton we are likely to see
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Learning PRMs: Structure Learning Continued

e The second key component is the ability to
evaluate different structures in order to pick one
that fits the data well. Bayesian model selection
methods were adapted

e Bayesian model selection utilizes a probabilistic
scoring function. It ascribes a prior probability
distribution over any aspect of the model about
which we are uncertain

e The Bayesian score of a structure Sis defined as
the posterior probability of the structure given
the data /
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Learning PRMs: Structure Learning Continued

e Using Bayes rule: P(S]|/,0) < P(l]S,0) P(S|0)

e |t turns out that marginal likelihood is a crucial
component, which has the effect of penalizing models
with a large number of parameters. Thus this score
automatically balances the complexity of the structure
with its fit to the data

e Now we need only provide an algorithm for finding a
high-scoring hypotheses in our space
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Learning PRMs: Structure Learning Continued

e The simplest heuristic search algorithm is greedy hill-
climbing search, using the scoring function as a metric.

Maintain the current candidate structure and iteratively
iImprove it

e Local maxima can be dealt with using random restarts,
i.e., when a local maximum is reached, we take a

number of random steps, and then continue the greedy
hill-climbing process
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Learning PRMs: Structure Learning Continued

e The problems with this simple approach is that there
are infinitely many possible structures, and it is very
costly in computational operations

e A heuristic search algorithm addresses these issues. At
a high level, the algorithm proceeds in phases
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Learning PRMs: Structure Learning Continued

e At each phase k, we have a set of potential parents
Pot (X.A) for each attribute X.A

e Then apply a standard structure search restricted to the
space of structures in which the parents of each X.A are
in Pot,(X.A). The phased search is structured so that it
first explores dependencies within objects, then
between objects that are directly related, then
between objects that are two links apart, etc
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PRM with AU Semantics
cl
T« ‘ Patient
: 02 o e Contact
Stram
Panent
“
“

PRM + relational skeleton o

probability distribution over completions /:

P(I10,S,0)= HHP(x.A | parents, (x.A))
xXEo x.A

A ~
Objects  Attributes
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Learning PRMs —
Database :' wemEE <:\>
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- Contact
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Strain
PRM
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> Contact
e YR Pt e Parameter estimation
— — e Structure selection

Relational Schema
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Parameter Estimation in PRMs
e Assume known dependency structure S

e Goal: estimate PRM parameters 0
— entries in local probability models, ex_A|pmms(x_A)

e 0 isgood ifitis likely to generate the observed data, instance I.
[(O0:1,5)=1logP(I1S,0)
e MLE Principle: Choose 8% so as to maximize /

As in Bayesian network learning, decomposition plays a
crucial role: separate terms for different X. A
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Patient ML Parameter Estimation

HIV

DiseaseSite

Contact
CloseContact

Transmitted

(Cont.Transmitted |

N(C.T=f,P.H=f,C.C=t) WS e lcl

7 N(P.H=f,C.C=t) Cont.Contactor.HIV)

Query for counts:
Patient D <] Contact
CO unt |t C Transmitted table table
. P.HIV . J S
C.CloseContact
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Structure Selection
e |dea:
— define scoring function
— do local search over legal structures

e Key Components:
— “legal” models
— scoring models
— searching model space
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Legal Models

e PRM defines a coherent probability model over a skeleton o if
the dependencies between object attributes is acyclic

r
Paper
author-of P1
Researcher sammunnn®®t "t Accepted
guun® sunt® )
Prof. Gump T . Paper
Reputation " PalbalalL] L T T T, P2
Accepted
yes

How do we guarantee that a PRM is acyclic for every skeleton?
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Attribute Stratification

PRM dependency
structure S

| > Dependency graph

Paper. Accecpted

Researcher. Reputation

dependency graph acyclic = acyclic for any o

if Researcher. Reputation
depends directly on Paper. Accepted
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Scoring Models

e Bayesian approach:

marginal
likelihood prior

Score (S:I) =log P(S1T)log[ P(I1S)P(S)]

e Standard approach to scoring models; used in Bayesian
network learning
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Search over Models
Phase 0: consider only dependencies within a class

Strain Patient

Strain

Patient
>

Contact

Patient
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Phased Structure Search

Phase 1: consider dependencies from “neighboring classes, via
schema relations \mmma

Patient
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Phased Structure Search

Phase 2: consider dependencies from “further classes,
via relation chains
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So far we have con5|dered PRM with Attribute Uncertainty
. A‘”’ije"‘*‘]\:- Primary Keys
( ““ Person: p1 {4]
Movie m1 }:‘ Person p1

L
O s N
O
Person p2_

N ‘e, Vote v2
M Movie: m1
Foreign Keys

[ Person: p2

Movie m2 }
IS
\ ”

* Vote v3
Movie: m2
Person: p2

Fixed relational skeleton o:
— set of objects in each class
— relations between them

Uncertainty over assignment of values to attributes
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PRM w/ AU Semantics

PRM + relational skeleton o

Ground BN defining distribution over
complete instantiations of attributes -

P(I10.,S,0) = nnP(x.A | parents, (x.A))

xEeo x.A
v \

Objects  Attributes
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Problem

e Relational structure provides useful information for probability
estimation and prediction

e PRM with attribute uncertainty applicable only in domains where
we have full knowledge of the relational structure

= Need probabilistic models of relational structure that capture
structural uncertainty

= Reference uncertainty
= Existence uncertainty
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PRM With Structural Uncertainty

Cornell

\—

Agent

7 2

Theory papers

Scientific Papevl\~ —

Topic

I

Theory Al

Topic

Theory Al

= Need probabilistic models of relational structure that capture

structural uncertainty

= Reference uncertainty
= Existence uncertainty
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PRMs with Structural Uncertainty

Applicable in cases where we do not have full knowledge of
relational structure

Incorporating uncertainty over relational structure into
probabilistic model can improve predictive accuracy
Two cases:

— Reference uncertainty
— Existence uncertainty
e Different probabilistic models

e Varying amount of background knowledge required for each
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Citation Relational Schema

Author

Institution
Research Area

.Illllll.

¢

Wrote
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Attribute Uncertainty

P( Institution |
Research Area)

P( Topic |
Paper.Author.Research Area

P( WordN | Topic)
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Reference Uncertainty

— Bibliography /
-

Scientific Paper

Y

Document Collection
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PRM w/ Reference Uncertainty

Paper 'll-.E :...... Paper
Topic : - E .
W:rds Cites Topic

w=uke Citing Words
Cited

Dependency model for foreign keys
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Reference Uncertainty Example

Paper
Topic
Al

Paper
P3
Topic

Al

Paper.Topic = Al

Paper

Topic ]
Words F’tes 0.1 0.9
Citing
_ 0.99 0.01
> Cited
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PRMs w/ RU Semantics

Paper E = Paper
Topic™| | cites | i, Topic
Words . £

=== Cited ,*| = Words

Cites

[ J
Citing

PRM RU entity skeleton o

PRM-RU + entity skeleton o

=> probability distribution over full instantiations I
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Learning PRMs with Reference Uncertainty

e |dea:
— define scoring function
— do phased local search over legal structures

e Key Components:
— legal models

e Model new dependencies
— scoring models

e Unchanged
— searching model space

e New operators
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Pennsylvania State University

Structure Search: New Operators

Paper p«, -
Topic | . :| Author
Words " . - u

n Institution
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PRMs w/ RU Summary

Pennsylvania State University

e Define semantics for uncertainty over foreign-key values

e Search now includes operators Refine and Abstract for
constructing foreign-key dependency model

e Provides one simple mechanism for link uncertainty
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Existence Uncertainty

Document Collection Document Collection
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PRM with Existence Uncertainty

Paper |- [ Paper
Topic E i E :
P : Cites : | Topic

T Exists %

Dependency model for existence of relationship
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Existance Uncertainty Example

Paper |- | Paper
Topic : Cites  —~ Topic
Words :..l. . .- Words

Citer.Topic Cited.Topic

Theory

Theory
Al
Al
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PRMs w/ EU Semantics

Paper
Cites Topic 222
Exists Words
PRM EU object skeleton o

PRM-EU + object skeleton o

=> probability distribution over full instantiations 1
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Learning PRMs with Existence uncertainty

e |dea: just like in PRMs w/ AU
— define scoring function
— do greedy local structure search
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Structure Selection: PRM

e |dea:
— define scoring function
— do phased local search over legal structures

e Key Components:
— legal models: model new dependencies

— scoring models: unchanged
— searching model space
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Prediction Accuracy
Cora WebKB

baseline 75*2.0 74 *25
RU Citing 81*1.7 78 2.3
RU Cited 79*1.3 77 1.5

EU 86+0.09 82*13
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Inference in Unrolled BN

e Prediction requires inference in “unrolled” network
— Infeasible for large networks
— Use approximate inference for E-step

e Local message passing
— Belief messages transferred between related instances
— Induces a natural “influence” propagation behavior

e |nstances give information about related instances
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Conclusions

e PRMs can represent distribution over attributes from multiple
tables

e PRMs can capture link uncertainty

e PRMs allow inferences about individuals while taking into
account relational structure
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