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•  The	assump3on	that	variables	are	independent	(e.g.,	Naïve	
Bayes	assump3on	that	the	variables	are	independent	given	
the	class)	can	be	too	restric3ve	

•  But	represen3ng	the	joint	distribu3ons	is	intractable	without	
some	independence	assump3ons	

•  Probabilis3c	graphical	models	e.g.,	Bayes	networks,	explicitly	
model	condi3onal	independence	among	subsets	of	variables	
to	yield	a	graphical	representa3on	of	probability	distribu3ons	
that	admit	such	independence	

Probabilis3c	Graphical	Models	
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Bayesian	network	

•  Bayesian	network	is	a	directed	acyclic	graph	(DAG)	in	which	
the	nodes			represent	random	variables	

•  Each	node	is	annotated	with	a	probability	distribu3on	P	(Xi	
|	Parents(Xi	)	)	represen3ng	the	dependency	of	that	node	
on	its	parents	in	the	DAG	

•  Each	node	is	asserted	to	be	condi3onally	independent	of	its		
non-descendants,	given	its	immediate	predecessors	

•  Arcs	represent	direct	dependencies	
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•  X	is	condi3onally	independent	of	Y	given	Z	if	the	probability	
distribu3on	governing	X	is	independent	of	the	value	of	Y	
given	the	value	of	Z:		

•  P	(X	|Y,	Z	)	=	P	(X	|Z	)	that	is,	

Condi3onal	Independence			

)|(),|(),,( kikjikji zZxXPzZyYxXPzyx ======∀
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Naïve	Bayes	

C 

X1 X2 X3 Xn …... 



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Bayesian	Networks	

Efficient	factorized	representa3on	of	probability	distribu3ons	via	
condi3onal	independence	
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Bayesian	Networks	

•  Qualita3ve	part	
sta3s3cal	
independence	
statements	
represented	in	the	
form	of	a	directed	
acyclic	graph		
(DAG)	
•  Nodes	-	random	
variables		

•  Edges	–	direct	
influence	

Quan3ta3ve	part		
Condi3onal	probability	
distribu3ons	–	one		for	each	
random	variable	condi3oned	on	
its	parents	
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Qualita3ve	part	

• Nodes	are	independent	of	non-
descendants	given	their	parents		

d-separa3on:		
• a	graph	theore3c	criterion	
for	reading	independence	statements	

• can	be	computed	in	linear	3me	(in	the	
number	of	edges)	

Earthquake 
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Directed	graphs	and	joint	probabili3es	
•  Let																										be	a	set	of	random	variables	

•  Let	parents(Xi	)	be	the	set	of	parents	of			

•  Associate	a	vertex	in	the	directed	a-cyclic	graph	with	a	random	
variable	and	a	func3on	of	the	form	

•  Then		
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What	independences	does	a	Bayes	Net	model?	
•  In	order	for	a	Bayesian	network	to	model	a	probability	

distribu3on,	the	following	must	be	true	by	defini3on:		
•  Each	variable	is	condi3onally	independent	of	all	its	non-

descendants	in	the	graph	given	the	value	of	all	its	parents.	
This	implies	

	
	
	
	
But	what	else	does	it	imply?	
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What	Independences	does	a	Bayes	Network	model?	

Example:	

Z 

Y 

X 

Given	Y, does	learning	the	value	of Z tell	us	
nothing	new	about X?  
 
i.e.,	is P(X|Y, Z) equal	to P(X | Y)? 
 
Yes.		Since	we	know	the	value	of	all	of X’s 
parents (namely, Y),	and Z is	not	a 
descendant	of X, X is	condi3onally	
independent	of Z. 
 
Also,	since	independence	is	symmetric,		
P(Z|Y, X) = P(Z|Y). 
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What	Independences	does	a	Bayes	Network	model?	

•  Let	I(X,Y,Z)	represent	X	and	Z	being	condi3onally	independent	
given	Y.	

•  I(X,Y,Z)?		Yes,	just	as	in	previous	example:	All	X’s	parents	
given,	and	Z	is	not	a	descendant.	

Y 

X Z 
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What	Independences	does	a	Bayes	Network	model?	

•  I(X,{U},Z)?		No.	
•  I(X,{U,V},Z)?		Yes.	

Z 

V U 

X 



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Dependency	induced	by	V-structures	

•  X has	no	parents,	so	we	know	all	its	parents’	values	trivially	
•  Z	is	not	a	descendant	of	X 
•  So,	I(X,{},Z),	even	though	there	is	a	undirected	path	from	X	

to	Z	through	an	unknown	variable	Y. 
•  What	if	we	do	know	the	value	of	Y ?		Or	one	of	its	

descendants?	

Z X 

Y 
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The	Burglar	Alarm	example	

•  Your	house	has	a	twitchy	burglar	alarm	that	is	also	some3mes	
triggered	by	earthquakes.	

•  Earth	arguably	doesn’t	care	whether	your	house	is	currently	
being	burgled	

•  While	you	are	on	vaca3on,	one	of	your	neighbors	calls	and	
tells	you	your	home’s	burglar	alarm	is	ringing.			

Burglar Earthquake 

Alarm 

Phone Call 
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•  But	now	suppose	you	learn	that	there	was	a	medium-sized	
earthquake	in	your	neighborhood.	…Probably	not	a	burglar	
aher	all.	

•  Earthquake	“explains	away”	the	hypothe3cal	burglar.	
•  But	then	it	must	NOT	be	the	case	that   

 I(Burglar,{Phone Call}, Earthquake),  
 even	though I(Burglar,{}, Earthquake)! 

 

Burglar Earthquake 

Alarm 

Phone Call 
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d-separa3on	

•  Fortunately,	there	is	a	rela3vely	simple	algorithm	for	
determining	whether	two	variables	in	a	Bayesian	network	are	
condi3onally	independent	given	some	other	variables:	
Ø 	d-separa3on.	

•  Two	variables	are	independent	if	all	paths	between	them	are	
blocked	by	evidence	

•  Three	cases:	
Ø  Common	cause	
Ø  Intermediate	cause	
Ø  Common	Effect	
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Blocked	 Unblocked	

E 

R A 

E 

R A 

d-separa3on	

• Two	variables	are	
independent	if	all	paths	
between	them	are	
blocked	by	evidence	

• Three	cases:	
•  Common	cause	
•  Intermediate	cause	
•  Common	Effect	

Blocked	 Unblocked	

•  If		we	do	not	know	whether	an	earthquake	
occurred,	then	radio	announcement	can	
influence	our	belief	about	the	alarm	having	
gone	off.		

•  If	we	know	that	earthquake	occurred,	then	
radio	announcement	gives	no	informa3on	
about	the	alarm	

Evidence	may	be	transmiHed	
through	a	diverging	connec3on	
unless	it	is	instan3ated.	
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Blocked	 Unblocked	
E 

C 

A 

E 

C 

A 

d-separa3on	

Common	cause	
Intermediate	cause	
Common	Effect	

Blocked	 Unblocked	

Evidence	may	be	transmiHed	through	
a	serial	connec3on	unless	it	is	blocked	
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Blocked	 Unblocked	E B 

A 

C 

E B 

A 

C 
E B 

A 

C 

d-separa3on	

Common	cause	

Intermediate	cause	

Common	Effect	

Blocked	 Unblocked	

Evidence	may	be	transmiHed	through	a	converging	
connec3on	only	if	either	the	variable	or	one	of	its	
descendants	has	received	evidence	
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§  I(X,Y,Z)	denotes	X	and	Z	are	
independent	given	Y 
–  Dot	indicates	evidence	available	
–  Surely	I(R,{E,A}B) 
–  Possibly	¬I(R,A,B) 
–  Possibly	¬I(R,B,C) 
–  Surely I(R,B) 

Example	

E B 

A 

C 

R 
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d-separa3on	

§  Defini3on:	X	and	Z	are	d-separated	by	a	set	of	
evidence	variables	E	iff	every	undirected	path	from	X	
to	Z	is	“blocked”	by	evidence	E	
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d-separa3on	
•  Theorem	[Verma	&	Pearl,	1998]:	If	a	set	of	evidence	variables	E	d-

separates	X	and	Z	in	a	Bayesian	network’s	graph,	then	I(X, E, Z). 
•  d-separa3on	can	be	computed	in	linear	3me	using	a	depth-first	

search	like	algorithm.	
•  We	now	have	a	fast	algorithm	for	automa3cally	inferring	whether	

finding	out	about	the	value	of	one	variable	might	give	us	any	
addi3onal	hints	about	some	other	variable,	given	what	we	already	
know.		

•  d-separa3on	of	X	and	Z	by	E	is	sufficient	for	asser3ng	I(X, E, Z),	but	
not	necessary.		
–  Variables	may	actually	be	independent	when	they	are	not	d-
separated,	depending	on	the	actual	probabili3es	involved	
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d-separa3on	

A B 

C D 

E F 

G 

I 

H 

J 

I(C, {}, D)? 
I(C, {A}, D)? 
I(C, {A, B}, D)? 
I(C, {A, B, J}, D)? 
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Markov	Blanket	

•  A	node	is	condi3onally	independent	of	all	other	nodes	in	the	
network	given	its	parents,	children,	and	children’s	parents	-	

Alarm 

MaryCalls JohnCalls 

Earthquake Burglary 

Burglary	is	independent	of	John	Calls	and	Mary	Calls	given	Alarm	
and	Earth	Quake	
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Bayesian	Networks:	Summary	

•  Bayesian	networks	offer	an	efficient	representa3on	of	
probability	distribu3ons	

•  Efficient:	
•  Local	models	
•  Independence	(d-separa3on)	

•  Effec3ve:	Algorithms	take	advantage	of	structure	to		
•  Compute	posterior	probabili3es		
•  Compute	most	probable	instan3a3on	
•  Decision	making	
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Inference	in	Bayesian	network	

Bad	news:	
•  –	Exact	inference	problem	in	BNs	is	NP-hard	(Cooper)	
•  –	Approximate	inference	is	NP-hard	(Dagum,	Luby)	
In	prac3ce,	things	are	not	so	bad	
•  Exact	inference		

–  Inference	in	Simple	Chains	
–  Variable	elimina3on	
–  Clustering	/	join	tree	algorithms	

•  Approximate	inference	
–  Stochas3c	simula3on	/	sampling	methods	
–  Markov	chain	Monte	Carlo	methods	
–  Mean	field	theory	
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Compu3ng	joint	probability	distribu3ons	using	a	
Bayesian	network	

§  Any	entry	in	the	joint	probability	distribu3on	can	be	calculated	
from	the	Bayesian	network.	

§  We’re	just	using	the	chain	rule	and	condi3onal	independence.	

)()(),|()|()|(                                
),(),|()|()|(                                

),,(),,|()|(                                
),,,(),,,|(),,,,(

EPBPEBAPAMPAJP
EBPEBAPAMPAJP
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Compu3ng	joint	probabili3es	

•  Joint	distribu3on	can	be	used	to	answer		any	query	about	the	
domain.		

•  Bayesian	network	represents	the	joint	distribu3on	
•  Any	query	about	the	domain	can	be	answered	using	a	BN	
•  Tradeoff:		A	BN	can	be	much	more	concise,	but	you	need	to	

calculate,	rather	than	look	up	in	a	table,	probabili3es	from	the	
joint	distribu3on	

P(X1,...,Xn ) = P(X11) P(Xi
i=2

n

∏ | Parents(Xi )

General	formula:	
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Inference	in	Bayesian	Networks	

•  Bayesian	networks	are	a	compact	encoding	of	the	full	joint	probability	
distribu3on	over	N	variables	that	makes	condi3onal	independence	
assump3ons	between	these	variables	explicit.	

•  We	can	use	Bayesian	networks	to	compute	any	probability	of	interest	
over	the	given	variables.	

•  Now	we	look	at	Inference	in	more	detail	
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Inference	in	Bayesian	Networks	

Find	P(Q=q|E=e) 
						-	Q the	query	variable(s)	
						-	E set	of	evidence	variables	
														P(q|e) =   P(q,e) / P(e) 
	X1,.. Xn			are	network	variables	except	Q,E  
 

( ) ( )∑=
nxxx

nXXXeqeqP
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Basic	Inference	

																				P(b)	=	?	

A B 

∑∑ ==
aa

bP P(a) a) | P(b   b) P(a,)(
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Basic	Inference	

∑∑ ==
aa

bP P(a) a) | P(b   b) P(a,)(
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Inference	in	trees	

Y1	 Y2	

X	

( ) ( ) ( ) ( ) ( ) ( )2121212121
212121

YPYPYYXPYYPYYXPYYXPXP
yyyyyy
∑∑∑ ===
,,,

,|,,|,,)(
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Polytrees	

§  A	network	is	singly	connected	(a	polytree)	if	it	contains	
no	undirected	loops.	

Not	a	polytree	 Polytree	
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Inference	in	polytrees	

•  Theorem:	Inference	in	polytrees	can	be	performed	in	3me	that	is	
polynomial	in	the	number	of	variables.	

•  Main	idea:	in	variable	elimina3on,	need	only	maintain	
distribu3ons	over	single	nodes.	
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Inference	with	Bayesian	Networks	

•  Inference	in	polytrees	can	be	performed	efficiently	
•  Inference	with	DAG	is	NP-Hard	

–  Proof	by	reduc3on	of	SAT	to	Bayesian	network	
inference	
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Approaches	to	inference	

•  Exact	inference		
–  Inference	in	Simple	Chains	
–  Variable	elimina3on	
–  Clustering	/	join	tree	algorithms	

• Approximate	inference	
–  Stochas3c	simula3on	/	sampling	methods	
– Markov	chain	Monte	Carlo	methods	
– Mean	field	theory	
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Variable	Elimina3on	

•  General	idea:	
•  Write	query	in	the	form	

•  Itera3vely	
– Move	all	irrelevant	terms	outside	of	innermost	sum	
– Perform	innermost	sum,	gerng	a	new	term	
–  Insert	the	new	term	into	the	product	

∑ ∑∑∏=
kx x x i

iin paxPXP
3 2

)|(),( !e
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Variable	Elimina3on	
•  A	factor	over	X	is	a	func3on	from	Domain(X)	to	numbers	in	the	
interval	[0,1]	

•  A	condi3onal	probability	table	is	a	factor	
•  A	joint	distribu3on	is	a	factor	
•  Bayesian	network	inference		

–  Factors	are	mul3plied	to	generate	new	ones	
–  Variables	in	factors	are	summed	out	 	(marginaliza3on)	
–  A	variable	can	be	summed	out	as	soon	as	all	the	factors	in	
which	the	variable	appears	have	been	mul3plied	
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A	More	Complex	Example	

Visit to  
Asia Smoking 

Lung Cancer Tuberculosis 

Abnormality 
in Chest Bronchitis 

X-Ray Dyspnea 
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V S 

L T 

A B 

X D 
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•  We	want	to	compute	P(d)	
•  Need	to	eliminate:	v,s,x,t,l,a,b 
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V S 

L T 

A B 

X D 

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

•  We	want	to	compute	P(d)	
•  Need	to	eliminate:	v,s,x,t,l,a,b 
•  Ini3al	factors	

Eliminate: v 

Note: fv(t) = P(t) 
In	general,	result	of	elimina3on	is	not	necessarily	a	probability	
term	

Compute:	 ∑=
v

v vtPvPtf )|()()(

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfv⇒
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V S 

L T 

A B 

X D 

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

•  We	want	to	compute	P(d)	
•  Need	to	eliminate:	s,x,t,l,a,b 
•  Ini3al	factors	

Eliminate: s 

Summing	on	s	results	in	a	factor	with	two	arguments fs(b,l) 
In	general,	result	of	elimina3on	may	be	a	func3on	of	several	
variables.	

Compute: ∑=
s

s slPsbPsPlbf )|()|()(),(

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfv⇒

),|()|(),|(),()( badPaxPltaPlbftf sv⇒
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V S 

L T 

A B 

X D 

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

•  We	want	to	compute	P(d)	
•  Need	to	eliminate:	x,t,l,a,b 
•  Ini3al	factors	

Eliminate: x 

Note: fx(a) = 1 for	all	values	of a 

Compute:	 ∑=
x

x axPaf )|()(

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfv⇒

),|()|(),|(),()( badPaxPltaPlbftf sv⇒

),|(),|()(),()( badPltaPaflbftf xsv⇒
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V S 

L T 

A B 

X D 

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

•  We	want	to	compute	P(d)	
•  Need	to	eliminate:	t,l,a,b 
Ini3al	factors	

Eliminate: t 

Compute: ∑=
t

vt ltaPtflaf ),|()(),(

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfv⇒

),|()|(),|(),()( badPaxPltaPlbftf sv⇒

),|(),|()(),()( badPltaPaflbftf xsv⇒

),|(),()(),( badPlafaflbf txs⇒
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V S 

L T 

A B 

X D 

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

•  We	want	to	compute	P(d)	
•  Need	to	eliminate:	l,a,b 
•  Ini3al	factors	

Eliminate: l 
Compute:	 ∑=

l
tsl laflbfbaf ),(),(),(

),|()|(),|()|()|()()( badPaxPltaPsbPslPsPtfv⇒

),|()|(),|(),()( badPaxPltaPlbftf sv⇒

),|(),|()(),()( badPltaPaflbftf xsv⇒

),|(),()(),( badPlafaflbf txs⇒

),|()(),( badPafbaf xl⇒
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),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

•  We	want	to	compute	P(d)	
•  Need	to	eliminate:	b 
•  Ini3al	factors	

Eliminate: a,b 
Compute:	

∑∑ ==
b

ab
a

xla dbfdfbadpafbafdbf ),()(),|()(),(),(

),|(),|()(),()( badPltaPaflbftf xsv⇒

),|()(),( badPafbaf xl⇒

),|(),()(),( badPlafaflbf txs⇒

)(),( dfdbf ba ⇒⇒

V S 

L T 

A B 

X D 
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Basic	opera3ons	

•  Mul3plying	two	factors	
•  Summing	out	a	variable	from	a	product	of	factors	–	marginaliza3on	
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Mul3plying	factors:	Pointwise	product	

 

 

•  Pointwise	product	is	NOT	
–  matrix	mul3plica3on	
–  element	by	element	mul3plica3on	
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Dealing	with	evidence	

•  How	do	we	deal	with	evidence?	
•  Suppose	get	evidence	V = 1, S = 0, D = 1	
•  We	want	to	compute	P(L, V = 1, S = 0, D = 1) 

V S 

L T 

A B 

X D 
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Dealing	with	Evidence		

•  We	start	by	wri3ng	the	factors:	

	
•  Since	we	know	that	V = 1,	we	don’t	need	to	eliminate	V 
•  Instead,	we	can	replace	the	factors	P(V)	and	P(T|V)	with	

•  These	“select”	the	appropriate	parts	of	the	original	factors	
given	the	evidence	

•  Note	that	fp(V)	is	a	constant,	and	thus	does	not	appear	in	
elimina3on	of	other	variables	

),|()|(),|()|()|()|()()( badPaxPltaPsbPslPvtPsPvP

)|()()( )|()( 11 ==== VTPTfVPf VTpVP

V S 

L T 

A B 

X D 
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Variable	Elimina3on	

•  We	now	understand	variable	elimina3on	as	a	sequence	of	
rewri3ng	opera3ons	

•  Actual	computa3on	is	done	in	elimina3on	step	
•  Computa3on	depends	on	order	of	elimina3on	
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Dealing	with	Evidence		

•  Given	evidence	V = 1, S = 0, D = 1	
•  Compute	P(L, V = 1, S = 0, D = 1 )	
•  Ini3al	factors,	aher	serng	evidence:	

),()|(),|()()()( ),|()|()|()|()()( bafaxPltaPbflftfff badPsbPslPvtPsPvP

V S 

L T 

A B 

X D 
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•  Given	evidence	V = 1, S = 0, D = 1	
•  Compute	P(L, V = 1, S = 0, D = 1 )	
•  Ini3al	factors,	aher	serng	evidence:	

•  Elimina3ng	x,	we	get	

),()|(),|()()()( ),|()|()|()|()()( bafaxPltaPbflftfff badPsbPslPvtPsPvP

),()(),|()()()( ),|()|()|()|()()( bafafltaPbflftfff badPxsbPslPvtPsPvP

Dealing	with	Evidence		
V S 

L T 

A B 

X D 
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Dealing	with	Evidence		

•  Given	evidence	V = 1, S = 0, D = 1	
•  Compute	P(L, V = 1, S = 0, D = 1)	
•  Ini3al	factors,	aher	serng	evidence:	

•  Elimina3ng	x,	we	get	
	

•  Elimina3ng	t,	we	get	
),()|(),|()()()( ),|()|()|()|()()( bafaxPltaPbflftfff badPsbPslPvtPsPvP

),()(),|()()()( ),|()|()|()|()()( bafafltaPbflftfff badPxsbPslPvtPsPvP

),()(),()()( ),|()|()|()()( bafaflafbflfff badPxtsbPslPsPvP

V S 

L T 

A B 

X D 
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Dealing	with	Evidence		
•  Given	evidence	V = 1, S = 0, D = 1	
•  Compute	P(L, V = 1, S = 0, D = 1)	
•  Ini3al	factors,	aher	serng	evidence:	

•  Elimina3ng	x,	we	get	

•  Elimina3ng	t,	we	get	

•  Elimina3ng	a, we	get	

),()|(),|()()()( ),|()|()|()|()()( bafaxPltaPbflftfff badPsbPslPvtPsPvP

),()(),|()()()( ),|()|()|()|()()( bafafltaPbflftfff badPxsbPslPvtPsPvP

),()(),()()( ),|()|()|()()( bafaflafbflfff badPxtsbPslPsPvP

),()()( )|()|()()( lbfbflfff asbPslPsPvP

V S 

L T 

A B 

X D 
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Variable	Elimina3on	Algorithm	
•  Let	X1,…,	Xm	be	an	ordering	on	the	non-query	variables	

•  For	i=	m,	…,	1	
•  Leave	in	the	summa3on	for	Xi	only	factors	men3oning	Xi	
•  Mul3ply	the	factors,	gerng	a	factor	that	contains	a	number	
for	each	value	of	the	variables	men3oned,	including	Xi	

•  Sum	out	Xi,	gerng	a	factor	f	that	contains	a	number	for	each	
value	of	the	variables	men3oned,	not	including	Xi	

•  Replace	the	mul3plied	factor	in	the	summa3on	

∏∑ ∑∑
j

jj
X XX

XParentsXP
m

))(|(...
1 2
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∑=
x

kxkx yyxfyyf ),,,('),,( 11 ……

∏
=

=
m

i
likx i

yyxfyyxf
1

,1,1,11 ),,(),,,(' ……

Complexity	of	variable	elimina3on	
•  Suppose	in	one	elimina3on	step	we	compute	

•  This	requires																																																		mul3plica3ons	

•  Complexity	is	(not	surprisingly)	exponen3al	in	number	of	
variables	in	the	intermediate	factor!	

∏⋅⋅
i

iYDomainXDomainm )()(
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Variable	Elimina3on	
•  We	want	to	select	“good”	elimina3on	orderings	that	

reduce	complexity	
•  This	can	be	done	be	examining	a	graph	theore3c	property	

of	the	“induced”	graph.	
•  This	reduces	the	problem	of	finding	good	ordering	to	

graph-theore3c	opera3on	that	is	well-understood—
unfortunately	compu3ng	it	is	NP-hard!	
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Bayesian	Network	Inference	in	polytrees	–	Message	
Passing	algorithm	
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Decomposing	the	probabili3es	

•  Suppose	we	want	P(Xi	|	E)	where	E	is	some	set	of	evidence	
variables.	

•  Let’s	split	E	into	two	parts:	
–  Ei-	is	the	part	consis3ng	of	assignments	to	variables	in	the	
subtree	rooted	at	Xi	

–  Ei+	is	the	rest	of	the	variables	in	E	

Xi 
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Decomposing	the	probabili3es	

)(λ)(α
)|(

)|()|(
)|(

)|(),|(
),|()|(

ii

ii

iiii

ii

iiiii

iiii

XXπ
EEP

EXPXEP

EEP
EXPEXEP

EEXPEXP

=

=

=

=

+−

+−

+−

++−

+−

Xi 

Where:	
•  α is	a	constant	independent	of Xi 
•  π(Xi) = P(Xi |Ei

+) 
•  λ(Xi) = P(Ei

-| Xi) 
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Using	the	decomposi3on	for	inference	

•  We	can	use	this	decomposi3on	to	do	inference	as	follows.		First,	compute	
λ(Xi)	=	P(Ei-|	Xi)	for	all	Xi	recursively,	using	the	leaves	of	the	tree	as	the	base	
case.	
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Quick	aside:	“Virtual	evidence”	

•  For	theore3cal	simplicity,	but	without	loss	of	generality,	let	us	assume	
that	all	variables	in	E	(the	evidence	set)	are	leaves	in	the	tree.	

Xi 

Xi 

Xi’ 
Observe Xi  Equivalent to Observe Xi’  

Where P(Xi’| Xi) =1 if Xi’=Xi, 0 otherwise  
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Calcula3ng	λ(Xi)	for	non-leaves	

•  Suppose	Xi	has	one	child,	Xj =Xc.		
•  Then:	

Xi 

Xc 

∑

∑

∑

∑

=

=

=

==

−

−

−−

j

j

j

j

X
jij

X
jiij

X
jiiij

X
ijiiii

XXXP

XEPXXP

XXEPXXP

XXEPXEPX

)(λ)|(

)|()|(

),|()|(
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Calcula3ng	λ(Xi)	for	non-leaves	

•  Now,	suppose	Xi	has	a	set	of	children,	C.	
•  Since	Xi	d-separates	each	of	its	subtrees,	the	contribu3on	of	each	subtree	to	

λ(Xi)	is	independent:	

∏ ∑

∏

∈

∈

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

==

CX X
jij

CX
ijiii

j j

j

XXXP

XXEPX

)λ()|(

)(λ)|()(λ

•  where	λj(Xi)	is	the	contribu3on	to	P(Ei-|	Xi)	of	the	part	of	the	
evidence	lying	in	the	subtree	rooted	at	one	of	Xi’s	children	Xj.	
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Recursive	computa3on	of	λ	

•  We	have	a	way	to	recursively	compute	all	the	λ(Xi)’s,	star3ng	from	the	root	
and	using	the	leaves	as	the	base	case.	

•  We	can	think	of	each	node	in	the	network	as	an	autonomous	processor	that	
passes	a	liHle	“λ	message”	to	its	parent.	

λ λ λ λ 

λ λ 
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Compu3ng	π(Xi)	

Xp 

Xi 

•  Where	πi(Xp)	is	defined	as		
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Bayesian	network	inference	in	trees	

•  Thus	we	can	compute	all	the	π(Xi)’s,	and,	in	turn,	all	the	P(Xi|
E)’s.	

•  Can	think	of	nodes	as	autonomous	processors	passing	λ	and	
π	messages	to	their	neighbors	

λ λ λ λ 

λ λ 
π π 

π π π π 
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Polytrees	

•  Previous	technique	can	be	generalized	to	polytrees:	
undirected	versions	of	the	graphs	are	s3ll	trees,	but	
nodes	can	have	more	than	one	parent		
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Dealing	with	cycles	

•  Can	deal	with	undirected	cycles	in	graph	by	
•  clustering	variables	together	

•  Condi3oning	

B 

A 

C 

D 

A 

D 

BC 

Set to 0 Set to 1 
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Dealing	with	cycles	

•  Can	deal	with	undirected	cycles	in	graph	by	
•  clustering	variables	together	

B 

A 

C 

D 

A 

D 

BC 
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Clustering	Methods	

•  Clustering	methods	transform	an	mul3ply	connected	BN	(MCBN)	
into	a	“probabilis3cally	equivalent”	poly-tree	
–  Such	a	transforma3on	is	done	by	merging	several	RVs	in	
MCBNs	into	a	single	compound	RV	in	order	to	break	the	
informa3on	flow	over	mul3ple	paths	

–  “Probabilis3c	equivalence”	is	guaranteed	by	compu3ng	the	
joint	probability	distribu3on	of	the	RVs	that	are	merged	into	a	
compound	RV	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Ad	hoc	clustering	example	

c 

a 

e d 

b 

b,c P(d | b,c) 
 T, T 0.8 

 T, F 0.6 

 F, T 0.6 

 F, F 0.1 

a P(c | a) 
T 0.7 

F 0.2 

a P(b | a) 
T 0.9 

F 0.25 a 

e d 

“bc” 

“bc” P(d | “bc”) 
 TT 0.8 

 TF 0.6 

 FT 0.6 

 FF 0.1 

a P(“bc” | a) 
TT   TF  FT  FF 

T 0.63   0.27  0.07  0.03 

F 0.45   0.2     0.15  0.6    

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Aher	Clustering	

•  Once	we	cluster	the	events	of	an	MCN,	we	can	use	any	exact	
inference	algorithms	developed	for	singly-connected	networks	

•  Clustering	reduces	the	size	of	the	network,	some3mes	
exponen3ally	

•  However	the	computa3on	required	for	inference	is	not	
necessarily	reduced	
–  Building	the	compound	CPTs	may	s3ll	take	exponen3al	3me	
in	the	worst	case	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Junc3on	Trees	
•  The	transforma3on	in	the	clustering	example	we	have	

discussed	is	“ad	hoc”	
–  We	just	looked	at	the	network	and	merged	RVs	such	that	
we	avoided	informa3on	flow	to	the	same	RV	through	
mul3ple	paths	

•  The	mo3va3on	behind	the	junc3on	tree	methods	is	to	provide	
a	systema3c	and	an	efficient	way	to	do	clustering	
–  Moraliza3on	
–  Triangula3on	
–  Restructuring	
–  Belief	Update	

c 

a 

e 

d 

b 

f 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Join	trees	or	junc3on	trees	
Arbitrary	Bayesian	network	can	be	transformed	via	a	graph-theore3c	

trick	into	a	join	tree	(also	used	in	databases).	

A 
B 

E D 

F 

C 

G 

In	the	worst	case	the	join	tree	nodes	must	take	on	values		whose	
number	grows	exponen3ally	with	the	number	of	nodes	that	are	
clustered	together,	but	this	oSen	works	well	in	prac3ce	
when	the	number	of	nodes	per	cluster	is	small	
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Building	Junc3on	Trees	

DAG 

Moral Graph 

Triangulated Graph 

Junction Tree 

Identifying Cliques 
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Moraliza3on	&	Triangula3on	

•  Considering	the	undirected	network,	“marry”	the	parent	nodes	
that	have	a	common	child	

•  Triangulate	every	cycle	produced	from	marriages	
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f f 
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Restructuring	

•  Iden3fy	all	maximal	cliques	in	the	network	
–  In	this	example,	we	have	

• “abc”,		“bcd”,	bde”,	and	“df”	

•  Iden3fy	the	“separators”	between	the	maximal	cliques	
–  “bc”	between	“abc”	and	“bcd”	
–  “bd”	between	“bcd”	and	“bde”	
–  “d”	between	(1)	“bde”	and	“df”,	and	(2)	“bcd”	and	“df”	
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e 
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f 
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Restructuring	

•  Create	a	new	network	where	the	cliques	of	the	original	networks	
are	compound	nodes	

c 

a 

e 

d 

b 

f 

abc 

bcd bde 

df 

Generated	network	is	always	a	poly-tree		
(or	a	poly-graph),	called	a	Junc3on	Tree		

(or	a	Junc3on	graph)	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Belief	Update	in	Junc3on	Trees	

•  The	CPTs	for	the	nodes	in	the	junc3on	tree	are	computed	by	the	
cross-products	of	the	CPTs	from	the	original	network		
	Example:	

	
	
	
	
	
	
	
	
	
•  Then,	the	belief	update	can	be	done	by	using	exact	inference	

methods	for	singly-connected	trees 		

abc 

bcd bde 

df 

“abc” P(“bcd”| “abc”) 
 TTT 0.8 

 TTF 0.6 

 TFT 0.6 

 TFF 0.1 

 FTT 0.8 

 FTF 0.6 

 FFT 0.6 

 FFF 0.1 

P(b | a) P (c |a) P (d | b c) 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Building	Junc3on	Trees	

DAG 

Moral Graph 

Triangulated Graph 

Junction Tree 

Identifying Cliques 
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Construc3ng	the	Moral	Graph	
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B 

D 
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Construc3ng	The	Moral	Graph	
•  Add	undirected	edges	to	all	co-

parents	which	are	not	currently	
joined	–Marrying	parents	 A 

B 

D 

C 

E 

G 

F 

H 
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Construc3ng	The	Moral	Graph	

•  Add	undirected	edges	to	all	co-
parents	which	are	not	currently	
joined	–Marrying	parents	

•  Drop	the	direc3ons	of	the	arcs	
A 

B 

D 

C 

E 

G 

F 

H 
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Triangula3ng	

•  An	undirected	graph	is	triangulated	iff	every	cycle	of	length	>3	contains	
an	edge	that	connects	two	nonadjacent	nodes	
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Iden3fying	Cliques	

•  A	clique	is	a	subgraph	of	an	undirected	graph	that	is	complete	(has	an	
edge	between	each	pair	of	ver3ces)	and	maximal	
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Junc3on	Tree	
•  A	junc3on	tree	is	a	subgraph	of	the	clique	graph	

that		
–  is	a	tree		
–  contains	all	the	cliques	
–  sa3sfies	the	junc3on	tree	property	

•  Junc3on	tree	property:	For	each	pair	U,	V	of	
cliques	with	intersec3on	S,	all	cliques	on	the	path	
between	U	and	V	contain	S.	
		

EGH 

ADE ABD 

ACE DEF 

CEG 

ADE ABD ACE AD AE CEG CE 

DEF 
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EGH 
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Proper3es	of	Junc3on	Tree	
•  An	undirected	tree	
•  Each	node	is	a	cluster	(nonempty	set)	of	variables	
•  Running	intersec3on	property:	

–  Given	two	clusters						and					,	all	clusters	on	the	path	
between								and									contain			

•  Separator	sets	(sepsets):		
–  Intersec3on	of	the	adjacent	cluster	

X Y
X Y YX∩

ADE ABD DEF AD DE 

Cluster 
ABD 

Sepset 
DE 
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Proper3es	of	Junc3on	Tree	

•  Belief	poten3als:		
–  Map	each	instan3a3on	of	clusters	or	sepsets	into	a	real	
number	

•  Constraints:	
–  Consistency:	for	each	cluster						and	neighboring	sepset		

–  The	joint	distribu3on		

X S

S
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Proper3es	of	Junc3on	Tree	

•  If	a	junc3on	tree	sa3sfies	these	proper3es,	it	follows	that:	
–  For	each	cluster	(or	sepset)					,		
	
–  The	probability	distribu3on	of	any	variable					,	using	any	
cluster	(or	sepset)							that	contains	X

)(XX P=φ

V

X

V
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Inference	

•  Choose	a	root	
•  For	each	distribu3on	(CPT)	in	the	original	Bayes	Net,	put	this	

distribu3on	into	one	of	the	clique	nodes	that	contains	all	the	
variables	referenced	by	the	CPT.		(At	least	one	such	node	must	
exist	because	of	the	moraliza3on	step).	

•  For	each	clique	node,	take	the	product	of	the	distribu3ons	(as	in	
variable	elimina3on).	
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Moraliza3on	&	Triangula3on	

•  Considering	the	undirected	network,	“marry”	the	parent	nodes	
that	have	a	common	child	

•  Triangulate	every	cycle	produced	from	marriages	
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Restructuring	

•  Iden3fy	all	maximal	cliques	in	the	network	
–  In	this	example,	we	have	

• “abc”,		“bcd”,	bde”,	and	“df”	

•  Iden3fy	the	“separators”	between	the	maximal	cliques	
–  “bc”	between	“abc”	and	“bcd”	
–  “bd”	between	“bcd”	and	“bde”	
–  “d”	between	(1)	“bde”	and	“df”,	and	(2)	“bcd”	and	“df”	
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f 
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Restructuring	

•  Create	a	new	network	where	the	cliques	of	the	original	networks	
are	compound	nodes	

c 

a 

e 

d 

b 

f 

abc 

bcd bde 

df 

Generated	network	is	always	a	poly-tree		
(or	a	poly-graph),	called	a	Junc3on	Tree		

(or	a	Junc3on	graph)	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Belief	Update	in	Junc3on	Trees	

•  The	CPTs	for	the	nodes	in	the	junc3on	tree	are	computed	by	the	
cross-products	of	the	CPTs	from	the	original	network		
	Example:	

	
	
	
	
	
	
	
	
	
•  Then,	the	belief	update	can	be	done	by	using	exact	inference	

methods	for	singly-connected	trees 		

abc 

bcd bde 

df 

“abc” P(“bcd”| “abc”) 
 TTT 0.8 

 TTF 0.6 

 TFT 0.6 

 TFF 0.1 

 FTT 0.8 

 FTF 0.6 

 FFT 0.6 

 FFF 0.1 

P(b | a) P (c |a) P (d | b c) 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Building	Junc3on	Trees	

DAG 

Moral Graph 

Triangulated Graph 

Junction Tree 

Identifying Cliques 
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Inference	in	Bayesian	network	

Exact	inference	algorithms:	
•  Variable	elimina3on	

•  Symbolic	inference	(D’Ambrosio)	
•  Message	passing	algorithm	(Pearl)	

•  Clustering	and	join	tree	approach	(Lauritzen,	Spiegelhalter)	
Approximate	inference	algorithms:	
•  Monte	Carlo	methods:	

•  Forward	sampling,	Likelihood	sampling	
•  Varia3onal	methods	
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Approximate	Inference	

•  With	large	and	highly	connected	graphical	models,	the	
associated	cliques	for	the	junc3on	tree	algorithm	or	the	
intermediate	factors	in	the	variable	elimina3on	algorithm	will	
grow	in	size,	genera3ng	an	exponen3al	blowup	in	the	number	of	
computa3ons	performed	
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Approximate	Inference:	Stochas3c	simula3on	
• Suppose	you	are	given	values	for	some	subset	of	the	variables,	
G,	and	want	to	infer	values	for	unknown	variables,	U	

• Randomly	generate	a	very	large	number	of	instan3a3ons	from	
the	BN	
• Generate	instan3a3ons	for	all	variables	–	start	at	root	
variables	and	work	your	way	“forward”	

• Only	keep	those	instan3a3ons	that	are	consistent	with	the	
values	for	G	

• Use	the	frequency	of	values	for	U	to	get	es3mated	probabili3es	
• Accuracy	of	the	results	depends	on	the	size	of	the	sample	
(asympto3cally	approaches	exact	results)	
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Stochas3c	Simula3on	

Rain Sprinkler 

Cloudy 

WetGrass 

1.  Draw	N	samples	from	the	BN	by	repea3ng	1.1	and	1.2	
					1.1.	Guess	Cloudy	at	random	according	to	P(Cloudy)						
					1.2.	For	each	guess	of	Cloudy,	guess	
											Sprinkler	and	Rain,	then	WetGrass	

2.	Compute	the	ra3o	of	the	#	runs	where				
				WetGrass	and	Cloudy	are	True		
				over	the	#	runs	where	Cloudy	is	True	

P(WetGrass|Cloudy)?	

P(WetGrass|Cloudy)		
				=	P(WetGrass,	Cloudy)	/	P(Cloudy)	
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Stochas3c	simula3on	

•  The	probability	is	approximated	using	sample	frequencies	

BN	sampling:		
•  Generate	sample	in	a	top	down	manner,	following	the	links	in	BN	
•  A	sample	is	an	assignment	of	values	to	all		
				variables	
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BN	Sampling	Example	

P(B | J = T,M = F)Goal: To infer 
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BN	Sampling	Example	
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BN	Sampling	Example	
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BN	Sampling	Example	
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BN	Sampling	Example	
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BN	Sampling	Example	
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Rejec3on	Sampling	

Rejec3on	sampling:	
•  Generate	sample	for	the	full	joint	by	sampling	BN	
•  Use	only	samples	that	agree	with	the	condi3on,	the	remaining	

samples	are	rejected	
•  Problem:	many	samples	can	be	rejected	
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Likelihood	weigh3ng		

•  Avoids	inefficiencies	of	rejec3on	sampling	
•  Idea:	generate	only	samples	consistent	with	an	evidence	(or	

condi3oning	event)	
•  If	the	value	is	set	by	evidence,	there	is	no	sampling	
•  Problem:	using	simple	counts	is	not	enough	since	these	may	

occur	with	different	probabili3es	
•  Likelihood	weigh3ng:	with	every	sample	keep	a	weight	with	

which	it	should	count	towards	the	es3mate	
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Likelihood	weigh3ng	Example		
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Likelihood	weigh3ng	Example		
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Likelihood	weigh3ng	Example		
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Likelihood	weigh3ng	Example		
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Likelihood	weigh3ng	Example		
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Likelihood	weigh3ng	Example		
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Likelihood	weigh3ng	Example		
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Likelihood	weigh3ng	Example		
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Likelihood	weigh3ng	Example		
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Likelihood	weigh3ng	Example		
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Likelihood	weigh3ng	Example		
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Likelihood	weigh3ng	Example		
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Likelihood	weigh3ng	Example		
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Likelihood	weigh3ng	Example		
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Likelihood	Sampling	
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Likelihood	Sampling	
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Likelihood	Weigh3ng	
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Learning	Bayesian	networks	
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The	Learning	Problem	
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Learning	Problem	
 Known Structure Unknown Structure 
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Data 

Statistical parametric 
estimation 

(closed-form eq.) 
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Learning	Problem	
 Known Structure Unknown Structure 
Complete 
Data 

Statistical parametric 
estimation 

(closed-form eq.) 
 

Discrete optimization over 
structures  

(discrete search) 
 

Incomplete 
Data 

Parametric optimization 
(EM, gradient descent...) 
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models…) 
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Learning	Problem	
 Known Structure Unknown Structure 
Complete 
Data 

Statistical parametric 
estimation 

(closed-form eq.) 
 

Discrete optimization over 
structures  

(discrete search) 
 

Incomplete 
Data 

Parametric optimization 
(EM, gradient descent...) 
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Learning	Bayesian	Networks	

»  Parameter	learning:	Complete	data	(Review)	
•  Sta3s3cal	parametric	firng		
•  Maximum	likelihood	es3ma3on	
•  Bayesian	inference	

•  Parameter	learning:	Incomplete	data	
•  Structure	learning:	Complete	data	
•  Applica3on:	classifica3on	
•  Structure	learning:	Incomplete	data	

Known	Structure	 Unknown	Structure	

Complete	data	

Incomplete	data	
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Learning	Parameters	

• Es3ma3on	relies	on	sufficient	sta3s3cs	
• For	mul3nomial	these	are	of	the	form	N (xi,pai)		
• Parameter	es3ma3on	

• Bayesian	methods	also	require	choice	of	priors	
• Both	MLE	and	Bayesian	es3mates	are	asympto3cally	equivalent	
and	consistent	but	the	laHer	work	beHer	with	small	samples		

• Both	can	be	implemented	in	an	on-line	manner	by	accumula3ng	
sufficient	sta3s3cs	

€ 

˜ θ x
i
| pa

i

=
α(xi, pai ) + N(xi, pai )
α(pai ) + N(pai )

€ 

ˆ θ x
i
| pa

i

=
N(xi, pai )
N(pai )

MLE	 Bayesian	(Dirichlet)	
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Why	do	we	need	accurate	structure?	

•  Increases	the	number	of	
parameters	to	be	es3mated	

•  Incorrect	independence	
assump3ons	

•  Cannot	be	compensated	for	by	
firng	parameters	

•  Incorrect	independence	
assump3ons	

Earthquake Alarm Set 

Sound 

Burglary 
Earthquake Alarm Set 

Sound 

Burglary 

Earthquake Alarm Set 

Sound 

Burglary 

Extraneous	arc	Missing	an	arc	
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Approaches	to	BN	Structure	Learning	

•  Score	based	methods		
–  assign	a	score	to	each	candidate	BN	structure	using	a	suitable	
scoring	func3on	

–  Search	the	space	of	candidate	network	structures	for	a	BN	
structure	with	the	maximum	score	

•  Independence	tes3ng	based	methods	
–  Use	independence	tests	to	determine	the	structure	of	the	
network		
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Score-based	BN	Structure	Learning	

	E,	B,	A	
<Y,N,N>	
<Y,Y,Y>	
<N,N,Y>	
<N,Y,Y>	
						.	
						.	
<N,Y,Y>	

E B 

A 

E 

B 

A 
E 

B A 

Search	for	a	structure	that	maximizes	the	score	

Define	a	scoring	func3on	that	evaluates	how	well	a	structure	
matches	the	data	
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Basic	idea:	Minimum	descrip3on	length	(MDL)	principle	

€ 

hMAP =
h∈H

argmaxP(h |D)

=
h∈H

argmaxP(D | h)P(h)
P(D)

=
h∈H

argmaxP(D | h)P(h)

hMAP = argmin
h∈H

−logP(D | h) − logP(h)( )

hMDL = argmin
h∈H

CD|h D | h( ) + Ch (h)( )

We	need	to	design	a	scoring	func3on	that	minimizes	the	sum	of	the	
descrip3on	length	of	the	hypothesis	and	the	descrip3on	length	of	
the	data	given	the	hypothesis.		

In	this	case,	the	hypothesis	is	a	Bayesian	network	which	represents	a	
joint	probability	distribu3on	
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Scoring	func3on	

A	BN	scoring	func3on	consists	of		
•  A	term	that	corresponds	to	the	number	of	bits	needed	to	encode	

the	BN	structure	and	parameters	
•  A	term	that	corresponds	to	the	number	of	bits	needed	to	encode	

the	data	given	the	BN		
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Encoding	a	Bayesian	Network	

It	suffices	to	
•  	list	the	parents	of	each	node	
•  	record	the	condi3onal	probabili3es	associated	with	each	node	

Consider	a	BN	with	n	variables.		
•  Consider	a	node	i with	ki parents.	
•  We	need		ki log2	n	bits	to	list	its	parents.		
•  Suppose	the	node	i (variable	Xi) takes	si dis3nct	values.	
•  Suppose	the	jth	parent	takes	sj	dis3nct	values.	
•  Suppose	we	use	d	bits	to	store	each	condi3onal	probability.	
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Encoding	a	Bayesian	Network	

•  Under	the	encoding	scheme	described,	the	descrip3on	
length	of	a	par3cular	Bayesian	network	is	given	by	

•  		

( ) ( )∑ ∏
= ∈

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+

n

i XParentsX
jii
ij

ssdnk
1 )(

2 1log
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Encoding	the	Data	

•  Suppose	we	have	M	independent	observa3ons	
(instan3a3ons)	of	the	random	variables	

nXX .....1

Each	observa3on	corresponds	to	an	atomic	event	 
nk VVVe ..××∈ 21

Let	Vi be the domain of random variable Xi 

Let	pk be	the	probability	of ek 
	

When	M is	large,	we	expect	M pk occurrences	of	ek among	the M  
observa3ons.	Under	op3mal	encoding,	the	number	of	bits	
needed	to	encode	the	data	is	
	 ( )∑

×∈

−
nk VVe

kk ppM
...

log
1

2
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Encoding	the	Data	..using	a	Bayesian	network	

•  But..	We	do	not	know		pk 	-	the	probability	of ek!	
•  What	we	have	instead	is	a	Bayesian	network	which	

assigns	a	probability	qk to	ek	
•  When	we	use	the	learned	network	to	encode	the	data,	

the	number	of	bits	needed	to	encode	the	network	(and	
hence	the	data	using	the	network)	is		

( )∑
×∈

−
nk VVe

kk qpM
...

log
1

2
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Encoding	the	Data	..using	a	Bayesian	network	

Theorem	(Gibbs):		

•  with	equality	holding	if	and	only	if	

•  Number	of	bits	needed	to	encode	the	data	if	true	
probabili3es	of	each	atomic	event	are	known	is	less	than	
or	equal	to	the	number	of	bits	needed	to	encode	the	
data		using	a	code	based	on	the	es3mated	probabili3es.		

( ) ( )∑∑
×∈×∈

−≤−
nknk VVe

kk
VVe

kk qpMppM
......

loglog
11

22

ii qpi =∀  
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Purng	the	two	together	
•  MDL	principle	recommends	minimizing	the	sum	of	the	

encoding	lengths	of	the	model	(Bayes	network)	and	the	
encoding	length	of	the	data	using	the	model	

	
	
•  Problems	with	evalua3ng	the	second	term:		

–  	We	do	not	know	the	probabili3es	pk	
–  The	second	term	requires	summa3on	over	all	atomic	
events	(all	instan3a3ons	of	the	n	random	variables) 		

( ) ( ) ( )∑∑ ∏
×∈= ∈

−
⎟
⎟

⎠

⎞

⎜
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⎝

⎛
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[Lam and Bacchus, 1994] 



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Kullback-Leibler	Divergence	to	the	rescue!	

•  Let	P	and	Q	be	two	probability	distribu3ons	over	the	same	
event	space	such	that	an	event	ei is	assigned	probability	pi	by	
P	and	qi by	Q 

€ 

KL(P ||Q) = pk log pk
qk

" 

# 
$ 

% 

& 
' 

k
∑

= pk log pk − logqk( )
k
∑

KL(P ||Q) ≥ 0
KL(P ||Q) = 0 iff P =Q
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Kullback-Leibler	Divergence	to	the	rescue!	

•  Theorem:	The	encoding	length	of	the	data	(distributed	
according	to	P)	given	the	model	(distribu3on		Q)		is	a	
monotonically	increasing	func3on	of		

•  Proof:	From	Gibbs	Theorem	and	the	defini3on	of	KL	divergence	
•  Hence,	we	can	use	the	es3mated	KL	divergence	as	a	proxy	for	

the	encoding	length	of	the	data	(given	a	model)		to	score	a	
model.	

•  We	can	use	local	computa3ons	over	a	Bayes	network	to	
evaluate		 KL(P ||Q)

€ 

KL(P ||Q)
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Applying	the	MDL	Principle		

•  Exhaus3ve	search	over	the	space	of	all	networks	infeasible!	
•  Evalua3ng	KL-divergence	directly	is	infeasible!	
•  Hence	we	need	to		

•  Resort	to	a	heuris3c	search	to	find	a	network	with	a	near	
minimal	descrip3on	length	

•  Develop	a	more	efficient	method	of	evalua3ng	KL	
divergence	of	a	candidate	network	
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Heuris3c	search	

A	possible	search	strategy	
•  There	can	be	between 0	and	n(n-1)/2	arcs	in	a	DAG	with	n	

nodes	
•  For	each	possible	number	of	arcs,	we	search	heuris3cally	for	

networks	with	low	KL	divergence	
•  We	then	examine	the	resul3ng	networks	and	pick	one	that	has	

minimum	descrip3on	length	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

•  If	we	measured	a	distribu3on	P,	what	is	the	tree-dependent	
distribu3on	Pt	that	best	approximates	P?	

•  Search	Space:	All	possible	spanning	trees	
•  Goal:	From	all	possible	spanning	trees	find	the	one	

closest	to	P	
•  Closeness	Measure:	Kullback–Leibler	divergence	
•  Operators/Procedure	

 Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Kullback–Leibler divergence 

•  For	probability	distribu3ons	P	and	Q	of	a	discrete	random	
variable	the	K–L	divergence	of	Q	from	P	is	defined	to	be	

	
•  It	can	be	seen	from	the	defini3on	of	the	Kullback-Leibler	

divergence	that	

•  where	H(P,Q)	is	called	the	cross	entropy	of	P	and	Q,	and	H(P)	is	
the	entropy	of	P.	

	
•  Non	nega3ve	measure	(by	Gibb’s	inequality)	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Evalua3ng	KL	divergence	for	a	network	

•  Theorem	(Chou	and	Liu,	1969).	Suppose	we	define	mutual	
informa3on	between	any	two	nodes	Xi and Xj as																																												

•  Then	the	cross	entropy	KL(P||Q)	over	all	tree-structured	
distribu3ons	is	minimized	when	the	graph	represen3ng				
Q(X1 .. Xn) is	a	maximum	weight	spanning	tree	of	the	graph	
where	the	edge	between	nodes	Xi and	Xj is	assigned	the weight	
equal	to	W(Xi , Xj ). 

 

€ 

W Xi,X j( ) = P Xi,X j( )
(X

i
,X

j
)

∑ log2
P Xi,X j( )
P Xi( )P X j( )
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Mutual information 

§  The mutual information of 2 random variables is a 
quantity that measures the mutual dependence of the two 
variables 

§  Intuitively, mutual information measures the information 
that X and Y share. 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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The algorithm 

•  Use Kruskal to find Maximum spanning tree with weights 
given by : 

•  Compute Pt 

–  Select  an arbitrary root node and compute  
 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

€ 

W Xi,X j( ) = P Xi,X j( )
(X

i
,X

j
)

∑ log2
P Xi,X j( )
P Xi( )P X j( )

Pt = P(Xi | Parentt (Xi ))
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Kruskal	Algorithm	
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Kruskal	Algorithm	
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Kruskal	Algorithm	
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Kruskal	Algorithm	
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Kruskal	Algorithm	
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Kruskal	Algorithm	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

C 

F E 

A B 

D 

2 

1 3 

4 

3 

5 

6 5 

4 

5 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Kruskal	Algorithm	
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Kruskal	Algorithm	
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Kruskal	Algorithm	
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Theorem	1	:	If	we	Force	the	probabili3es	along	the	branches	of	
the	tree	t	to	coincide	with	those	computed	from	P,	we	get	the	
best	t-dependent	approxima3on	of	P	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

The proof follows from Gibbs’ inequality 

DKL (P,Pt ) = P(X)
X
∑ log Pt xi | parent(xi( )( )

i=1

n

∑ + P(X)
X
∑ logP(X)

= P(X)
X
∑ log Pt xi | parent(xi( )( )

i=1

n

∑ −H (X)

= P xj( )P(xi | x j
xi,x j=parent (xi )
∑

i=1

n

∑ )log Pt xi | x j( )( )−H (X)
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Gibbs'	inequality	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Gibbs'	inequality	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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From theorem 1, we have: 

After assignment: 

maximizes DKL 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Evalua3ng	KL	divergence	for	a	network	

•  Theorem	(Chou	and	Liu,	1969).	Suppose	we	define	mutual	
informa3on	between	any	two	nodes	Xi and Xj as																																												

•  Then	the	cross	entropy	KL(P||Q)	over	all	tree-structured	
distribu3ons	is	minimized	when	the	graph	represen3ng				
Q(X1 .. Xn) is	a	maximum	weight	spanning	tree	of	the	graph	
where	the	edge	between	nodes	Xi and	Xj is	assigned	the weight	
equal	to	W(Xi , Xj ). 

 

€ 

W Xi,X j( ) = P Xi,X j( )
(X

i
,X

j
)

∑ log2
P Xi,X j( )
P Xi( )P X j( )
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Chow-Liu (CL) Results 

•  If	distribu3on	P	is	tree-structured,	CL	finds	CORRECT	one	
•  If	distribu3on	P	is	NOT	tree-structured,	CL	finds	tree	structured	Q	

that		has	minimal	KL-divergence	–	argminQ	KL(P;	Q)	
•  Even	though	2θ(n	log	n)	trees,	CL	finds	BEST	one	in		

	poly	3me	O(n2	[m	+	log	n])	
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Evalua3ng	KL	divergence	for	a	network	
•  Theorem	(Lam	and	Bacchus,	1994).	Suppose	we	define	the	weight	

between	a	nodes	Xi and	a	set	of	arbitrary	parents	Parents(Xi) 

•  Then	the	cross	entropy	KL(P||Q)	for	a	Bayesian	network	
represen3ng	Q(X1 .. Xn) is	a	monotonically	decreasing	func3on	of	

•  Hence,	KL(P||Q)	is	minimized	if	and	only	if	this	sum	of	weights	is	
maximized	

€ 

W Xi,Parents Xi( )( ) = P Xi,Parents Xi( )( )
(X

i
,Parents(X

i
))

∑ log2
P Xi,Parents Xi( )( )
P Xi( )P Parents Xi( )( )

€ 

W Xi,Parents(Xi )( )
i=1,Parents(X

i
)≠∅

n
∑
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Learning	BN	Structure	

•  If	we	find	a	Bayes	network	that	maximizes		

•  Then	the	probability	distribu3on	Q	modeled		by	network	will	be	
closest	to	the	underlying	distribu3on	P	from	which	the	data	have	
been	sampled	with	respect	to	KL(P||Q)	

•  It	is	possible	to	decrease	KL(P||Q)	by	adding	arcs	to	the	network	
–	not	a	good	idea	

•  Hence	the	need	for	MDL!	
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Score-based	Bayesian	Network	Learning	

•  We	need	to	find	a	Bayes	network	that	maximizes	

•  While	minimizing	
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Alterna3ve	Scoring	Func3ons	-	Nota3on	
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Bayesian	scoring	func3on	

•  Let																								be			a	Bayesian	network	with	graph	structure	G	
and	probability	distribu3on		parameterized	by			θ	over	a	set	of	n	
random	variables	

•  Prior	probability	distribu3on		p(B)	over	the	networks	=	
•  Posterior	probability	given	data	D is	given	by	€ 

B = G,θ( )

( )θ,Gp

€ 

p G,θD( ) =
p G,θ,D( )
p D( )

=
p G,θ,D( )
p G,θ,D( )

G ,θ
∑

=
p D,G,θ( )
p D,G,θ( )

G ,θ
∑

=
p G( )p θD,G( )p DG,θ( )

p G,θ( )p DG,θ( )
G ,θ
∑

∝ p G( )p θD,G( )p DG,θ( )
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X1,!,Xn
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Bayesian	scoring	func3on	

€ 

p DG,θ( )∝ θijk
N

ijk

k=1

s
i

∏
j=1

r
i

∏
i=1

n
∏

where n is the number of random variables
ri is the number of parents of node i
si is the number of instantiations of the parents of node i
θijk = the probability of the jth value of the ith RV 
         given the kth instantiation of its parents 
Nijk = the corresponding counts estimated from D
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Bayesian	scoring	func3on	
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 Nijk = the corresponding counts estimated from D
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ηijk = the corresponding pseudocounts
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Standard	Bayesian	Measure		

•  Standard	Bayesian		Measure	for	a	BN	with	graph	G	and	
parameters	Θ	
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Geiger	Heckerman	Scoring	Func3on		

	
	
•  Geiger-Heckerman	Measure	for	a	BN	with	graph	G	and	

parameters	Θ	

•  Can	choose	p(G)	to	penalize	complex	networks	
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Cooper-Herskovits	Scoring	Func3on		

	
•  Cooper-Herskovits		Measure	for	a	BN	with	graph	G	and	

parameters	Θ	

	
•  Can	choose	p(G)	to	penalize	complex	networks		
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Standard	Bayesian	Measure	–	Asympto3c	version		

•  Asympto3c	version	of	the	standard	Bayesian		Measure	for	a	
BN	with	graph	G	and	parameters	Θ	
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Asympto3c	Informa3on	Measures		

	

€ 

QI B,D( ) = log p G( )

+ Nijk
k
∑
j
∑

i
∑ log

Nijk

Nik
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' 
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−dim G( ) f D( )
where f D( ) is a non - negative penalty function

f D( ) = 0 for maximum likelihood information criterion

f D( ) =1 for Akaike information criterion

f D( ) =
1
2

logN( ) for Schwartz information criterion

Note :  MDL is a special case of this measure
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Structure	Search	as	Op3miza3on	

•  Input:	
• Training	data	
• Scoring	func3on	
• Set	of	possible	structures	

•  Output:	
• A	network	that	maximizes	the	score	

•  Key	Computa3onal	Property:	Decomposability:		
									score(G)	=		∑	score	(	“family”	of	X	in	G	)	
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Tree-Structured	Networks	

Trees:	
•  At	most	one	parent	per	variable	
Why	trees?	
•  Elegant	mathema3cs		

•  We	can	exactly	and	efficiently	
solve	the	op3miza3on	problem	

•  Sparse	parameteriza3on		
•  Avoid	overfirng	
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Learning	Trees	

•  Let Pai denote	parent	of	Xi 
•  We	can	write	the	Bayesian	score	as	

•  Score	=	sum	of	edge	scores	+	constant	

Score	of	“empty”	
network	

Improvement	over		
“empty”	network	

€ 

Score(G :D) = Score(Xi :Pai )
i
∑

€ 

= Score(Xi :Pai ) − Score(Xi )( )
i
∑ + Score(Xi )

i
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Learning	Trees	

•  Set	w(j→i) =Score( Xj → Xi ) - Score(Xi) 
•  Find	tree	(or	forest)	with	maximal	weight	--Standard	max	

spanning	tree	algorithm	—	O(n2	log	n)	
•  Theorem:	This	procedure	finds	tree	with	max	score		
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Beyond	Trees	

•  When	we	consider	more	complex	network,	the	problem	is	not	as	
easy	

•  Suppose	we	allow	at	most	two	parents	per	node	
•  A	greedy	algorithm	is	no	longer	guaranteed	to	find	the	op3mal	

network	
•  Theorem:	Finding	maximal	scoring	structure	with	at	most	k 	

parents	per	node	is	NP-hard	for	k > 1 
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Heuris3c	Search	

•  Define	a	search	space:	
•  search	states	are	possible	structures	
•  operators	make	small	changes	to	structure	

•  Traverse	space	looking	for	high-scoring	structures	
•  Search	techniques:	

•  Greedy	hill-climbing	
•  Best	first	search	
•  Simulated	Annealing	
•  ...	
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K2	Algorithm	(Cooper	and	Herskovits)	

•  Start	with	an	ordered	list	of	random	variables	
•  For	each	variable	Xi add to its parent set, a node that is lower 

numbered than Xi and yields the maximum improvement in 
score 

•  Repeat until score does not improve or a complete network 
is obtained 

•  Disadvantage: Requires an ordered list of nodes 
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B	Algorithm	(Bun3ne)	

•  Start	with	the	parent	set	for	each	random	variables	ini3alized	to	
an	empty	set	

•  At each step, add a link (a node to the parent set of some 
node), that does not introduce a cycle and yields the 
maximum improvement in score 

•  Repeat until score does not improve or a complete network 
is obtained 
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Local	Search	

•  Start	with	a	given	network	
–  empty	network	
–  best	tree		
–  a	random	network	

•  At	each	itera3on	
–  Evaluate	all	possible	changes	
–  Apply	change	based	on	score	

•  Stop	when	no	modifica3on	improves	score	
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Heuris3c	Search	

•  Typical	opera3ons:		

S C 

E 

D 

Add	C 
→D 

S C 

E 

D 

S C 

E 

D 

S C 

E 

D 

Δscore	=		
			S({C,E}	→D)		
				-	S({E}	→D)		

•  To	update	score	aher	
local	change,	only	re-
score	families	that	
changed	
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Learning	in	Prac3ce:	Alarm	network	
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Local	Search:	Possible	Pi�alls	

•  Local	search	can	get	stuck	in:	
•  Local	Maxima	–	All	one-edge	changes	reduce	the	score	
•  Plateau	–	Some	one-edge	changes	leave	the	score	
unchanged	

•  Standard	techniques	can	be	used	to	cope	with	both	
•  Random	restarts	
•  TABU	search	
•  Simulated	annealing	
•  …	
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Independence	Based	Methods	

•  Rely	on	independence	tests	to	decide	whether	to	add	links	
between	nodes	in	the	structure	search	phase		

•  Need	to	penalize	for	complex	structures	–	Hard	to	beat	a	fully	
connected	network!	

•  In	the	most	general	serng,	there	are	too	many	independence	
tests	to	consider		

•  Some3mes	it	is	possible	to	infer	addi3onal	independences	based	
on	known	(or	inferred)	independences	(See	Bromberg	et	al.,	
2009	and	references	cited	therein)	
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Structure	Search:	Summary	

•  Discrete	op3miza3on	problem	
•  In	some	cases,	op3miza3on	problem	is	easy	

•  Example:	learning	trees	
•  In	general,	NP-Hard	

•  Need	to	resort	to	heuris3c	search	
•  Or	restrict	connec3vity	–	each	node	assumed	to	have	no	
more	than	l	parents	where	l	is	much	smaller	than	n 

•  Stochas3c	search	–	e.g.,	simulated	annealing,	gene3c	
algorithms	
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Structure	Discovery	

•  Task:	Discover	structural	proper3es	
•  Is	there	a	direct	connec3on	between	X	&	Y	
•  Does	X	separate	between	two	“subsystems”	
•  Does	X	causally	effect	Y	

•  Example:	scien3fic	data	mining	
•  Disease	proper3es	and	symptoms	
•  Interac3ons	between	the	expression	of	genes	
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Score	based	Structure	Discovery	

•  Model	selec3on	
–  Pick	a	single	high-scoring	model	
–  Use	that	model	to	infer	domain	structure		
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Bayesian	Structure	Discovery	

•  Problem	
–  Small	sample	size	⇒	many	high	scoring	models		
–  Individual	models	ohen	unreliable	
–  Look	for	features	shared	across	many	models	
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Bayesian	Approach	

•  Posterior	distribu3on	over	structures	
•  Es3mate	probability	of		features	

–  Edge	X→Y 
–  Path	X→… → Y 
–  … 

∑=
G

DGPGfDfP )|()()|(

Feature of G, 
e.g., X→Y 

Indicator function 
for feature f 

Bayesian	score	
for	G 
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MCMC	over	Networks	

•  Cannot	enumerate	structures,	so	sample	structures	
•  MCMC	Sampling	

•  Define	Markov	chain	over	BNs	
•  Run	chain	to	get	samples	from	posterior	P(G | D) 

•  Possible	pi�alls	
•  Huge	(super-exponen3al)	number	of	networks	
•  Time	for	chain	to	converge	to	posterior	is	unknown	
•  Islands	of	high	posterior,	connected	by	low	bridges	
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Fixed	Ordering	

•  Suppose	that 
•  We	know	the	ordering	of	variables	

–  say,	X1 > X2 > X3 > X4 > … > Xn  
parents	for	Xi must	be	in	X1,…,Xi-1 

•  Limit	number	of	parents	per	nodes	to	k 
Intui3on:	Order	decouples	choice	of	parents	
•  Choice	of	Pa(X7)  does	not	restrict	choice	of	Pa(X12) 
Upshot:	Can	compute	efficiently	in	closed	form	
•  Likelihood	P(D | ≺) 
•  Feature	probability	P(f | D, ≺) 

2k•n•log n  
networks	
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Sample	Orderings	

•  We	can	write	

•  Sample	orderings	and	approximate	

•  MCMC	Sampling	
–  Define	Markov	chain	over	orderings	
–  Run	chain	to	get	samples	from	posterior	P (≺ | D) 
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Applica3on:	Gene	expression	Data	Analysis	

Friedman	et	al.,	2001	
•  Input:	Measurement	of	gene	expression	under	different	
condi3ons	
–  Thousands	of	genes	
–  Hundreds	of	experiments	

•  Output:	Model	of	gene	interac3on	
–  Uncover	pathways	
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“Ma3ng	response”	Substructure	

•  Automa3cally	constructed	sub-network	of	high-confidence	
edges	

•  Almost	exact	reconstruc3on	of	yeast	ma3ng	pathway	
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Learning	Problem	
 Known Structure Unknown Structure 
Complete Statistical parametric 

estimation 
(closed-form eq.) 

 

Discrete optimization over 
structures  

(discrete search) 
 

Incomplete Parametric optimization 
(EM, gradient descent...) 

 

Combined 
(Structural EM, mixture 

models…) 
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Incomplete	Data	

•  Data	are	ohen	incomplete	
•  Some	variables	of	interest	are	not	assigned	values	

This	phenomenon	occurs	when	we	have		
•  Missing	values	

•  Some	variables	unobserved	in	some	instances	
•  Hidden	variables	

•  Some	variables	are	never	observed	
•  We	might	not	even	know	they	exist	
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Hidden	(Latent)	Variables	

•  Why	should	we	care	about	hidden	variables?	

X1	 X2	 X3	

H	

Y1	 Y2	 Y3	

X1	 X2	 X3	

Y1	 Y2	 Y3	

17	parameters	 59	parameters	
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Incomplete	Data	

•  In	the	presence	of	incomplete	data,	the	likelihood	can	have	
mul3ple	maxima	

•  Example:	
•  If	H	has	two	values,	likelihood	has	two	maxima	
•  In	prac3ce,	many	local	maxima	

H Y 
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Expecta3on	Maximiza3on	(EM)	

•  A	general	purpose	method	for	learning	from	incomplete	data	
Intui3on:		
•  If	we	had	true	counts,	we	could	es3mate	parameters	
•  But	with	missing	values,	counts	are	unknown	
•  We	“complete”	counts	using	probabilis3c	inference	based	on	

current	parameter	assignment	
•  We	use	completed	counts	(as	if	they	were	actual	counts)	to	re-

es3mate	parameters	
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Expecta3on	Maximiza3on	(EM)	
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P(Y=H|X=T, Z=T, Θ) = 0.4


P(Y=H|X=H, Z=T, Θ) = 0.3


Current		
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Expecta3on	Maximiza3on	(EM)	

Training	
Data	

X1 X2 X3 

H 

Y1 Y2 Y3 

Initial network (G,Θ0) 

+ 

Expected Counts 
N(X1) 
N(X2) 
N(X3) 
N(H, X1, X2, X3) 
N(Y1, H) 
N(Y2, H) 
N(Y3, H) 

Computa3on	

(E-Step)	

X1 X2 X3 

H 

Y1 Y2 Y3 

Updated network (G,Θ1) 

Reparameterize	

(M-Step)	

Iterate	

X1 X2 X3 

H 

Y1 Y2 Y3 
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Expecta3on	Maximiza3on	(EM)	

•  Formal	Guarantees	
•  L(Θ1:D) ≥ L(Θ0:D)	

–  Each	itera3on	improves	the	likelihood	
•  If	Θ1 = Θ0 ,	then	Θ0  is	a	sta3onary	point		of	L(Θ:D)	

–  Usually,	this	means	a	local	maximum	
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Expecta3on	Maximiza3on	(EM)	

•  Computa3onal	boHleneck:	
•  Computa3on	of	expected	counts	in	E-Step	

•  Need	to	compute	posterior	for	each	unobserved	variable	in	
each	instance	of	training	set	

•  All	posteriors	for	an	instance	can	be	derived	from	one	pass	of	
standard	BN	inference	
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Summary	of		Parameter	Learning	from	Incomplete	Data	

•  Incomplete	data	makes	parameter	es3ma3on	hard	
•  Likelihood	func3on	

–  Does	not	have	closed	form	
–  Is	mul3modal	

•  Finding	max	likelihood	parameters:	
–  EM	
–  Gradient	ascent	

•  Both	exploit	inference	procedures	for	Bayesian	networks	to	
compute	expected	sufficient	sta3s3cs	
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Learning	Problem	
 Known Structure Unknown Structure 
Complete Statistical parametric 

estimation 
(closed-form eq.) 

 

Discrete optimization over 
structures  

(discrete search) 
 

Incomplete Parametric optimization 
(EM, gradient descent...) 

 

Combined 
(Structural EM, mixture 

models…) 
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Incomplete	Data:	Structure	Scores	

•  Recall,	Bayesian	score:	

•  With	incomplete	data:	
•  Cannot	evaluate	marginal	likelihood	in	closed	form	
•  We	have	to	resort	to	approxima3ons:	

•  Evaluate	score	around	MAP	parameters	
•  Need	to	find	MAP	parameters	(e.g.,	EM)	

∫ ΘΘ=

∝

θdGPGDPGP

GDPGPDGP

)|(),|()(

)|()()|(
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Structural	EM	

•  Recall,	in	the	case	of	complete	data	we	had	
Decomposi3on	à	efficient	search	

Idea:		
•  	Instead	of	op3mizing	the	real	score…		

•  	Find	decomposable	alterna3ve	score	
•  	Such	that	maximizing	the	alterna3ve	score	yields	
improvement	in	real	score	
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Structural	EM	

Idea:		
•  Use	current	model	to	help	evaluate	new	structures	

Outline:	
•  Perform	search	in	(Structure,	Parameters)	space	
•  At	each	itera3on,	use	current	model	for	finding	either:	

–  BeHer	scoring	parameters:	“parametric”	EM	step	
or	
–  BeHer	scoring	structure:	“structural”	EM	step	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

 
Training 

Data 
 

Expected Counts 
N(X1) 
N(X2) 
N(X3) 
N(H, X1, X1, X3) 
N(Y1, H) 
N(Y2, H) 
N(Y3, H) 

Computation 

X1 X2 X3 

H 

Y1 Y2 Y3 

X1 X2 X3 

H 

Y1 Y2 Y3 +

Score  
& 

 Parameterize 

X1 X2 X3 

H 

Y1 Y2 Y3 

Iterate	

N(X2,X1) 
N(H, X1, X3) 
N(Y1, X2) 
N(Y2, Y1, H) 

X1 X2 X3 

H 

Y1 Y2 Y3 
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Probabilis3c	Rela3onal	Models	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Probabilis3c	models	of	sequence	data	–	A	special	case	of	
Bayesian	Networks	     

     
     

Outline	
•  Applica3ons	of	sequence	classifica3on 		
•  Bag	of	words,	n-grams,	and	related	models	
•  Markov	models		
•  Hidden	Markov	models	
•  Higher	order	Markov	models	
•  Varia3ons	on	Hidden	Markov	Models	
•  Applica3ons		
	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Applica3ons	of	Sequence	Models	
     

     
     

		
•  Speech	recogni3on	
•  Natural	language	processing	
•  Text	processing	
•  Gesture	recogni3on		
•  Biological	sequence	analysis		

•  gene	iden3fica3on	
•  protein	classifica3on	

	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Bag	of	words,	n-grams	and	related	models	
     

     
     

Map	arbitrary	length	sequences	to	fixed	length	feature	
representa3ons	

Bag	of	words	–	represent	sequences	by	feature	vectors	with	as	
many	components	as	there	are	words	in	the	vocabulary	

n-grams	–	short	subsequences	of	n	leHers		
Ignore	rela3ve	ordering	of	words	or	n-grams	along	the	sequence		
“cat	chased	the	mouse”	and	“mouse	chased	the	cat”	have	iden3cal	

bag	of	words	representa3ons	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Bag	of	words,	n-grams	and	related	models	
     

     
     

Fixed	length	feature	representa3ons	make	it	possible	to	
apply	machine	learning	methods	that	work	with	feature-
based	representa3ons	

Features		
•  Given	(as	in	the	case	of	words	English	vocabulary)	
•  Discovered	from	data	–sta3s3cs	of	occurrence	of	n-grams	

in	data 		
•  If	variable	length	n-grams	are	allowed,	need	to	take	
into	account	possible	overlaps	

•  Computa3on	of	n-gram	frequencies	can	be	made	
efficient	using	dynamic	programming	–	if	a	string	
appears	k	3mes	in	a	piece	of	text,	any	substring	of	the	
string	appears	at	least	k	3mes	in	the	text	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Markov	models	(Markov	Chains)	
     

     
     

A	Markov	model	is	a	probabilis3c	model	of	symbol	sequences	
in	which	the	probability	of	the	current	event	is	depends	
only	on	the	immediately	preceding	event.	

	

Consider	a	sequence	of	random	variables	X1,	X2,	…,	XN.	Think	of	
the	subscripts	as	indica3ng	word	posi3on	in	a	sentence	or	a	
leHer	posi3on	in	a	sequence	

	

Recall	that	a	random	variable	is	a	func3on	
•  In	the	case	of	sentences	made	of	words,	the	range	of	the	

random	variables	is	the	vocabulary	of	the	language.	
•  In	the	case	of	DNA	sequences,	the	random	variables	take	on	

values	from	a	4-leHer	alphabet	{A, C, G, T}	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Simple	Model	-	Markov	Chains	

Markov Property: The state of the system at time t+1 only 
depends on the state of the system at time t 

X1 X2 X3 X4 X5 

P[Xt+1 = xt+1 | Xt  = xt  , Xt-1 = xt-1 , . . . , X1 = x1 , X0 = x0  ] 
=  P[Xt+1 = xt+1 | Xt  = xt  ]

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Markov	chains		

The	fact	that	subscript	“1”	appears	on	both	the	X	and	the	x	
in	“X1	=	x1“	is	a	bit	abusive	of	nota3on.	It	might	be	beHer	
to	write:	

),...,,(
tstss xXxXxXP ===

21 21

where  { } ( )jLs XRangevvxj
j

 .........    =∈∀ 1

In what follows, we will abuse notation  

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Markov	Chains	
 

Stationarity -- Probabilities are independent of t when the 
process is stationary. 

 

 

This means that if system is in state i, the probability that 
the system will transition to state j is pij regardless of the 

value of t 

ijitt a x X x X   ]|P[ j ===+1

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Describing a Markov Chain 

A Markov chain can be described by the transition matrix A 
and initial state probabilities Q: 

 

 
 

)|( iXjXPa ttij === +1

)( iXPqi == 1

∏
−

=
+− ==

1

1
111211 1

T

t
ttXTTT XXAqXXPXXPXPXXP ),()|()|()(),,( ……
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                             .2 

 

           0      .1           0        .5 

 

 

                                .5 

 

Markov	chains	

Current symbol 

A      B     C 

A
 

B
 

C

.7      .3      0 

.2      .7     .5 

.1       0     .5 

A                     B 

 

            C 

Sample string:  CCBBAAAAABAABACBABAAA 

Next 
Symbol 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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The	probability	of	genera3ng	a	string	

)|()()}({ 111

2
−

=
∏= t

T

t
tt XXpXpXp T

This means a 
sequence of 
symbols from 

time 1 to time T 

This comes from 
the table of initial 

probabilities 

This is a 
transition 
probability 

Product of probabilities, 
one for each term in the 
sequence 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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The fundamental questions 

•  Likelihood – Given a model µ = (A,Q), how can we 
efficiently compute the likelihood of an observation P (X | 
µ )? 

 

For any state sequence (X1,…,XT): 
 

•  Learning – Given a set of observation sequences X, and a 
generic model, how can we estimate the parameters that 
define the best model to describe the data?   

•  Use standard estimation methods – ML, MAP or Bayesian 
estimates discussed earlier in the course   

TT xxxxxxxT aaaqXXP
1322111 −

= !),...,(

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Weather 

raining today               rain tomorrow                 arr = 0.4 

raining today               no rain tomorrow            arn = 0.6 

no raining today             rain tomorrow              anr = 0.2 

no raining today             no rain tomorrow         arr = 0.8 

Simple	Example	of	a	Markov	model	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Simple	Example	of	a	Markov	model	

 

•  Note that both the transition matrix and the initial state 
matrix are Stochastic Matrices (rows sum to 1) 

•  Note that in general, the transition probabilities 
between two states need not be symmetric ( aij≠ aji ) 
and the probability of transition from a state to itself 
( aii ) need not be zero 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

8020
6040
..
..

A ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

70
30
.
.

Q

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Types	of	Markov	models	–	Ergodic	models	

Ergodic	model	-	Strongly	connected	–	directed	path	with	
posi3ve	probabili3es	from	each	state	i	to	each	state	j		
(but	not	necessarily	a	complete	directed	graph).	That	
is,	for	all	i,j aij>0; aii>0

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Types	of	Models	–	LR	models	

Leh-to-Right	(LR)	model	--	Index	of	state	non-decreasing	
with	3me	

	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Markov	models	with	absorbing	states	

At each play  

• Gambler wins $1 with probability p or 

• Gambler loses $1 with probability 1-p 

Game ends when gambler goes broke, or gains a 
fortune of $100 -- Both $0 and $100 are absorbing states 

0 1 2 N-1 N 

p p p p

1-p 1-p 1-p 1-p 
Start 
(10$) 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Coke	vs.	Pepsi	

Given that a person’s last cola purchase was Coke, 
there is a 90% chance that her next cola purchase will 
also be Coke. 

If a person’s last cola purchase was Pepsi, there is an 
80% chance that her next cola purchase will also be 
Pepsi. 

coke pepsi 

0.1 0.9 0.8 

0.2 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Coke	vs.	Pepsi	

Given that a person is currently a Pepsi purchaser, 
what is the probability that she will purchase Coke 
two purchases from now? 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

660340
170830

8020
1090

8020
10902

..

..
..
..

..

..
A

⎥
⎦

⎤
⎢
⎣

⎡
=

8020
1090
..
..

A

The transition matrix is: 

(Corresponding to one 
purchase ahead) 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Coke	vs.	Pepsi	

Given that a person is currently a Coke drinker, 
what is the probability that she will purchase Pepsi 
three purchases from now? 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

56204380
21907810

660340
170830

8020
10903

..

..
..
..

..

..
A
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Coke	vs.	Pepsi	

Assume each person makes one cola purchase 
per week. Suppose 60% of all people now drink 
Coke, and 40% drink Pepsi.  

What fraction of people will be drinking Coke 
three weeks from now? 

( )( ) ( )( ) 643804380407810600 3
101

3
000

1

0

3
03 .....)( )()()( =+=+=== ∑

=

qqaqaqXP
i

ii

Let (q0,q1)=(0.6,0.4) be the initial probabilities. 

We will denote Coke by 0 and Pepsi by 1 

We want to find P(X3=0) 
⎥
⎦

⎤
⎢
⎣

⎡
=

8020
1090
..
..

A

a00 
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Equilibrium	distribu3on	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

p(xt = i) = p(xt = i | xt−1
j
∑ = j)p(xt−1 = j)

p∞(i) = limt→∞
p(xt = i)

If                            is independent of the initial distribution, we 
 call the resulting distribution the equilibrium distribution of the MC    

p∞(i) = limt→∞
p(xt = i)
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Example:	PageRank	

•  Define	a	matrix		
	
•  Construct	a	Markov	Transi3on	Matrix	

•  The	equilibrium	distribu3on	of	the	resul3ng	Markov	chain	
corresponds	to	the	probability	of	visi3ng	website	i		

•  A	crude	search	engine	works	as	follows:		
•  For	each	website,	collect	a	list	of	words	that	appear	on	it	
•  For	each	word,	make	a	list	of	websites	that	contain	the	word	
•  Respond	to	a	query	with	a	list	of	websites	that	contain	the	
query	word,	ordered	by	their													values	

	 Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Aij =
1
0

!
"
#

if website j links to web site i 

otherwise 
Mij =

Aij
Akj

k
∑

p∞(i)

p∞(i)
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Learning	the	condi3onal	probability	table	

Naïve:	Just	observe	a	lot	of	
strings	and	set	the	
condi3onal	probabili3es	
equal	to	observed	
probabili3es	

BeHer:	add	1	to	top	and	
number	of	symbols	to	
boHom	-	a	weak	uniform	
prior	over	the	transi3on	
probabili3es.	

∑

∑
=

strings

strings

Aofsoccurrence

ABofsoccurrence

ABp )|(

∑

∑

+

+

=

strings
symbols

strings

AN

AB

ABp
#

#1

)|(
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Hidden	Markov	Models		
Reading:	Poritz,	1988	

In	many	scenarios	states	cannot	be	directly	observed.	
We	need	an	extension	--		Hidden	Markov	Models	
	 a11 a22 a33 a44 

a12 a23 a34 
b11 b14 

b12 
b13 

1 
2 3 

4 

Observations aij are state transition probabilities. 

bik are observation (output) probabilities. 

b11 + b12 + b13 + b14 = 1, 
b21 + b22 + b23 + b24 = 1, etc. 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Hidden	Markov	Models	

We	introduce	hidden	states	to	get	a	hidden	Markov	model:		
–  The	next	hidden	state	depends	only	on	the	current	hidden	
state	

–  The	current	symbol	depends	only	on	the	current	hidden	
state.		

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Example:	Dishonest	Casino	

•  What	is	hidden	in	this	model?	–	State	sequences	
•  You	are	allowed	to	see	the	outcome	of	a	die	roll	
•  You	do	not	know	which	outcomes	were	obtained	by	a	fair	die	

and	which	outcomes	were	obtained	by	a	loaded	die	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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What	is	an	HMM?	

•  Green	circles	are	hidden	states	
•  Each	hidden	state	is	dependent	only	on	the	previous	state:	

Markov	process	
•  “The	past	is	independent	of	the	future	given	the	present.”	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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What	is	an	HMM?	

•  Purple	nodes	are	observed	states	
•  Each	observed	state	is	dependent	only	on	the	

corresponding	hidden	state	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Specifying	HMM	

•  {X,O, ∏, A, B} 	
•  	Π = {πι} are	the	ini3al	state	probabili3es	
•  A	=	{aij}	are	the	state	transi3on	probabili3es	
•  B	=	{bik}	are	the	observa3on	state	probabili3es	

A 

B 

A A A 

B B 

X2 

O2 

X1 

O1 

Xt 

Ot 
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A	hidden	Markov	model	
   .7                                         .7 

                             .3 

                             .2 

 

             0    .1           0    

 

i  

A    B    C  k  

j  

A    B    C  

A    B    C  

.5 

.5 .1  .3      .6 .4  .6        0 

0   .2       .8 

Each hidden node has a vector of transition probabilities 
and a vector of  output  probabilities. 
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X1 X2 XL-1 XL 

O1 O2 OL-1 OL 

Xi 

Oi 

L tosses 
Fair/

Loaded 

Head/Tail 

0.9 

Fair loaded 

head head 

tail tail 

0.9 

0.1 

0.1 

1/2 1/4 

3/4 1/2 

Start 
1/2 1/2 

Coin-Tossing	Example	

Query: what are the most likely values in the X-nodes to 
generate the given data? 
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Fundamental	problems		

•  Filtering:	Inferring	the	present	Compute	the	probability	of	a	
hidden	state	given	the	observa3ons		

•  Predic3on:	Inferring	the	future	
•  Smoothing:	Inferring	the	past			
•  Likelihood	–	Compute	the	probability	of	an	observa3on	sequence	

given	a	model	(HMM)	
•  Decoding	–	Given	an	observa3on	sequence,	and	a	model,	

compute	the	most	likely	hidden	state	sequence	
•  Learning	

p xt | o1:t( )
p xt | o1:s( ) t > s

p xt | o1:u( ) t < u

p o1:T( )
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Genera3ng	a	string	from	an	HMM	

It	is	easy	to	generate	strings	if	we	know	the	parameters	of	
the	model.		

	

At	each	3me	step,	make	two	random	choices:	
	

•  Use	the	transi3on	probabili3es	from	the	current	
hidden	node	to	pick	the	next	hidden	node.	

	

•  Use	the	output	probabili3es	from	the	current	hidden	
node	to	pick	the	current	symbol	to	output.	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Genera3ng	a	string	from	an	HMM	

It	is	easy	to	generate	strings	if	we	know	the	parameters	
of	the	model.		

§  First	produce	a	hidden	sequence		
§  From	each	hidden	state	in	the	sequence,	produce	an	

output	symbol.	
	

•  Hidden	nodes	only	depend	on	previous	hidden	
nodes	

	

•  The	probability	of	genera3ng	a	hidden	sequence	
does	not	depend	on	the	output	sequence	that	it	
generates.	
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The	probability	of	genera3ng	a	hidden	sequence	

p(X1:T ) = p(X1 ) p(Xt
t=2

T

∏ | Xt−1 )

A sequence of 
hidden nodes from 
time 1 to time T 

From the table of 
initial 
probabilities of 
hidden states 

This is a transition 
probability between 

hidden states 

Product of probabilities, one 
for each term in the sequence 

)|( iXjXpA ttij === −1
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Fundamental	problems		

•  Filtering:	Inferring	the	present	Compute	the	probability	of	a	
hidden	state	given	the	observa3ons		

•  Predic3on:	Inferring	the	future	
•  Smoothing:	Inferring	the	past			
•  Likelihood	–	Compute	the	probability	of	an	observa3on	sequence	

given	a	model	(HMM)	
•  Decoding	–	Given	an	observa3on	sequence,	and	a	model,	

compute	the	most	likely	hidden	state	sequence	
•  Learning	

p xt | o1:t( )
p xt | o1:s( ) t > s

p xt | o1:u( ) t < u

p o1:T( )
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Filtering	

p(xt,o1:t ) = p(xt
xt−1

∑ , xt−1,o1:t−1,ot )

= p(ot | o1:t−1, xt
xt−1

∑ , xt−1)p(xt | o1:t−1, xt−1)p(xt−1,o1:t−1)

= p(ot | xt
xt−1

∑ )p(xt | xt−1)p(xt−1,o1:t−1)

α xt( ) = p(ot | xt )
xt−1

∑ p(xt | xt−1)α(xt−1) t >1
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Smoothing	
p(xt,o1:T ) = p(xt,o1:t,ot+1:T )

= p(xt,o1:t )p(ot+1:T | xt,o1:t )
= past future
=α xt( )β xt( )

β xt( ) = p(ot+1:T | xt )
p(o1:T | xt−1) = p

xt

∑ ot,ot+1:T , xt | xt−1( )

= p ot | xt( )
xt

∑ p ot+1:T | xt( ) p xt | xt−1( )

β xt−1( ) = p ot | xt( )
xt

∑ p xt | xt−1( )β(xt ) 2 ≤ t ≤ T

β xT( ) =1

p(xt | o1:T ) = γ xt( ) =
α xt( )β xt( )
α xt( )β xt( )

xt

∑
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Compu3ng	the	pair-wise	marginal	(needed	for	learning)	

p(xt, xt−1 | o1:T )∝ p(o1:T , xt, xt+1)
= p(o1:t,ot+1,ot+2:T , xt, xt+1)
= p(ot+2:T | o1:t,ot+1, xt, xt+1)p(o1:t,ot+1, xt, xt+1)
= p(ot+2:T | xt+1)p(ot+1 | o1:t, xt, xt+1)p(o1:t, xt, xt+1)
= p(ot+2:T | xt+1)p(ot+1 | xt+1)p(o1:t, xt, xt+1)
= p(ot+2:T | xt+1)p(ot+1 | xt+1)p(xt+1 | o1:t, xt )p(o1:t, xt )
= p(ot+2:T | xt+1)p(ot+1 | xt+1)p(xt+1 | xt )p(xt,o1:t )
= β(xt+1)p(ot+1 | xt+1)p(xt+1 | xt )α(xt )
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Compu3ng	the	likelihood	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

p(o1:T ) =
xt

∑ p(xt,o1:T ) = α xt( )
xt

∑ β(xt ) from smoothing
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Most	likely	path	given	the	observa3on	sequence	
(Viterbi	algorithm)	

max
xT

p ot | x( )
t=1

T

∏ p xt | xt−1( ) = p ot | xt( )
t=1

T

∏ p xt | xt−1( )
#
$
%

&
'
(
max
xT

p(oT | xT )p xT | xT−1( )
µ (xT−1 )

! "#### $####

µ(xt−1) =maxxt
p ot | xt( ) p xt | xt−1( )µ(xt ) 2 ≤ t ≤ T

µ(xT ) =1
x*1 = argmax

x1
p(o1 | x1)p x1( )µ x1( )

x*t = argmax
xt

p(ot | xt )p xt | xt−1
*( )µ xt( )
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oT o1 ot ot-1 ot+1 

Learning	HMM	–		Parameter	Es3ma3on	
	

•  Given	an	observa3on	sequence,	find	the	model	that	is	
most	likely	to	produce	that	sequence.	

•  Given	a	model	and	observa3on	sequence,	update	the	
model	parameters	to	beHer	fit	the	observa3ons.	

A 

B 

A A A 

B B B B 
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Learning	HMM	

•  Given	a	data	set	of	i.i.d	observed	sequences	

•  We	seek	the	HMM	transi3on	matrix	A,	emission	matrix	B,	and	
ini3al	vector	a	that	are	most	likely	to	have	generated	the	data	

•  We		assume	for	simplicity	that	we	know	the	number	of	hidden	
states	and	the	number	of	observed	states	

•  Approaches:		
–  Expecta3on	maximiza3on	
–  Gradient	ascent	

•  Beware	of	mul3ple	op3ma	
Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Learning	HMM	

•  Given	a	data	set	of	i.i.d	observed	sequences	

•  We	seek	the	HMM	transi3on	matrix	A,	emission	matrix	B,	and	
ini3al	vector	a	that	are	most	likely	to	have	generated	the	data	

•  We		assume	for	simplicity	that	we	know	the	number	of	hidden	
states	and	the	number	of	observed	states	
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Learning	HMM	from	data	

•  Parameter	es3ma3on	
•  If	we	knew	the	state	sequence	it	would	be	easy	to	es3mate	the	

parameters	
•  But	we	need	to	work	with	hidden	state	sequences	
•  Use	“expected”	counts	of	state	transi3ons	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Learning	without	hidden	informa3on	

•  Transi3on	probabili3es	

•  Emission	probabili3es	

Number of transitions from state k to state l

Number of times c is emitted from k

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

alk =
nk→l

nk→l '
l '
∑

nkc =
nkc
nkc '

c '
∑
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Learning	in	the	presence	of	hidden	states	

6 
C A G T 

1 

begin end 
1 

5 

4 

3 

2 
6 

? ? ? ? 

•  Since	we	don’t	know	the	true	hidden	sequence	for	each	
observa3on	sequence,	consider	all	possible	hidden	sequences	

•  Es3mate	parameters	through	a	procedure	that	counts	the	
expected	number	of	3mes	each	parameter	is	used	across	the	
training	set	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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The	Baum-Welch	algorithm	

•  Also	known	as	Forward-backward	algorithm	
•  An	Expecta3on	Maximiza3on	(EM)	algorithm	

•  EM	is	a	family	of	algorithms	for	learning	probabilis3c	models	in	
problems	that	involve	hidden	states	

•  Expecta3on:	Es3mate	the	“expected”	number	of	3mes	there	are	
transi3ons	and	emissions	(using	current	values	of	parameters)		

•  Maximiza3on:	Es3mate	parameters	given	expected	counts	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Learning	parameters:	the	Baum-Welch	algorithm	
•  algorithm	sketch:	

–  ini3alize	parameters	of	model	
–  iterate	un3l	convergence	

• E-step:	calculate	the	expected	number	of	3mes	
each	transi3on	or	emission	is	used		

• M-step:	adjust	the	parameters	to	maximize	the	
likelihood	of	these	expected	values	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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EM	algorithm	

M-step:	Maximize:	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

log p(o1
n,o2

n!o
Tn
n , x1

n, x2
n,!x

Tn
n

pold xn1:Tn |on( )
n=1

N

∑ wrt.A, B, a.

which because of  the form of the HMM is same as maximizing

log p(xn1)
pold xn1:|o

n( )
+ log p(xt+1

n | xt ) pold xt
n ,xt+1

n |on( )
+ log p(ot

n | xt
n

pold xt
n |on( )

t=1

Tn

∑
t=1

Tn−1

∑
#
$
%

&
'
(n=1

n

∑

Optimizing the above with respect to p(xn1) i.e., a,

ai
new = pnew (x1 = i) =

1
N

pold
n=1

N

∑ (x1
n = i | on )

which is simply the averaged number of times (with respect to pold ) that the first hidden 
variable is in state i.
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EM	algorithm	
M-step:	Maximize:	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

log p(xn1)
pold xn1:|o

n( )
+ log p(xt+1

n | xt ) pold xt
n ,xt+1

n |on( )
+ log p(ot

n | xt
n

pold xt
n |on( )

t=1

Tn

∑
t=1

Tn−1

∑
#
$
%

&
'
(n=1

n

∑

Optimizing the above with respect to A

Aj,i
new = pnew (xt+1 = j | xt = i)∝

t=1

Tn−1

∑ pold
n=1

N

∑ (xt
n = i, xt+1

n = j | on )

which is simply the number of times a transition from hidden state j  to i occurs 
averaged over all times (∵  of stationarity) and all training sequences.
Normalizing, we have:

Aj,i
new = t=1

Tn−1

∑ pold
n=1

N

∑ (xt
n = i, xt+1

n = j | on )

t=1

Tn−1

∑ pold
n=1

N

∑ (xt
n = i, xt+1

n = j | on )
j
∑
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EM	algorithm	
•  M-step:	Maximize:	
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log p(xn1)
pold xn1:|o

n( )
+ log p(xt+1

n | xt ) pold xt
n ,xt+1

n |on( )
+ log p(ot

n | xt
n

pold xt
n |on( )

t=1

Tn

∑
t=1

Tn−1

∑
#
$
%

&
'
(n=1

n

∑

Optimizing the above with respect to B

Bk,i
new = pnew (ot = k | xt = i)∝ I

t=1

Tn

∑ [
n=1

N

∑ ot
n = k]pold (xt

n = i | on )

which is the expected number of times observation k  occurs when the hidden state is i
Normalizing, we have:

Bk,i
new =

I
t=1

Tn

∑ [
n=1

N

∑ ot
n = k]pold (xt

n = i | on )

I
t=1

Tn

∑ [
n=1

N

∑ ot
n = k]pold (xt

n = i | on )
k
∑
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EM	Algorithm	

E-step:	Calculate	
	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

pold x1
n = i | on( ) smoothing (inferring the past)

pold xt
n = i, xt+1

n = j | on( )  the pairwise marginal

pold xt
n = i | on( ) smoothing (inferring the past)
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E-step	

					
p(o1:T , xt = i) = α(xt = i) β(xt = i)

p(xt=i | o1:T ) =
p(o1:T , xt=i)
p(o1:T )

=
α(xt = i) β(xt = i)

p(o1:T )

p(xt=i, xt+1=j | o1:T ) =
α(xt = i) aji bj,Ot+1β(xt+1 = j)

p(o1:T )
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EM	Algorithm	
Parameter	ini3aliza3on	
•  EM	algorithm	converges	to	a	local	maximum	of		the	likelihood	
•  In	general,	there	is	no	guarantee	that	the	algorithm	will	find	a	

global	maximum	
•  The	number	of	local	maxima	can	be	exponen3al	in	the	number	

of	hidden	states	
•  Parameter	ini3aliza3on	can	be	cri3cal	for	the	quality	of	solu3on	
•  In	prac3ce:	

–  Try	different	random	ini3aliza3ons	
–  Randomize	the	order	of	presenta3on	of	training	examples	
and	perform	online	update	

–  Ini3alize	emission	parameters	based	on	results	of	firng	a	
simpler	(non	temporal)	mixture	model	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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HMM	Parameter	es3ma3on	in	prac3ce	

Sparseness	of	data	requires		
•  Smoothing	of	es3mates	using	priors	–	replace	ML	es3mates	by	

MAP	es3mates	
•  Domain	specific	tricks	–	Feature	decomposi3on	(capitalized?,	

number?,	etc.	in	text	processing)		
•  Shrinkage	allows	pooling	of	es3mates	over	mul3ple	states	of	

same	type	
•  Well	designed	(or	learned)	HMM	topology	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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HMM	Varia3ons		

Con3nuous	vector-valued	observa3ons	
•  Need	a	model														mapping	the	hidden	state	at	3me	t	to	a	

distribu3on	over	outputs	
•  Does	not	change	any	of	the	update	equa3ons	for	filtering,	

smoothing,	etc.	
•  However,	for	learning,	we	need	the	normaliza3on	constant.	
Mixture	emissions	
•  Emission	probability	is	a	mixture:	
•  EM	algorithm	has	a	nested	“emission”	EM	loop.	
HMM-GMM	
•  		
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Dynamic	Bayesian	Networks	
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Probabilis3c	rela3onal	models	

•  Observa3on:	the	world	consists	of	many	dis3nct	en33es	with	
similar	proper3es	and	rela3ons	

•  First	order	logic	exploits	this	redundancy	to	make	concise	
statements	about	the	world		

•  ∀s∈S	∀c∈C		Student(s,c)	and	Easy(c)⇒	Happy(s)		
•  Unfortunately,	the	real	world	is	not	so	clear-cut		
•  Need	a	probabilis3c	counterpart	of		First	order	logic		
•  Bayes	networks	:	Proposi3onal	logic	::	?	:	First	order	logic?	
•  ?	=	Probabilis3c	Rela3onal	Models	(under	the	finite	domain	

assump3on	as	in	rela3onal	databases)	
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PRMs	

•  Developed	by	Daphne	Koller’s	group	at	Stanford	
–  representa3on:		Avi	Pfeffer	

• Builds	on	work	in	KBMC	(knowledge-based	model	
construc3on)	by	Haddawy,	Poole,	Wellman	and	others…	

• Object	Oriented	Bayesian	Networks		
• Rela3onal	Probability	Models	

–  Learning:	Lise	Getoor,	Nir	Friedman,	Avi	Pfeffer,	Ben	Taskar	
• AHribute	Uncertainty	
• Structural	Uncertainty	
• Class	Uncertainty	
•  Iden3ty	Uncertainty	

–  Undirected	models:	Ben	Taskar,	Eran	Segal	
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Probabilis3c	Rela3onal	Models	

Patient 

Treatment 

Strain Contact  
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Why	PRM?	

Tradi3onal	approaches	
–  Flat	representa3on	
–  Fixed	number	of	features	
–  IID	Samples	

Patient 

fla.en 

Problems:	
–  Introduce	sta3s3cal	skew	
–  Discard	rela3onal	structure	
–  Must	fix	features	in	advance	

Contact 
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Bayesian	Networks	

nodes	=	random	variables	
edges	=	direct	probabilis3c	 					
influence	

Network	structure	encodes	independence	assump3ons:	
	XRay		condi3onally	independent	of	Pneumonia	given	Infiltrates 

XRay 

Lung Infiltrates 

Sputum Smear 

Tuberculosis Pneumonia 
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Bayesian	Networks	

XRay 

Lung Infiltrates 

Sputum Smear 

Tuberculosis Pneumonia 
0.8 0.2 

p 

t 

p 

0.6 0.4 

0.01 0.99 

0.2 0.8 

t p 

t 

t 

p 

T P P(I |P, T ) 
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BN	Seman3cs	

condi3onal	
independencies	
in	BN	structure	

+	
local	
probability	
models	

full	joint	
distribu3on	
over	domain	

=	

P(p, t, i, x, s ) = P(p)P(t)P(i | p, t)
P(x | i)P(s | t)

X 

I 

S 

T P 
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Full	joint	distribu3on	specifies	answer	to	any	query:	
			P(variable	|	evidence	about	others)	

XRay 

Lung Infiltrates 

Sputum Smear 

Tuberculosis Pneumonia 

XRay Sputum Smear 
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BN	Learning	

•  BN	models	can	be	learned	from	empirical	data	
–  parameter	es3ma3on	via	numerical	op3miza3on	
–  structure	learning	via	combinatorial	search.	

•  BN	hypothesis	space	biased	towards	distribu3ons	with	
independence	structure.	

	
Inducer	

	Data  
X  

I 	

S 	

T 	P 	
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Probabilis3c	Rela3onal	Models		
•  Combine	advantages	of	rela3onal	representa3ons	and	Bayesian	

networks:		
–  World	models	that	represent:	objects,	proper3es,	rela3ons	
–  Compact,	natural	probability	models	
–  Integrate	uncertainty	with	rela3onal	model:	

• Proper3es	of	objects	can	depend	on	proper3es	of	related	
objects	

• Can	model	uncertainty	over	the	rela3onal	structure	of	
domain	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Mo3va3on	
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Example	
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Example	
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Example	
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Example	
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Mo3va3on	

•  Most	real-world	data	are	stored	in	rela3onal	DBMS	
•  Few	learning	algorithms	are	capable	of	handling	data	in	
its	rela3onal	form;	thus	we	have	to	resort	to	
“flaHening”	the	data	in	order	to	do	analysis	

•  As	a	result,	we	lose	rela3onal	informa3on	which	might	
be	crucial	to	understanding	the	data	
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Mo3va3on	
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Mo3va3on	
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Mo3va3on	
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What	are	PRMs?	
•  The	star3ng	point	of	this	work	is	the	structured	
representa3on	of	probabilis3c	models	of	Bayesian	
networks	(BNs).			
–  BNs	for	a	given	domain	involves	a	pre-specified	set	
of	aHributes	whose	rela3onship	to	each	other	is	
fixed	in	advance	

•  PRMs	conceptually	extend	BNs	to	allow	the	
specifica3on	of	a	probability	model	for	classes	of	
objects	rather	than	a	fixed	set	of	aHributes	

•  PRMs	also	allow	proper3es	of	an	en3ty	to	depend	
probabilis3cally	on	proper3es	of	other	related	en33es	
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Mapping	PRMs	from	Rela3onal	Models	

•  The	representa3on	of	PRMs	is	a	direct	mapping	
from	that	of	rela3onal	databases	

•  A	rela3onal	model	consists	of	a	set	of	classes	X1,
…,Xn	and	a	set	of	rela3ons	R1,…,Rm,	where	each	
rela3on	Ri	is	typed	

•  Each	class	or	en3ty	type	(corresponding	to	a	
single	rela3onal	table)	is	associated	with	a	set	of	
aeributes	A(Xi)	and	a	set	of	reference	slots	R (X)	
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PRM	Seman3cs	

•  Reference	slots	correspond	to	aHributes	that	are	
foreign	keys	(key	aHributes	of	another	table)	

•  X.ρ,	is	used	to	denote	reference	slot	ρ	of	X.		Each	
reference	slot	ρ	is	typed	according	to	the	rela3on	that	it	
references	
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Course 

Instructor 
Rating 
Difficulty 

Name 

Registration 

Course 
Student 
Grade 
Satisfaction 

RegID 

Student 

Intelligence 
Ranking 

Name 

University	Domain	Example	-	Rela3onal	Schema	

Professor 

Popularity 
Teaching-Ability 

Name 

Primary 
keys are  
indicated  
by a blue 
rectangle  

Underlined 
attributes 

are 
reference 

slots of the 
class 

Dashed 
lines 

indicate 
the types 
of objects 
referenced 

M 

M M 

1 

M 

1 

Indicates 
many-to-

many 
relationship 

Indicates 
one-to-
many 

relationship 
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PRM	Seman3cs	Con3nued	

•  Each	aHribute	Aj	∈	A(Xi)	takes	on	values	in	some	fixed	
domain	of	possible	values		denoted	V(Aj).		We	assume	
that	value	spaces	are	finite	

•  AHribute	A	of	class	X	is	denoted	X.A	
•  For	example,	the	Student	class	has	an	Intelligence	
aHribute	and	the	value	space	or	domain	for	
Student.Intelligence	might	be	{high,	low}	
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PRM	Seman3cs	Con3nued	

•  An	instance	I of	a	schema	specifies	a	set	of	objects	x,	
par33oned	into	classes;	such	that	there	is	a	value	for	
each	aHribute	x.A	and	a	value	for	each	reference	slot	
x.ρ	

• A(x)	is	used	as	a	shorthand	for	A(X),	where	x	is	of	class	X.		
For	each	object	x	in	the	instance	and	each	of	its	
aHributes	A,	we	use	Ix.A	to	denote	the	value	of	x.A	in	I	
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University	Domain	Example	–	An	Instance	of	the	
Schema	

One 
professor 

is the 
instructo
r for both 
courses 

Jane Doe is registered 
for only one course, 

Phil101, while the other 
student is registered for 

both courses 

Registration 
RegID 

       #5639 
Grade 
       A 

Satisfaction 
       3 

Registration 
RegID 

       #5639 
Grade 
       A 

Satisfaction 
       3 

Course 
Name 

       Phil101 
Difficulty 
       low 
Rating 

       high 

Student 
Name 

       Jane Doe 
Intelligence 

       high 
Ranking 

       average 

Professor 
Name 

       Prof. Gump 
Popularity 
       high 

Teaching-Ability 
       medium 

Student 
Name 

       Jane Doe 
Intelligence 

       high 
Ranking 

       average 

Registration 
RegID 

       #5639 
Grade 
       A 

Satisfaction 
       3 

Course 
Name 

       Phil101 
Difficulty 
       low 
Rating 

       high 
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University	Domain	Example	

There are 
two 

professors 
instructing 

a course 

There are three 
students in the 
Phil201 course 

Registration 
RegID 

       #5639 
Grade 
       A 

Satisfaction 
       3 

Registration 
RegID 

       #5639 
Grade 
       A 

Satisfaction 
       3 

Student 
Name 

       Jane Doe 
Intelligence 

       high 
Ranking 

       average 

Professor 
Name 

       Prof. Gump 
Popularity 
       high 

Teaching-Ability 
       medium 

Student 
Name 

       Jane Doe 
Intelligence 

       high 
Ranking 

       average 

Registration 
RegID 

       #5723 
Grade 
       A 

Satisfaction 
       3 

Course 
Name 

       Phil201 
Difficulty 
       low 
Rating 

       high 

Professor 
Name 

       Prof. Vincent 
Popularity 
       high 

Teaching-Ability 
       high 

Student 
Name 

       John Doe 
Intelligence 

       high 
Ranking 

       average 
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PRM	Seman3cs	Con3nued	

•  Some	aHributes,	such	as	name	or	social	security	
number,	are	fully	determined.		Such	aHributes	are	
labeled	as	fixed.		Assume	that	they	are	known	in	any	
instan3a3on	of	the	schema	

•  The	other	aHributes	are	called	probabilis3c	
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Course 

Instructor 
Rating 
Difficulty 

Name 

Registration 

Course 
Student 
Grade 
Satisfaction 

RegID 

Student 

Intelligence 
Ranking 

Name 

University	Domain	Example	-	Rela3onal	Schema	

Professo
r 

Popularity 
Teaching-Ability 

Name 

Fixed 
attributes 

are shown 
in regular 

font 

Fixed 
attributes 
are shown 
in regular 

font 

Probabilistic 
attributes 

are shown in 
italic 

Probabilisti
c attributes 
are shown in 

italic 

M 

M 
M 

1 

1 

M 
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PRM	Seman3cs	Con3nued	

•  A	skeleton	structure	σ	of	a	rela3onal	schema	is	a	par3al	
specifica3on	of	an	instance	of	the	schema.		It	specifies	
the	set	of	objects	Oσ(Xi)	for	each	class,	the	values	of	the	
fixed	aHributes	of	these	objects,	and	the	rela3ons	that	
hold	between	the	objects	

•  The	values	of	probabilis3c	aHributes	are	leh	
unspecified	

•  A	comple3on	I	of	the	skeleton	structure	σ	extends	the	
skeleton	by	also	specifying	the	values	of	the	
probabilis3c	aHributes	
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University	Domain	Example	–	Rela3onal	Skeleton	

Registration 
RegID 

       #5639 
Grade 
       A 

Satisfaction 
       3 

Registration 
RegID 

       #5639 
Grade 
       A 

Satisfaction 
       3 

Course 
Name 

       Phil101 
Difficulty 
       low 
Rating 

       high 

Student 
Name 

       Jane Doe 
Intelligence 

       high 
Ranking 

       average 

Professor 
Name 

       Prof. Gump 
Popularity 

       ??? 
Teaching-Ability 

       ??? 

Student 
Name 

       Jane Doe 
Intelligence 

       ??? 
Ranking 
       ??? 

Registration 
RegID 

       #5639 
Grade 

       ??? 
Satisfaction 

       ??? 

Course 
Name 

       Phil101 
Difficulty 
       ??? 
Rating 
       ??? 
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Registration 
Name 

       #5639 
Grade 
       A 

Satisfaction 
       3 

Registration 
Name 

       #5639 
Grade 
       A 

Satisfaction 
       3 

Course 
Name 

       Phil101 
Difficulty 
       low 
Rating 

       high 

Student 
Name 

       Jane Doe 
Intelligence 

       high 
Ranking 

       average 

Professor 
Name 

       Prof. Gump 
Popularity 
       high 

Teaching-Ability 
       medium 

Student 
Name 

       Jane Doe 
Intelligence 

       high 
Ranking 

       average 

Registration 
Name 

       #5639 
Grade 
       A 

Satisfaction 
       3 

Course 
Name 

       Phil101 
Difficulty 
       low 
Rating 

       high 

University	Domain	Example	–	The	Comple3on	
Instance	I	
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University	Domain	Example	–	Another	Rela3onal	
Skeleton	

Registration 
RegID 

       #5639 
Grade 
       A 

Satisfaction 
       3 

Registration 
RegID 

       #5639 
Grade 
       A 

Satisfaction 
       3 

Student 
Name 

       Jane Doe 
Intelligence 

       high 
Ranking 

       average 

Professor 
Name 

       Prof. Gump 
Popularity 
       high 

Teaching-Ability 
       ??? 

Student 
Name 

       Jane Doe 
Intelligence 

       high 
Ranking 

       average 

Registration 
RegID 

       #5723 
Grade 

       ??? 
Satisfaction 

       ??? 

Course 
Name 

       Phil201 
Difficulty 
       ??? 
Rating 
       ??? 

Professor 
Name 

       Prof. Vincent 
Popularity 

       ??? 
Teaching-Ability 

       ??? 

Student 
Name 

       John Doe 
Intelligence 

       ??? 
Ranking 
       ??? 

PRMs allow 
multiple possible 

skeletons 
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University	Domain	Example	–	The	Comple3on	
Instance	I	

Registration 
RegID 

       #5639 
Grade 
       A 

Satisfaction 
       3 

Registration 
RegID 

       #5639 
Grade 
       A 

Satisfaction 
       3 

Student 
Name 

       Jane Doe 
Intelligence 

       high 
Ranking 

       average 

Professor 
Name 

       Prof. Gump 
Popularity 
       high 

Teaching-Ability 
       medium 

Student 
Name 

       Jane Doe 
Intelligence 

       high 
Ranking 

       average 

Registration 
RegID 

       #5723 
Grade 
       A 

Satisfaction 
       3 

Course 
Name 

       Phil201 
Difficulty 
       low 
Rating 

       high 

Professor 
Name 

       Prof. Vincent 
Popularity 
       high 

Teaching-Ability 
       high 

Student 
Name 

       John Doe 
Intelligence 

       high 
Ranking 

       average 

PRMs also allow 
multiple possible 

instances and 
values 
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More	PRM	Seman3cs	

•  For	each	reference	slot	ρ,	we	define	an	inverse	
slot,	ρ-1,	which	is	the	inverse	func3on	of	ρ	

•  For	example,	we	can	define	an	inverse	slot	for	the	
Student	slot	of	Registra3on	and	call	it	Registered-
In.		Since	the	original	rela3on	is	a	one-to-many	
rela3on,	it	returns	a	set	of	Registra3on	objects	

•  A	final	defini3on	is	the	no3on	of	a	slot	chain	
τ=ρ1..ρm,	which	is	a	sequence	of	reference	slots	
that	defines	func3ons	from	objects	to	other	
objects	to	which	they	are	indirectly	related.		For	
example,	Student.Registered-In.Course.Instructor	
can	be	used	to	denote	a	student’s	set	of	
instructors	Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Defini3on	of	PRMs	

•  The	probabilis3c	model	consists	of	two	
components:	the	qualita3ve	dependency	
structure,	S,	and	the	parameters	associated	with	
it,	θS	

•  The	dependency	structure	is	defined	by	
associa3ng	with	each	aHribute	X.A	a	set	of	
parents	Pa(X.A);	parents	are	aHributes	that	are	
“direct	influences”	on	X.A.		This	dependency	
holds	for	any	object	of	class	X	
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Defini3on	of	PRMs	Cont’d	

•  The	aHribute	X.A	can	depend	on	another	
probabilis3c	aHribute	B	of	X.		This	dependence	
induces	a	corresponding	dependency	for	
individual	objects	

•  The	aHribute	X.A	can	also	depend	on	aHributes	of	
related	objects	X.τ.B,	where	τ	is	a	slot	chain	

•  For	example,	given	any	Registra3on	object	r	and	
the	corresponding	Professor	object	p	for	that	
instance,		r.Sa3sfac3on	will	depend	
probabilis3cally	on	r.Grade	as	well	as	p.Teaching-
Ability	
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PRM	Dependency	Structure	for	the	University	Domain	

Edges from  
one class to  

another are routed 
through slot-chains 

Student 
Intelligence 

Ranking 

Course 
Rating 

Difficulty 

Professo
r 

Popularity 

Teaching-Ability 

Registration 

Grade 

Satisfaction 

M 

M 

M M 

1 

1 

Edges correspond 
to probabilistic 
dependency for 

objects in that class 
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Dependency	Structure	in	PRMs	

•  As	men3oned	earlier,	x.τ	represents	the	set	of	objects	
that	are	τ-rela3ves	of	x.		Except	in	cases	where	the	slot	
chain	is	guaranteed	to	be	single-valued,	we	must	
specify	the	probabilis3c	dependence	of	x.A	on	the	
mul3set	{y.B:y	∈	x.τ}	

•  The	no3on	of	aggrega3on	from	database	theory	gives	
us	the	tool	to	address	this	issue;	i.e.,	x.a	will	depend	
probabilis3cally	on	some	aggregate	property	of	this	
mul3set	
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Aggrega3on	in	PRMs	

•  Examples	of	aggrega3on	are:	the	mode	of	the	set	
(most	frequently	occurring	value);	mean	value	of	
the	set	(if	values	are	numerical);	median,	
maximum,	or	minimum	(if	values	are	ordered);	
cardinality	of	the	set;	etc	

•  An	aggregate	essen3ally	takes	a	mul3set	of	values	
of	some	ground	type	and	returns	a	summary	of	it	

•  The	type	of	the	aggregate	can	be	the	same	as	that	
of	its	arguments,	or	any	type	returned	by	an	
aggregate.		X.A	can	have	γ(X.τ.B)	as	a	parent;	the	
seman3cs	is	that	for	any	x	∈	X,	x.a	will	depend	on	
the	value	of	γ(x.τ.b),	V(γ(x.τ.b))	
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PRM	Dependency	Structure	

Student 
Intelligence 

Ranking 

Course 
Rating 

Difficulty 

Professor 

Popularity 

Teaching-Ability 

Registration 

Grade 

Satisfaction 

M 

M 

M M 

1 

1 

AVG 

AVG 
The student’s 

ranking depends 
on the average 

of his grades 

A student may take 
multiple courses 

A course rating 
depends on the average 
satisfaction of students 
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Parameters	of	PRMs	

•  A	PRM	contains	a	condi3onal	probability	distribu3on	
(CPD)	P(X.A|Pa(X.A))	for	each	aHribute	X.A	of	each	class	

•  More	precisely,	let	U	be	the	set	of	parents	of	X.A.		For	
each	tuple	of	values	u	∈	V(U),	the	CPD	specifies	a	
distribu3on	P(X.A|u)	over	V(X.A).		The	parameters	in	all	
of	these	CPDs	comprise	θS 
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CPDs	in	PRMs	

Student 
Intelligence 

Ranking 

Course 
Rating 

Difficulty 

Professor 

Popularity 

Teaching-Ability 

Registration 

Grade 

Satisfaction 

M 

M 

M M 
1 

1 

AVG 
AVG 

D.I      A      B      C 
h,h     0.5    0.4    0.1 
h,l      0.1    0.5    0.4 
l,h      0.8    0.1    0.1 
l,l       0.3    0.6    0.1 

avg      l      m      h 
 A     0.1    0.2    0.7 
 B     0.2    0.4    0.4 
 C     0.6    0.3    0.1 
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Parameters	of	PRMs	Con3nued	

•  Given	a	skeleton	structure	for	our	schema,	we	want	to	
use	these	local	probability	models	to	define	a	
probability	distribu3on	over	all	comple3ons	of	the	
skeleton	

•  Note	that	the	objects	and	rela3ons	between	objects	in	
a	skeleton	are	always	specified	by	σ,	hence	we	are	
disallowing	uncertainty	over	the	rela3onal	structure	of	
the	model	
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Parameters	of	PRMs	Con3nued	

•  To	define	a	coherent	probabilis3c	model,	we	must	
ensure	that	our	probabilis3c	dependencies	are	acyclic,	
so	that	a	random	variable	does	not	depend,	directly	or	
indirectly,	on	its	own	value	

•  A	dependency	structure	S	is	acyclic	rela3ve	to	a	
skeleton	σ	if	the	directed	graph	over	all	the	parents	of	
the	variables	x.A	is	acyclic	

•  If	S	is	acyclic	rela3ve	to	σ,	then	the	following	defines	a	
distribu3on	over	comple3ons	I	of	σ:	P(I|σ,S,θS)	=	 

∏ ∏ ∏
∈ ∈i i iX

axPa
XA XOx

ax IIP )|( ).(
)(A )(

.
σ
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Class	Dependency	Graph	for	the	University	Domain	

Course.Difficulty 

Professor.Teaching-Ability 

Student.Ranking 

Student.Intelligence 

Registration.Grade 

Professor.Popularity 

Course.Rating 

Registration.Satisfaction 
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Ensuring	Acyclic	Dependencies	

•  In	general,	however,	a	cycle	in	the	class	dependency	
graph	does	not	imply	that	all	skeletons	induce	cyclic	
dependencies	

•  A	model	may	appear	to	be	cyclic	at	the	class	level,	
however,	this	cyclicity	is	always	resolved	at	the	level	of	
individual	objects	

•  The	ability	to	guarantee	that	the	cyclicity	is	resolved	
relies	on	some	prior	knowledge	about	the	domain.		The	
user	can	specify	that	certain	slots	are	guaranteed	
acyclic	
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PRM	for	the	Gene3cs	Domain	

Person 

M-chromosome 

P-chromosome 

BloodType 

BloodTest 

Contaminated 

Result 

Person 

M-chromosome 

P-chromosome 

BloodType 
Person 

M-chromosome 

P-chromosome 

BloodType 

(Father) (Mother) 
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Dependency	Graph	for	Gene3cs	Domain	

Person.M-chromosome Person.P-chromosome 

Person.BloodType 

BloodTest.Contaminated 

BloodTest.Result 

Dashed edges 
correspond to 
“guaranteed 

acyclic” 
dependencies 
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Learning	PRMs:	Parameter	Es3ma3on	

•  Assume	that	the	qualita3ve	dependency	structure	
S	of	the	PRM	is	known	

•  The	parameters	are	es3mated	using	the	likelihood	
func3on	which	gives	an	es3mate	of	the	
probability	of	the	data	given	the	model	

•  The	likelihood	func3on	used	is	the	same	as	that	
for	Bayesian	network	parameter	es3ma3on.		The	
only	difference	is	that	parameters	for	different	
nodes	in	the	network	–	those	corresponding	to	
the	x.A	for	different	objects	x	from	the	same	class	
–	are	forced	to	be	iden3cal	
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Learning	PRMs:	Parameter	Es3ma3on	

•  Our	goal	is	to	find	the	parameter	serng	θS	that	maximizes	
the	likelihood	L(θS|	I,σ,S)	for	a	given	I,	σ	and	S:	L(θS|I,σ,S)	
=	P(I|σ,S,θS).		Working	with	the	logarithm	of	this	func3on:	
l(θS|I,σ,S)	=	log	P(I|σ,S,θS)	=	

•  This	es3ma3on	is	simplified	by	the	decomposi3on	of	log-
likelihood	func3on	into	a	summa3on	of	terms	
corresponding	to	the	various	aHributes	of	the	different	
classes.		Each	of	the	terms	in	the	square	brackets	can	be	
maximized	independently	of	the	rest	

•  Parameter	priors	can	also	be	incorporated	

∑ ∑ ∑
∈ ∈ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

i i iX )X(A )(X
)Pa(x.A )|P( log

A Ox
x.AII

σ
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Learning	PRMs:	Structure	Learning	

•  We	now	move	to	the	more	challenging	problem	
of	learning	a	dependency	structure	automa3cally	

•  There	are	three	important	issues	that	need	to	be	
addressed:	hypothesis	space,	scoring	func3on,	
and	search	algorithm	

•  Our	hypothesis	specifies	a	set	of	parents	for	each	
aHribute	X.A.		Note	that	this	hypothesis	space	is	
infinite.		Our	hypothesis	space	is	restricted	by	
ensuring	that	the	structure	we	are	learning	will	
generate	a	consistent	probability	model	for	any	
skeleton	we	are	likely	to	see	
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Learning	PRMs:	Structure	Learning	Con3nued	

•  The	second	key	component	is	the	ability	to	
evaluate	different	structures	in	order	to	pick	one	
that	fits	the	data	well.		Bayesian	model	selec3on	
methods	were	adapted	

•  Bayesian	model	selec3on	u3lizes	a	probabilis3c	
scoring	func3on.		It	ascribes	a	prior	probability	
distribu3on	over	any	aspect	of	the	model	about	
which	we	are	uncertain	

•  The	Bayesian	score	of	a	structure	S	is	defined	as	
the	posterior	probability	of	the	structure	given	
the	data	I	
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Learning	PRMs:	Structure	Learning	Con3nued	

•  Using	Bayes	rule:	P(S|I,σ)	∝	P(I|S,σ)	P(S|σ)	
•  It	turns	out	that	marginal	likelihood	is	a	crucial	
component,	which	has	the	effect	of	penalizing	models	
with	a	large	number	of	parameters.		Thus	this	score	
automa3cally	balances	the	complexity	of	the	structure	
with	its	fit	to	the	data	

•  Now	we	need	only	provide	an	algorithm	for	finding	a	
high-scoring	hypotheses	in	our	space	
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Learning	PRMs:	Structure	Learning	Con3nued	

•  The	simplest	heuris3c	search	algorithm	is	greedy	hill-
climbing	search,	using	the	scoring	func3on	as	a	metric.		
Maintain	the	current	candidate	structure	and	itera3vely	
improve	it	

•  Local	maxima	can	be	dealt	with	using	random	restarts,	
i.e.,	when	a	local	maximum	is	reached,	we	take	a	
number	of	random	steps,	and	then	con3nue	the	greedy	
hill-climbing	process	
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Learning	PRMs:	Structure	Learning	Con3nued	

•  The	problems	with	this	simple	approach	is	that	there	
are	infinitely	many	possible	structures,	and	it	is	very	
costly	in	computa3onal	opera3ons	

•  A	heuris3c	search	algorithm	addresses	these	issues.		At	
a	high	level,	the	algorithm	proceeds	in	phases	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Learning	PRMs:	Structure	Learning	Con3nued	

•  At	each	phase	k,	we	have	a	set	of	poten3al	parents	
Potk(X.A)	for	each	aHribute	X.A	

•  Then	apply	a	standard	structure	search	restricted	to	the	
space	of	structures	in	which	the	parents	of	each	X.A	are	
in	Potk(X.A).		The	phased	search	is	structured	so	that	it	
first	explores	dependencies	within	objects,	then	
between	objects	that	are	directly	related,	then	
between	objects	that	are	two	links	apart,	etc	
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PRM	with	AU	Seman3cs	

P(I |σ ,S,Θ ) = P(x.A
x.A
∏

x∈σ
∏ | parentsS,σ (x.A))

Aeributes	Objects	

probability	distribu3on	over	comple3ons	I:	

PRM	 	rela3onal	skeleton	σ + = 

Strain 

Patient 

Contact 

Strain	
	s1	

Pa8ent	
	p1	

Pa8ent	
	p2	

Contact	
c3 

Contact	
c2 

Contact	
c1 

Strain	
	s2	

Pa8ent	
	p3	
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Learning	PRMs	
Database 

Patient 

Strain 

Contact 

Rela3onal	Schema	

Patient 
Contact 

Strain 

• 	Parameter	es3ma3on	
• 	Structure	selec3on	
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Parameter	Es3ma3on	in	PRMs	
•  Assume	known	dependency	structure	S 
•  Goal:	es3mate	PRM	parameters	θ	

–  entries	in	local	probability	models,		

•  	θ		is	good	if	it	is	likely	to	generate	the	observed	data,	instance	I	.	

•  MLE	Principle:	Choose	θ*		so	as	to	maximize	l	

l(θ : I,S) = logP(I | S,θ )

).(|. AxparentsAxθ

As	in	Bayesian	network	learning,	decomposi3on	plays	a	
crucial	role:	separate	terms	for	different	X.A	
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ML	Parameter	Es3ma3on	
Contact 
CloseContact	

Transmi.ed	

Patient 
HIV	
DiseaseSite	

Count 

Query	for	counts:	

Pa8ent	
table	

Contact	
table	

ctCloseContaC
HIVP

dTransmitteC

.
.

.π

).,.(
).,.,.(

tCCfHPN
tCCfHPfTCN

==
===

θ*  =
P 
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? ? 
? ? 
? ? 

, 
, 
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t f 
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P(T | H, C) C H 
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Cont.Close-Contact 
(Cont.Transmitted |  

P 
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Structure	Selec3on	
•  Idea:		

–  define	scoring	func3on		
–  do	local	search	over	legal	structures	

•  Key	Components:	
–  “legal”	models		
–  scoring	models	
–  searching	model	space	
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Legal	Models	

author-of	

•  PRM	defines	a	coherent	probability	model	over	a	skeleton	σ	if	
the	dependencies	between	object	aHributes	is	acyclic		

How	do	we	guarantee	that	a	PRM	is	acyclic	for	every	skeleton?	

Researcher	
Prof.	Gump	
Reputa8on	

high	

Paper	
P1	

Accepted								
yes	 Paper	

P2	
Accepted								

yes	
sum	
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AHribute	Stra3fica3on	

PRM	dependency	
structure	S	

Dependency	graph	

Paper.Accecpted 

Researcher.Reputation 

if	Researcher.Reputation 
	depends	directly	on	Paper.Accepted 

dependency	graph	acyclic	⇒	acyclic	for	any	σ		
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Scoring	Models	

•  Bayesian	approach:	

Score (S :I ) = log P(S |I )∝ log[ P(I | S)

marginal
likelihood!"# $#

P(S)
prior!

]

•  Standard	approach	to	scoring	models;	used	in	Bayesian	
network	learning	
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Search	over	Models	

Contact Strain Patient 

Contact Strain Patient 

Strain Contact Patient 

Phase	0:	consider	only	dependencies	within	a	class	
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Contact Strain Patient 

Contact Strain Patient 

Contact Patient Strain 

Phase	1:	consider	dependencies	from	“neighboring	classes,	via	
schema	rela3ons	

Phased	Structure	Search	
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Phased	Structure	Search	
Phase	2:	consider	dependencies	from	“further	classes,	
via	rela3on	chains	

Contact Strain Patient 

Contact Strain Patient 

Contact Strain Patient 
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Fixed	rela3onal	skeleton	σ:	
–  set	of	objects	in	each	class	
–  rela3ons	between	them	

Movie		m1	

Vote		v1	
		Movie:	m1	
		Person:	p1	

Person		p2 

Person		p1 

Movie		m2	

Uncertainty	over	assignment	of	values	to	aHributes	

So	far	we	have	considered	PRM	with	AHribute	Uncertainty	

Vote		v2	
		Movie:	m1	
		Person:	p2	

Vote		v3	
		Movie:	m2	
		Person:	p2	

Primary	Keys 

Foreign	Keys 
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PRM	w/	AU	Seman3cs	

P(I |σ ,S,Θ ) = P(x.A
x.A
∏

x∈σ
∏ | parentsS,σ (x.A))

Aeributes	Objects	

Ground	BN	defining	distribu3on	over		
complete	instan3a3ons	of	aeributes	I:	

PRM	 	rela3onal	skeleton	σ + = 

Pa8ent	
	p2	

Vote 

Movie Person Movie	

Vote	
			

Vote	
			

Person	
 

Person	

Movie	

Vote	
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Problem	

•  Rela3onal	structure	provides	useful	informa3on	for	probability	
es3ma3on	and	predic3on		

•  PRM	with	aHribute	uncertainty	applicable	only	in	domains	where	
we	have	full	knowledge	of	the	rela3onal	structure	

§  Need	probabilis3c	models	of	rela3onal	structure	that	capture	
structural		uncertainty	
§  Reference	uncertainty	
§  Existence	uncertainty		
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PRM	With	Structural	Uncertainty	
Topic 

Theory AI 

Agent 

Theory	papers	

Cornell	

Scien8fic	Paper	

Topic 

Theory AI 
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PRMs	with	Structural	Uncertainty		
•  Applicable	in	cases	where	we	do	not	have	full	knowledge	of	

rela3onal	structure	
•  Incorpora3ng	uncertainty	over	rela3onal	structure	into	

probabilis3c	model	can	improve	predic3ve	accuracy	
Two	cases:	

–  Reference	uncertainty	
–  Existence	uncertainty	

•  Different	probabilis3c	models	
•  Varying	amount	of	background	knowledge	required	for	each	
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Cita3on	Rela3onal	Schema	
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AHribute	Uncertainty	

Paper 
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Topic	
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Reference	Uncertainty	
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PRM	w/	Reference	Uncertainty	
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Dependency	model	for	foreign	keys	

Paper 
Topic	
Words	

Paper 
Topic	
Words	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Reference	Uncertainty	Example	
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PRMs	w/	RU	Seman3cs	
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Learning	PRMs	with	Reference	Uncertainty		

•  Idea:		
–  define	scoring	func3on		
–  do	phased	local	search	over	legal	structures	

•  Key	Components:	
–  legal	models	

• Model	new	dependencies	
–  scoring	models	

• Unchanged	
–  searching	model	space	

• New	operators	
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Structure	Search:	New	Operators	
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PRMs	w/	RU	Summary	

•  Define	seman3cs	for	uncertainty	over	foreign-key	values	
•  Search	now	includes	operators	Refine	and	Abstract	for	

construc3ng	foreign-key	dependency	model	
•  Provides	one	simple	mechanism	for	link	uncertainty		
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Existence	Uncertainty	
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PRM	with	Existence	Uncertainty	
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Existance	Uncertainty	Example	
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PRMs	w/	EU	Seman3cs	

PRM-EU	+	object	skeleton	σ	
⇒	probability	distribu3on	over	full	instan3a3ons	I 
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Learning	PRMs	with	Existence	uncertainty	
•  Idea:	just	like	in	PRMs	w/	AU	

–  define	scoring	func3on		
–  do	greedy	local	structure	search		
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	Structure	Selec3on:	PRM		

•  Idea:		
–  define	scoring	func3on		
–  do	phased	local	search	over	legal	structures	

•  Key	Components:	
–  legal	models:	model	new	dependencies	
–  scoring	models:	unchanged	
–  searching	model	space	
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Predic3on	Accuracy		
Cora WebKB

baseline 75 ± 2.0 74 ± 2.5

RU Citing 81 ± 1.7 78 ± 2.3

RU Cited 79 ± 1.3 77 ± 1.5

EU 85 ± 0.09 82 ± 1.3
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Inference	in	Unrolled	BN	

•  Predic3on	requires	inference	in	“unrolled”	network	
–  Infeasible	for	large	networks	
–  Use	approximate	inference	for	E-step	

•  Local	message	passing	
–  Belief	messages	transferred	between	related	instances	
–  Induces	a	natural	“influence”	propaga3on	behavior	

•  Instances	give	informa3on	about	related	instances	
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Conclusions	

•  PRMs	can	represent	distribu3on	over	aHributes	from	mul3ple	
tables	

•  PRMs	can	capture	link	uncertainty	
•  PRMs	allow	inferences	about	individuals	while	taking	into	

account	rela3onal	structure	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 


