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Research Interests

e Machine learning: Statistical, information theoretic, linguistic and structural approaches to
machine learning; learning predictive relationships from sequential, graph-structured, multi-
relational, multimodal, partially specified, partially labeled, distributed data, linked data

e (Causal Inference: Causal inference from disparate experimental and observational studies, causal
inference from relational data, causal inference from temporal data
e Knowledge Representation and Inference: Logical, probabilistic, and decision-theoretic

knowledge representation and inference; federated knowledge bases; selective information
sharing; federated services; representing and reasoning about qualitative preferences

e Applied Informatics
— Bioinformatics: Macromolecular structure and function, analysis, inference, modeling, and
prediction of macromolecular (protein-protein , protein-RNA, and protein-DNA) interaction
networks and interfaces, immune networks, etc.
— Health Informatics: Predictive and causal modeling of health outcomes from patient (health
records, genomics, socio-economic, environmental) data
— Brain Informatics: Modeling and analysis of structure and dynamics of brain networks from
fMRI data
e Algorithmic Discovery:
— Algorithmic abstractions of scientific domains
— Representations of scientific artifacts (experiments, data, models, assumptions, hypotheses,
theories --*)
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What is this course about?

e Why should machines learn?

e When can Machines Learn?

e Why can Machines Learn?

e How can Machines Learn?

e How can Machines Learn better?
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Course Overview

e Background and Motivation

e Statistical Machine Learning Theory and Applications

e Algorithmic Learning Theory and Applications

e Advanced Machine Learning Algorithms Design and Applications
e Machine Learning for Predictive Modeling from Big Data
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Course Overview

e Background and Motivation
e Statistical Machine Learning Theory and Applications
— Decision Theoretic Foundations
— Probabilistic Generative Models
— Discriminative Models
— Representative Algorithms
e Algorithmic Learning Theory and Applications
— Mistake Bound Models

— PAC Model — sample complexity, easy and hard learning
problems, how to turn hard learning problems into easy ones

— Learning under helpful distributions
— Representative Algorithms
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Course Overview

e Advanced Machine Learning Algorithms Design and Applications
— Probabilistic graphical models
— Kernel machines
— Deep learning
— Multi-instance, multi-label, and structured label learning
— Grammar learning
— Causal models
e Machine Learning for Predictive Modeling from Big Data
— Learning from large, distributed data
— Learning from ultra high dimensional data
— Learning from multi-modal data
— Learning from multi-granularity data
— Platforms and tools
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Course Staff

Instructor
Vasant Honavar
Professor and Edward Frymoyer Chair of Information Sciences and Technology
Graduate Faculty:
Computer Science and Engineering
Bioinformatics and Genomics
Neuroscience
Operations Research
Information Sciences and Technology
http://faculty.ist.psu.edu/vhonavar

vhonavar@ist.psu.edu
Office hours: 1pm to 2pm, Mon, Wed 301-A IST

TA: Sam Gur, szg180@psu.edu

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar



Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Prerequisites

= Conceptual foundations of Computing
= Programming
= Mathematics
— Set theory, logic, probability, calculus
= Data structures
— Lists, trees, graphs
= Basics of Design and Analysis of Algorithms
= Technical writing and presentation
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=  Course materials
http://faculty.ist.psu.edu/vhonavar/Courses/ml/homepage.html

— Lecture notes, Recommended Readings, Programming resources
= Useful (not required) Reference Texts:

= Machine Learning, Theodoridis

= Machine Learning, Murphy

= Bayesian Reasoning and Machine Learning, Barber

= Pattern Recognition and Machine Learning, Bishop

= A Probabilistic Theory of Pattern Recognition, Devroye, Gyorfi, and Lugosi

= Elements of Statistical Learning, Hastie and Tibshirani

= Machine Learning, Natarajan

= Anintroduction to Computational Learning Theory, Kearns and Vazirani

* Foundations of Machine Learning, Mohri, Rostamizadeh, and Talwalkar

= Learning and Generalization, Vidyasagar

= Statistical Learning Theory, Vapnik

= Learning with Kernels, Skolkopf and Smola

=  Mining of Massive Data Sets, Rajaraman and Ullman

= Learning Bayesian Networks, Neapolitan

= Probabilistic Graphical Models, Koller and Friedman

= Deep Learning, Bengio and Goodfellow
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Course Mechanics

= Grading

— Problem Sets

— Projects

— Exams

— Class participation
= Academic Honesty

— University policy on academic dishonesty

— Problem sets, labs, term project, collaboration
= Disability
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Transformative role of computation

e Computation offers the best formalism we have for understanding how
information is acquired, processed, and used by

— Computers
— Brains
— Genomes
— Organizations
— Societies
e Computation : cognitive science :: calculus : physics
e Computation: biology :: calculus : physics
e Computation: social science :: calculus : physics
e Algorithms as theories

— We will have a theory of intelligence when we have computer programs
(information processing models) that display intelligence
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Machine learning is a subfield of artificial intelligence

Al is about
= Study of computational models of intelligence

= Falsifiable hypotheses about intelligent behavior
= Construction of intelligent artifacts

= Mechanization of tasks requiring intelligence

= Exploring the design space of intelligent systems
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Why should machines learn?
Practical

» [ntelligent behavior requires knowledge
o Explicitly specifying the knowledge needed for specific tasks is hard,
and often infeasible
e |f we can get machines to acquire the knowledge needed for
particular tasks from observations (data), interactions
(experiments), we can
. Dramatically reduce the cost of developing intelligent systems
. Automate aspects of scientific discovery
Machine Learning is most useful when
= the structure of the task is not well understood but representative
data or interactions with the environment are available
= task (or parameters) change dynamically
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Why should machines learn? — Applications

e Scientific
= |dentifying sequence correlates of protein function,
predicting potential adverse drug interactions...

= Understanding the relationship between genetic,
environmental, and behavioral characteristics that contribute

to health or disease
= Medicine
= Diagnosing diseases from symptomes, test results (e.g.
pneumonia, pap smears)

= Education
= Customizing educational content and delivery to optimize

learning outcomes
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Why should machines learn? — Applications

e Agriculture
— Precision farming
e Business
— Fraud detection (e.g. credit cards, phone calls)
— Product recommendation (e.g. Google, Amazon, Netflix)
— Stock trading
= Technology
— Self-driving vehicles
— Natural language conversation
— Computer vision
— Video understanding
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Machine learning is essential for extracting knowledge from big data
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Why should machines learn? — Science of learning

Information processing models can provide useful insights into
e How humans and animals learn

e [nformation requirements of learning tasks

e The precise conditions under which learning is possible

e |nherent difficulty of learning tasks

e How to improve learning — e.g. value of active versus passive
learning

e Computational architectures for learning

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Machine Learning — related disciplines

e Applied Statistics

— Emphasizes statistical models of data

— Methods typically applied to small data sets

— Often done by a statistician increasingly assisted by a computer
e Machine learning

— Relies on (often, but not always statistical) inference from data and
knowledge (when available)

— Emphasizes efficient data structures and algorithms for learning from
data

— Characterizing what can be learned and under what conditions
— Obtaining guarantees regarding the quality of learned models
— Scalability to large, complex data sets (big data)
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What is Machine Learning?

e Aprogram M is said to learn from experience E with respect
to some class of tasks T and performance measure P if its
performance as measured by P on tasksin T in an
environment Z improves with experience E.

Example 1
T — cancer diagnosis
E — a set of diagnosed cases
P — accuracy of diagnosis on new cases

Z — noisy measurements, occasionally misdiagnosed training
cases

M — a program that runs on a general purpose computer
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What is Machine Learning?

Example 2
T —recommending movies e.g., on Netflix

E — movie ratings data from individuals
P — accuracy of predicted movie ratings

10% improvement in prediction accuracy — S1 million prize
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What is Machine Learning?

Example 3
T — Predicting protein-RNA interactions

E — A data set of known interactions
P — accuracy of predicted interactions
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What is Machine Learning?

Example 4

T — Reconstructing functional connectivity of brains from brain
activity (e.g., fMRI) data

E — fMRI data

P — accuracy of the reconstructed network
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What is Machine Learning?

Example 5

T —solving integral calculus problems, given rules of integral
calculus

E — a set of solved problems
P — score on test consisting of problems not in E

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar



Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

What is Machine Learning?

Example 6

T — predicting the risk of a disease before the onset of clinical
symptoms

E — longitudinal gut microbiome data coupled with diagnostic tests

P — accuracy of predictions
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What is Machine Learning?

Example 7

T — predicting sleep quality from actigraphy data
E — actigraphy data with sleep stage labels

P — accuracy of predictions
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What is Machine Learning?

Example 8

T —Uncovering the causal relationship between exercise, diet and
diabetes

E — Data from observations and interventions (changes in diet,
exercise)

P — accuracy of causal predictions
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Key requirements

e There is a pattern to be learned
e There are data to learn from

Applicant information:

age 23 years
gender male
annual salary $30.000
years in residence 1 year
years in job 1 year
current debt $15,000

Approve credit?
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Learning to approve credit

Formalization:

e [nput: X (customer application)

e Output: y (good/bad customer?)

e Target function: f: X — Y (ideal credit approval formula)
e Data: (x1,¥41), (X2,¥2),- - , (XN, YN) (historical records)

Lol

e Hypothesis: g : X — Y (formula to be used)
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Learning to approve to credit

UNKNOWN TARGET FUNCTION
f: X—o

(ideal credit approval function)

TRAINING EXAMPLES
(x1 3y1 )! L (xN'yN)

(historical records of credit customers)

LEARNING FINAL
ALGORITHM

—=| HYPOTHESIS
g=f

(final credit approval formula)

HYPOTHESIS SET
H

(set of candidate formulas)
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Canonical Learning Problems

Supervised Learning:
e Given labeled samples, predict labels on future samples
= (Classification
= Regression
= Time series prediction
" Many variants based on what constitutes a predictive model
" Many variants based on what constitutes a sample and a label
= Multi instance learning
= Multi-label learning
= Multi-instance, multi-label learning
= Distributional learning
= Many variants based on data type
= Feature vectors
= Sequences
= Networks
= Relations
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Canonical Learning Problems

Unsupervised Learning: given unlabeled samples, discover representations,
features, structure, etc.

= (Clustering

= Compression

= Representation

Many variants based on what constitutes samples, data types

Semi-supervised Learning: given some labeled samples, and large amounts
of unlabeled samples, predict labels of unlabeled samples

e Transductive (unlabeled samples given at learning time)
e |nductive (new unlabeled samples given at prediction time)
Multi-view learning:

e Given data from multiple sources about some underlying system,
discover how they relate to each other;

e integrate the data to make predictions that are more reliable than those
obtainable using any single data source
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Canonical Learning Problems

Reinforcement Learning: Given the means of observing and interacting with
an environment, learn how to act rationally

e Many variants based on what constitutes observation, interaction, and
action

Causal inference: given observational and experimental data, causal
assumptions, identify causal relations

e |dentification
e Transport
e Meta analysis
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Learning input — output functions: Classification, regression

Target function f —unknown to the learner — f el
Learner’s hypothesis about what f might be — h EH
H — hypothesis space

Instance space— X — domainoff, h

Output space — Y —rangeoff, h

Example —an ordered pair (x,y) where

x& X and flx)=yeyY

F and H may or may not be the same!

Training set E —a multi set of examples

Learning algorithm L — a procedure which given some E, outputs an
heH
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Learning input — output functions

e Must choose
— Hypothesis language
— Instance language
— Semantics associated with both

e Machines can learn only functions that have finite
descriptions or representations if we require learning
programs to be halting programs

Examples:
e “Tom likes science fiction horror films”
P V{4 F — ma”
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Learning from Data

= Premise — A hypothesis (e.g., a classifier) that is consistent
with a sufficiently large number of representative training
examples is likely to accurately classify novel instances drawn

from the same universe

= We can prove that this is an optimal approach (under
reasonable assumptions) — more on this later

= When the number of examples is limited, the learner needs
to be smarter (e.g., find a concise hypothesis that is
consistent with the data)
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Learning as Probabilistic Inference

e Probabilistic inference provides a basis for updating beliefs
based on evidence

e Learning is tantamount to updating beliefs about the world
based on data.

— Sound probabilistic basis for understanding many learning
algorithms and designing new algorithms

— Several practical reasoning and learning algorithms
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Review

You should review material on
= Probability

= Random variables
= Distributions over random variables

= |ndependence and conditional independence
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Representing and Reasoning under Uncertainty

e Probability Theory provides a framework for representing and
reasoning under uncertainty

— Represent beliefs about the world as sentences (much like in
propositional logic)
— Associate probabilities with sentences

— Reason by manipulating sentences according to sound rules
of probabilistic inference

— Results of inference are probabilities associated with
conclusions that are justified by beliefs and data
(observations)
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Probabilistic inference

o Beliefs:

— |f Oksana studies, there is an 60% chance that she will pass the
test; and a 40 percent chance that she will not.

— |If she does not study, there is 20% percent chance that she will
pass the test and 80% chance that she will not.

e QObservation: Oksana did not study.

e Example Inference task:
— What is the chance that Oksana will pass the test?
— What is the chance that she will fail?

e Probability theory generalizes propositional logic

— Probability theory associates probabilities that lie in the interval
[0,1] as opposed to 0 or 1 (exclusively)
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Sources of uncertainty

Uncertainty modeled by Probabilistic assertions may
e |n a deterministic world be due to

— Laziness: failure to enumerate exceptions, qualifications, etc.
that may be too numerous to state explicitly

— Sensory limitations
— lgnorance: lack of relevant facts etc.
e |n a stochastic world be due to
— Inherent uncertainty (as in quantum physics)
The framework is agnostic about the source of uncertainty
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The world according to Agent Bob

e An atomic event or world state is a complete specification of
the state of the agent’ s world.

e Event set is a set of mutually exclusive and exhaustive possible

world states (relative to an agent’ s representational
commitments and sensing abilities)

e From the point of view of an agent Bob who can sense only 3
colors and 2 shapes, the world can be in only one of 6 states

e Atomic events (world states) are
— mutually exclusive

— exhaustive
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Semantics: Probability as a subjective measure of belief

e Suppose there are 3 agents — Sanghack, Sam, Aria, in a world
where a fair dice has been tossed.

e Sanghack observes that the outcome isa “6~ and whispers to
Sam that the outcome is “even” but

e Aria knows nothing about the outcome.

Set of possible mutually exclusive and exhaustive world states
=11, 2,3,4,5, 6}

Set of possible states of the world based on what Sam knows
={2, 4, 6}
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Probability as a subjective measure of belief

Probability is a measure over all of the world states that are
possible, or simply, possible worlds, given what an agent
knows

Possibleworldsg,, ;... = {6}, Possibleworlds,, = {2,4,6}
Possibleworlds ... = {1,2,3,4,5,6}

Py, onac (Worldstate = 6) = 1 Sanghack, Sam, and Aria assign
1 different beliefs to the same
Pr,,,, (worldstate = 6) = 3 world state because of
| differences in what they have
Pr,,..(worldstate = 6) = 3 observed or have been told!
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Random variables

e The “domain” of a random variable is the set of values it can take. The
values are mutually exclusive and exhaustive.

e The domain of a Boolean random variable X is {true, false} or {1, 0}
e Discrete random variables take values from a countable domain.
e The domain of the random variable Color may be {Red, Green}.

e If E={(Red, Square), (Green, Circle), (Red, Circle), (Green, Square)},

the proposition (Color = Red) is True in the world states {(Red,
Square), (Red, Circle)}.

e Each state of a discrete random variable corresponds to a proposition
e.g., (Color = Red)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar



Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Syntax

e Basic element: random variable

— Similar to propositional (Boolean) logic: possible worlds defined by
assignment of values to random variables.

— Cavity (do | have a cavity?)
— Weather is one of <sunny, rainy, cloudy, snow>
— Domain values must be exhaustive and mutually exclusive

e Elementary proposition constructed by assignment of a value to a
random variable

— Weather = sunny, Cavity = false

— (abbreviated as —cavity)
e Complex propositions formed from elementary propositions and
standard logical connectives

— Weather = sunny v Cavity = false
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Syntax and Semantics

e Atomic event: A complete specification of the state of the world about
which the agent is uncertain

e Atomic events correspond to a possible worlds (much like in the case
of propositional logic)

E.g., if the world consists of only two Boolean variables Cavity and
Toothache, then there are 4 distinct atomic events or 4 possible
worlds:

Cavity = false AToothache = false
Cavity = false A Toothache = true
Cavity = true A Toothache = false
Cavity = true A Toothache = true
e Atomic events are mutually exclusive and exhaustive
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Axioms of probability

e For any propositions A, B

- 0<PA)<1
— P(true) =1 and P(false) =0
— P(A v B)=P(A) + P(B) - P(A A B)

True
A A"B B
/ )
{.
:“\
~—U| Il
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Prior probability

e Prior or unconditional probabilities of propositions

— P(Cavity = true) = 0.1 and P(Weather =Rainy) = 0.72 correspond to
belief prior to arrival of any (new) evidence

e Probability distribution gives values for all possible assignments:
— P(Rainy) =<0.72,0.1, 0.08, 0.1>
— Note that the probabilities sumto 1

e Joint probability distribution for a set of random variables gives the
probability of every atomic event on those random variables

— P(Cavity, Weather) = a 4 x 2 matrix of values
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Joint probability distribution

e Joint probability distribution for a set of random variables gives
the probability of every atomic event on those random variables

— P(Weather, Cavity) = a 4 x 2 matrix of values:

Weather= sunny rainy cloudy snow
Cavity =true | 0.144 0.02 0.016 0.02
Cavity = false| 0.576  0.08 0.064 0.08

e Every question about a domain can be answered by the joint
distribution
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Inference using the joint distribution

Toothache —Toothache
Cavity 0.4 0.1
- Cavity 0.1 0.4

P(cavity) = P(cavity,Toothache) + P(cavity,~Toothache)
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Conditional probability

e Conditional or posterior probabilities
— P(Cavity | Toothache) = 0.8
(note Cavity is shorthand for Cavity = True)
Probability of Cavity given Toothache

e Notation for conditional distributions:
P(Cavity | Toothache) = 2-element vector of 2-element vectors)
P(Cavity | Toothache, Cavity) =1

e New evidence may be irrelevant (Probability of Cavity given Toothache is
independent of Weather)

P(Cavity | Toothache, Sunny) = P(Cavity | Toothache) = 0.8
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Conditional probability

Definition of conditional probability:
P(a | b)=P(a A b)/P(b)if P(b)>0
Product rule gives an alternative formulation:

P(a A b)=P(a | b) P(b)=P(b | a) P(a)

Example:

Suppose | have two coins — one a normal fair coin, and the other a
rigged coin (with heads on both sides). | pick a coin at random, toss it,
and tell you that the outcome of the toss is a Head.

What is the probability that | am looking at a fair coin?
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Conditional probability

e A general version holds for whole distributions, e.g.,
P(Weather,Cavity) = P(Weather | Cavity) P(Cavity)

e View as a compact notation for a set of 4 x 2 equations, not matrix
multiplication

e Chain rule is derived by successive application of product rule:
P(X, ..., X)) = P(Xy,... X 1) P(X, | Xg,e0s X 1)
=P(Xy,.., X 5) P(X, 1 | Xp,-0 X, 5) POX | Xp,00 X 1)

=1, P(X, | X, ... , X ;) (i ranges from 1 to n)
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Probability as a measure over possible worlds

e Suppose | have two coins —one a normal fair coin, and the other with 2
heads. | pick a coin at random and toss it. What is the probability that
the outcome is a head?

Q={(Fair,H),(Fair,T),(Rigged,H),(Rigged,T)}
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Conditional probability as a Measure over Possible worlds not ruled out
by evidence

e A given piece of evidence e rules out all possible worlds that
are incompatible with e or selects the possible worlds in
which e is True. Evidence e induces a new measure u,.

(1

o) |7y <
L 0if w ‘;é e
~ W) 1 ) P(h/\e)
P(h‘e)—;hﬂe( ) P(e)w;Aft( ) P(e)
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Effect of Evidence on Possible worlds

Evidence 7 e.q., (color = red) rules out some assignments of values
to some of the random variables

P(e)
P(elz)
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Inference by enumeration

e Start with the joint probability distribution:

toothache - toothache

carch| - catch)carch| — carch
caviry | .108| .012 072 | .008
—caviry | .016| .064 144 | 576

e For any proposition ¢, sum the atomic events where it is true:
P((I)) = zw;w Hb P(w)

e P(toothache)=0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

e Start with the joint probability distribution:

toothache I - toothache

catch| — catch) catch| — carch
.108| .012
- cavity | 016 | .064

e (Can also compute conditional probabilities:

P(—cavity | toothache) = P(—cavity A toothache)
P(toothache)
= 0.016+0.064
0.108 + 0.012 + 0.016 + 0.064
=0.4
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Independence

e Aand B are independent iff
P(A/B) =P(A) orP(B/A)=P(B) orP(A, B)=P(A)P(B)

, “Cavity
Cavity decomposes into . Toothache Catch /
Toothache  Catch ‘ S~ 7_,'
Weather Wé;t-hér

P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)
e 32 entries reduced to 12;
e nindependent variables, O(2") reduced to O(n)
e Absolute independence powerful but rare
e How can we manage a large numbers of variables?
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Conditional Independence

e Xis conditionally independent of Y given Z if the probability

distribution governing X is independent of the value of Y
given the value of Z:

e P(X|Y,Z)=P(X|Z)thatis,

(in’yj’zk)P(X=xi |Y=ijZ=Zk)=P(X=xi | Z=2,)
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Independence and Conditional Independence

LetZ,,..Z_ and W be pairwise disjoint sets of
random variables on a given event space.
Z,.....Z are mutually independent given W if

Pz, U..UZ, W)

W)= é_PCZi

P(ZI\Z2 UW)= P(ZI\W)if Z, and Z, are independent.
Note that these represent sets of equations, for all
possible value assignments to random variables
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Independence Properties of Random Variables

Let W,X,Y,Z be pairwise disjoint sets of

random variables on a given event space.

Let / (X, Y, Z) denote that X and Z are independent given'Y.
Thatis, P(XUZ|Y )= P(X|Y)P(z]Y) or P(X|YUZ)=P(X|Y) Then:
a. 1(X,2,Y)= I1(Y,Z,X)

b. I(X,ZYUW)= I(X,Z,Y)

c./(X,Z,YUW)=I(X,ZUW,Y)

d. I(X,Z,Y)A IX,ZUY, W)= I(X,ZYUW)

Proof : Follows from definition of independence.
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Quick proof that independence is symmetric

e Assume: P(X]Y, Z) = P(X|Y)
e XandZareindependent given Y

P(X.Y | Z)P(Z)
P(X,Y) (Bayes s Rule)
_ P(Y|2)P(X|Y,2)P(Z)

P(Z| X,Y) =

P(X|Y)P(Y) (Chain Rule)
= P 2 | i) (By Assumption)
P(X|Y)P(Y)
_P(Y|Z)P(Z) o~ (Bayes s Rule)
P(Y)
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Bayes Rule

Does patient have cancer or not?

A patient takes a lab test and the result comes back positive. The test
returns a correct positive result in only 98% of the cases in which the
disease is actually present, and a correct negative result in only 97%
of the cases in which the disease is not present. Furthermore, .008 of
the entire population have this cancer.

P(cancer) = P(=cancer) =
P(+ |cancer) = P(- | cancer) =
P(+ | —cancer) = P(-|—cancer) =
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Bayes Rule
Does patient have cancer or not?
P(cancer) =0.008 P(=cancer) =0.992
P(+ | cancer) = 0.98 P(-| cancer) = 0.02
P(+ | =cancer) = 0.03 P(-| ~cancer) =0.97
P(cancer'+) = P(+|cancer)P(cancer) ;
P(+)
P(~cancers) = P(+/~cancer)P(~cancer)

P(+)
P(cancer+)P(+) =0.98 x 0.008 = 0.0078;
P(=cancer+)P(+) =0.03x0.992 = 0.0298

P(+)=0.0078 +0.0298
P(cancer 1+) =0.21; P(=cancer1+)=0.79

The patient, more likely than not, does not have cancer
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Bayes Rule

e Product rule
— P(aanb)=P(a | b) P(b) =P(b | a) P(a)

— Bayes'rule: P(a | b) =P(b | a) P(a) / P(b)

e |n distribution form

P(Y[X) = P(X]Y) P(Y) / P(X) = aP(X]Y) P(Y)
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Decision Theoretic Foundations

e What is an “optimal” classifier?

e How can a classifier assign labels optimally?
e Can we build an optimal classifier?

e Example
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Decision theoretic foundations of classification

Consider the problem of classifying an instance X

into one of two mutually exclusive classes w, or w,
P(w,|X) = probability of class @, given the evidence X
P(w, |X ) = probability of class w, given the evidence X
What is the probability of error?
P(error| X)=P(w, |X) it we choose w,

= P(w, |X ) if we choose w,
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Minimum Error Classification

To minimize classification error
Choose w, if P(w|X) > P(w,|X)
Choose w, if P(w,|X) > P(w,|X)
which yields
P(error| X) = min|P(w,| X), P(e,|X)]
We have:
P(w|X) = P(X |w)P(w);
P(w,|X) = P(X | w,)P(w,)
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p(x|wi) -

Piw)=.5 Piw;)=.5
Choose o, if P(w|X) > P(w,|X) i.e. X ER,
Choose w, if P(w,|X) > P(w|X) i.e. X ER,
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Optimality of Bayes Decision Rule

We can show that the Bayesian classifier

e isoptimal in thatitis guaranteed to minimize the probability of
misclassification
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Optimality of Bayes Decision Rule

WO

Error
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Optimality of the Bayes Decision Rule

P, = P(x ER,,x Ew,)+ P(x €ER,,x € w,)

= P(xER,lw)P(w,)+ P(x ER, w,)P(w,)

= P(w,)J p(xlw,)dx + P(a)z)lgp(x lw, )dx
R 1

Applying Bayes Rule :
p(x lw;)P(w;) = P(w; 1 x)p(x) = p(x.0;)

P, = [P(w,1x)p(x)dx+ [P(w,|x)p(x)dx
R R
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Optimality of the Bayes Decision Rule
P = [ploy|x)p(x)dx+ [ plo, | x)plxx

Because R, U R, covers the entire input space,
[Plo | x)plx)ds + [Pl | D)plki = Pl
R2

~
I

. = Play)- [(Pley | x)~ Pleo, | x))plx)e

Ry
P, is minimized by choosing
R, such that P(w, | x)> P(w, | x)
and
R, such that P(a)2 | x) > P(a)1 | x)
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Optimality of Bayes Decision Rule

e The proof generalizes to multivariate input spaces

e Similar result can be proved in the case of discrete (as opposed

to continuous) input spaces — replace integration over the input
space by summation
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Bayes Decision Rule yields Minimum Error Classification

To minimize classification error
Choose o, if P(w|X) > P(w,|X)
Choose w, if P(w,|X) > P(w|X)
which yields
P(error| X) = min| P(a| X), P(w,| X)]
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Bayes Decision Rule

Behavior of Bayes decision rule as a function of prior probability of
classes

(x| wy) :
y W W, p (x[w;) o
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Bayes Optimal Classifier

Classification rule that guarantees minimum error :
Choose w, if P(X | w)P(w,) > P(X |w,)P(w,)
Choose w, if P(X |w,)P(w,) > P(X | w,)P(w,)
If  P(X|w)=PX|w,)
classification depends entirely on P(w,) and P(w,)
If P(w)=P(w,),
classification depends entirely on P(X | w,) and P(X | w,)
Bayes classificationrule combines the effect of the two terms
optimally - so as to yield minimum error classification.
Generalization to multiple classes ¢(X) = argmax P(w; | X)

Wy
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Minimum Risk Classification

Let 4, =risk or cost associated with assigning an instance

to class w ;when the correct classitication 1s o,

R(w, | X)) = expected loss incurred 1n assigning X to class w,
R(w, | X) =4, P( | X)+ 4, P(w, | X)
R(w, | X) =A,P(w, | X))+ A, P(w, | X)
Classification rulethat guarantees minimum risk :
Choose w, 1if R(w, | X) < R(w, | X)
Choose w, if R(w, | X) < R(w, | X)

Flip a com otherwise
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Minimum Risk Classification

4; =risk or cost associated with assigning an instance

to class w;when the correct classification 1s o,

Ordinarily (4,, - 4,,)and (4, — 4,,) are positive

( cost of being correct is less than the cost of error)
P(X|w1) S (}“21 — Ay )P(C‘)z)
P(Xlwz) (’112 _111) P(wl)

Otherwise choose w,

So we choose w, 1f

Minimum error classification ruleis a special case :
A; =01t i=jand 4, =11f i= j

This classification rule can be shown to be optimal in that it is
guaranteed to minimize the risk of misclassification
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Summary of Bayesian recipe for classification

4; =risk or cost associated with assigning an instance

to class w , when the correct classificationis o,

P()qwl) o (izl — 4y )P(wz)
P()(Iwz) (}'12 _}'11) P(a)l)
P(Xla)l) - (121 — 4y )P(a)z)
P()(Iwz) (112 _}11) P(a)l)

Minimum error classificationrule is a special case:

P(Xjw,) _ Plo,)

Choose o, if > Otherwise choose w,
P( 602) (a)l)

Choose w, if

Choose w, if
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Bayesian recipe for classification

Note that P(w, | X) =

Model P(x | o, ), P(X|a)2 ), P(oo1 ), and P(a)z)
Using Bayes rule, choose w, if P(X | @, )P(co1 ) > P(X|oo2 )P(oo2 )

Otherwise choose w,
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Summary of Bayesian recipe for classification

e The Bayesian recipe is simple, optimal, and in principle,
straightforward to apply

e To use this recipe in practice, we need to know P(X|w) —the

generative model for data for each class and P(w,) — the prior
probabilities of classes

e Because these probabilities are unknown, we need to estimate
them from data — or learn them!

e Xis typically high-dimensional or may have complex structure
e Need to estimate P(X| w) from data
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Naive Bayes Classifier

e HowtolearnP (X|w)?

One solution: Assume that the random variables in X are
conditionally independent given the class.

e Result: Naive Bayes classifier which performs optimally under
certain assumptions

e Asimple, practical learning algorithm grounded in Probability
Theory

When to use

e Attributes that describe instances are likely to be conditionally
independent given classification

e The data is insufficient to estimate all the probabilities reliably if
we do not assume independence
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Conditional Independence

Let Z,....Z and W be random variables
on a given event space.
Z,,....Z aremutually independent given IV if

P\z,.7,,.2,|W)= ]i][P(Zi W)

Note that these represent sets of equations, for all
possible value assignments torandom variables
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Implications of Independence

e Suppose we have 5 Binary attributes and a binary class label

e Without independence, in order to specify the joint
distribution, we need to specify a probability for each possible
assignment of values to each variable resulting in a table of size
2°=64

e Suppose the features are independent given the class label -
we only need 5(2x2)=20 entries

e The reduction in the number of probabilities to be estimated is
even more striking when N, the number of attributes is large —
from O(2") to O(N)
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Naive Bayes Classifier
Consider a discrete valued target function f: y — Q

where aninstance X =(X,, X,..X )€ yisdescribed
intermsof attribute values X, =x,, X, =x,, .. X, =x,
where x, EDomain(Xl.)

Wy, p = argtal)qgéP(a)j X, =x,X,=x,... X, =X )
J

P(X, =x,X, =x,,...X,=x,|w,)P(w,)
= arg max
;S0 P(X,=x,X,=x,,....X,=X)
=argmax P(X, =x, X, =x,,...X, =x, |w,)P(w,)

a)JEQ

Wy 4p is called the maximum a posteriori classification
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Naive Bayes Classifier

Wyp =argmax P(w; | X, =x,X, =x,.. X, =x,)

=
= argglgéP(X =X, X, =Xy, X, =X, | @, )P(0))

If the attributes are independent given the class, we have

W, p = argmgé( :1 P( ;=X | o, )P(a) )

= Wyp

= arg%lgép(wf)ﬁp()(i =X, | a)j)
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Naive Bayes Learner

For each possible value w, of €,
f)(Q = a)j) < Estimate(P(Q =W, ),D)
For each possible value a, of X,
P(X, = a, |w;) < Estimate (P(Xl. =q, |Q= a)].)D)

Classify anewinstance X =(x,,x,,...xy)

c(X) argmaXP(a) )HP ;=X | o, )

Estimate is a procedure for estimating the relevant
probabilities from set of training examples
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Learning Dating Preferences

Instances — Training Data
ordered 3-tuples of attribute Instance Class label
values corresponding to I, (t,d, 1) +
Height (tall, short) 2 (s,d,1) T
Hair (dark, blonde, red) 13 (t,b, 1) -
Eye (blue, brown) I, (t,r, 1) -
Classes — ;:5 (s,b, 1) )
I, (t,b, w) +
- = N
I, (t,d, w) +
I, (s,b, w) +
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Probabilities to estimate

P(+) = 5/8 P(Height | c) |t s P(Hair|c)|d |b |r

P(-) =3/8 + 3/5 |2/5] |+ 3/5 12/5 10
- 23 |13 ]| — 0O [2/3]1/3

P(Eye | c) / w Classify (Height=t, Hair=>b, eye=l)

+ 2/5 |3/5| PX|+)=(3/5)(2/5)(2/5) = (12/125)

— 1|0 | PAX[2)=2R)23)(1) = (47)

P(+|X) a P(+)PX|+)=(5/8)(12/125)=0.06
P(-1X) o P(-)P(X|-)=(3/8)(4/9)=0.1667
Classify (Height=t, Hair=r, eye=w)

Note the problem with zero probabilities
Solution — Use Laplacian correction
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Estimation of Probabilities from Small Samples

. n. +mp.
P(Xl =a, |(U]) < _Jk Ji
‘ n;+m

n; 1s the number of training examples of class @,
n; =number of training examples of class o,

JU

which have attribute value g, for attribute X;
p;; 1s the prior estimate for P(X; =q, |®))

m 1s the weight given to the prior

A n..
Jji
Asn—o,P(X,=q, lw;,)——

n;

This is effectively the same as using Dirichlet priors
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Sample Applications of Naive Bayes Classifier

Naive Bayes is among the most useful algorithms
e Learning dating preferences

e Learn which news articles are of interest

e Learn to classify web pages by topic

e Learn to classify SPAM

e Learn to assign proteins to functional families

What attributes shall we use to represent text?
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Learning to Classify Text

e Target function Interesting: Documents — {+,-}
e Learning: Use training examples to estimate
P(+)1 P(- )I P(d |+)l P(d |_)

Alternative generative models for documents:
e Represent each document as a sequence of words
— In the most general case, we need a probability for each

word occurrence in each position in the document, for each
possible document length
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length(d)

P(dlw,) = P(lengih(d)) | | P(X;1w, length(d))

This would require estimating for each document,
x|

probabilities for each possible document length!

length(d)

‘Vocabulary

To simplify matters, assume that probability of
encountering a specific word in a particular
position 1s independent of the position,
and of document length

Treat each document as a bag of words!
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Bag of Words Representation

So we estimate one position-independent class-conditional
probability P(w, lw;) for each word instead of the set of position-specific
word occurrence probabilities P(X, =w, l@;) ...P(X,, .0y =W, | @)
The number of probabilities to be estimated drops to
|Vocabulary| x ||

The result is a generative model for documents that treats each
document as an ordered tuple of word frequencies

More sophisticated models can consider dependencies between
adjacent word positions
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Learning to Classify Text

With the bag of words representation, we have

%Z";,} [Tt o)

k

N

P(d | a)j) Is proportional to .

~ S

where n,, is the number of occurences of w, indocument d
(ignoring dependence on length of the document)
We can estimate P(w, | w,) fromthe labeled bags of words we have.
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Naive Bayes Text Classifier

e Given 1000 training documents from each group, learn to classify
new documents according to the newsgroup where it belongs

e Naive Bayes achieves 89% classification accuracy

comp.graphics misc.forsale
comp.os.ms-windows.misc rec.autos
comp.sys.ibm.pc.hardware rec.motorcycles
comp.sys.mac.hardware comp.windows.x rec.sport.baseball
alt.atheism rec.sport.hockey
soc.religion.christian sci.space
talk.religion.misc sci.crypt
talk.politics.mideast sci.electronics
talk.politics.misc sci.med

talk.politics.guns
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Naive Bayes Text Classifier

Representative article from rec.sport.hockey

Path: cantaloupe. srv. cs. cmu. edu! das—news. harvard. edu!ogicse!uwmn. edu
From: xxx@yyy. zzz.edu (John Doe)

Subject: Re: This year’ s biggest and worst (opinion)...
Date: b Apr 93 09:53:39 GMT

I can only comment on the Kings, but the most obvious candidate for
pleasant surprise is Alex Zhitnik. He came highly touted as a
defensive defenseman, but he’ s clearly much more than that. Great
skater and hard shot (though wish he were more accurate). In fact,
he pretty much allowed the Kings to trade away that huge defensive
liability Paul Coffey. Kelly Hrudey is only the biggest
disappointment if you thought he was any good to begin with. But, at
best, he’s only a mediocre goaltender. A better choice would be
Tomas Sandstrom, though not through any fault of his own, but
because some thugs in Toronto decided ---.
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Naive Bayes Learner — Summary
e Produces minimum error classifier if attributes are
conditionally independent given the class
When to use

e Attributes that describe instances are likely to be
conditionally independent given classification

e There is not enough data to estimate all the probabilities
reliably if we do not assume independence

e Often works well even if when independence assumption is
violated (Domigos and Pazzani, 1996)

e Can be used iteratively — Kang et al., 2006

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

On Estimation
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Estimating probabilities from data (discrete case)

e Maximum likelihood estimation
e Bayesian estimation
e Maximum a posteriori estimation
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Example: Binomial Experiment

Vi ///////j'//'7//////
Head Tail

e When tossed, the thumbtack can land in one of two positions:
Head or Tail

e We denote by 0 the (unknown) probability A(H).
e Estimation task—

e Given a sequence of toss samples x[1], x[2], ..., xI[M] we want to
estimate the probabilities P(H)=0 and P(T) =1 -6
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Statistical parameter fitting

Consider samples x[1], x[2], ..., x[M] such that ~
e The set of values that X can take is known i.i.d
e Each is sampled from the same distribution samples
e Each is sampled independently of the rest ~

The task is to find a parameter @ so that the data can be
summarized by a probability P(x[j]| ©).
e The parameters depend on the given family of probability
distributions: multinomial, Gaussian, Poisson, etc.

e We will focus first on binomial and then on multinomial
distributions

e The main ideas generalize to other distribution families
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The Likelihood Function

How good is a particular 07
It depends on how likely it is to generate the observed data

L(O:D)=P(D16)x HP(x[m] 16)

The likelihood for the sequence H,T, T, H, H is

/T NN\

LO:D)xO0-(1-0)-(1-6)-60-60

L(O :D)

0

0 02 04 06 08 10
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Likelihood function

e The likelihood function L(6: D) provides a measure of relative
preferences for various values of the parameter 6 given a
collection of observations D drawn from a distribution that is
parameterized by fixed but unknown 6.

e [(O:D)isthe probability of the observed data D viewed as a
function of 0.

e Suppose data D is 5 heads out of 8 tosses. What is the likelihood
function assuming that the observations were generated by a
binomial distribution with an unknown but fixed parameter6 ?

0°(1-0)

S
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Sufficient Statistics

e To compute the likelihood in the thumbtack example we only
require N, and N (the number of heads and the number of tails)

L(O:D)x 6" -(1-0)"

e N, and N; are sufficient statistics for the parameter 6 that
specifies the binomial distribution

e A statistic is simply a function of the data

e A sufficient statistic s for a parameter 6 is a function that

summarizes from the data D, the relevant information s(D)
needed to compute the likelihood L(6 :D).

- If s is a sufficient statistic for 6, and s(D) =s(D’),
then L(6:D) = L(6:D")
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Maximum Likelihood Estimation

e Main Idea: Learn parameters that maximize the
likelihood function

e Maximum likelihood estimation is
— Intuitively appealing

— One of the most commonly used estimators in
statistics

— Assumes that the parameters to be estimated are
fixed, but unknown
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Example: MLE for Binomial Data

e Applying the MLE principle we get X N
H
¢ (Why?) 0 =

Example:

(NuNz) =(3,2)

ML estimate is 3/5 = 0.6

L(O :D)
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MLE for Binomial data N

L(6:D)= o -(1-6)"

H

logL(6:D)=N,logf+N,log(1-6)
The likelihood is positive for all legitimate values of 0
So maximizing the likelihood is equivalent to maximizing its
logarithm i.e. log likelihood

0 Note that the likelihood
—log L(@.‘D) = 0 at extrema of L(@.’D)

00 is indeed maximized at &
a_QIOgL(Q D)= ]\é + ]EII (91)) =0 =0,,, because in the
(N +N Y =N B neighborhood of 6,,,
n ¥ N =N the value of the
0 ___ Nu likelihood is smaller than
(N + N

itisat 6=6,,

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Maximum and curvature of likelihood around
the maximum

e At the maximum, the derivative of the log likelihood is zero
e At the maximum, the second derivative is negative
e The curvature of the log likelihood is defined as

](6’) NPy logL(H D)

e lLarge observed curvature / (6,,) at 6= 0,,, is associated with a
sharp peak, intuitively indicating less uncertainty about the
maximum likelihood estimate

e /(6,,) is called the Fisher information
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Maximum Likelihood Estimate

ML estimate can be shown to be _
e Asymptotically unbiased ]I\,lgl E(Gm ) = eTme

e Asymptotically consistent - converges to the true value as the
number of examples approaches infinity

}TILI(}O Pr{HHML -0, .| < g}= 1
]{IILI(}O EQ‘HML — eTrue i )= O

e Asymptotically efficient — achieves the lowest variance that any
estimate can achieve for a training set of a certain size (satisfies the
Cramer-Rao bound)
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Maximum Likelihood Estimate

e ML estimate can be shown to be representationally invariant — If
0,,,is an ML estimate of §, and g (0) is a function of 6, then g (6,,, )
is an ML estimate of g (6)

e When the number of samples is large, the probability distribution
of 6,, has Gaussian distribution with mean 6., (the actual value
of the parameter) — a consequence of the central limit theorem
— A random variable which is a sum of a large number of random
variables has a Gaussian distribution — ML estimate is related to

the sum of random variables

e We can use the likelihood ratio to reject the null hypothesis
corresponding to 6 = 6,as unsupported by data if the ratio of the
likelihoods evaluated at 6,and at 6,, is small. (The ratio can be
calibrated when the likelihood function is approximately quadratic)
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From Binomial to Multinomial

e Suppose a random variable X can take the values /,2,.. . ,K
e We want to learn the parameters 6 ;, 0 ,. ..., 0 ¢

o Sufficient statistics: N,, N,, ..., Ng - the number of times each
outcome is observed

e Likelihood function
K
L©O:D)=] |6*
k=1

e ML estimate
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Summary of Maximum Likelihood estimation

e Define a likelihood function which is a measure of how likely it
is that the observed data were generated from a probability
distribution with a particular choice of parameters

e Select the parameters that maximize the likelihood
e |nsimple cases, ML estimate has a closed form solution

e |n other cases, ML estimation may require numerical
optimization

e Problem with ML estimate — assigns zero probability to
unobserved values — can lead to difficulties when estimating
from small samples

e (Question — How would Naive Bayes classifier behave if some of
the class conditional probability estimates are zero?
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Bayesian Estimation

e MLE commits to a specific value of the unknown parameter (s)
e MLE is the same in both cases shown

VS.

Of course, in general, one cannot summarize a function by a single
number!

Intuitively, the confidence in the estimates should be different
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Bayesian Estimation

Maximum Likelihood approach is Frequentist at its core
e Assumes there is an unknown but fixed parameter 0
e Estimates O with some confidence

e Prediction of probabilities using the estimated parameter
value

Bayesian Approach
e Represents uncertainty about the unknown parameter
e Uses probability to quantify this uncertainty:
— Unknown parameters as random variables
e Prediction follows from the rules of probability:

— Expectation over the unknown parameters
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! Example: Binomial Data Revisited

0O 020406081

e Suppose that we choose a uniform prior p(6 ) = 1for 6 in [0,1]
P(6 | D) is proportional to the likelihood L(8 : D)

(01 D)= —PP10P©O)
J p(D10)p©)do

In this case,p(DIO)=( f )(9 (1-6)'and VO €[0,1], p(0) =
| _514_5_se_5_gl_si
{p(Dlﬁ)p(H)—( ) ){(9 ¢ )de‘( 1 )[5 6}0_( 1 )30

p(01D)=300"(1-6)

1 1 1
P(X[m+1]=HID)=fp(0ID)Hd0=30f04(1—0)6d0=30 6" _ 01 _32_ 07142
0 0 6 7 0 7
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Example: Binomial Data Revisited
(NH,NT ) = (4,1)
MLE for P(X=H ) is 4/5=0.8

Bayesian estimate is 5

P(x{M +1]= H| D)= [8-P(8] D)d6 = —=07142...

In this example, MLE and Bayesian prediction differ

It can be proved that

* If the prioris well-behaved —i.e. does not assign 0 density to any
feasible parameter value

* Then both MLE and Bayesian estimate converge to the same
value in the limit

 Both almost surely converge to the underlying distribution P(X)

* The ML and Bayesian approaches behave differently when the
number of samples is small
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All relative frequencies are not equi-probable

e |n practice we might want to assert priors that allow us to
express our beliefs regarding the parameter to be estimated

e For example, we might want a prior that assigns a higher
probability to parameter values that describe a fair coin than it

does to an unfair coin
e The beta distribution allows us to capture such prior beliefs
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Beta distribution

Gamma Function:

I(x) =ftx_le_tdt
0

The integral converges if and only if x > 0.
If x is an integer that is greater than 0, it can be shown that

F(x)=(x—1)/ Ix+1)
I(x)
The beta density function with parametersa, b, N = a + b,

=X

where a, b are real numbers > 0, beta (6’; a,b) 1S:

p(é’) = F(I;()]]\I()b)ﬁa'l (1 — Q)b_l where0 <0 <1

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Beta distribution
If a, barereal numbers > 0, then
F(a+1)F(b+1)
F(a+b+2)

1
[ 0°(1-0)d6 =
0

If © has distribution given by beta(6;a,b), then E(0) = %
LetD = {x[1]..., x[M [lbe

a sequence of 11d samples from a binomial distribution;
LetN, =s; N,=t; and p(6’) = beta(&';a,b)

Then we can show that p(@‘D) = beta(@; a+s,b+ t)

Update of the parameter with a beta prior based on data yields a
beta posterior
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Conjugate Families

e The property that the posterior distribution follows the same
parametric form as the prior distribution is called conjugacy

e Conjugate families are useful because:

— For many distributions we can represent them with hyper
parameters

— They permit sequential update of the posterior based on
data

— In many cases we have closed-form solution for prediction
e Beta prior is a conjugate family for the binomial likelihood
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Bayesian prediction

prior : beta ((9; a, b)

posterior : p(H ‘ D) = beta(H; a+ N, ,b+ NT)

_a+NH= (a+NH)
N+ M (a+b)+(NH+NT)

prediction : P(X[M +1]= H| D)
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Dirichlet Priors

e Recall that the likelihood function is L(@ZD)=H@N"
e A Dirichlet prior with hyperparameters «,,...,a; is defined as

K
P(0©) = He “l 0=6 <I; Zek =1
]:[F ak -!

where @ = (6’1...<9K)
e Then the posterior has the same form, with hyperparameters

o +N ..., +N

P(®| D) P(@)P(D @)

K

];lH O!k—l 9 Nk — 9 O{k+Nk—1
k
=]
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Dirichlet Priors

e Dirichlet priors enable closed form prediction based on
multinomial samples:

— If P(O) is Dirichlet with hyperparameters a,,...,a, then

O g

L L L L] L] /€
e Since the posterior is also Dirichlet, we get

P(XT1] = k) = [0, P()aB =

(Xk +N/(

E(W +N,)
7

P(XIM+1]= k| D) = [0, P(O | D)cB =
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Intuition behind priors

e The hyperparameters «;,...,ay can be thought of as
imaginary counts from our prior experience

e Equivalent sample size = a +...+ay

e The larger the equivalent sample size the more confident
we are in our prior
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Effect of Priors

Prediction of P(X=H ) after seeing data with N, = 0.25eN for
different sample sizes

0.55 0.6

0.5

Different strength o+ at 0.5 Fixed strength o+ at

0.45 Fixed ratio ay/ ar Different ratio o,/ at
0.4

0.4

0.35
0.3

0.25

0.2

0.15 0
0 20 40 60 80 100 0 20 40 60 80 100

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Effect of Priors

e |n real data, Bayesian estimates are less sensitive to noise in the

data

MLE =
Dirichlet(.5,.5) ——
0.6 Dirichlet(1,1) =——
Q Dirichlet(5,5) ——
Y~ 0.5 Dirichlet(10,10) =—

|

Ko
Q

Toss Result
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Conjugate Families

e The property that the posterior distribution follows the same
parametric form as the prior distribution is called conjugacy

— Dirichlet prior is a conjugate family for the multinomial
likelihood

e Conjugate families are useful because:

— For many distributions we can represent them with
hyperparameters

— They allow for sequential update within the same
representation

— In many cases we have closed-form solution for prediction
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Bayesian Estimation
P(x[M +1]| x[1],...,x[M])
=fP(x[M+1]|H,x[l],...,x[M])P(t9|x[l],...,x[M])dH
=fP(x[M+1] | PO | x[1],...,x[M])dE

szelzh%] ’

A1 M= P(xg](x[l] AG[L\?]])D(H)

where

|Posteri0r | mlily of data ]

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Summary of Bayesian estimation

e Treat the unknown parameters as random variables
e Assume a prior distribution for the unknown parameters

e Update the distribution of the parameters based on data — easy
if we have conjugate priors

e Use Bayes rule to make prediction
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Maximum a posteriori (MAP) estimates —
A compromise between ML and Bayesian approaches

_rloe)p(e)
P(D)
arg max P((H)‘D)

C
arg max P(D‘@)P(@)
C
arg max P(@ )L(@ : D)

Q)
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Maximum a posteriori (MAP) estimates —
A compromise between ML and Bayesian approaches

O,,= arg(tanax P(@)L(@ : D)

* Like in Bayesian estimation, we treat the unknown
parameters as random variables

 But we estimate a single value for the parameter

* the maximum a posteriori estimate that corresponds
to the most probable value of the parameter

e given the data for a given choice of the prior
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End of extra slides on estimation
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Evaluating Classifier Performance
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Instance space

Estimating classifier performance

WA = £
Domain(X) ={a,b,c,d}

8'2°8 4
x a b ¢ d
Ax) 0 1 1 0
flx) 11 0 0

error,, (h) =Pr, [h(x) = f(x)]
- D(X =a)+D(X =c)
1 1 1
= — +— = —
8§ 8 4
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Measuring classifier performance

B 20 = F(9

Error,(h)=Pr., (f(x)=h(x))

Instance space

* We do not in general, know D, the distribution from which the data
samples are drawn.

* So we estimate the error from the samples we have
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Estimating Classifier Performance
N: Total number of instances in the data set

TP;: Number of True positives for class j
FP; : Number of False positives for class j
I'N;: Number of True Negatives for class j
FN;: Number of False Negatives for class j
TP, +1N,

N
= P(Class =c; Nlabel = cj)

Accuracy ; =

Perfect classifier €-> Accuracy =1
Popular measure

Biased in favor of the majority class!
Should be used with caution!
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Measuring Classifier Performance: Sensitivity

- TP.
Sensitivity ; = /

TPJ.+FNJ.

Count(label =C; A clasg = cj)

Count( class = c].)

= P(label =c; | class cj)
Perfect classifier = Sensitivity = 1

Probability of correctly labeling members of the target class
Also called recall or hit rate
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Measuring Classifier Performance: Specificity

1P,

J

TP, + FP

Specificity ; =

Count(label =C; A clasg = cj)
Count(label = cj)
= P(class =c; |label =c, )

Perfect classifier = Specificity = 1
Also called precision
Probability that a positive prediction is correct
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Measuring Performance: Precision, Recall, and False Alarm Rate

TP. TP
/ Recall ; = Sensitivity ; = J
TP]. + FPJ TPJ. + FN].

Precision ; = Specificity , =

Perfect classifier 2 Precision=1 Perfect classifier 2 Recall=1

FP.

J

TN].+FP].

FalseAlarmj =

Perfect classifier 2
Count(label =c; Aclass = —-cj) False Alarm Rate =0

Count(label = —-cj)
= P(Zabel =c, |class = —-cj)
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Classifier Learning -- Measuring Performance

Class C, - C,
—>
Label |
v
C, TP=55 | FP=5
~ C, FN=10  [TN=30
N=TP+FN+1N + FP =100
e TP 55 55
sensitivity, = = =
TP+FN 55+10 65
specificity, = P _ > _»
P = Py FP T 5545 60
TP+TN 55430 85
accuracy, = = =
N 100 100
5 5
falsealarm, = P

TN+FP 30+5 35
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Measuring Performance — Correlation Coefficient
o (TP, xTN )~ (FP; xFN )
;=
J(TPJ +FN,)(TP; + FP;)(IN; + FP,)(TN, + FN )
-1< CC]- <1
Perfect classifier €—> CC =1, Random guessing €<—> CC=0

Corresponds to the standard measure of correlation between two
random variables Label and Class estimated from labels L and the
corresponding class values C for the special case of binary (0/1)
valued labels and classes

( jlabel. — jlabel)( jclass; — jclass)

CC. =

j
d €D O j1ABELO JCLASS

where jlabel; =1 iff the classifier assigns d; to class ¢ ;

jelass; =1 itf the true class of d; 1s class ¢ ;
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Beware of terminological confusion in the literature!

e Some bioinformatics authors use “accuracy” incorrectly to refer
to recall i.e. sensitivity or precision i.e. specificity

e |n medical statistics, specificity sometimes refers to sensitivity

for the negative class i.e. TN .
J
TN, + FP,
e Some authors use false alarm rate to refer to the probability that
a positive prediction is incorrect i.e. FP.
! =1- Precision .
FP +TP, !

When you write

e provide the formulain terms of TP, TN, FP, FN
When you read

e check the formulain terms of TP, TN, FP, FN
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Measuring Classifier Performance

e TP, FP, TN, FN provide the relevant information
* No single measure tells the whole story

e A classifier with 98% accuracy can be useless if 98% of the
population does not have cancer and the 2% that do are
misclassified by the classifier

e Use of multiple measures recommended

e Beware of terminological confusion!
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Micro-averaged performance measures
Performance on a random instance

* Micro averaging gives equal importance to each instance
* Classes with large number of instances dominate

E TP, E TP,
: N MicroAverage Recall =
MicroAverage Precision & E TP, + E FN,

ETP +EFP

MicroAverage FalseAlarm =1- MicroAverage Precision

Z " Etc.
N

MicroAverage Accuracy =

MicroAverage CC =
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Macro-averaged performance measures

Macro averaging gives equal importance to each of the M classes

e 1 s
MacroAverage Sensitivity = = 2 Sensitivity
1
MacroAverageCorrelationCoeff = i E CorrelationCoeff;
7

1
MacroAverage Specificity = i E Specificity
7
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Receiver Operating Characteristic (ROC) Curve

e We can often trade off recall versus precision — e.g., by
adjusting classification threshold 0 e.g.,

. Ple, 1 x)
label = ¢, if — / >0
P(ﬁcj |X)

e ROC curve is a plot of Sensitivity against False Alarm Rate
which characterizes this tradeoff for a given classifier
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Receiver Operating Characteristic (ROC) Curve

Perfect
t 1 e /classiﬁer
o 1P
Sensitivity =
P+ FN
0
0 . 1
False Alarm Rate = i
FP+TN
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Measuring Performance of Classifiers — ROC curves

e ROC curves offer a more complete picture of the performance
of the classifier as a function of the classification threshold

e A classifier his better than another classifier g if ROC(h)
dominates the ROC(g)

e ROC(h) dominates ROC(g) = AreaROC(h) > AreaROC(g)
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Evaluating a Classifier

e How well can a classifier be expected to perform on novel
data?

e We can estimate the performance (e.g., accuracy, sensitivity) of
the classifier using a test data set (not used for training)

e How close is the estimated performance to the true
performance?

References:
e Evaluation of discrete valued hypotheses — Chapter 5, Mitchell
e Empirical Methods for Artificial Intelligence, Cohen
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Estimating the performance of a classifier

E /=79 The true error of a hypothesis h with
respect to a target function f and an
instance distribution D is

N Error, (h) = xlzly;[f(x) - h(x)]

The sample error of a hypothesis h with respect to a target
function f and an instance distribution D is

Error,(h) = m E O(f(x) = h(x))

O(a,b) =11ff a = b; 0(a,b) = 0 otherwise
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Instance space

Estimating classifier performance

WA = £
Domain(X) ={a,b,c,d}

8'2°8 4
x a b ¢ d
Ax) 0 1 1 0
flx) 11 0 0

error,, (h) =Pr, [h(x) = f(x)]
- D(X =a)+D(X =c)
1 1 1
= — +— = —
8§ 8 4
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Evaluating the performance of a classifier

e Sample error estimated from training data is an optimistic

estimate  pj ¢ = E[Errors(h)]— Error,(h)

e For an unbiased estimate, h must be evaluated on an
independent sample S (which is not the case if S is the training

set!)
e Even when the estimate is unbiased, it can vary across
samples!
e |f h misclassifies 8 out of 100 samples 8
EI"I"OI"S(h) = m = 008

How close is the sample error to the true error?
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How close is the estimated error to the true error?

e Choose a sample S of size n according to distribution D
e Measure

Error,(h)

Errors(h) is a random variable (outcome of a random
experiment)

Given Error,(h), what can we conclude about Error, (h)?

More generally, given the estimated performance of a hypothesis,
what can we say about its actual performance?
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Evaluation of a classifier with limited data

e There is extensive literature on how to estimate classifier
performance from samples and how to assign confidence to
estimates (See Mitchell, Chapter 5)

e Holdout method — use part of the data for training, and the
rest for testing

e We may be unlucky — training data or test data may not be
representative

e Solution — Run multiple experiments with disjoint training
and test data sets in which each class is represented in
roughly the same proportion as in the entire data set
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Estimating the performance of the learned classifier

K-fold cross-validation

Partition the data (multi) set S into K equal parts S,..S;
with roughly the same class distribution as S.

Errorc =0
Fori=1to Kdo

S, <S8 S <§-5;

est I rain 1)

o <— Leam(STmin )
Errorc <= Errorc + Error(a,S;,,,) )

Errorc
K

Error < ( ); Output(Error)
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Leave-one-out cross-validation

e K-fold cross validation with K = n where n is the total number
of samples available

e n experiments — using n-1 samples for training and the
remaining sample for testing

e Leave-one-out cross-validation does not guarantee the same
class distribution in training and test data!

Extreme case: 50% class 1, 50% class 2

Predict majority class label in the training data
True error — 50%;

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Estimating classifier performance

Recommended procedure

e Use K-fold cross-validation (K=5 or 10) for estimating
performance estimates (accuracy, precision, recall, points on
ROC curve, etc.) and 95% confidence intervals around the
mean

e Compute mean values of performance estimates and standard
deviations of performance estimates

e Report mean values of performance estimates and their
standard deviations or 95% confidence intervals around the
mean

e Be skeptical — repeat experiments several times with different
random splits of data into K folds!
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Evaluating a hypothesis or a learning algorithm

How well can the decision tree be expected to perform on
novel data?

We can estimate the performance (e.g., accuracy) of the
decision tree using a test data set (not used for training)

How close is the estimated performance to the true
performance?

Reference: Evaluation of discrete valued hypotheses — Chapter
5, Mitchell
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Evaluating performance when we can afford to test
on a large independent test set

The true error of a hypothesis h with respect to a target function
f and an instance distribution D is

Error,(h) = XFE’II; f(x) = h(x)]

The sample error of a hypothesis / with respect to a target
function fand an instance distribution D is

1
Errorg(h) = m XZS O(f(x) = h(x))
O(a,b) =11iftf a = b;0(a,b) = 0 otherwise
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Evaluating Classifier performance

Bias = E[Errors(h)]— Error, (h)

Sample error estimated from training data is an optimistic
estimate

For an unbiased estimate, 7 must be evaluated on an

independent sample S (which is not the case if Sis the
training set!)

Even when the estimate is unbiased, it can vary across samples!
If h misclassifies 8 out of 100 samples Q

Error.(h) = — =0.08
5(h) 100

How close is the sample error to the true error?
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How close is estimated error to its true value?

Choose a sample S of size n according to distribution D

Measure Errors(h)

Error,(h) is arandom variable (outcome of a random
experiment)

Given Error,(h), what can we conclude about Error, (h)?

More generally, given the estimated performance of a hypothesis,
what can we say about its actual performance?
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How close is estimated accuracy to its true value?

Question: How close is p (the true probability) to p?

This problem is an instance of a well-studied problem in
statistics — the problem of estimating the proportion of a
population that exhibits some property, given the observed
proportion over a random sample of the population. In our
case, the property of interest is that h correctly (or
incorrectly) classifies a sample.

Testing h on a single random sample x drawn according to D
amounts to performing a random experiment which
succeeds if h correctly classifies x and fails otherwise.
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How close is estimated accuracy to its true value?

The output of a hypothesis whose true error is p as a binary
random variable which corresponds to the outcome of a
Bernoulli trial with a success rate p (the probability of
correct prediction)

The number of successes r observed in N trials is a random
variable Y which follows the Binomial distribution
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Error.(h) is a Random Variable

Probability of observing r misclassified examples in a sample of
Size n:

014 Binomual distribution for n =40, p =0.3

0.12 -
0.1 ~ -
0.08 B a -
0.06
0.04
0.02

P(r)
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Recall basic statistics

Consider a random experiment with discrete valued

outcomes
Vis VoV

The expected value of the correspondlng random variable Y

* Ey Pr(Y = y,)
The variance of Y is Var(Y) \_(Y — E[y]) J
The standard deviation of Yis o, =+/Var(Y)
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How close is estimated accuracy to its true value?

The mean of a Bernoulli trial with successratep=p
Variance = p (1-p)
If N trials are taken from tbe same Bernoulli process, the
observed success ratep has the same mean p
and variance p(1 — p)
N

For large N, the distribution of ]5 follows a Gaussian distribution
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Binomial Probability Distribution

0.14 Binomial distribution for n =40, p =0.3

0.12} il

o1} : n!

0.08} i Pl" — r 1_ n-r
zzz.j% = oy )

Probability P(r) of r heads in n coin flips, if p = Pr(heads)
e Expected, or mean value of X, E[X], is
N

E[X]= ZiP(i) = np

1=

P(r)

e Variance of Xis
Var(X) = E[(X - E[X])’] = np(1- p)

e Standard deviation of X, o, is

0y = E[(X - E[X])’] = /np(1- p)
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Estimators, Bias, Variance, Confidence Interval

p(l1-p)

OErrorS (h) = n

Error,(h)(1- Error,(h))

n

OErrorS (h) —

~ \/Errors(h)(l — Errory(h))

n

An N% confidence interval for some parameter p that is the interval which
is expected with probability N% to contain p
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Normal distribution approximates binomial

Errorg(h) follows a Binomial distribution, with

* mean  u, = Error,(h)
e standard deviation
Errorsg(h) = \/

Errorp (h)(1-Errorsp(h))

We can approximate this by a Normal distribution with the same
mean and variance when np(1-p) 25
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Normal distribution

1 I(X—/J )2 04 Nomnaal distribution with raean 0, standard deviation 1
p(X) = e 2t o 03s |
2 03 r
025
2o ol

0.15
0.1
0.05

The probability that X will fall in the interval (a, b) is
given by fp(x)dx

Expected, or mean value of X is given by E[X] = u
Variance of X'is given by Var(X) = 6?2
Standard deviation of X is given by 0, = O
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How close is the estimated accuracy to its true value?

Let the probability that a Gaussian random variable X, with zero
mean, takes a value between —z and z,

Pr[-z<X<z]=cC

Pr[ X 2 z] 4
Pr[ X = z] = 5% implies there is 0.001 3.09
o .
a 5% chance that X lies .mc.)re 0.005 5 58
than 1.65 standard deviations
from the mean, or 0.01 2.33
Pr[-1.65<X<1.65]=90% 0.05 1.65
0.10 1.28
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How close is the estimated accuracy to its true value?

But P does not have zero mean and unit variance so we
normalize to get

Pri-z< p=p <z|=c

p(l-p)
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How close is the estimated accuracy to its true value?

To find confidence limits:

Given a particular confidence figure ¢, use the table to
find the z corresponding to the probability ¥ (1-c).

Use linear interpolation for values not in the table

I Zz ]5 ]52 Zz ]
P+ _—xz =+
21N n n 4n
P = SNTE
1+ —
n
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How close is the estimated accuracy to its true value?

Example

p=0.75 n=1000; ¢=0.80;z=1.28

Then with 80% confidence, we can say that the value of p lies
in the interval [0.733,0.768]

Note: the normal distribution assumption is valid only for large
n (i.e. np(1-p) 2 5 or n > 30) so estimates based on smaller
values of n should be taken with a generous dose of salt
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Estimating confidence intervals

0.4 I ' m'!‘!!'-\n
A

0.35

0.3
0.25 F

1 0

0.15

0.1
0.05 F
3 -2 -

0

1 2

3

80% of area (probability) liesin uw + 1.280
N% of area (probability) lies in u + 2o

N7%:|50% 687 807 907 957 98V 99%
sye 1067 1.00 1.28 1.64 1.96 2.33 2.58
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Confidence intervals

If S contains n examples, drawn independently of h and each other
and n =30 or np(1-p)=5,

Then With approximately N% probability, Error((h) lies in interval

EI"VOI"D(}Z) + ZN\/Ei’rorp(h)(l;ErrorsD(h))

equivalently, Errory(h) lies in interval

EI”VOI”SS(h) + ZN\/EWOFD(h)(lr:EWO’”D(h))

which is approximately

EVVOVSS(}Z) + ZN\/Errors(h)(l;ErrorSS(h))
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One sided confidence intervals

What is the probability that Error, (h) is at most U ?

Symmetry of Gaussian distribution implies that confidence
interval with  100(1 - )% confidence with lower bound L
and upper bound U corresponds to a confidence interval

with confidence 100(1 _ %) %

and with upper bound U but no lower bound (or vice versa)
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General approach to deriving confidence intervals

1. Identify the population parameter p to be estimated e.g.,
Errorp (h)

2. Define a suitable estimator W — preferably unbiased,
minimum variance

3. Determine the distribution D, obeyed by W, and the mean
and variance of W

4. Determine the confidence interval by finding the thresholds
L and U such that N% of the mass of the probability
distribution D, falls within the interval [L,U].
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Central Limit Theorem Simplifies Confidence Interval
Calculations

Consider a set of independent, identically distributed
random variables Y,... Y,, all governed by an arbitrary
probability distribution with mean u and finite variance o?.
Define the sample mean,

n
1
-y T

=1

Y

Central Limit Theorem As n —x, the distribution

governing Yapproaches a Normal distribution, with
mean u and variance o?/n
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Evaluation of a classifier with limited data

Holdout method — use part of the data for training, and the
rest for testing

We may be unlucky — training data or test data may not be
representative

Solution — Run multiple experiments with disjoint training and
test data sets in which each class is represented in roughly
the same proportion as in the entire data set
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Estimating the performance of the learned classifier
K-fold cross-validation
Partition the data (multi) set S into K equal parts S, ..S;
where each part has roughly the same class distribution as S.
A=0
For i=1to K do

est eSi

0 <— Leam(STmin)
A< A+ Accuracy(a,S,,,,)

{ngineS_Si; ST

Accuracy € A/K; Output (Accuracy)
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K-fold cross-validation

Recommended procedure for evaluating classifiers when
data are limited

Use K-fold cross-validation (K=5 or 10)

Better still, repeat K-fold cross-validation R times and
average the results
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Difference in error between two hypotheses

We wish to estimate d = ErrorD(hl ) _ EVI’OI”D(hz)
Suppose h, has been tested on a sample S, of size n, drawn

according to D and h, has been tested on a sample S, of size
n,drawn according to D

An unbiased estimator d = ErmrSl (hl)_ ErmrS2 (hz)

For large n, and large n,the corresponding error estimates
follow Normal distribution

Difference of two Normal distributions yields a normal
distribution with variance equal to the sum of the variances of
the individual distributions
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Difference between errors of two hypotheses

d = Error,(h ) - Error,(h,)
d = Errorsg (b)) - Errorsg (h,)

Errorsg (h)(1- Error (h,)) . Errorg (h,)(1 - Errorg, (h,))

n, n,

O-. =

Errorg (h )(1 - Error (h,)) . Errorg (hy )(1- Errorg (h,))

n, n,

d

I+

Zyn

When S,=S,, the variance of d is smaller and the confidence
interval correct but overly conservative
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Hypothesis testing

Is one hypothesis likely to be better than another?
What is the probability that EI’I”OI’D(hl) > EI’I”OI”D(/’IZ )’)

Suppose E”’”O’”Sl(h1) = 0.30; ErmrSz(hz) =0.20; d =0.10

What is the probability that d >0giventhatd =0.107

Pr(d >0|d =0.10) = Pr(d < u, +0.10)
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Hypothesis testing

If n, = n, =100, ~0.061
Pr(d >0|d =0.10)~Pr(d < u; +1.640,) = 0.95

We accept the hypothesis that

Error,(h ) > Error,(h,)

with 95% confidence

Equivalently, we reject the opposite hypothesis —
the null hypothesis at a (1-0.95) = 0.05 level of significance
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Comparing learning algorithms L, and L,

Which learning algorithm is better at learning f ?
Unlimited data -

Run L,and Lgon large training set S, ,, drawn according to D

Test the resulting hypotheses on a large independent test set S,
drawn according to D

Estimate PF[EVFOVD (LA(STrain )) > ErrOFD(LB(STrain ))] Using
Errorg (L,(S

Train ) ) and EI"]"OVSTeSt (LB (STrain ))
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Comparing learning algorithms L, and L,

Estimate the expected value of the difference in errors of L,
and Lz where expectation is taken over training sets S
drawn according to D

E |Error,(L,(S,

rain
STrain CD

Train

)= Errory(Ly(Spn))]

We have a limited data set S drawn from an unknown D !/
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Comparing learning algorithms L, and L,

Limited data — Paired t-test
Run L,and Lgon large training set S, ;, drawn according to D

Test the resulting hypotheses on a large independent test
set S;.., drawn according to D

Estimate

PriErron,(L,(Sp.,)) > Error,(Ly(Sp, )l using

Errorg (L,(Ss.,))and Error S e (Ls(Spain))

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar



Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Comparing learning algorithms L, and L,

Paired t-test

Partition S into k disjoint testsets T, T,, ..., T, of equal size

Forifrom 1to kdo {
STest < Ti ’ STrain <S- T/

0, < EWOFSM (L (Spain)) = EWO’”STest (Ls(Stain))

}
k
Return ) = %E 0,
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Comparing learning algorithms L, and L,

For large test sets, each (5 has Normal distribution
O has Normal dlstrlbutlon if 5 are independent
Can we estimate confidence interval for ¢ 5 as before?

J; are not exactly independent because of sampling from S as
opposed to the distribution D (but we will pretend that they are)

We don’t know the standard deviation of this distribution.

So we estimate it from sample ..But when the estimated variance is
used, the distribution is no longer Normal unless K is large (which
typically it is not)
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Comparing learning algorithms L,and L,

Approximate N% confidence interval for

g ECS[EI/TOFD (LA(STrain )) - ErrOrD(LB(STmin ))]

is given by O *ty, W5

k —_
where ¢, = \/k(kl—l)E(éi ~6)

is the estimate of standard deviation of the t distribution governing
and z playsarole analogous to that of 5_ :

AsK —x, t, . —Z,and y; — 05
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Performance evaluation summary

= Rigorous statistical evaluation is extremely important in experimental computer
science in general and machine learning in particular

= How good is a learned hypothesis?

= |s one hypothesis better than another?

= |s one learning algorithm better than another on a particular learning task?
(No learning algorithm outperforms all others on all tasks — No free lunch
theorem)
= Different procedures for evaluation are appropriate under different conditions
(large versus limited versus small sample) — Important to know when to use
which evaluation method and be aware of pathological behavior (tendency to
grossly overestimate or underestimate the target value under specific

conditions
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Modeling dependencies between attributes

e Naive Bayes classifier assumes that the attributes are
independent given the class

e What if the independence assumption does not hold?
— We need more sophisticated models
e Support Vector Machines
e Higher order Markov models
e Bayesian networks
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Generative Versus Discriminative Models

= Generative models
= Naive Bayes, Bayes networks, etc.
= Discriminative models
= Perceptron, Support vector machines, Logistic regression ..
= Relating generative and discriminative models
= Tradeoffs between generative and discriminative models
" Generalizations and extensions
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Alternative realizations of the Bayesian recipe
Chef 1: Generative model

P(x|o, )P(o,)
P(x)
Model P(x | @, ), P(X|a)2 ), P(a)1 ), and P(a)z)
Using Bayes rule, choose w, 1f P(x | @, )P(w1 ) > P(x| w, )P(a)2 )

Otherwise choose w,

Note that P(w, | X) =

Chef 2: Discriminative Model
P(a)1 | X)

Model P(w, |x), P(w, | X),or the ratio directly
P(w, | x)
Choose w, if Ple, [x) > 1
P(w, [x)

Otherwise choose w,
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Generative vs. Discriminative Classifiers

Generative classifiers

= Assume some functional form for P(X|C), P(C)

= Estimate parameters of P(X|C), P(C) directly from training data
= Use Bayes rule to calculate P(C|X=x)

Discriminative classifiers

= Assume some functional form for P(C|X)

* Estimate parameters of P(C|X) directly from training data
Discriminative classifiers — maximum margin version

"= Assume a functional form f{W) for the discriminant

="  Find W that minimizes prediction error

= E.g., find W that maximizes the margin of separation between
classes (e.g., SVM)
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Generative vs. Discriminative Models

5 . . . .
4t 1
(2]
0
& 20.8
53 3"
5 3
S 50.6
B2 S
& p(x|C1) %0.4-
o
1t a
0.2
0 | 0
0 0.2 0.4 0.6 0.8 1 0
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Which Chef cooks a better Bayesian recipe?

In theory, generative and conditional models produce identical
results in the limit

e The classification produced by the generative model is the
same as that produced by the discriminative model

e Thatis, given unlimited data, assuming that both approaches
select the correct form for the relevant probability
distributions or the model for the discriminant function, they
will produce identical results (Why?)

e |f the assumed form of the probability distributions is incorrect,
then it is possible that the generative model might have a

higher classification error than the discriminative model
(Why?)

How about in practice?
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Which Chef cooks a better Bayesian recipe?

In practice

e The error of the classifier that uses the discriminative model
can be lower than that of the classifier that uses the
generative model (Why?)

e Naive Bayes is a generative model
e A perceptron is a discriminative model, and so is SVM
e An SVM can outperforms Naive Bayes on classification

If the goal is classification, it might be useful to consider
discriminative models that directly learn the classifier
without going solving the harder intermediate problem of
modeling the joint probability distribution of inputs and
classes (Vapnik)
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Neural Networks

e Decision trees are good at modeling nonlinear interactions
among a small subset of attributes

e Sometimes we are interested in linear interactions among all
attributes

e Simple neural networks are good at modeling such interactions
e The resulting models have close connections with naive Bayes
— Naive Bayes can be seen as a special case
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A simple discriminative model: Neural Networks

e Qutline

e Background

e Threshold logic functions
e Connection to logic

e Connection to geometry

e Learning threshold functions — perceptron
algorithm and its variants

e Perceptron convergence theorem
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Background — Neural computation

e 1900 — Birth of neuroscience — Ramon Cajal et al.

e 1913 - Behaviorist or stimulus response psychology

e 1930-50: Theory of Computation, Church-Turing Thesis

e 1943: McCulloch & Pitts “A logical calculus of neuronal
activity”

e 1949: Hebb — Organization of Behavior

e 1956 — Birth of Artificial Intelligence — “Computers and
Thought”

e 1960-65: Perceptron model developed by Rosenblatt
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Background — Neural computation

e 1969: Minsky and Papert criticize Perceptron

e 1969: Chomsky argues for universal innate grammar

e 1970: Rise of cognitive psychology and knowledge-based Al
e 1975: Learning algorithms for multi-layer neural networks

e 1985: Resurgence of neural networks and machine learning
e 1988: Birth of computational neuroscience

e 1990: Successful applications (stock market, OCR, robotics)

e 1990-2000 New synthesis of behaviorist and cognitive or
representational approaches in Al and psychology

e 2000-2010 Synthesis of logical and probabilistic approaches to
representation and learning

e 2010- Data science, deep learning, big data ...
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Background — Brains and Computers

e Brain consists of 101! neurons, each of which is connected to 10*
neighbors

e Each neuron is slow (1 millisecond to respond to a stimulus) but
the brain is astonishingly fast at perceptual tasks (e.g. face
recognition)

e Brain processes and learns from multiple sources of sensory
information (visual, tactile, auditory...)

e Brain is massively parallel, shallowly serial, modular and roughly
hierarchical with recurrent and lateral connectivity within and
between modules

e |f cognitionis -- or at least can be modeled by -- computation, it
is natural to ask how and what brains compute
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Brain and information processing

Primary somato-sensory cortex

Motor association
cortex

Primary motor
cortex

ensory association area

Auditory cortex

Speech comprehension
Visual association area

Primary visual cortex

Auditory association
area

Prefrontal cortex
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Neural Networks

Ramon Cajal, 1900
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Neurons and Computation

Nodes of Ranvier Myelin sheath
Axon Axon hillock
}, 7 s
D
Synapse -
74 R
Synapse P Nucleus
/ ' Cell body
Dendrites +
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McCulloch-Pitts computational model of a

neuron
[XI O > Wl XO =1
WO
n - Output
|nput< XZO >W2—> > N —»y
\XnO "W, Synaptic weights Y =1

y = -1 otherwise
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Threshold neuron — Connection with Geometry

XA

Decision boundary

WX, + wox, + w, <0 wix; + wyx, +w, =0

2“’% +w, =0 .describes a hyperplar.1e which divides the
- instance space mn into two half-spaces

WeX +w, >OJl and X ={Xp6§ﬁ”W°Xp+w0 <O}

)(+={XPE§R”
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McCulloch-Pitts Neuron or Threshold Neuron

y=Sign(W°X+wO) ¥ 7% W -

n
= Sign E WX,
i=0

=Sign(WTX+w0) - -

sign(v)=1if v>0
=0 otherwise
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Threshold neuron— Connection with Geometry

The {n-1)-dimensional hyperplane 'partitions the
n-dimensional input space into two half spaces.
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Threshold neuron — Connection with Geometry

Instance space
mn
Hypothesis space is the set of (n-1)-dimensional hyperplanes
defined in the n-dimensional instance space

A hypothesis is defined by L
2 wx, =0
=0

T
e QOrientation of the hyperplane is governed by (Wl' =W, )

e and the perpendicular distance of the hyperplane from the origin
is given by
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Threshold neuron as a pattern classifier

e The threshold neuron can be used to classify a set of
instances into one of two classes C,, C,

* If the output of the neuron for input pattern X is +1 then X,
is assigned to class C,

e Ifthe output is -1 then the pattern X is assigned to C,

° Example [WO Wl Wz]T _ [_1 | I]T

X, =[10]" WeX +w,=-1+(-1)=-2
X, 1s assigned to class C,
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Threshold neuron — Connection with Logic

e Suppose the input space is {0,1}"

e Then threshold neuron computes a Boolean function
f:{oll}n 9 {_111}

X; | X, | 8(X) |y

Example

0 0 -1.5 -1

Llet w,=-1.5w;=w, =1 0 ) 05 | 1

In this case, the threshold
neuron implements the logical 1 0 -0.5 -1
AND function 1 1 0.5 )
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Threshold neuron — Connection with Logic

e A threshold neuron with the appropriate choice of weights can
implement Boolean AND, OR, and NOT function

e Theorem: For any arbitrary Boolean function f, there exists a
network of threshold neurons that can implement f.

e Theorem: Any arbitrary finite state automaton can be realized
using threshold neurons and delay units

e Networks of threshold neurons, given access to unbounded
memory, can compute any Turing-computable function

e Corollary: Brains if given access to enough working memory, can
compute any computable function
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Threshold neuron: Connection with Logic

Theorem: There exist functions that cannot be implemented by a
single threshold neuron.

Example Exclusive OR

3 S Why?
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Threshold neuron — Connection with Logic

e Definition: A function that can be computed by a single
threshold neuron is called a threshold function

e Of the 16 2-input Boolean functions, 14 are Boolean
threshold functions

e Asnincreases, the number of Boolean threshold functions
becomes an increasingly small fraction of the total number
of n-input Boolean functions

NThreShold (I’Z) = 2n2 NBoolean (n) = 22n
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Terminology and Notation

e Svynonyms: Threshold function, Linearly separable
function, linear discriminant function

e Synonyms: Threshold neuron, McCulloch-Pitts neuron,
Perceptron, Threshold Logic Unit (TLU)

* We often include w, as one of the components of W
and incorporate x,as the corresponding component of X
with the understanding that x,=1. Then y=1if W.X>0
and y=-1 otherwise.
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Learning Threshold functions

A training example E, is an ordered pair (X, d,) where

X, = [ka Xij wees xnk]T

is an (n+1) dimensional input pattern, dk = f(Xk)E{—l, 1}

is the desired output of the classifier and f is an unknown target
function to be learned.

A training set E is simply a multi-set of examples.
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Learning Threshold functions

s ={X,|(X,.d,)EEand d, =1}
s ={X,[(X,.d,)EEand d, = -1}

We say that a training set E is linearly separable if and only if

AW’ suchthat VX €S*, W *X >0
and VX €57, W *X <0

Learning Task: Given a linearly separable training set E, find a
solution

W suchthatVXpES+,W* X, >0andVXpES‘,W* *X <0
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Rosenblatt’ s Perceptron Learning Algorithm

Initialize W = [O O.....O]T Set learning rate 77 > 0

Repeat until a complete pass through E results in no
weight updates

For each training example Ek ck

{ Ve < sign(WeX,)
Wew'l'n(dk_yk)xk }

*

W <W;  Return(W’)
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Perceptron learning algorithm —Example

Let
S*={(1, 1, 1), (1,1, -1), (1, 0, -1)}
S-={(1,-1,-1), (1,-1, 1), (1,0, 1) } |
W= (0 0 0); 5

Xk dk : Update? Updated W
(1,1, 1) Yes
(1,1, -1) No
(1,0, -1) Yes
(1, -1, -1) Yes
(1,-1, 1) No

(1,0, 1) Yes
(1,1, 1) No
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Perceptron (1957)
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Perceptron
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Perceptron Convergence Theorem (Novikoff)

Theorem Let E ={(X,, d, )}be a training set where X, E{I xR
and d, e{-Ll}

let S*=1X,/(X,.d,)EE&d, =1} and S =1X,|(X,.d,)EE&d, = -1}

The perceptron algorithm is guaranteed to terminate after a
bounded number 7 of weight updates with a weight vector

W suchthat VX, €S*, W *X, =5 andV X, ES", W *X, <-§
for some O >0, whenever such wWeR" and >0 exist

--thatis, E is linearly separable. The bound on the number t of
weight updates is given by

Wy
t<|'——| where L=max [X,| andS=S"US"
bs) X,ES
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Proof of Perceptron Convergence Theorem

Let W, be the weight vector after r weight updates.

*

W

Invariant: V0 |cosf|<1
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Proof of Perceptron Convergence Theorem

Let W be such that
VX, €S", W ¢X, =dandVX, €S, W *X, =-§

WLOG assume that W' ¢ X = 0 passes through the origin.
LetVX, €5*,Z, =X,,

VX, ES,Z, =-X,,

Z = {Zk}
(VXkES+,W* *X, =20 &YX, ES,W ¢X, < -6)

= (Vz,€2,W 2, =3)

Let £'={(z, 1)}
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Proof of Perceptron Convergence Theorem

Wt+1 =Wt +n(dk _yk)zk
where W, =[00....0] and; >0

[Weight update based on example (Zk,l) ]
< [(d, =1)a (v, =-1)]
LW oW, =W (W +24Z, )
(W oW J+24(W e 2,)
Since VZ, €7, (W *Z, =8) W * W, = W W, + 20

Yt W oW 2208 e (2)
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Proof of Perceptron Convergence Theorem

2
= Wt+1 ° Wt+1

= (Wz +2nZ, ) ° (Wt T 2772k)

= (Wt ° Wt)'l' 477(Wt ° Zk)"' 4772<Zk ° Zk)
Note weight update basedon Z, < (Wt °*Z, < O)
Wl < W+ 4|2 < [ W+ 407

W

r+1

Hence W[ = 4L’
S YW = 20N (D)
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Proof of Perceptron Convergence Theorem

From (a)wehave: V¢ (W* W )2 2t1n0

= {Vt 2tno = (W* *W, )}=> {Vt 2tno = HW*HHWtHcos 0}
= {Vt 2tnd < HWHHWtH} VO cosf=<l,

Substituting for an upper bound on |W, | from (b),

Vi o < |[W L= e (vt <|wL)
:IS(HW* L]

)
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Notes on the Perceptron Convergence Theorem

e The bound on the number of weight updates does not
depend on the learning rate

e The bound is not useful in determining when to stop the

algorithm because it depends on the norm of the unknown
weight vector and delta

e The convergence theorem offers no guarantees when the
training data set is not linearly separable

Exercise: Prove that the perceptron algorithm is robust with
respect to fluctuations in the learning rate

O<;7min577t577max<oo
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Multiple classes

K(K -1)
2

K -1 binary classifiers binary classifiers

C1
R3
Co

not Cs

One-versus-rest One-versus-one

Problem: Green region has ambiguous class membership
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Multi-category classifiers

Define K linear functions of the form:
T
J’k(X) =W, X+w,
h(X) =argmax y, (X)
k

= arg maX(WkTX + W, )

k

Decision surface between class C; and C,

(W, - W, X+ (1w, —w,, )= 0

J
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Linear separator for K classes

e Decision regions defined by

: R;
are singly connected and convex
Ry
i X B
X A @ T

Foranypoints X X, ER,,

any X that lies on the line connecting X, and X,
X=1X,+(1-1)X, where 0= A <1

alsoliesin R,
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Winner-Take-All Networks
y, =1ift W, eX >W. ¢X Vj=i
Vi = 0 otherwise Note: W, are augmented weight vectors

w=[1-1-1]"w,=[111]",w,=[2 0 0]

WXy | WoXp | Wa Xy | Y | Yo | Y3
1] -1 | -1 3 -1 2 110 0
1] -1 | +1 1 1 2 0] O 1
1] +1 | -1 1 1 2 0] O 1
1] +1 | +1 -1 3 2 0|1 0

What does neuron 3 compute?
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Linear separability of multiple classes

Let S,,S,,S;...S,, be multisets of instances

Let C,,C,,C,...C,, be disjoint classes

Vi §.CC,

Vi=j C. ) C, =0

We say that the sets §,,5,,5;...5,, arelinearly
separable iff 3 weight vectors W, , W, ,..W,, such that
Vi {vxp es, (w X,>We Xp)Vj = i}

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar



Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Training WTA Classifiers

d, =1 iff X €C,,;d, =0otherwise
Vip =1 It W e X >W X  Vi=j
Suppose d,, =1,y,, =landy, =0
W, < W +nX ;W < W —5nX
All other weights are left unchanged.
Suppose d,, =1y, =0andy, =1.
The weights are unchanged.
Suppose d,, =1,Vj y. =0 (there was a tie)
W, <= W, +3X
All other weights are left unchanged.
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WTA Convergence Theorem

Given a linearly separable training set, the WTA learning
algorithm is guaranteed to converge to a solution within a
finite number of weight updates.

Proof Sketch: Transform the WTA training problem to the
problem of training a single perceptron using a suitably
transformed training set. Then the proof of WTA learning
algorithm reduces to the proof of perceptron learning
algorithm
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WTA Convergence Theorem
Let W' =[W,W,....W,, ]' be a concatenation of the weight vectors

associated with the M neurons in the WTA group. Consider a multi - category
training set £ = {(Xp,f(Xp))}where VX, f(X,))EC,..Cp}

Let X, €C,. Generate (M-1)training examples using X,

for an M (n +1)input perceptron :

Xp12 =[Xp _Xp ¢ ¢..9]

X ,=[X, ¢-X ¢..4]

Xle =[Xp ¢ ¢..9 _Xp]
where ¢ is an all zero vector with the same dimension as X, and set the

desired output of the corresponding perceptron to be 1in each case.
Similarly, from each training example for an (rn +1) —input WTA,
we can generate (M -1) examples for an M (n +1)input single neuron.

Let the union of the resulting |E|(M -1) examples be E
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WTA Convergence Theorem

By construction, thereisa one-to-one correspondence

between the weight vector W' =[W,W,... W, ]' that
results from training an M -neuron WTA on the multi -
category set of examples E and the result of training
an M (n +1)input perceptron on the transformed
training set E'.Hence the convergence proof of WTA
learning algorithm follows from the perceptron
convergence theorem.
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Weight space representation

Pattern space representation

Coordinates of space correspond to attributes (features)
A point in the space represents an instance
Weight vector W, defines a hyperplane W, .X=0

Weight space (dual) representation

Coordinates define a weight space
A point in the space represents a choice of weights W,

An instance X, defines a hyperplane W. X =0
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Weight space representation

/ Solution region

Wex =0 —€ES°

X — €S
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Weight space representation

Wt+1 < Wt + nXp

Fractional correction rule

Wt+1 ewt'l'i ‘Wt.XP‘-l_E (dp_yp)xp
,* X, +e

0<A<lA=05whend,,y, E{-11]

¢ > 0is aconstant (to handle the case when
the dot product W, * X or X <X (orboth)

approach zero.
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Weight space representation

Wt+1 < Wl + ”Xp
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The Perceptron Algorithm Revisited

The perceptron works by adding misclassified positive or
subtracting misclassified negative examples to an arbitrary
weight vector, which (without loss of generality) we
assumed to be the zero vector. So the final weight vector is a
linear combination of training points

/
W= E A VX
=1

where, since the sign of the coefficient of X; is given by
label y, the &; are positive values, proportional to the
number of times, misclassification of has caused the
weight to be updated. It is called the embedd&ing strength of

the pattern
X.

1
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Dual Representation

The decision function can be rewritten as:

h(x)=sgn(<w,x>+b)=sgn iajijj ,X )+b
7=

[
=sgn Eajyj <xj,x>+b
=1
on training example (x;, ;)
[
The updateruleis:  if y|| Y a,y, (x,,x,)+b|=0,
=1

then o <—a, +7

WLOG, we cantake 5 =1.
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Limitations of perceptrons

e Perceptrons can only represent threshold functions

e Perceptrons can only learn linear decision boundaries
What if the data are not linearly separable?

= More complex networks?

= Non-linear transformations into a feature space where the data
become separable?
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Extending Linear Classifiers Learning in feature spaces

Map data into a feature space where they are linearly
separable .-
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Exclusive OR revisited

In the feature (hidden) space:

@, (x,x,) = e_”X_Wlllz =Z Wl = [lsl]T
cpz(xl’xz) = e_”X_WZHZ = Z, W2 = [O,O]T

A

B ‘(0.0)

1.0Y. /- Decision boundary
N
N

\
05| .o N (1,1)
®

A
\Zy
N

|

' ~N1.0
0.5 0
(0,1) and (1,0) Mo

When mapped into the feature space < z,, z, >, C1 and C2 become linearly
separable. So a linear classifier with ¢,(x) and @,(x) as inputs can be used to solve
the XOR problem.
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“Perceptrons” (1969)

Expanded Edition
“The perceptron [...] has many features

that attract attention: its linearity;, its
intriguing learning theorem,; its clear
paradigmatic simplicity as a kind of
parallel computation. There is no reason to
suppose that any of these virtues carry over to
the many-layered version. Nevertheless, we Perceptrons
consider it to be an important research
problem to elucidate (or reject) our intuitive
judgement that the extension is sterile.”

[pp. 231 - 232]

Marvin L. Minsky
Seymour A. Papert
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Learning in the Feature Spaces

High dimensional Feature spaces

X= (xl’x2 )% (P< ) ((pl (X),(p2 (X)""'(Pd (X))

where typically d > > n solve the problem of expressing complex
functions

But this introduces a

= computational problem (working with very large vectors)
= Solved using the kernel trick — implicit feature spaces

= generalization problem (curse of dimensionality)

= Solved by maximizing the margin of separation — first
implemented in SVM (Vapnik)

We will return to SVM later
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Linear Classifiers — Linear discriminant functions

e Perceptron implements a linear discriminant function — a linear
decision surface given by

o "
— x2 W2

X = W= y(x)=WTX+wO=O
xn Wl’l

The solution hyper-plane simply has to separate the classes

We can consider alternative criteria for separating hyper-planes
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Least Squares for Classification

P(X | o, )P(o, )
> PX|w,)Po)
(X ))=t, =1ifX €,
t(X,)=t, =0if X &w,
g, (Xp;W)= kth output for input X |

E(W)= S (e, (X,:W)-1, )

p=1

P((Dk |X)=

} kth target output

2 2

B E(gk(xp;w)_l) +Xp;(gk(xp;w)—o)

X, €y
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Least Squares for Classification

lHanﬁES( )=P((Dk )f (gk(X;W)_1>2P(X|(Dk)dX+P((Di;=k )fgkz(X;W)P(Xl(Di#k )dX

- (2 (X WIP(X)aX - 2 g, (X; W)P(X, 00, JX + [P(X,0, JaX

=f(gk (X;W)_P(wk |X))2P(X)dX+fP((Dk |X)P((Di;=k |X)P<X)d}§

independent of W

Because least square criterion minimizes this quantit
with respect to W, we have g, (X;W) ~ P((Dk | XS

assuming that the functions & (X; W) are expressive enough
to represent P(u)k |X)

Exercise: Show that Fisher discriminant is a special case of Least
Squares classification
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Project data onto a line joining the means of the two classes

st ., «+ .. {Measure of separation of classes
R O . .
| LU Lo | - separation of the projected means
N /e m,—m, =W (p, —p
ol \.'," ] 2 1 ( 2 1)
oy
Sl
.Q
. o~
-2 2 6

Problems:

e Separation can be made arbitrarily large by increasing the
magnitude of W — constrain W to be of unit length

e (Classes that are well separated in the original space can have
non trivial overlap in the projection —

— Maximize between class variance in the projection
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Fisher’ s Linear Discriminant

Given two classes, find the linear discriminant W €37 " that
maximizes Fisher’ s discriminant ratio:

(W' (n, —-m,))°
Wi(Z +X,) W

_ WT(W —llz)(lh _uz)TW
Wi(Z +X) W

f(w;ulazzauzazz) =

Set af(WQMaZzallzaZz) =O
oW
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Fisher’ s Linear Discriminant

WT(IM _”2)(”1 _uz)TW
Wi +Z,) W

S(Wip 2,0, 2,) =

T G(WT(M - 1,)(, _uz)TW) T T 0 T
of (Wp,,Z,.1,,%,) _ (W (X, +%,) W) W _(W (n, =), —py) W)GVV(W (X, +X,) W)
oW (W', +x,) Wf

w' 1 B2 1 2 W T T T
(WT(El +X,) W)a( G ua\))‘(,u a) )_(W (-1 —ny) W)%(W (X +X,) W)=O

(WT(El +X,) W)Q(lh -1, —Mz)TW-(WT(lh -1y, _uz)TW)Z(El +2,) W=0
(b 1) —1,) W=k(Z, +Z,) W (k=const)
(p,—p,)=KkE +2,)) W (k'=const..* (n, —p,)(n, —p,)" W has the same direction as (p, —p,))

W o (Z, +Z)7 (1, —p,)
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Fisher’ s Linear Discriminant

W €5 " that maximizes Fisher’ s discriminant ratio:

W =(Z +Z)" (1, -,

= Unique solution

= Easy to compute

= Has a probabilistic interpretation

= Can be updated incrementally as new data become available
= Naturally extends to K-class problems

= Can be generalized (using kernel trick) to handle non linearly
separable class boundaries
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Project data based on Fisher discriminant
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Fisher’ s linear discriminant

e (Can be shown to maximize between class separation

e |f the samples in each class have Gaussian distribution, then
classification using the Fisher discriminant can be shown to
yield minimum error classifier

e If Y, and ),are proportional to the identity matrix I, W
corresponding to the Fisher discriminant is proportional to the
difference between the class means (u -1 )

1 2

e Can be generalized to K classes

e A special case of least squares classification (next)
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Generative Versus Discriminative Models

= Generative models
= Naive Bayes
= Discriminative models
= Perceptron, Support vector machines, Logistic regression ..
= Relating generative and discriminative models
= Tradeoffs between generative and discriminative models
" Generalizations and extensions
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Relating Generative and Discriminative Models
Chef 1: Generative model

P(x|o, )P(o,)
P(x)
Model P(x | @, ), P(X|a)2 ), P(a)1 ), and P(a)z)
Using Bayes rule, choose w, 1f P(x | @, )P(w1 ) > P(x| w, )P(a)2 )

Otherwise choose w,

Note that P(w, | X) =

Chef 2: Discriminative Model
P(a)1 | X)

Model P(w, |x), P(w, | X),or the ratio directly
P(w, | x)
Choose w, if Ple, [x) > 1
P(w, [x)

Otherwise choose w,
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Review of Matrix Algebra
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Basic concepts

e Vectorin R"is an ordered set of

n real numbers. 1
- e.g.v=(1,6,3,4)isin R* / 6
— “(1,6,3,4)” is a column vector: 3
— as opposed to a row vector: 4

e m-by-n matrix is an object wim (

m rows and n columns, each 16 3 4)
entry filled with a real number:

(1 2 8)
4 78 6
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Basic concepts

aT=(a b) a b\ a ¢

c d b d

e Transpose:

(Ax) =x"A" We will define matrix multiplication shortly

V

1
L, norm of v=(v;---v,) is (E .p)p

1

L, norm of v=(v,---v, ) is (E v, )

2

L, norm 0fV=(v1---vk) 18 E

i

V.

l

L, norm of v=(v,---v,) is max,

Vi
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Basic concepts

e Vector dot product: ey = (u1 uz) . (v1 vz) = UV, +U,v,
— Note dot product of u

with itself is the square of
the length of u.

e Matrix product:
A - dyp dp B = b, by,
dy Ay b, by,

a.b. + a.b a.b., + a.b

11011 12051 11012 12027
AB =
a,b, + ayb,, a,b, + ay,b,,
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Basic concepts

e Vector products:
— Dot product: -

— QOuter product:

U, uy, uyv,
(Vl Vs )
u, u,v, u,v,
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0
1

5 0
0 5

-1
0

1
1
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Matrices as linear transformations

R

S
S

1
v,
*
*
*
*
*
*

(stretching)

(rotation)
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Matrices as linear transformations
0 1V\/1 0 “

1 ONO 1

(reflection)

\ 4

1 0\l /(I
0o ol 0 (projection)

*r...-......
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Using matrices to express as sets of (linear) constraints

x+y+z=1 :

05

2x — y + Z —_— 2 10 ,."Vl"”".""".n
i B A 7 A A B A S A A
& Pt :
TS |
1 LT T AL T T T T T AT
ST
0 *:‘Q‘:ﬁm" . W T
T A LT 7 7H5
BV e o SO b ir et Sl
1 1 1 1 |.).|.) g “””ﬁ" = '. ,.
= 05 '

1 1 y 5 .>

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




Pennsylvania State University

College of Information Sciences and Technology

(a

(a 0 0)
0O b O

\O 0 c)
b 0 0)
d e 0
/g h
0 i J
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Special matrices

(a b c)
diagonal |0 d e| ypper-triangular
\O 0 f )
(a 0 0)
tri-diagonal b ¢ 0] lower-triangular
\d e /)
(1 0 0)
O 1 O I/ identity matrix)
\O 0 1 )
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Matrix inversion

e To solve Ax=b, we can write a closed-form solution if we can
find a matrix A1

s.t. AA'1=A-1A=]| (identity matrix)
e Then Ax=b iff x=A1b:
x=Ix=AtAx=A'b
e Ais non-singular iff A exists iff Ax=b has a unique solution.
e Note: If A1,B!exist, then (AB)1 = B1A1,
and (AT)1 = (A1)T
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Special matrices

e Matrix A is symmetric if A= AT
e Ais positive definite if x'Ax>0 for all non-zero x (positive semi-definite
if inequality is not strict)

(1 0 0\/a)

(a b c)IO 1 Offb|=a’+b"+c’
\O 0 1/\0)
(10 0)\/a)

(a b c)IO -1 0||b|=a’-b>+C
0 0 1)c
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Special matrices

e Matrix A is symmetric if A= AT
e Ais positive definite if x'Ax>0 for all non-zero x (positive semi-definite
if inequality is not strict)

e Useful fact: Any matrix of form A'A is positive semi-definite.

To see this, x"(ATA)x = (xTAT)(Ax) = (Ax)"(Ax) =0

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar




College of Information Sciences and Technology
Artificial Intelligence Research Laboratory

Pennsylvania State University

Determinants

e |f det(A) =0, then Ais

singular.
e |fdet(A) #0, then Ais
invertible.
e To compute:
— Simple example: a b
det = ad - bc
c d

— Matlab: det(A)
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Determinants

e m-by-n matrix A is rank-deficient if it has rank r < m (< n)
e Thm: rank(A) < riff

det(A) = 0 for all t-by-t submatrices,

r<ts<m
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Eigenvalues & eigenvectors

e How can we characterize matrices?

e The solutions to Ax = Ax in the form of eigenpairs (A,x) =
(eigenvalue,eigenvector) where x is non-zero

e To solve this, (A—Al)x=0
e \isan eigenvalue iff det(A—Al)=0
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Eigenvalues & eigenvectors

(A—A)x=0
A is an eigenvalue iff det(A—Al) =0
Example:
1 4 5
A=10 3/4 6
0O 0 1/2
1-A 4 5
det(A-AD)=| 0 3/4-242 6 |=(1-A)3/4-1)(1/2-21)
0 0 1/2 -4

A=LA=3/4A=1/2
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From generative to discriminative models

e Assume classes are binary yE{O,l}
e Suppose we model the class by a binomial distribution with

T py1g)=4"(1-g)"

* Assume each component X, of input X each have Gaussian

distributions with parameters ©;and are independent given the
class

plx,y|0©)= qu]:[p( 13.0,)
6,)

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar



Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

From generative to discriminative models

1 1
p(x;1y=0,0;)= (2%02)% eXp{_ 20° (%, _“01)2}
J

1 1
p(xj 'y =1’®j) = (2%02)% exp{— 207 (xj _Mu)z}
J

where O =(M0j,u1j,0j)

(Note:we have assumed that Vj o, =0,,=0)
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From generative to discriminative models

The calculation of the posterior probability p(Y=1|x, ©®) is

simplified if we use matrix notation

b | - 2

J=n 1 1 X _:Ulj
=1,0)= expl-—
p(x |y ) L (27[)%0_ p< 2[ 0']- )

Y

(27[)/1 |2|/ exp{— 1 (x -, ) = (x - 1, )}

i 0 0
where p, = (:Un....luln )T; and 2 = diag(glz )= 0 . 0
0 0 o
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From generative to discriminative models

plxly=10)p(y=1]q)

ply=1]x0)=

plxly=10)p(y =1]q)+ plx|y=0,0)p(y=0]q)

lep{—;(x—ﬂl ) =" (x - )}

1
qexp{—z(x—ﬂl ) =" (x -

>}+<1-q>exp{-;<x-ﬂo>fz-l<x-ﬂo>}

1

1+exp{—|og( 9 )+;(x-ﬂl )Tz_l(x—ﬂl)_;(x—ﬂo )TZ_I(X‘#O)}

l-g¢

1

1+eXp<—§,ul —,uO)TZ_ljx+;

,BT

(1, =5 ) =7 (s +#o)—|09(

q
l1-¢

Ml
B 1+exp(—[3Tx—y)

~~

=Y

|

h'd

where we have used 4" DA- B DB =(4+ B)' D(A4- B)fora symmetric matrix D
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From generative to discriminative models

1
=1|x0)= ' \
P(y |x ) 1+ exp(— BTX—Y)

The posterior probability that Y=1 takes the form

1
where ¢(Z) —

l+e

—Z

is an affine function of x

z=f x+y
=pex+y
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Sigmoid or Logistic Function

#(2)

1
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Implications of the logistic posterior

e Posterior probability of Yis a logistic function of an affine
function of x

e Contours of equal posterior probability are lines in the input
space

« B'x is proportional to the projection of x on § and this
projection is equal for all vectors x that lie along a line that is
orthogonal to f3

e Special case
— variances of Gaussians =1

— the contours of equal posterior probability are lines that are
orthogonal to the difference vector between the means of
the two classes

e Equal posterior for the two classes when z=0
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Geometric interpretation (diagonal }))
Contour plot
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Geometric interpretation

plx|y=1,0)p(y=1|q)
ply=1x0)=
( ) p(x]y=1,0)p(y=1|g)+ p(x| y=0,0)p(y=0|q)
1
L ]
1+ exp; _gﬂl _:uo)TZ ljx+2(ﬂ1 _:uo)T2 1(:ul +ﬂ0)_10g(1_q) g
. ‘ z
1 1

=1+exp(—/3Tx—y)=1+e‘Z

(1 +ﬂo))

2

when g =1-q, z = (u, - u, )TZ'I(X—

In this case, the posterior probabilities for the two classes
are equal when x is equidistant from the two means
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Geometric interpretation

e If the prior probabilities of the classes are such that g >
0.5 the effect is to shift the logistic function to the left
resulting in a larger value for the posterior probability for
Y=1 for any given point in the input space.

e g <0.5 results in a shift of the logistic function to the
right resulting in a smaller value for the posterior

probabilty for Y=1 (or larger value for the posterior
probability for Y=0)
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Geometric interpretation (general )

Now the equi-
probability contours
are still lines in the
input space although
the lines are no
longer orthogonal to
the difference in
means of the two
classes
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Generalization to multiple classes — Softmax function

e Yis a multinomial variable which takes on one of K values
a. = py=klq)=ply* =1/q)
where (y = k) (yk = 1)
g=la @  4x)

e As before, x is a multivariate Gaussian

p(X e = L®)= (27[),712 Z‘% EXp _%(X_llk )TZ_I(X-M)

wherep, = (ﬂkl....:“kn )T; and Vk X, =X

(covariance matrix is assumed to be same for each class)
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Generalization to multiple classes — Softmax function
Posterior probability for class k is obtained via Bayes rule

x0)- plx|y* =1.6)p(* =1]q)

K

ZP(XU’k -1,0)p(* =1/4)
q exp{—%(x — )TZ_I (X ol 7 )}

1S 1 _

2% eXp{_E(X_UI)TZ 1("‘”1)}

exp{ui i & % m X, +logg, }
- K

2 exp{u? L7'x —%u?z'luz +log %}
=]

plvt =1
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Generalization to multiple classes — Softmax function

We have shown that

exp{uiz‘lx—;u;fz‘luk +|quk}
p(yk=1|x,@)= = :
EGXD{MZIX - EIIITZ_IW +log %}

I=1

. 1 Tz—l |
Defining parameter vectors B, = _Euk R, +1089;
L =
and augmenting the input Z—luk
Vector x by adding a ) )
constant input of 1 we p(yk _1]x ®)_ P+ _ e<B"’X>
have | i B/ x < (B;.x)
e E e
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Generalization to multiple classes — Softmax function

B x (B x)
p(yk=llx’@)=’<e—w= 3 5.3

corresponds to the decision rule:

h(x) = argmax p(y" =1] x,®)= argmax UL argmax (P ,x)

J J J

Consider the ratio of posterior prob. for classes kand j = k
K

(B,.x)
p(yk 1 | Xa@) ~ e<Bk,X> 121 e _ e<[3k,x> ) e<(l3k—l3j),X>
p(yj =1 | X,@) - §e<ﬂl,x> e< J X> <ﬁ] x>

|
Il
[
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Equi-probability contours of the softmax function

(B3 __‘ﬁl )TX =0
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Naive Bayes classifier with discrete attributes and K classes

q,= prior probability of class k

;= probability that x; (the jth component of x)
takes the ith value in its domain when x belongs
to class k.

p(x,y|©)= qu]_[p(XIy, 0,)

qk=p(y =1|q),
M = ol = 1]y =1,7)
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Naive Bayes classifier with discrete attributes and K classes

g, = pb* =11q} ny=ple =1]y" =1,)

qk]_[_[ (7. )"

I

> 4] ]_[(my )

l

p( —llxn

n N; ‘
exp{loggq, + E E x; logn,,
7=1 =1

K n Nj .

2 expdlogg, + E E x} log 1,
= 7=1 =1
eﬁgx e<3kax>

- K

S M 2 o9
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From generative to discriminative models

e A curious fact about all of the generative models we have
considered so far is that

— The posterior probability of class can be expressed in the
form of a logistic function in the case of a binary classifier
and a softmax function in the case of a K-class classifier
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From generative to discriminative models

e For multinomial and Gaussian class conditional densities (in the

case of the latter, with equal but otherwise arbitrary covariance
matrices)

— the contours of equal posterior probabilities of classes are
hyperplanes in the input (feature) space.

e The resultis a simple linear classifier analogous to the
perceptron (for binary classification) or winner-take-all network
(for K-ary classification)

e Next, we see that these results hold for a more general class of
distributions
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Digression: The exponential family of distributions

The exponential family is specified by

plx | 1) = Alx e 6040

where 7 is a parameter vector and 4A(n), A(x) and G(x) are
appropriately chosen functions.

e Gaussian, Binomial, and multinomial (and many other
“textbook”) distributions belong to the exponential family

e Likelihood function for exponential family is provably convex

e Maximum entropy estimate of unknown probability distributions
under moment constraints yields an exponential form
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The Bernoulli distribution belongs to the exponential family

p(x | n) = h(x)e{"TG(X)-A(n)}

Bernoulli distribution with success rate ¢ is given by
X 1-x q
plxla)=gq*(1-q)™" = exp{log(l_q)x +log(1 - 6])}

We can see that Bernoulli distribution belongs to the
exponential family by choosing
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The Gaussian distribution belongs to the exponential family

P (X | ‘1) = h(x)e{"TG(X)—A

Univariate Gaussian distribution can be written as

A e WY

(2%)%0
1 U 1, 1 5
= expl-5x-—x’——u’ -Ino
(zﬂ)% p{a 20° 20° “ }
_ 72 - ( ) ILL2
= G |, Aln)=-—+In

We see that Gaussian ! —y , V=2 Y
distribution belongs to the | /207
exponential family by G(x) 1% h(x) _ 1
choosing x| (zn)%
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The exponential family

The exponential family which is given by
plx|m) = Hx)e0-0)

where m is a parameter vector and A(n), A(x) and G(x) are
appropriately chosen functions — can be shown to include
several additional distributions such as the multinomial, the
Poisson, the Gamma, the Dirichlet, among others.

Exercise: Show that the multinomial distribution belongs to the
exponential family.
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From generative to discriminative models

e |n the case of the generative models we have seen

e The posterior probability of class can be expressed in the form of
a logistic function in the case of a binary classifier and a softmax
function in the case of a K-class classifier

e The contours of equal posterior probabilities of classes are
hyperplanes in the input (feature) space yielding a linear
classifier for binary classification) or winner-take-all network (for
K-ary classification).

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar



Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

From generative to discriminative models

e We just showed that the probability distributions
underlying the generative models considered belong to
the exponential family

e What can we say about the classifiers when the
underlying generative models are distributions from the
exponential family?
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Classification problem for generic class conditional density

from the exponential family p(x|n)= h(x)e{ﬂTG(X)-A(")}

Consider Binary classification task with density for class 0 and class 1
parameterized by n, and 1, Further assume G(x) is a linear function
of x (before augmenting x with a 1)

plx|y=1Ln)p(y =1]q)

ply=1lxn)- plx|y=1Ln)p(y =1]q)+ p(x|y =0m)p(y = 0] q)
oxpl 615~ ln
exp{nj G(x)- A(n, )}h(X)ql + expin} G(x) - A(n, )Jr(x)g,
ply=11xm)- :

1+ eXp{-(ﬂo -1 )T G(X) - A(no )"' A(‘ll )"' log ZO}

Note that this is a logistic function of a linear function of x
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Classification problem for generic class conditional density

from the exponential family

Consider K-ary classification task; Suppose (G(x) is a linear function
of x T (x )
plx| )= H(x )l - )

o,/ Glx)-4(n, ),
> expln 6(x)-lnfa
-

q

p( -1|Xn)

eXp{nk G(x)- 4(n, )+ log qk}

K

expin, G(x)- A(n, )+ logg,

which is a softmax function of a linear
function of x !!
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Summary

e A variety of class conditional densities all yield the same
logistic-linear or softmax-linear (with respect to parameters)
form for the posterior probability

e |n practice, choosing a class conditional density can be difficult
— especially in high dimensional spaces — e.g., multi-variate
Gaussian where the covariance matrix grows quadratically in
the number of dimensions!

e The invariance of the functional form of the posterior
probability with respect to the choice of the distribution is
good news!

e |tis not necessary to specify the class conditional density at all

if we can work directly with the posterior — which brings us to
discriminative models!
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Discriminative Models

e We saw that under fairly general assumptions concerning the
underlying generative model, the posterior probability of class
given x can be expressed in the form of a logistic function of an
affine or polynomial (in the simplest case, linear) function of x in
the case of a binary classification task.

1 1
P(y =1 | X)= 1+e_<W’G(X)> = 1+e_,7(x) = lu(x)

where 7(x)=w"G(x)=(w,G(x)

e |n the discriminative setting, we simply assume this form and
proceed without regard to details of the underlying generative
model
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Discriminative Models

Note that the posterior probability of Y=1 is same as the
conditional expectation of y given x:

E(y|x)=1-P(y=1]x)+0-P(y =0|x)

= Ply =1]x) = ulx) = (lx)) (1 - u(x))"™

where ( )_ 1 - ]
= e = 1, ey

Hence estimating P(Y=1|x) is equivalent to performing logistic
regression
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Some Properties of the Logistic Function

1 /2
= ; = log| —
A lver g(hu)

(1) L ()= % (1- o)
)1 ) t) “)ms.m
\
§%=ﬂ0ﬂ)
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Maximum likelihood estimation of w
D = {(xn,yn ); X, EDomain(x); y, E{O,l}; n= 1..N}
|
l+e

N, =W' X5 H, =

n?

Likelihood  P(y--yy [xxy,w) =T (s, )" (1=, )"

Log likelihood

We need to find w that maximizes log likelihood
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Digression — Minimizing / Maximizing Functions

Consider f (x), a function of a scalar vanable x with domain D_
f(x)is convex over somesub-domain DC D_if VX, X,€ED,
the chord joining the points f (X | )and f (X ) )lies above

the graph of f (x)

f (x)has a local minimum at x = X if dneighborhood U € D_ around
X such that Vx€U, f(x)> f(X,)

We say thatlimf(x)= Aif, forany € > 0, 46 > 0 such that ‘f(x)—A‘ <¢

xX—>da

Vx such that ‘x—a‘ <0
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Minimizing/Maximizing Functions

if lim

e—0

We sa{ that f(

—q+c&

lim f(x)T

)is continuous af

X=d

N

- lim, lim_ /()

The derivative of the function f(x)is defined as

af

£+ Ax)- £(x)

— = lim

dx A0 (Ax)

af

x X=X0

= 0if X, isalocal maximum or alocal minimum
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Minimizing/Maximizing Functions

du+v) du_dv

dx dx dx
d (uv ) dv  du

=U— +V—
dx dx dx
Uy Ay _ (Y
% dx dx

dx v’
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Taylor Series Approximation of Functions
Taylor series approximation of f (x)
If f (x)is differentiable 1.e., 1ts derivatives
df d’f o d (df d" a'f
dc’ dc dx(dx)’ Cdx”

f (x)is continuous 1n the neighborhood of x = X, then

f(x)=f(Xo)+(i ]<X-Xo>+ ----- L e,y

existat x = X, and

dx
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Chain rule

af .
0X.

l

is obtained by treating all x,|i = j as constant.

Chain rule
Let z = ga(ul....um)
Letu, = fl.(x(),x1 ...... xn)
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Taylor Series Approximation of Multivariate Functions

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar



Pennsylvania State University College of Information Sciences and Technology

Artificial Intelligence Research Laboratory

Minimizing / Maximizing Multivariate Functions

To find X' that minimizes f(X), we change current guess X
in the direction of the negative gradient of f (X)evaluated at X°©

XCeXCop XL A A (why?)

J
ox, ox, 0X, M|y yc

for small (ideally infinitesimally small)
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Minimizing / Maximizing Functions

J (X1, %))

A

Gradient descent / ascent
is guaranteed to find the
minimum / maximum
when the function has a
single minimum /
maximum
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Maximum likelihood estimation of w

N
LL(w: D)= El{y log, +(1-y, Jlog(l- &, )} 6(x) = x
ILL(w: D) _ % v (=2,)\( 0w, \( on, -
aw n=1 lun (1 - lun) ar]n ( aw )
N
= o 1-u )x
! [ o LR
N
= Zl(yn -1, )x,
Simple gradient ascent learning algorithm
W(t + 1) <— w(t)+ paLL(W : D)
oW w=w(t)
p>0 W(t+1)ew(t)+pt(yn_lun)xn

Ilmpz =0; Ept = %, Eptz < ®
=0 t=0

{—0
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Maximum likelihood estimation of w

Simple gradient ascent algorithm can be quite slow and has
little to recommend it in practice

The momentum trick provides a simple approach to speeding
up the simple gradient ascent algorithm

wit+1)=wl(t)+ Aw(z)
OLL(w: D)

Aw(t) = p
oW

+aAw,(t —1)where 0 < a <1
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Maximum likelihood estimation of w

The momentum trick can also be applied in the on line version

W(t + 1) = W(t)+ Aw(?)
AW() = p,(v, = 1, )x,

+aAw,(t-1)where O < o <1

w=w(t)

t
=»a""p,(v, - )x,
7=0

Wi =W; (77)
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Maximum likelihood estimation of w

e More sophisticated optimization algorithms — line search,
conjugate gradient, Newton-Raphson, iteratively reweighted
least squares, and related methods can be used to maximize the
log likelihood function which although not quadratic, is
approximately quadratic.

e For details, see standard texts on optimization.

e When the form of the underlying generative model is known, we
can initialize the parameter vector w based on the maximum
likelihood estimates for which often closed form solutions are
available and then run a few iterations of gradient ascent to
improve classification accuracy.
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Multi-class Discriminative Model

Softmax-linear model is the multi-class generalization of the
logistic-linear model

/=1

In the discriminative setting, we simply assume this
form and proceed without regard to details of the
underlying generative model
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Multi-class Discriminative Model

e
k k
Let p(y =1|xn)= K —
EeﬂlTxn
[=1
k T
”n = k'xn

Let
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Some properties of the softmax function

Softmax-linear function is n*
invertible up to an additive /Uk _ €
constant. LS

e
=1
k k
n =logu” +C
K v
C=log| ) e
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Some properties of the softmax function

n K i
uh=——;  gf =logut +C: C='09(E€n )
Ee” /=1

[=1
N e”l eﬂké enkeﬂj
k kj -
ou _\fA
J J K 7
T e
=]
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Maximum likelihood estimation of w
D = {(xn,yn ); X EDomain(X); Y, E{yi...yf}, n= 1..N;}

K

P(y, Ixn,9)=];[ (k)

=1

N K
LL(OI...BK :D)= E ny log u*
n=1 k=l

We need to find parameters that maximize log likelihood
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Maximum likelihood estimation of w

Where we have used the chain rule and the fact that . ( K )
n 1
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Maximum likelihood estimation of w

Basic gradient ascent update rule is given by

ALL(0: D)
)

/ 0

Oi(t-l_l)eei(t)-l_p

0(z)

p>0

which we can be speed up using the momentum trick as before
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Maximum likelihood estimation of w

The momentum trick provides a simple approach to speeding
up the simple gradient ascent algorithm

0.(r+1)=0.(r)+A0.(r)

A0 (1) = p&LL(O:D)

+aA0 (¢ —1) whereO < a <1
I 0=0(¢)
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Maximum likelihood estimation of w
N
Vo LL(0:D)= Y (v -,
n=I

Basic online gradient ascent update rule is given by

Oi(H'l)e Oi(t)+pt(yii _ﬂ;)’(n

2
p; <

lim P, =0; Ept ,

[—>00

LNgs

which we can speed up using the momentum trick as before
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Maximum likelihood estimation of w

The momentum trick can also be applied in the on line version

0(r+1)=0.(¢)+A0 ()

1

Aﬁi(t)=pt( l —,u;)xn +aA0.(r-1)where0 < a <1

0,=0,(1)

4
z at_rpt (yn — Iun )’xn
7=0

0,=0, (T)
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Summary

e For alarge class of generative models, the probability
distribution of class conditioned on the input can be modeled by
the exponential family

e Generative models can perform poorly when the assumed
parametric form for the distribution is incorrect

e Discriminative models can perform poorly when the assumed
form of G(x) is inappropriate — but it is often easier to choose
the form of G(x) than it is to specify the precise form of the
generative model

e Discriminative models focus on the classification problem
without solving (potentially more difficult) problem of learning
the generative model for data

e Estimating the parameters in the discriminative setting requires
solving an optimization problem although their generative
counterparts have closed form solutions (via sufficient statistics)
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Summary

e We can learn classifiers in a discriminative setting using maximum

likelihood or maximum a posteriori or bayesian estimation of
parameters

e Discriminative models may overfit the data — use of priors or
regularization recommended

e |nitializing the discriminative model parameters with estimates
based on generative model helps

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar



