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Research	Interests	
•  Machine	learning:	Sta0s0cal,	informa0on	theore0c,	linguis0c	and	structural	approaches	to	

machine	learning;	learning	predic0ve	rela0onships		from	sequen0al,	graph-structured,	mul0-
rela0onal,	mul0modal,	par0ally	specified,	par0ally	labeled,	distributed	data,	linked	data	

•  Causal	Inference:	Causal	inference	from	disparate	experimental	and	observa0onal	studies,	causal	
inference	from	rela0onal	data,	causal	inference	from	temporal	data	

•  Knowledge	Representa0on	and	Inference:	Logical,	probabilis0c,	and	decision-theore0c		
knowledge	representa0on	and	inference;	federated	knowledge	bases;	selec0ve	informa0on	
sharing;	federated	services;	represen0ng	and	reasoning	about	qualita0ve	preferences	

•  Applied	Informa0cs	
–  Bioinforma0cs:	Macromolecular	structure	and	func0on,	analysis,	inference,	modeling,	and	

predic0on	of	macromolecular	(protein-protein	,	protein-RNA,	and	protein-DNA)	interac0on	
networks	and	interfaces,	immune	networks,	etc.	

–  Health	Informa0cs:	Predic0ve	and	causal	modeling	of	health	outcomes	from	pa0ent	(health	
records,	genomics,	socio-economic,	environmental)	data	

–  Brain	Informa0cs:		Modeling	and	analysis	of	structure	and	dynamics	of	brain	networks		from	
fMRI	data		

•  Algorithmic	Discovery:		
–  Algorithmic	abstrac0ons	of	scien0fic	domains	
–  Representa0ons	of	scien0fic	ar0facts	(experiments,	data,	models,	assump0ons,	hypotheses,	

theories	…)	
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What	is	this	course	about?	

•  Why	should	machines	learn?	
•  When	can	Machines	Learn?		
•  Why	can	Machines	Learn?		
•  How	can	Machines	Learn?		
•  How	can	Machines	Learn	beIer?		

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Course	Overview	

•  Background	and	Mo0va0on	
•  Sta0s0cal	Machine	Learning	Theory	and	Applica0ons	
•  Algorithmic	Learning	Theory	and	Applica0ons	
•  Advanced	Machine	Learning	Algorithms	Design	and	Applica0ons	
•  Machine	Learning	for	Predic0ve	Modeling	from	Big	Data	
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Course	Overview	

•  Background	and	Mo0va0on	
•  Sta0s0cal	Machine	Learning	Theory	and	Applica0ons	

–  Decision	Theore0c	Founda0ons	
–  Probabilis0c	Genera0ve	Models	
–  Discrimina0ve	Models		
–  Representa0ve	Algorithms		

•  Algorithmic	Learning	Theory	and	Applica0ons	
–  Mistake	Bound	Models	
–  PAC	Model	–	sample	complexity,	easy	and	hard	learning	
problems,	how	to	turn	hard	learning	problems	into	easy	ones	

–  Learning	under	helpful	distribu0ons	
–  Representa0ve	Algorithms	
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Course	Overview	
•  Advanced	Machine	Learning	Algorithms	Design	and	Applica0ons	

–  Probabilis0c	graphical	models	
–  Kernel	machines	
–  Deep	learning	
–  Mul0-instance,	mul0-label,	and	structured	label	learning	
–  Grammar	learning	
–  Causal	models	

•  Machine	Learning	for	Predic0ve	Modeling	from	Big	Data	
–  Learning	from	large,	distributed	data	
–  Learning	from	ultra	high	dimensional	data	
–  Learning	from	mul0-modal	data	
–  Learning	from	mul0-granularity	data	
–  Pla]orms	and	tools	
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Course	Staff	

Instructor	
Vasant	Honavar	
Professor	and	Edward	Frymoyer	Chair	of	Informa0on	Sciences	and	Technology	
Graduate	Faculty:	
						Computer	Science	and	Engineering	

	Bioinforma0cs	and	Genomics	
	Neuroscience	
	Opera0ons	Research	
	Informa0on	Sciences	and	Technology	

hIp://faculty.ist.psu.edu/vhonavar		
vhonavar@ist.psu.edu		
Office	hours:	1pm	to	2pm,	Mon,	Wed	301-A	IST	
TA:	Sam	Gur,	szg180@psu.edu		
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Prerequisites	

§  Conceptual	founda0ons	of	Compu0ng	
§  Programming		
§  Mathema0cs		

–  Set	theory,	logic,	probability,	calculus	
§  Data	structures		

–  Lists,	trees,	graphs	
§  Basics	of	Design	and	Analysis	of	Algorithms		
§  Technical	wri0ng	and	presenta0on	
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§  Course	materials	
	hIp://faculty.ist.psu.edu/vhonavar/Courses/ml/homepage.html	
–  Lecture	notes,	Recommended	Readings,	Programming	resources	

§  Useful	(not	required)	Reference	Texts:		
§  Machine	Learning,	Theodoridis	
§  Machine	Learning,	Murphy	
§  Bayesian	Reasoning	and	Machine	Learning,	Barber	
§  PaIern	Recogni0on	and	Machine	Learning,	Bishop	
§  A	Probabilis0c	Theory	of	PaIern	Recogni0on,	Devroye,	Gyorfi,	and	Lugosi	
§  Elements	of	Sta0s0cal	Learning,	Has0e	and	Tibshirani	
§  Machine	Learning,	Natarajan	
§  An	introduc0on	to	Computa0onal	Learning	Theory,	Kearns	and	Vazirani	
§  Founda0ons	of	Machine	Learning,	Mohri,	Rostamizadeh,	and	Talwalkar	
§  Learning	and	Generaliza0on,	Vidyasagar	
§  Sta0s0cal	Learning	Theory,	Vapnik		
§  Learning	with	Kernels,	Skolkopf	and	Smola	
§  Mining	of	Massive	Data	Sets,	Rajaraman	and	Ullman	
§  Learning	Bayesian	Networks,	Neapolitan	
§  Probabilis0c	Graphical	Models,	Koller	and	Friedman	
§  Deep	Learning,	Bengio	and	Goodfellow	
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Course	Mechanics	
§  Grading		

–  Problem	Sets	
–  Projects		
–  Exams		
–  Class	par8cipa8on	

§  Academic	Honesty	
–  University	policy	on	academic	dishonesty	
–  Problem	sets,	labs,	term	project,	collabora0on	

§  Disability	
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Transforma0ve	role	of	computa0on	
•  Computa0on	offers	the	best	formalism	we	have	for	understanding	how	

informa0on	is	acquired,	processed,	and	used	by		
–  Computers	
–  Brains	
–  Genomes	
–  Organiza0ons	
–  Socie0es	

•  Computa0on	:	cogni0ve	science	::	calculus	:	physics	
•  Computa0on:	biology	::	calculus	:	physics		
•  Computa0on:	social	science	::	calculus	:	physics	
•  Algorithms	as	theories		

–  We	will	have	a	theory	of	intelligence	when	we	have	computer	programs	
(informa0on	processing	models)	that	display	intelligence	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Machine	learning	is	a	subfield	of	ar0ficial	intelligence	

AI	is	about	
§  Study	of	computa0onal	models	of	intelligence	
§  Falsifiable	hypotheses	about	intelligent	behavior	
§  Construc0on	of	intelligent	ar0facts		
§  Mechaniza0on	of	tasks	requiring	intelligence	
§  Exploring	the	design	space	of	intelligent	systems	
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Why	should	machines	learn?	
Prac0cal		
•  Intelligent	behavior	requires	knowledge	
•  Explicitly	specifying	the	knowledge	needed	for	specific	tasks	is	hard,	

and	oien	infeasible	
•  If	we	can	get	machines	to	acquire	the	knowledge	needed	for	

par0cular	tasks	from	observa0ons	(data),	interac0ons	
(experiments),	we	can		
•  Drama0cally	reduce	the	cost	of	developing	intelligent	systems	
•  Automate	aspects	of	scien0fic	discovery	
•  …	

Machine	Learning	is	most	useful	when		
§  the	structure	of	the	task	is	not	well	understood	but		representa0ve	

data		or	interac0ons	with	the	environment	are	available		
§  task	(or	parameters)	change	dynamically	
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Why	should	machines	learn?	–	Applica0ons	
		
•  Scien0fic	

§  Iden0fying	sequence	correlates	of	protein	func0on,	
predic0ng	poten0al	adverse	drug	interac0ons…		

§  Understanding	the	rela0onship	between	gene0c,	
environmental,	and	behavioral	characteris0cs	that	contribute	
to	health	or	disease	

§  Medicine	
§  Diagnosing	diseases	from	symptoms,	test	results	(e.g.	
pneumonia,	pap	smears)	

§  Educa0on	
§  Customizing	educa0onal	content	and	delivery	to	op0mize	
learning	outcomes	
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Why	should	machines	learn?	–	Applica0ons	
		
•  Agriculture	

–  Precision	farming	
•  Business	

–  Fraud	detec0on	(e.g.	credit	cards,	phone	calls)	
–  Product	recommenda0on	(e.g.	Google,	Amazon,	Ne]lix)	
–  Stock	trading	

§  Technology	
–  Self-driving	vehicles	
–  Natural	language	conversa0on	
–  Computer	vision	
–  Video	understanding	
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Personal	
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Digital	Media	Omics	

IM EMAIL 

VOIP 
BLOGS 

VIDEO 

Source: Keith Marzullo 

Machine	learning	is	essen0al	for	extrac0ng	knowledge	from	big	data	

MOBILE 

Sense	

Iden0fy	

Assess	

Intervene	

Evaluate	
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Why	should	machines	learn?	–	Science	of	learning	

Informa0on	processing	models	can	provide	useful	insights	into	
•  How	humans	and	animals	learn	
•  Informa0on	requirements	of	learning	tasks	
•  The	precise	condi0ons	under	which	learning	is	possible	
•  Inherent	difficulty	of	learning	tasks	
•  How	to	improve	learning	–	e.g.	value	of	ac0ve	versus	passive	

learning	
•  Computa0onal	architectures	for	learning	
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Machine	Learning	–	related	disciplines	
•  Applied	Sta0s0cs	

–  Emphasizes	sta0s0cal	models	of	data	
–  Methods	typically	applied	to	small	data	sets	
–  Oien	done	by	a	sta0s0cian	increasingly	assisted	by	a	computer	

•  Machine	learning		
–  Relies	on	(oien,	but	not	always	sta0s0cal)	inference	from	data	and	
knowledge	(when	available)	

–  Emphasizes	efficient	data	structures	and	algorithms	for	learning	from	
data	

–  Characterizing	what	can	be	learned	and	under	what	condi0ons	
–  Obtaining	guarantees	regarding	the	quality	of	learned	models		
–  Scalability	to	large,	complex	data	sets	(big	data)	
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What	is	Machine	Learning?	

•  A	program		M		is	said	to	learn	from	experience	E	with	respect	
to	some	class	of	tasks	T	and	performance	measure	P		if	its	
performance	as	measured	by	P		on	tasks	in	T		in	an	
environment	Z		improves	with	experience	E.	

Example	1	

	T	–	cancer	diagnosis	
	E	–	a	set	of	diagnosed	cases	

	P	–	accuracy	of	diagnosis	on	new	cases	
	Z	–	noisy	measurements,	occasionally	misdiagnosed	training	
cases	
	M	–	a	program	that	runs	on	a	general	purpose	computer	
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What	is	Machine	Learning?	

Example	2	
T	–	recommending	movies	e.g.,	on	Ne]lix	
E	–	movie	ra0ngs	data	from	individuals		
P	–	accuracy	of	predicted	movie	ra0ngs	
	
10%	improvement	in	predic0on	accuracy	–	$1	million	prize	
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What	is	Machine	Learning?	

Example	3	
T	–	Predic0ng	protein-RNA	interac0ons	
E	–	A	data	set	of	known	interac0ons	
P	–	accuracy	of	predicted	interac0ons	
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What	is	Machine	Learning?	

Example	4	
T	–	Reconstruc0ng	func0onal	connec0vity	of	brains	from	brain	

ac0vity	(e.g.,	fMRI)	data	
E	–	fMRI	data	
P	–	accuracy	of	the	reconstructed	network	
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What	is	Machine	Learning?	

Example	5	
T	–	solving	integral	calculus	problems,	given	rules	of	integral	

calculus	
E	–	a	set	of	solved	problems	
P	–	score	on	test	consis0ng	of	problems	not	in	E	
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What	is	Machine	Learning?	

Example	6	
T	–	predic0ng	the	risk	of	a	disease	before	the	onset	of	clinical	

symptoms		
E	–	longitudinal	gut	microbiome	data	coupled	with	diagnos0c	tests	
P	–	accuracy	of	predic0ons	
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What	is	Machine	Learning?	

Example	7	
T	–	predic0ng	sleep	quality	from	ac0graphy	data	
E	–	ac0graphy	data	with	sleep	stage	labels	
P	–	accuracy	of	predic0ons	
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What	is	Machine	Learning?	

Example	8	
T	–	Uncovering	the	causal	rela0onship	between	exercise,	diet	and	

diabetes	
E	–	Data	from	observa0ons	and	interven0ons	(changes	in	diet,	

exercise)	
P	–	accuracy	of	causal	predic0ons	
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Key	requirements	

•  There	is	a	paIern	to	be	learned	
•  There	are	data	to	learn	from	
	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Learning	to	approve	credit	
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Learning	to	approve	to	credit	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Canonical	Learning	Problems	
Supervised	Learning:	
•  Given	labeled	samples,	predict	labels	on	future	samples	

§  Classifica0on	
§  Regression	
§  Time	series	predic0on	

§  Many	variants	based	on	what	cons0tutes	a	predic0ve	model	
§  Many	variants	based	on	what	cons0tutes	a	sample	and	a	label	

§  Mul0	instance	learning	
§  Mul0-label	learning	
§  Mul0-instance,	mul0-label	learning	
§  Distribu0onal	learning	

§  Many	variants	based	on	data	type	
§  Feature	vectors	
§  Sequences	
§  Networks	
§  Rela0ons	
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Canonical	Learning	Problems	
Unsupervised	Learning:	given	unlabeled	samples,	discover	representa0ons,	

features,	structure,	etc.	
§  Clustering	
§  Compression	
§  Representa0on		
Many	variants	based	on	what	cons0tutes	samples,	data	types	
Semi-supervised	Learning:	given	some	labeled	samples,	and	large	amounts	

of	unlabeled	samples,	predict	labels	of	unlabeled	samples	
•  Transduc0ve	(unlabeled	samples	given	at	learning	0me)	
•  Induc0ve	(new	unlabeled	samples	given	at	predic0on	0me)	
Mul0-view	learning:		
•  Given	data	from	mul0ple	sources	about	some	underlying	system,	

discover	how	they	relate	to	each	other;		
•  integrate	the	data	to	make	predic0ons	that	are	more	reliable	than	those	

obtainable	using	any	single	data	source	
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Canonical	Learning	Problems	
Reinforcement	Learning:	Given	the	means	of	observing	and	interac0ng	with	

an	environment,	learn	how	to	act	ra0onally	
•  Many	variants	based	on	what	cons0tutes	observa0on,	interac0on,	and	

ac0on	
	
Causal	inference:	given	observa0onal	and	experimental	data,	causal	

assump0ons,	iden0fy	causal	rela0ons	
•  Iden0fica0on	
•  Transport	
•  Meta	analysis	
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Learning	input	–	output	func0ons:	Classifica0on,	regression	
Target	func0on	f		–	unknown	to	the	learner	–		
Learner’s	hypothesis	about	what	f		might	be	–		
H	–	hypothesis	space	
Instance	space	–			X			–			domain	of	f,	h		
Output	space			–			Y		 	–		range	of	f,	h		
Example	–	an	ordered	pair	(x,y)	where		
																							and		
	
F		and	H		may	or	may	not	be	the	same!	
Training	set	E	–	a	mul0	set	of	examples	
Learning	algorithm	L	–	a	procedure	which	given	some	E,	outputs	an		

Hh∈

Xx∈ ( ) Yyxf ∈=

Ff ∈

Hh∈
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Learning	input	–	output	func0ons	
•  Must	choose	

–  	 Hypothesis	language		
–  	 Instance	language	
–  	 Seman0cs	associated	with	both	

•  Machines	can	learn	only	func0ons	that	have	finite	
descrip;ons	or	representa;ons	if	we	require	learning	
programs	to	be	hal0ng	programs	

Examples:		
•  “	Tom	likes	science	fic0on	horror	films”	
•  “	F	=	ma”	
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Learning	from	Data	

§  Premise	–	A	hypothesis	(e.g.,	a	classifier)	that	is	consistent	
with	a	sufficiently	large	number	of	representa0ve		training	
examples	is	likely	to	accurately	classify	novel	instances	drawn	
from	the	same	universe	

§  We	can	prove	that	this	is	an	op0mal	approach	(under	
reasonable	assump0ons)	–	more	on	this	later	

§  When	the	number	of	examples	is	limited,	the	learner	needs	
to	be	smarter	(e.g.,	find	a	concise	hypothesis	that	is	
consistent	with	the	data)	
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Learning	as	Probabilis0c	Inference			

•  Probabilis0c	inference	provides	a	basis	for	upda0ng	beliefs	
based	on	evidence		

•  Learning	is	tantamount	to		upda0ng	beliefs	about	the	world	
based	on	data.	
–  Sound	probabilis0c	basis	for	understanding	many	learning	
algorithms	and	designing	new	algorithms		

–  Several	prac0cal	reasoning	and	learning	algorithms	
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Review	
You	should	review	material	on	
§  Probability	
§  Random	variables	
§  Distribu0ons	over	random	variables	
§  Independence	and	condi0onal	independence	
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Represen0ng	and	Reasoning	under	Uncertainty	
	
•  Probability	Theory	provides	a	framework	for	represen0ng	and	

reasoning	under	uncertainty	
–  Represent	beliefs	about	the	world	as	sentences	(much	like	in	
proposi0onal	logic)	

–  Associate	probabili0es	with	sentences		
–  Reason	by	manipula0ng	sentences	according	to	sound	rules	
of	probabilis0c	inference	

–  Results	of	inference	are	probabili0es	associated	with	
conclusions	that	are	jus0fied	by	beliefs	and	data	
(observa0ons)	
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Probabilis0c	inference	
•  Beliefs:		

–  If	Oksana	studies,	there	is	an	60%	chance	that	she	will	pass	the	
test;	and	a	40	percent	chance	that	she	will	not.		

–  If	she	does	not	study,	there	is	20%	percent	chance	that	she	will	
pass	the	test	and	80%	chance	that	she	will	not.		

•  Observa0on:	Oksana	did	not	study.		
•  Example	Inference	task:		

–  What	is	the	chance	that	Oksana	will	pass	the	test?		
–  What	is	the	chance	that	she	will	fail?	

•  Probability	theory	generalizes	proposi0onal	logic	
–  Probability	theory	associates	probabili0es	that	lie	in	the	interval	
[0,1]	as	opposed	to	0	or	1	(exclusively)		
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Sources	of	uncertainty	

Uncertainty	modeled	by	Probabilis0c	asser0ons	may			
•  In	a	determinis0c	world	be	due	to	

–  Laziness:	failure	to	enumerate	excep0ons,	qualifica0ons,	etc.	
that	may	be	too	numerous	to	state	explicitly	

–  Sensory	limita0ons	
–  Ignorance:	lack	of	relevant	facts	etc.	

•  In	a	stochas0c	world	be	due	to	
–  Inherent	uncertainty	(as	in	quantum	physics)	

The	framework	is	agnos0c	about	the	source	of	uncertainty	
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The	world	according	to	Agent	Bob	
•  An	atomic	event	or	world	state	is	a	complete	specifica0on	of	

the	state	of	the	agent’s	world.		
•  Event	set	is	a	set	of	mutually	exclusive	and	exhaus0ve		possible	

world	states	(rela0ve	to	an	agent’s	representa0onal	
commitments	and	sensing	abili0es)	

•  From	the	point	of	view	of	an	agent	Bob	who	can	sense	only	3	
colors	and	2	shapes,	the	world	can	be	in	only	one	of	6	states	

•  Atomic	events	(world	states)	are		
–  mutually	exclusive		
–  exhaus0ve		
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Seman0cs:	Probability	as	a	subjec0ve	measure	of	belief	

•  Suppose	there	are	3	agents	–	Sanghack,	Sam,	Aria,	in	a	world	
where	a	fair	dice	has	been	tossed.		

•  Sanghack	observes	that	the	outcome	is	a	“6”	and	whispers	to	
Sam	that	the	outcome	is	“even”	but		

•  Aria	knows	nothing	about	the	outcome.	

Set	of	possible	mutually	exclusive	and	exhaus0ve	world	states	
=	{1,	2,	3,	4,	5,	6}	

Set	of	possible	states	of	the	world	based	on	what	Sam	knows	
=	{2,	4,	6}	
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Probability	as	a	subjec0ve	measure	of	belief	

PossibleworldsSanghack =  6{ },  PossibleworldsSam =  2, 4, 6{ }
PossibleworldsAria =  1,2,3,4,5,6{ }

Probability	is	a	measure	over	all	of	the	world	states	that	are	
possible,	or	simply,	possible	worlds,	given	what	an	agent	
knows	

PrSanghack (worldstate = 6) =1

PrSam (worldstate = 6) =  1
3

PrAria worldstate = 6( )  =  1
6

  

Sanghack,	Sam,	and	Aria	assign	
different	beliefs	to	the	same	
world	state	because	of	
differences	in	what	they	have	
observed	or	have	been	told!	
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				Random	variables	
•  The	“domain”	of	a	random	variable	is	the	set	of	values	it	can	take.	The	

values	are	mutually	exclusive	and	exhaus0ve.	
•  The	domain	of	a	Boolean	random	variable	X	is		{true,	false}	or	{1,	0}	
•  Discrete	random	variables	take	values	from	a	countable	domain.		

•  The	domain	of	the	random	variable	Color	may	be	{Red,	Green}.		
•  If	E	=	{(Red,	Square),	(Green,	Circle),	(Red,	Circle),	(Green,	Square)},	
the	proposi0on	(Color	=	Red)	is	True	in	the	world	states	{(Red,	
Square),	(Red,	Circle)}.	

•  Each	state	of	a	discrete	random	variable	corresponds	to	a	proposi0on	
e.g.,	(Color	=	Red)	
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Syntax	

•  Basic	element:	random	variable	
–  Similar	to	proposi0onal	(Boolean)	logic:	possible	worlds	defined	by	
assignment	of	values	to	random	variables.	

–  Cavity	(do	I	have	a	cavity?)	
– Weather	is	one	of	<sunny,	rainy,	cloudy,	snow>	
– Domain	values	must	be	exhaus0ve	and	mutually	exclusive	

•  Elementary	proposi0on	constructed	by	assignment	of	a	value	to	a	
random	variable	

– Weather	=	sunny,	Cavity	=	false	
–  	(abbreviated	as	¬cavity)	

•  Complex	proposi0ons	formed	from	elementary	proposi0ons	and	
standard	logical	connec0ves		

– Weather	=	sunny	∨	Cavity	=	false	
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Syntax	and	Seman0cs	

•  Atomic	event:	A	complete	specifica0on	of	the	state	of	the	world	about	
which	the	agent	is	uncertain	

•  Atomic	events	correspond	to	a	possible	worlds	(much	like	in	the	case	
of	proposi0onal	logic)	
E.g.,	if	the	world	consists	of	only	two	Boolean	variables	Cavity	and	
Toothache,	then	there	are	4	dis0nct	atomic	events	or	4	possible	
worlds:	
Cavity	=	false	∧Toothache	=	false	
Cavity	=	false	∧	Toothache	=	true	
Cavity	=	true	∧	Toothache	=	false	
Cavity	=	true	∧	Toothache	=	true	

•  Atomic	events	are	mutually	exclusive	and	exhaus0ve	
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Axioms	of	probability	

•  For	any	proposi0ons	A,	B	
	

–  0	≤	P(A)	≤	1	
–  P(true)	=	1	and	P(false)	=	0	
–  P(A	∨	B)	=	P(A)	+	P(B)	-	P(A	∧	B)	

	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Prior	probability	

•  Prior	or	uncondi0onal	probabili0es	of	proposi0ons	
–  P(Cavity	=	true)	=	0.1	and	P(Weather	=Rainy)	=	0.72	correspond	to	
belief	prior	to	arrival	of	any	(new)	evidence	

•  Probability	distribu0on	gives	values	for	all	possible	assignments:	
–  P(Rainy)	=	<0.72,	0.1,	0.08,	0.1>		
–  Note	that	the	probabili0es	sum	to	1	

•  Joint	probability	distribu0on	for	a	set	of	random	variables	gives	the	
probability	of	every	atomic	event	on	those	random	variables	
–  P(Cavity,	Weather)	=	a	4	×	2	matrix	of	values	

		



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Joint	probability	distribu0on	

•  Joint	probability	distribu0on	for	a	set	of	random	variables	gives	
the	probability	of	every	atomic	event	on	those	random	variables	

–  P(Weather,	Cavity)	=	a	4	×	2	matrix	of	values:	
	
Weather= 	sunny 	rainy 	cloudy 	snow		

	Cavity	=	true	 	0.144 	0.02	 	0.016	 	0.02	
	Cavity	=	false 	0.576 	0.08	 	0.064	 	0.08	

	

•  Every	ques0on	about	a	domain	can	be	answered	by	the	joint	
distribu0on	
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Inference	using	the	joint	distribu0on	

P(cavity) = P(cavity,Toothache)+P(cavity,¬Toothache)

Toothache	 ¬Toothache 

Cavity	 0.4	 0.1	

¬Cavity 0.1	 0.4	
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Condi0onal	probability	

•  Condi0onal	or	posterior	probabili0es	
–  P(Cavity	|	Toothache)	=	0.8	
	(note	Cavity	is	shorthand	for	Cavity	=	True)	

Probability	of	Cavity	given	Toothache		
	
•  Nota0on	for	condi0onal	distribu0ons:	

P(Cavity	|	Toothache)	=	2-element	vector	of	2-element	vectors)	
P(Cavity	|	Toothache,	Cavity)	=	1	
	

•  New	evidence	may	be	irrelevant	(Probability	of	Cavity	given	Toothache	is	
independent	of	Weather)	
P(Cavity	|	Toothache,	Sunny)	=	P(Cavity	|	Toothache)	=	0.8	
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Condi0onal	probability	
•  Defini0on	of	condi0onal	probability:	
	

P(a	|	b)	=	P(a	∧	b)	/	P(b)	if		P(b)	>	0	
	

•  Product	rule	gives	an	alterna0ve	formula0on:	
	

P(a	∧	b)	=	P(a	|	b)	P(b)	=	P(b	|	a)	P(a)	
	
Example:		
•  Suppose	I	have	two	coins	–	one	a	normal	fair	coin,	and	the	other	a	

rigged	coin	(with	heads	on	both	sides).	I	pick	a	coin	at	random,	toss	it,	
and	tell	you	that	the	outcome	of	the	toss	is	a	Head.		

•  What	is	the	probability	that	I	am	looking	at	a	fair	coin?	
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Condi0onal	probability	

•  A	general	version	holds	for	whole	distribu0ons,	e.g.,	
P(Weather,Cavity)	=	P(Weather	|	Cavity)	P(Cavity)	
	

•  View	as	a	compact	nota0on	for	a	set	of	4	×	2	equa0ons,	not	matrix	
mul0plica0on	

•  Chain	rule	is	derived	by	successive	applica0on	of	product	rule:	
P(X1,	…,Xn)	=	P(X1,...,Xn-1)	P(Xn	|	X1,...,Xn-1)	
																				=	P(X1,...,Xn-2)	P(Xn-1	|	X1,...,Xn-2)	P(Xn	|	X1,...,Xn-1)	
																		 	=	…	
																		 	=	πi	P(Xi	|	X1,	…	,Xi-1)	(i	ranges	from	1	to	n)	
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Probability	as	a	measure	over	possible	worlds	

•  Suppose	I	have	two	coins	–	one	a	normal	fair	coin,	and	the	other	with	2	
heads.	I	pick	a	coin	at	random	and	toss	it.	What	is	the	probability	that	
the	outcome	is	a	head?	
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Condi0onal	probability	as	a	Measure	over	Possible	worlds	not	ruled	out	
by	evidence	

•  A	given	piece	of	evidence	e rules	out	all	possible	worlds	that	
are	incompa0ble	with e or	selects	the	possible	worlds	in	
which e is True.	Evidence	e induces	a	new	measure	µe.
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Effect	of	Evidence	on	Possible	worlds	

E 

Evidence	z 	e.g.,	(color	=	red)	rules	out	some	assignments	of	values	
to	some	of	the	random	variables	

	z		

P(e)
P(e|z)

Ez 
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Inference	by	enumera0on	

•  Start	with	the	joint	probability	distribu0on:	

	

	
•  For	any	proposi0on	φ,	sum	the	atomic	events	where	it	is	true:	

P(φ)	=	Σω:ω╞φ	P(ω)	
	
•  P(toothache)	=	0.108	+	0.012	+	0.016	+	0.064	=	0.2	
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Inference	by	enumera0on	

•  Start	with	the	joint	probability	distribu0on:	
	

•  Can	also	compute	condi0onal	probabili0es:	
	
	P(¬cavity	|	toothache)	=	P(¬cavity	∧	toothache)	
	 	 	 	 	 	P(toothache)	
	 	 	 	 	=	 							0.016+0.064	
	 	 	 	 				0.108	+	0.012	+	0.016	+	0.064	
	 	 	 	 	=	0.4	
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Independence	
•  A	and	B	are	independent	iff	
	P(A|B)	=	P(A)				or	P(B|A)	=	P(B)					or	P(A,	B)	=	P(A)	P(B)	

	

P(Toothache,	Catch,	Cavity,	Weather)	
	=	P(Toothache,	Catch,	Cavity)	P(Weather)	

•  32	entries	reduced	to	12;	
•  n	independent	variables,	O(2n)	reduced	to	O(n)	
•  Absolute	independence	powerful	but	rare	
•  How	can	we	manage	a	large	numbers	of	variables?	
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•  X	is	condi0onally	independent	of	Y	given	Z	if	the	probability	
distribu0on	governing	X	is	independent	of	the	value	of	Y	
given	the	value	of	Z:		

•  P	(X	|Y,	Z	)	=	P	(X	|Z	)	that	is,	

Condi0onal	Independence			

)|(),|(),,( kikjikji zZxXPzZyYxXPzyx ======∀
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Independence	and	Condi0onal	Independence	
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Independence	Proper0es	of	Random	Variables	
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Quick	proof	that	independence	is	symmetric	
•  Assume:	P(X|Y, Z)	=	P(X|Y)  
•  X and	Z are	independent	given Y	

),(
)()|,(),|(

YXP
ZPZYXPYXZP =

)()|(
)(),|()|(

YPYXP
ZPZYXPZYP

=

(Bayes’s Rule) 
 
(Chain Rule) 
 
(By Assumption) 
 
(Bayes’s Rule) 
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Bayes	Rule	
Does	pa0ent	have	cancer	or	not?	
	A	pa0ent	takes	a	lab	test	and	the	result	comes	back	posi0ve.	The	test	
returns	a	correct	posi0ve	result	in	only	98%	of	the	cases	in	which	the	
disease	is	actually	present,	and	a	correct	nega0ve	result	in	only	97%	
of	the	cases	in	which	the	disease	is	not	present.	Furthermore,	.008	of	
the	en0re	popula0on	have	this	cancer.	

=¬+

=+

=

)|(
)|(
)(

cancerP
cancerP
cancerP

=¬−

=−

=¬

)|(
)|(
)(

cancerP
cancerP
cancerP



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Bayes	Rule	
Does	pa0ent	have	cancer	or	not?	
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P cancer+( ) =
P(+ cancer)P cancer( )

P +( )
;       

 P ¬cancer+( ) =
P(+¬cancer)P ¬cancer( )

P +( )
 

P cancer+( )P +( ) = 0.98 × 0.008 = 0.0078;   

P ¬cancer+( )P +( ) = 0.03× 0.992 = 0.0298
P(+) = 0.0078 + 0.0298
P(cancer | +) = 0.21;          P(¬cancer | +) = 0.79
The patient, more likely than not, does not have cancer
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Bayes	Rule	

•  Product	rule		
–  P(a∧b)	=	P(a	|	b)	P(b)	=	P(b	|	a)	P(a)	

	
–  Bayes'	rule:	P(a	|	b)	=	P(b	|	a)	P(a)	/	P(b)	

	

•  In	distribu0on	form		
	

	 	P(Y|X)	=	P(X|Y)	P(Y)	/	P(X)	=	αP(X|Y)	P(Y)	
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Decision	Theore0c	Founda0ons	

•  What	is	an	“op0mal”	classifier?	
•  How	can	a	classifier	assign	labels	op0mally?	
•  Can	we	build	an	op0mal	classifier?	
•  Example	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Decision	theore0c	founda0ons	of	classifica0on	

Consider the problem of classifying an instance X
 into one of two mutually exclusive classes ω1  or ω2

       P(ω1 X)   =  probability of class ω1  given the evidence X

       P(ω2 X) =  probability of class ω2  given the evidence X
What is the probability of error?
P(error | X) = P(ω1 X) if we choose ω2  

                    = P(ω2 X) if we choose ω1  
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Minimum	Error	Classifica0on	
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Op0mality	of	Bayes	Decision	Rule	

We	can	show	that	the	Bayesian	classifier		
•  is	op0mal	in	that	it	is	guaranteed	to	minimize	the	probability	of	

misclassifica0on	
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Op0mality	of	Bayes	Decision	Rule	

Error 
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Op0mality	of	the	Bayes	Decision	Rule	

€ 

Pe = P x ∈ R2,x ∈ω1( ) + P x ∈ R1,x ∈ω2( )
= P x ∈ R2 |ω1( )P ω1( ) + P x ∈ R1 |ω2( )P ω2( )
= P ω1( ) p x |ω1( )dx

R
2

∫ + P ω2( ) p x |ω2( )dx
R

1

∫

Applying Bayes Rule :  
p x |ω i( )P ω i( ) = P ω i | x( )p x( ) = p x,ω i( )

Pe = P ω1 | x( )p x( )dx
R

2

∫ + P ω2 | x( )p x( )dx
R

1

∫
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Op0mality	of	the	Bayes	Decision	Rule	
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Op0mality	of	Bayes	Decision	Rule	

•  The	proof	generalizes	to	mul0variate	input	spaces		
•  Similar	result	can	be	proved	in	the	case	of	discrete	(as	opposed	

to	con0nuous)	input	spaces	–	replace	integra0on	over	the	input	
space	by	summa0on	
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Bayes	Decision	Rule	yields	Minimum	Error	Classifica0on	

[ ])(),(min)|(

)()(

)()(

21

12

21

XPXPXerrorP

XPXP

XPXP

ωω

ωωω

ωωω

          
                  yieldswhich

  if  Choose         

  if  Choose         
  error tionclassifica  minimize To

2

1

=

>

>



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Bayes	Decision	Rule	

Behavior	of	Bayes	decision	rule	as	a	func0on	of	prior	probability	of	
classes	
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Bayes	Op0mal	Classifier	
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Minimum	Risk	Classifica0on	
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Minimum	Risk	Classifica0on	
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This	classifica0on	rule	can	be	shown	to	be	op0mal	in	that	it	is	
guaranteed	to	minimize	the	risk	of	misclassifica0on		
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Summary	of	Bayesian	recipe	for	classifica0on	
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Bayesian	recipe	for	classifica0on	
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Summary	of	Bayesian	recipe	for	classifica0on	

•  The	Bayesian	recipe	is	simple,	op0mal,	and	in	principle,	
straigh]orward	to	apply	

•  To	use	this	recipe	in	prac0ce,	we	need	to	know		P(X|ωi)	–	the	
genera0ve	model	for	data	for	each	class	and	P(ωi)	–	the	prior	
probabili0es	of	classes	

•  Because	these	probabili0es	are	unknown,	we	need	to	es0mate	
them	from	data	–	or	learn	them!	

•  X	is	typically	high-dimensional	or	may	have	complex	structure 		
•  Need	to	es0mate	P(X|ωi)	from	data	
	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Naïve	Bayes	Classifier		
•  How	to	learn	P	(X|ωi)	?	
One	solu0on:	Assume	that	the	random	variables	in	X	are	

condi0onally	independent	given	the	class.	
•  Result:	Naïve	Bayes	classifier	which	performs	op0mally	under	

certain	assump0ons	
•  A	simple,	prac0cal	learning	algorithm	grounded	in	Probability	

Theory	
When	to	use	
•  AIributes	that	describe	instances	are	likely	to	be	condi0onally	

independent	given	classifica0on	
•  The	data	is	insufficient	to	es0mate	all	the	probabili0es	reliably	if	

we	do	not	assume	independence	
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Condi0onal	Independence	
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Implica0ons	of	Independence	
•  Suppose	we	have	5	Binary	aIributes	and	a	binary	class	label	
•  Without	independence,	in	order	to	specify	the	joint	

distribu0on,	we	need	to	specify	a	probability	for	each	possible	
assignment	of	values	to	each	variable	resul0ng	in	a	table	of	size	
26=64	

•  Suppose	the	features	are	independent	given	the	class	label	–	
we	only	need	5(2x2)=20	entries	

•  The	reduc0on	in	the	number	of	probabili0es	to	be	es0mated	is	
even	more	striking	when	N,		the	number	of	aIributes	is	large	–	
from	O(2N)	to	O(N)	
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Naive	Bayes	Classifier		
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Naive	Bayes	Classifier		

( )

( )∏

∏

=
Ω∈

=
Ω∈

Ω∈

Ω∈

==

=

==

====

====

n

i
jiij

NB

j

n

i
jiiMAP

jjnn

nnjMAP

xXPP

PxXP

tindependen

PxXxXxXP

xXxXxXP

j

j

j

j

1

1

2211

2211

|)(maxarg

)(|maxarg

)()|,...,,(maxarg

)...,|(maxarg

ωω

ω

ωωω

ωω

ωω

ω

ω

ω

ω

 

have   weclass, the given  are attributes the If

          

 



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Naive	Bayes	Learner	
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Estimate	is	a	procedure	for	es0ma0ng	the	relevant	
probabili0es	from	set of	training examples
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Learning	Da0ng	Preferences	

Training	Data	
Instance Class	label	
I1 (t, d, l) +
I2 (s, d, l) +
I3 (t, b, l) -
I4 (t, r, l) -
I5 (s, b, l) -
I6 (t, b, w) +
I7 (t, d, w) +
I8 (s, b, w) +

Instances	–		

ordered	3-tuples	of	aIribute	
values	corresponding	to	 		

	Height (tall, short)
Hair (dark, blonde, red) 
Eye (blue, brown)

Classes	–		

	+, –  
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Probabili0es	to	es0mate	

P(+) = 5/8 
P(–) = 3/8 

P(Height | c) t s 
 + 3/5 2/5 

 – 2/3 1/3 

P(Eye | c) l w 
 + 2/5 3/5 
 – 1 0 

P(Hair | c)	 d b r 
 +	 3/5 2/5 0 

 – 0 2/3 1/3 

Classify (Height=t, Hair=b, eye=l) 
P(X | +) = (3/5)(2/5)(2/5) = (12/125) 
P(X | –) = (2/3)(2/3)(1) = (4/9) 
P(+|X) α P(+)P(X|+)=(5/8)(12/125)=0.06 
P(-|X) α P(-)P(X|-)=(3/8)(4/9)=0.1667 
 
 

Classify (Height=t, Hair=r, eye=w) 
	

Note	the	problem	with	zero	probabili;es	
Solu;on	–	Use	Laplacian	correc;on	
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Es0ma0on	of	Probabili0es	from	Small	Samples	

P̂(Xi = aik
|ω j )←

njik
+mpji

nj +m
       nj   is the number of training examples of class ω j

       njik
= number of training examples of class ω j  

                which have attribute value aik
 for attribute Xi

      pji   is the prior estimate for P̂(Xi = aik
|ω j )

      m is the weight given to the prior 

As n→∞, P̂(Xi = aik
|ω j )→

njik

nj

This	is	effec0vely	the	same	as	using	Dirichlet	priors	
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Naive	Bayes	is	among	the	most	useful	algorithms	
•  Learning	da0ng	preferences		
•  Learn	which	news	ar0cles	are	of	interest	
•  Learn	to	classify	web	pages	by	topic	
•  Learn	to	classify	SPAM	
•  Learn	to	assign	proteins	to	func0onal	families	
	
What	aIributes	shall	we	use	to	represent	text?	

Sample	Applica0ons	of	Naïve	Bayes	Classifier		
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•  Target	func0on	Interes;ng:	Documents	→	{+,-}	
•  Learning:	Use	training	examples	to	es0mate	
				P	(+),	P	(-	),	P	(d	|+),	P	(d	|-)	
	
Alterna0ve	genera0ve	models	for	documents:		
•  Represent	each	document	as	a	sequence	of	words			

–  In	the	most	general	case,	we	need	a	probability	for	each	
word	occurrence	in	each	posi0on	in	the	document,	for	each	
possible	document	length	

	

Learning	to	Classify	Text	
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Learning	to	Classify	Text	P(d |ωi ) = P(length(d)) P
i=1

length(d )

∏ (Xi |ωi, length(d))

This would require estimating for each document, 

        Vocabulary length(d)
× Ω  

probabilities for each possible document length!
To simplify matters, assume that probability of 
       encountering a specific word in a  particular
       position is independent of the position, 
       and of document length
Treat each document as a bag of words!
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Bag	of	Words	Representa0on	

So we estimate one position-independent  class-conditional
probability P(wk |ω j ) for each word  instead of the set of position-specific 
word occurrence probabilities P(X1 = wk |ω j ) ...P(Xlength(d ) = wk |ω j )
The number of probabilities to be estimated drops to
 Vocabulary × Ω

The	result	is	a	genera0ve	model	for	documents	that	treats	each	
document	as	an	ordered	tuple	of	word	frequencies	

More	sophis0cated	models	can	consider	dependencies	between	
adjacent	word	posi0ons	
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Learning	to	Classify	Text	
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•  Given	1000	training	documents	from	each	group,	learn	to	classify	
new	documents	according	to	the	newsgroup	where	it	belongs	

•  Naive	Bayes	achieves	89%	classifica0on	accuracy	

Naïve	Bayes	Text	Classifier	

comp.graphics	
comp.os.ms-windows.misc	
comp.sys.ibm.pc.hardware	

comp.sys.mac.hardware	comp.windows.x	

misc.forsale		
rec.autos		

rec.motorcycles	
rec.sport.baseball	
rec.sport.hockey	alt.atheism		

soc.religion.chris;an	
talk.religion.misc	

talk.poli;cs.mideast	
talk.poli;cs.misc	
talk.poli;cs.guns	

sci.space	
sci.crypt	

sci.electronics	
sci.med	
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	Path: cantaloupe.srv.cs.cmu.edu!das-news.harvard.edu!ogicse!uwm.edu 
From: xxx@yyy.zzz.edu (John Doe)  
 Subject: Re: This year's biggest and worst (opinion)...  
 Date: 5 Apr 93 09:53:39 GMT 

 
 I can only comment on the Kings, but the most obvious candidate for 
pleasant surprise is Alex Zhitnik. He came highly touted as a 
defensive defenseman, but he's clearly much more than that. Great 
skater and hard shot (though wish he were more accurate). In fact, 
he pretty much allowed the Kings to trade away that huge defensive 
liability Paul Coffey. Kelly Hrudey is only the biggest 
disappointment if you thought he was any good to begin with. But, at 
best, he's only a mediocre goaltender. A better choice would be 
Tomas Sandstrom, though not through any fault of his own, but 
because some thugs in Toronto decided …. 

 

Representa0ve	ar0cle	from	rec.sport.hockey		

Naïve	Bayes	Text	Classifier	
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Naïve	Bayes	Learner	–	Summary	
•  Produces	minimum	error	classifier	if	aIributes	are	

condi0onally	independent	given	the	class	
When	to	use	
•  AIributes	that	describe	instances	are	likely	to	be	

condi0onally	independent	given	classifica0on	
•  There	is	not	enough	data	to	es0mate	all	the	probabili0es	

reliably	if	we	do	not	assume	independence	
•  Oien	works	well	even	if	when	independence	assump0on	is	

violated	(Domigos	and	Pazzani,	1996)	
•  Can	be	used	itera0vely	–	Kang	et	al.,	2006	
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On	Es0ma0on	
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Es0ma0ng	probabili0es	from	data	(discrete	case)		

•  Maximum	likelihood	es0ma0on	
•  Bayesian	es0ma0on	
•  Maximum	a	posteriori	es0ma0on	
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Example:	Binomial	Experiment	
	

•  When	tossed,	the	thumbtack	can	land	in	one	of	two	posi0ons:	
Head	or	Tail	

•  We	denote	by	θ	the	(unknown)	probability	P(H).	
•  Es0ma0on	task—	
•  Given	a	sequence	of	toss	samples	x[1],	x[2],	…,	x[M]		we	want	to	

es0mate	the	probabili0es	P(H)=	θ	and	P(T)	=	1	-	θ	

Head Tail 
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	Sta0s0cal	parameter	fi�ng	

Consider	samples	x[1],	x[2],	…,	x[M]	such	that	
• The	set	of	values	that	X	can	take	is	known	
• Each	is	sampled	from	the	same	distribu0on	
• Each	is	sampled	independently	of	the	rest	

The	task	is	to	find	a	parameter	Θ	so	that	the	data	can	be	
summarized	by	a	probability	P(x[j]| Θ ).	
• The	parameters	depend	on	the	given	family	of	probability	
distribu0ons:	mul0nomial,	Gaussian,	Poisson,	etc.	

• We	will	focus	first	on	binomial	and	then	on	mul0nomial	
distribu0ons	

• The	main	ideas	generalize	to	other	distribu0on	families	

i.i.d.	
samples	
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The	Likelihood	Func0on	
How	good	is	a	par0cular	θ?	

It	depends	on	how	likely	it	is	to	generate	the	observed	data	

	
	 	 		
	 	 	The	likelihood	for	the	sequence	H,T, T, H, H	is	

L(θ :D) = P(D |θ )∝ P(x[m] |θ )
m
∏

L(θ :D)∝θ ⋅ (1−θ ) ⋅ (1−θ ) ⋅θ ⋅θ

0 0.2 0.4 0.6 0.8 

θ 

L(
θ 

:D
) 

1.0 
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Likelihood	func0on	

•  The	likelihood	func0on	L(θ	:	D)	provides	a	measure	of	rela0ve	
preferences	for	various	values	of	the	parameter	θ		given	a	
collec0on	of	observa0ons	D	drawn	from	a	distribu0on	that	is	
parameterized	by	fixed	but	unknown	θ.		

•  L(θ	:	D)	is	the	probability	of	the	observed	data	D	viewed	as	a	
func0on	of	θ.	

•  Suppose	data	D	is	5	heads	out	of	8	tosses.	What	is	the	likelihood	
func0on	assuming	that	the	observa0ons	were	generated	by	a	
binomial	distribu0on	with	an	unknown	but	fixed	parameterθ	?	

( )35 1
5
8

θθ −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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Sufficient	Sta0s0cs 		

• To	compute	the	likelihood	in	the	thumbtack	example	we	only	
require	NH and	NT	(the	number	of	heads	and	the	number	of	tails)	

• NH 	and	NT	are	sufficient	sta0s0cs	for	the	parameter	θ that 
specifies the binomial	distribu0on	

• A	sta0s0c		is	simply	a	func0on	of	the	data	
• A	sufficient	sta0s0c	s	for	a	parameter	θ is	a	func0on	that	
summarizes	from	the	data	D,	the	relevant	informa0on	s(D)	
needed	to	compute	the	likelihood	L(θ :D).

•  If	s is a sufficient statistic for θ, and 	s(D) = s(D’ ),		
then	L(θ :D) = L(θ :D’)

L(θ :D)∝θ NH ⋅ (1−θ )NT
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Maximum	Likelihood	Es0ma0on	

•  Main	Idea:	Learn	parameters	that	maximize	the	
likelihood	func0on	

•  Maximum	likelihood	es0ma0on	is	
–  Intui0vely	appealing	
–  One	of	the	most	commonly	used	es0mators	in	
sta0s0cs	

–  Assumes	that	the	parameters	to	be	es0mated	are	
fixed,	but	unknown	
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Example:	MLE	for	Binomial	Data	

•  Applying	the	MLE	principle	we	get	
•  (Why?)	

0 0.2 0.4 0.6 0.8 1 

L(
θ 

:D
) 

Example: 
 (NH,NT ) = (3,2) 

 
ML	es;mate	is	3/5 = 0.6  

TH

H

NN
N
+

=θ̂
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MLE	for	Binomial	data	 L θ : D( ) =
N
NH

!

"
##

$

%
&&θ

NH ⋅ 1−θ( )NT

logL θ : D( ) = NH logθ + NT log 1−θ( )

The	likelihood	is	posi0ve	for	all	legi0mate	values	of	θ	

So	maximizing	the	likelihood	is	equivalent	to	maximizing	its	
logarithm	i.e.	log	likelihood	

( ) ( )

( ) ( )
( )

( )

( )TH

H
ML

HTH

TH

NN
Nθ

NθNN
θ

N
θ
Nθ:DL

θ

θ:DLθ:DL
θ

+
=

=+

=
−

−
+=

∂

∂

=
∂

∂

0
1

1log

 of extremaat  0log
Note	that	the	likelihood	
is	indeed	maximized	at	θ	
=θML	because	in	the	

neighborhood	of	θML,	
the	value	of	the	
likelihood	is	smaller	than	
it	is	at	θ	=θML	
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Maximum	and	curvature	of	likelihood	around	
the	maximum	

•  At	the	maximum,	the	deriva0ve	of	the	log	likelihood	is	zero	
•  At	the	maximum,	the	second	deriva0ve	is	nega0ve		
•  The	curvature	of	the	log	likelihood	is	defined	as	

•  Large	observed	curvature	I	(θML)	at	θ	=	θML	is	associated	with	a	
sharp	peak,	intui0vely	indica0ng	less	uncertainty	about	the	
maximum	likelihood	es0mate	

•  I	(θML)	is	called	the	Fisher	informa0on		

( ) ( )DθL
θ

I :log2∂

∂
−=θ
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Maximum	Likelihood	Es0mate	

ML	es0mate	can	be	shown	to	be		
•  Asympto0cally	unbiased		
•  Asympto0cally	consistent	-		converges	to	the	true	value	as	the	

number	of	examples	approaches	infinity	

•  Asympto0cally	efficient	–	achieves	the	lowest	variance	that	any	
es0mate	can	achieve	for	a	training	set	of	a	certain	size	(sa0sfies	the	
Cramer-Rao	bound)	

{ }

( ) 0lim

1Prlim
2
=−

=≤−

∞→

∞→

TrueMLN

TrueMLN

E θθ

εθθ

( ) TrueMLN
E θ=θ

∞→
lim
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Maximum	Likelihood	Es0mate	
•  ML	es0mate	can	be	shown	to	be	representa0onally	invariant	–	If	
θMLis	an	ML	es0mate	of	θ,	and	g	(θ	)	is	a	func0on	of	θ,	then	g	(θML	)	
is	an	ML	es0mate	of	g	(θ	)		

•  When	the	number	of	samples	is	large,	the	probability	distribu0on	
of	θML	has	Gaussian	distribu;on	with	mean	θTrue		(the	actual	value	
of	the	parameter)	–	a	consequence	of	the	central	limit	theorem		
–  A	random	variable	which	is	a	sum	of	a	large	number	of	random	
variables	has	a	Gaussian	distribu0on	–	ML	es0mate	is	related	to	
the	sum	of	random	variables	

•  We	can	use	the	likelihood	ra0o	to	reject	the	null	hypothesis	
corresponding	to	θ	=	θ0	as	unsupported	by	data	if	the	ra0o	of	the	
likelihoods	evaluated	at	θ0	and	at	θML	is	small.	(The	ra0o	can	be	
calibrated	when	the	likelihood	func0on	is	approximately	quadra0c)	
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From	Binomial	to	Mul0nomial	

• Suppose	a	random	variable	X	can	take	the	values	1,2,…,K
• We	want	to	learn	the	parameters	θ 1, θ 2. …, θ K	
• Sufficient	sta0s0cs:	N1, N2, …, NK	-	the	number	of	0mes	each	
outcome	is	observed	

• Likelihood	func0on	

• ML	es0mate		

L(θ :D)∝ θk
Nk

k=1

K

∏

∑
=

ℓ
ℓN

Nk
kθ̂
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Summary	of	Maximum	Likelihood	es0ma0on	

•  Define	a	likelihood	func0on	which	is	a	measure	of	how	likely	it	
is	that	the	observed	data	were	generated	from	a	probability	
distribu0on	with	a	par0cular	choice	of	parameters		

•  Select	the	parameters	that	maximize	the	likelihood	
•  In	simple	cases,	ML	es0mate	has	a	closed	form	solu0on	
•  In	other	cases,	ML	es0ma0on	may	require	numerical	

op0miza0on	

•  Problem	with	ML	es0mate	–	assigns	zero	probability	to	
unobserved	values	–	can	lead	to	difficul0es	when	es0ma0ng	
from	small	samples		

•  Ques0on	–	How	would	Naïve	Bayes	classifier	behave	if	some	of	
the	class	condi0onal	probability	es0mates	are	zero?	
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•  MLE	commits	to	a	specific	value	of	the	unknown	parameter	(s)	
•  MLE	is	the	same	in	both	cases	shown	

Bayesian	Es0ma0on	

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 

vs. 

Of	course,	in	general,	one	cannot	summarize	a	func0on	by	a	single	
number!		

Intui0vely,	the	confidence	in	the	es0mates	should	be	different	
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Bayesian	Es0ma0on	

Maximum	Likelihood	approach	is	Frequen0st	at	its	core	
•  Assumes	there	is	an	unknown	but	fixed	parameter	θ		
•  Es0mates	θ	with	some	confidence		
•  Predic0on	of	probabili0es	using	the	es0mated	parameter	

value	
	

Bayesian	Approach	
•  Represents	uncertainty	about	the	unknown	parameter	
•  Uses	probability	to	quan0fy	this	uncertainty:		

–  Unknown	parameters	as	random	variables	
•  Predic0on	follows	from	the	rules	of	probability:	

–  Expecta0on	over	the	unknown	parameters	
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Example:	Binomial	Data	Revisited	

0	 0.2	 0.4	 0.6	 0.8	 1	

p(θ |D) = p(D |θ )p(θ )

p(D |θ )p(θ )dθ
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•  Suppose	that	we	choose	a	uniform	prior	p(θ ) = 1	for	θ in	[0,1] 
•  P(θ |D) is	propor0onal	to	the	likelihood	L(θ :D) 
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Example:	Binomial	Data	Revisited	

…71420
7
51 .)|()|][( ==θθ⋅θ==+ ∫ dDPDHMxP

(NH,NT	)	=	(4,1)	
MLE	for	P(X	=	H	)	is	4/5	=	0.8	
Bayesian	es;mate	is	
	
In	this	example,	MLE	and	Bayesian	predic0on	differ	
	

It	can	be	proved	that		
•  If	the	prior	is	well-behaved	–	i.e.	does	not	assign	0	density	to	any	

feasible	parameter	value	
•  Then	both	MLE	and	Bayesian	es0mate	converge	to	the	same	

value	in	the	limit	
•  Both	almost	surely	converge	to	the	underlying	distribu0on	P(X)		
•  The	ML	and	Bayesian	approaches	behave	differently	when	the	

number	of	samples	is	small	
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All	rela0ve	frequencies	are	not	equi-probable	

•  In	prac0ce	we	might	want	to	assert	priors	that	allow	us	to	
express	our	beliefs	regarding	the	parameter	to	be	es0mated	

•  For	example,	we	might	want	a	prior	that	assigns	a	higher	
probability	to	parameter	values	that	describe	a	fair	coin	than	it	
does	to	an	unfair	coin	

•  The	beta	distribu0on	allows	us	to	capture	such	prior	beliefs	
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Beta	distribu0on	

Gamma	Func0on:	
	
	
The	integral	converges	if	and	only	if	x > 0.
If	x	is	an	integer	that	is	greater	than	0, it	can	be	shown	that																																									
																																															So
	

( ) dtetxΓ tx∫
∞

−−=
0

1

( ) ( ) !xxΓ 1−= ( )
( )

x
xΓ
xΓ

=
+1

( )

( ) ( )
( ) ( )

( ) 10   where1

:is    ,0 numbers real are  where
, ,, parametersith function wdensity  beta The

11 ≤≤−=

>

+=

−− θθθ
bΓaΓ

NΓθp

θ;a,bbeta a,b
baN ba

ba



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Beta	distribu0on	

( ) ( ) . then,by given on distributi has  If
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Update	of	the	parameter	with	a	beta	prior	based	on	data	yields	a	
beta	posterior	
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Conjugate	Families	

• The	property	that	the	posterior	distribu0on	follows	the	same	
parametric	form	as	the	prior	distribu0on	is	called	conjugacy	

• Conjugate	families	are	useful	because:	
– For	many	distribu0ons	we	can	represent	them	with	hyper	
parameters	

– They	permit	sequen0al	update	of	the	posterior	based	on	
data	

–  In	many	cases	we	have	closed-form	solu0on	for	predic0on	
• Beta		prior	is	a	conjugate	family	for	the	binomial	likelihood	
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Bayesian	predic0on		
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Dirichlet	Priors	

•  Recall	that	the	likelihood	func0on	is		
•  A	Dirichlet	prior	with	hyperparameters		α1,…,αK		is	defined	as	

•  Then	the	posterior	has	the	same	form,	with	hyperparameters		
α1+N	1,…,αK	+N	K		

∏
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Dirichlet	Priors	

•  Dirichlet	priors	enable	closed	form	predic0on	based	on	
mul0nomial	samples:		
–  If	P(Θ)	is	Dirichlet	with	hyperparameters	α1,…,αK		then	

•  Since	the	posterior	is	also	Dirichlet,	we	get	
∑∫ α

α
=ΘΘ⋅θ==

ℓ
ℓ

k
k dPkXP )()]1[(
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Intui0on	behind	priors	

•  The	hyperparameters	α1,…,αK	can	be	thought	of	as	
imaginary	counts	from	our	prior	experience		

•  Equivalent	sample	size	=	α1+…+αK		

•  The	larger	the	equivalent	sample	size	the	more	confident	
we	are	in	our	prior	
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Effect	of	Priors	

Predic0on	of	P(X=H	)	aier	seeing	data	with	NH	=	0.25•NT	for	
different	sample	sizes	
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Effect	of	Priors	
• In	real	data,	Bayesian	es0mates	are	less	sensi0ve	to	noise	in	the	
data	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

5	 10	 15	 20	 25	 30	 35	 40	 45	 50	

P(
X 

= 
1|

D)
	

N  

MLE	
Dirichlet(.5,.5)	
Dirichlet(1,1)	
Dirichlet(5,5)	

Dirichlet(10,10)	

N 

0	

1	
Toss	Result	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Conjugate	Families	

• The	property	that	the	posterior	distribu0on	follows	the	same	
parametric	form	as	the	prior	distribu0on	is	called	conjugacy	
– Dirichlet	prior	is	a	conjugate	family	for	the	mul0nomial	
likelihood	

• Conjugate	families	are	useful	because:	
– For	many	distribu0ons	we	can	represent	them	with	
hyperparameters	

– They	allow	for	sequen0al	update	within	the	same	
representa0on	

–  In	many	cases	we	have	closed-form	solu0on	for	predic0on	
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Bayesian	Es0ma0on	
	

where	
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Summary	of	Bayesian	es0ma0on	

•  Treat	the	unknown	parameters	as	random	variables	
•  Assume	a	prior	distribu0on	for	the	unknown	parameters	
•  Update	the	distribu0on	of	the	parameters	based	on	data	–	easy	

if	we	have	conjugate	priors		
•  Use	Bayes	rule	to	make	predic0on	
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Maximum	a	posteriori	(MAP)	es0mates	–		
A	compromise	between	ML	and	Bayesian	approaches	

( ) ( ) ( )
( )

( )
( ) ( )
( ) ( )DLP
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Maximum	a	posteriori	(MAP)	es0mates	–		
A	compromise	between	ML	and	Bayesian	approaches	

( ) ( )DLPMAP :maxarg ΘΘ=Θ
Θ

•  Like	in	Bayesian	es0ma0on,	we	treat	the	unknown	
parameters	as	random	variables	

•  But	we	es0mate	a	single	value	for	the	parameter		

•  the	maximum	a	posteriori	es0mate	that	corresponds	
to	the	most	probable	value	of	the	parameter		

•  given	the	data	for	a	given	choice	of	the	prior	
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End	of	extra	slides	on	es0ma0on	
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Es0ma0ng	classifier	performance	
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Measuring	classifier	performance	

	

•  We	do	not	in	general,	know	D,	the	distribu0on	from	which	the	data	
samples	are	drawn.		

•  So	we	es0mate	the	error	from	the	samples	we	have		

ErrorD (h) = Prx∈D f (x) ≠ h(x)( )
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Es0ma0ng	Classifier	Performance	
N:			Total	number	of	instances	in	the	data	set	
TPj: Number	of True	posi0ves	for	class j      
FPj : Number	of False	posi0ves	for	class j 
TNj: Number	of True	Nega0ves	for	class j  
FNj: Number	of False	Nega0ves	for	class j  
 
	
	
	

( )jj

jj
j

clabelcclassP
N
TNTP

Accuracy

=∧==

+
=

Perfect	classifier	ßà	Accuracy	=1	
Popular	measure	
Biased	in	favor	of	the	majority	class!	
Should	be	used	with	cau0on!	
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Measuring	Classifier	Performance:	Sensi0vity	
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Perfect	classifier	à	Sensi0vity	=	1	
Probability	of	correctly	labeling	members	of	the	target	class	
Also	called	recall	or	hit	rate	
	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Measuring	Classifier	Performance:	Specificity	
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Perfect	classifier	à	Specificity	=	1	
Also	called	precision		
Probability	that	a	posi0ve	predic0on	is	correct	
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Measuring	Performance:	Precision,	Recall,	and	False	Alarm	Rate	
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Classifier	Learning	--	Measuring	Performance	
Class	
Label		

C1	 ¬ C1 
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¬ C1 FN=10	 TN=30	
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Measuring	Performance	–	Correla0on	Coefficient	

 
	
	
	

€ 

CC j =
TPj ×TN j( ) − FPj × FN j( )

TPJ + FN j( ) TPj + FPj( ) TN j + FPj( ) TN j + FN j( )
                                     −1≤ CC j ≤1

Perfect	classifier	ßà	CC = 1,	Random	guessing	ßà	CC=0	

Corresponds	to	the	standard	measure	of	correla0on between	two	
random	variables	Label and	Class es0mated	from	labels	L	and	the	
corresponding	class	values	C for	the	special	case	of	binary	(0/1)	
valued	labels	and	classes	

€ 

CC j =
jlabeli − jlabel( ) jclassi − jclass( )

σ JLABELσ JCLASSd
i
∈D
∑

where jlabeli =1 iff the classifier assigns di to class c j
jclassi =1 iff the true class of di is class c j
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Beware	of	terminological	confusion	in	the	literature!	
•  Some	bioinforma0cs	authors	use	“accuracy”	incorrectly	to	refer	

to	recall	i.e.	sensi0vity	or	precision	i.e.	specificity	
•  In	medical	sta0s0cs,	specificity	some0mes	refers	to	sensi0vity	

for	the	nega0ve	class	i.e.	

•  Some	authors	use	false	alarm	rate	to	refer	to	the	probability	that	
a	posi0ve	predic0on	is	incorrect	i.e.	

	
	
When	you	write	
•  provide	the	formula	in	terms	of	TP, TN, FP, FN 
When	you	read	
•  check	the	formula	in	terms	of	TP, TN, FP, FN 

jj

j

FPTN
TN
+

j
jj

j Precision
TPFP

FP
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+
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Measuring	Classifier	Performance	
•  TP,	FP,	TN,	FN	provide	the	relevant	informa0on		
•  No	single	measure	tells	the	whole	story	
•  A	classifier	with	98%	accuracy	can	be	useless	if	98%	of	the	

popula0on	does	not	have	cancer	and	the	2%	that	do	are	
misclassified	by	the	classifier	

•  Use	of	mul0ple	measures	recommended	
•  Beware	of	terminological	confusion!	
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Micro-averaged	performance	measures	
Performance	on	a	random	instance		
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•  Micro	averaging	gives	equal	importance	to	each	instance	
•  	Classes	with	large	number	of	instances	dominate	

N
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AccuracygeMicroAvera j
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= Etc. 
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Macro-averaged	performance	measures	
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Macro	averaging	gives	equal	importance	to	each	of	the	M	classes	
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Receiver	Opera0ng	Characteris0c	(ROC)	Curve	

•  We	can	oien	trade	off	recall	versus	precision	–	e.g.,	by	
adjus0ng	classifica0on	threshold		θ	e.g.,		

•  ROC	curve	is	a	plot	of	Sensi0vity	against	False	Alarm	Rate	
which	characterizes	this	tradeoff	for	a	given	classifier	

( )
( ) θ>
¬

=
XcP
XcP
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Receiver	Opera0ng	Characteris0c	(ROC)	Curve	
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Measuring	Performance	of	Classifiers	–	ROC	curves	

•  ROC	curves	offer	a	more	complete	picture	of	the	performance	
of	the	classifier	as	a	func0on	of	the	classifica0on	threshold		

•  A	classifier	h	is		beIer	than	another	classifier	g	if	ROC(h)	
dominates	the	ROC(g)	

•  ROC(h)	dominates	ROC(g)	à	AreaROC(h)	>	AreaROC(g)		

	 1

1
0
0
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Evalua0ng	a	Classifier	
•  How	well	can	a	classifier	be	expected	to	perform	on	novel	

data?	
•  We	can	es;mate	the	performance	(e.g.,	accuracy,	sensi0vity)	of	

the	classifier	using	a	test	data	set	(not	used	for	training)	
•  How	close	is	the	es;mated	performance	to	the	true	

performance?	
References:	
•  Evalua0on	of	discrete	valued	hypotheses	–	Chapter	5,	Mitchell	
•  Empirical	Methods	for	Ar0ficial	Intelligence,	Cohen	
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Es0ma0ng	the	performance	of	a	classifier	

The	true	error	of	a	hypothesis	h	with	
respect	to	a	target	func0on	f	and	an	
instance	distribu0on	D	is		

[ ])()(Pr)( xhxfhError
DxD ≠≡

∈

The	sample	error	of	a	hypothesis	h	with	respect	to	a	target	
func0on	f	and	an	instance	distribu0on	D	is	

otherwise 0),( ; iff 1),(
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Es0ma0ng	classifier	performance	
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Evalua0ng	the	performance	of	a	classifier	
•  Sample	error	es0mated	from	training	data	is	an	op;mis;c	

es0mate	
		

•  For	an	unbiased	es0mate,	h	must	be	evaluated	on	an	
independent	sample	S	(which	is	not	the	case	if	S	is	the	training	
set!)	

•  Even	when	the	es0mate	is	unbiased,	it	can	vary	across	
samples!	

•  If	h	misclassifies	8	out	of	100	samples	

[ ] )()(  hErrorhErrorEBias DS −=

080
100
8 .)( ==hErrorS

How	close	is	the	sample	error	to	the	true	error?	
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How	close	is	the	es;mated	error	to	the	true	error?	

•  Choose	a	sample	S	of	size	n	according	to	distribu0on	D	
•  Measure		

)(hErrorS

)(hErrorS is	a	random	variable	(outcome	of	a	random	
experiment)	

?)( about conclude  wecan  what,)( Given hErrorhError DS

More	generally,	given	the	es0mated	performance	of	a	hypothesis,	
what	can	we	say	about	its	actual	performance?	
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Evalua0on	of	a	classifier	with	limited	data	

•  There	is	extensive	literature	on	how	to	es0mate	classifier	
performance	from	samples	and	how	to	assign	confidence	to	
es0mates	(See	Mitchell,	Chapter	5)	

•  Holdout	method	–	use	part	of	the	data	for	training,	and	the	
rest	for	tes0ng	

•  We	may	be	unlucky	–	training	data	or	test	data	may	not	be	
representa;ve	

•  Solu0on	–	Run	mul0ple	experiments	with	disjoint	training	
and	test	data	sets	in	which	each	class	is	represented	in	
roughly	the	same	propor0on	as	in	the	en0re	data	set	
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Es0ma0ng	the	performance	of	the	learned	classifier	

K-fold	cross-valida0on	
Par00on	the	data	(mul0)	set	S	into	K	equal	parts	S1	..SK		

	with	roughly	the	same	class	distribu0on	as	S.	
Errorc	=	0	
	For	i=1	to	K	do		

;iTrain SSS −←iTest SS ←
)( TrainSLearn←α

}	

{	

),( TestSErrorErrorcErrorc α+←

( )ErrorOutput
K

ErrorcError     ;⎟
⎠

⎞
⎜
⎝

⎛←
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Leave-one-out	cross-valida0on	

•  K-fold	cross	valida0on	with	K	=	n	where	n	is	the	total	number	
of	samples	available	

•  n	experiments	–	using	n-1	samples	for	training	and	the	
remaining	sample	for	tes0ng		

•  Leave-one-out	cross-valida0on	does	not	guarantee	the	same	
class	distribu0on	in	training	and	test	data!	

Extreme	case:	50%	class	1,	50%	class	2		
	Predict	majority	class	label	in	the	training	data		
	True	error	–	50%;		

Leave-one-out	error	es0mate	–	100%!!!!!	
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Es0ma0ng	classifier	performance	

Recommended	procedure		
•  Use	K-fold	cross-valida0on	(K=5	or	10)	for	es0ma0ng	

performance	es0mates	(accuracy,	precision,	recall,	points	on	
ROC	curve,	etc.)	and	95%	confidence	intervals	around	the	
mean	

•  Compute	mean	values	of	performance	es0mates	and	standard	
devia0ons	of	performance	es0mates	

•  Report	mean	values	of	performance	es0mates	and	their	
standard	devia0ons	or		95%	confidence	intervals	around	the	
mean	

•  Be	skep0cal	–	repeat	experiments	several	0mes	with	different	
random	splits	of	data	into	K	folds!	
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Evalua0ng	a	hypothesis	or	a	learning	algorithm	

How	well	can	the	decision	tree	be	expected	to	perform	on	
novel	data?	

We	can	es;mate	the	performance	(e.g.,	accuracy)	of	the	
decision	tree	using	a	test	data	set	(not	used	for	training)	

How	close	is	the	es;mated	performance	to	the	true	
performance?	

	
Reference:	Evalua0on	of	discrete	valued	hypotheses	–	Chapter	

5,	Mitchell	
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Evalua0ng	performance	when	we	can	afford	to	test	
on	a	large	independent	test	set	

The	true	error	of	a	hypothesis	h	with	respect	to	a	target	func0on	
f	and	an	instance	distribu0on	D	is		

[ ])()(Pr)( xhxfhError
DxD ≠≡

∈

The sample error of a hypothesis h with respect to a target 
function f and an instance distribution D is 

otherwise 0),( ; iff 1),(
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Evalua0ng	Classifier	performance	

Sample	error	es0mated	from	training	data	is	an	op;mis;c	
es0mate 		

For	an	unbiased	es0mate,	h	must	be	evaluated	on	an	
independent	sample	S	(which	is	not	the	case	if	S	is	the	
training	set!)	

Even	when	the	es0mate	is	unbiased,	it	can	vary	across	samples!	
If	h	misclassifies	8	out	of	100	samples	
		

[ ] )()(  hErrorhErrorEBias DS −=

080
100
8 .)( ==hErrorS

How	close	is	the	sample	error	to	the	true	error?	
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How	close	is	es0mated	error	to	its	true	value?	

Choose	a	sample	S	of	size	n	according	to	distribu0on	D	
Measure		 )(hErrorS

)(hErrorS is	a	random	variable	(outcome	of	a	random	
experiment)	

?)( about conclude  wecan  what,)( Given hErrorhError DS

More	generally,	given	the	es0mated	performance	of	a	hypothesis,	
what	can	we	say	about	its	actual	performance?	
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How	close	is	es0mated	accuracy	to	its	true	value?	

Ques0on:	How	close	is	p	(the	true	probability)	to	 	?	
This	problem	is	an	instance	of	a	well-studied	problem	in	

sta0s0cs	–	the	problem	of	es0ma0ng	the	propor0on	of	a	
popula0on	that	exhibits	some	property,	given	the	observed	
propor0on	over	a	random	sample	of	the	popula0on.	In	our	
case,	the	property	of	interest	is	that	h	correctly	(or	
incorrectly)	classifies	a	sample.	

Tes0ng	h	on	a	single	random	sample	x	drawn	according	to	D	
amounts	to	performing	a	random	experiment	which	
succeeds	if	h	correctly	classifies	x	and	fails	otherwise.		

p̂



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

How	close	is	es0mated	accuracy	to	its	true	value?	

The	output	of	a	hypothesis	whose	true	error	is	p	as	a	binary	
random	variable	which	corresponds	to	the	outcome	of	a	
Bernoulli	trial	with	a	success	rate	p	(the	probability	of	
correct	predic0on)	

	
The	number	of	successes	r	observed	in	N	trials	is	a	random	

variable	Y	which	follows	the	Binomial	distribu0on		
	

rnr pp
rnr

nrP −−
−

= )(
)!(!

!)( 1
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Probability	of	observing	r	misclassified	examples	in	a	sample	of	
size	n:	

ErrorS	(h)	is	a	Random	Variable	

rnr pp
rnr

nrP −−
−

= )(
)!(!

!)( 1
r 
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Recall		basic	sta0s0cs	

Consider	a	random	experiment	with	discrete	valued	
outcomes	

	
The	expected	value	of	the	corresponding	random	variable	Y		

is	
	
The	variance	of	Y	is	
	
The	standard	devia0on	of	Y	is		

Myyy ,..., 21

)Pr()( i

M

i
i yYyYE =≡ ∑
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[ ]2])[()( YEYEYVar −≡

)(YVarY ≡σ
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How	close	is	es0mated	accuracy	to	its	true	value?	

The	mean	of	a	Bernoulli	trial	with	success	rate	p	=	p	
Variance	=	p	(1-p)	
If	N	trials	are	taken	from	the	same	Bernoulli	process,	the	

observed	success	rate					has	the	same	mean	p		
				and	variance		
	
For	large	N,	the	distribu0on	of						follows	a	Gaussian	distribu0on	

p̂

N
pp )1( −

p̂
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Binomial	Probability	Distribu0on	

rnr pp
rnr

nrP −−
−

= )(
)!(!

!)( 1

Probability	P(r)	of	r	heads	in	n	coin	flips,	if	p	=	Pr(heads)	
• 		Expected,	or	mean	value	of	X,	E[X],	is 	 	 		

∑
=

=≡
N

i
npiiPXE

0
)(][

• 		Variance	of	X	is	

• 		Standard	devia0on	of	X,	σX,	is	

)(]])[[()( pnpXEXEXVar −=−≡ 12

)(]])[[( pnpXEXEX −=−≡ 12σ
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Es0mators,	Bias,	Variance,	Confidence	Interval	

n
pp

hErrorS
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1
σ

phError
n
rhError

D
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hErrorhError SS

hErrorS
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1
σ

An	N%	confidence	interval	for	some	parameter	p	that	is	the	interval	which	
is	expected	with	probability	N%	to	contain	p	

n
hErrorhError DD

hErrorS
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−
=

1
σ



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Normal	distribu0on	approximates	binomial	

ErrorS(h)	follows	a	Binomial	distribu0on,	with	
•  mean		
•  standard	devia0on	

n
hErrorshError

hErrors
DD

S

))()((
)(

−= 1σ

We	can	approximate	this	by	a	Normal	distribu0on	with	the	same	
mean	and	variance	when	np(1-p)	≥	5	

)()( hErrorDhErrorS
=µ
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Normal	distribu0on	
2

2
1 )(1

22
)( σ

µ

πσ

−−=
x

exp

Expected,	or	mean	value	of	X	is	given	by	E[X]	=	µ	
Variance	of	X	is		given	by	Var(X)	=	σ2	
Standard	devia0on	of	X	is	given	by	σX	=	σ	

	
The	probability	that	X	will	fall	in	the	interval	(a,	b)	is	
given	by		 ∫

b

a
dxxp )(
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How	close	is	the	es0mated	accuracy	to	its	true	value?	
Let	the		probability	that	a	Gaussian	random	variable	X,	with	zero	

mean,	takes	a	value	between	–z	and	z,		
	Pr[-z	≤	X	≤	z]	=	c	

Pr[	X	≥	z]	 z	

0.001	 3.09	

0.005	 2.58	

0.01	 2.33	

0.05	 1.65	

0.10	 1.28	

Pr[	X	≥	z]	=	5%	implies	there	is	
a	5%	chance	that	X	lies	more	
than	1.65	standard	devia0ons	
from	the	mean,	or		

Pr	[-1.65	≤	X	≤	1.65	]	=	90%	
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How	close	is	the	es0mated	accuracy	to	its	true	value?	

But 			does	not	have	zero	mean	and	unit	variance	so	we	
normalize	to	get	

	

p̂
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How	close	is	the	es0mated	accuracy	to	its	true	value?	

To	find	confidence	limits:	
	Given	a	par0cular	confidence	figure	c,	use	the	table	to	
find	the	z	corresponding	to	the	probability	½	(1-c).	
	Use	linear	interpola0on	for	values	not	in	the	table	
		

⎥
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How	close	is	the	es0mated	accuracy	to	its	true	value?	

Example	
		 28.1;80.0   ;1000    ;75.0ˆ ==== zcnp

Then	with	80%	confidence,	we	can	say	that	the	value	of	p	lies	
in	the	interval	[0.733,0.768]	

Note:	the	normal	distribu0on	assump0on	is	valid	only	for	large	
n	(i.e.	np(1-p)	≥	5	or	n	>	30)	so	es0mates	based	on	smaller	
values	of	n	should	be	taken	with	a	generous	dose	of	salt	
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Es0ma0ng	confidence	intervals	

80%	of	area	(probability)	lies	in	µ	±	1.28σ	
N%	of	area	(probability)	lies	in	µ	±	zNσ		
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Confidence	intervals	
If	S	contains	n	examples,	drawn	independently	of	h	and	each	other	

and	n	≥	30	or	np(1-p)≥5,		
Then	With	approximately	N%	probability,	ErrorS(h)	lies	in	interval	

n
hErrorshError

ND
DDZhError ))()(()( −± 1

equivalently,	ErrorD(h)	lies	in	interval	

which	is	approximately	

n
hErrorhError

NS
DDZhErrors ))()(()( −± 1

n
hErrorshError

NS
SSZhErrors ))()(()( −± 1
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One	sided	confidence	intervals	

What	is	the	probability	that	ErrorD	(h)	is	at	most	U	?	
	
Symmetry	of	Gaussian	distribu0on	implies	that		confidence	

interval	with																									confidence	with	lower	bound	L	
and	upper	bound	U	corresponds	to	a			confidence	interval	
with		confidence		

and	with	upper	bound	U	but	no	lower	bound	(or	vice	versa)																																																						

)%( α−1100

€ 

100 1−α 2( ) %
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General	approach	to	deriving	confidence	intervals	

1.  Iden0fy	the	popula0on	parameter	p	to	be	es0mated	e.g.,	
ErrorD	(h	)	

2.  Define	a	suitable	es0mator	W	–	preferably	unbiased,	
minimum	variance	

3.  Determine	the	distribu0on	DW	obeyed	by	W	,	and	the	mean	
and	variance	of	W	

4.  Determine	the	confidence	interval	by	finding	the	thresholds	
L	and	U	such	that	N%	of	the	mass	of	the	probability	
distribu0on	DY		falls	within	the	interval	[L,U].	
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Central	Limit	Theorem	Simplifies	Confidence	Interval	
Calcula0ons	

Consider	a	set	of	independent,	iden0cally	distributed	
random	variables	Y1...		Yn,	all	governed	by	an	arbitrary	
probability	distribu0on	with	mean	µ	and	finite	variance	σ2.	
Define	the	sample	mean,	

∑
=

≡
n

i
in YY

1

1

Central	Limit	Theorem	As	n	→∞,	the	distribu0on	
governing					approaches	a	Normal	distribu0on,	with	
mean	µ	and	variance	σ2/n	

Y
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Evalua0on	of	a	classifier	with	limited	data	

Holdout	method	–	use	part	of	the	data	for	training,	and	the	
rest	for	tes0ng	

	
We	may	be	unlucky	–	training	data	or	test	data	may	not	be	

representa;ve	
	
Solu0on	–	Run	mul0ple	experiments	with	disjoint	training	and	

test	data	sets	in	which	each	class	is	represented	in	roughly	
the	same	propor0on	as	in	the	en0re	data	set	
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Es0ma0ng	the	performance	of	the	learned	classifier	
K-fold	cross-valida0on	
	Par00on	the	data	(mul0)	set	S	into	K	equal	parts	S1	..SK		
	where	each	part	has	roughly	the	same	class	distribu0on	as	S.	

A	=	0	
	For	i=1	to	K	do		

;iTrain SSS −← iTest SS ←
)( TrainSLearn←α

}	
Accuracy	ß	A/K;	Output	(Accuracy)	

{	

),( TestSAccuracyAA α+←
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K-fold	cross-valida0on	

Recommended	procedure	for	evalua0ng	classifiers	when	
data	are	limited	

	

Use	K-fold	cross-valida0on	(K=5	or	10)	
	

BeIer	s0ll,	repeat	K-fold	cross-valida0on	R	0mes	and	
average	the	results	
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Difference	in	error	between	two	hypotheses	

We	wish	to	es0mate		
Suppose	h1	has	been	tested	on	a	sample	S1	of	size	n1	drawn	

according	to	D	and	h2	has	been	tested	on	a	sample	S2	of	size	
n2	drawn	according	to	D	

An	unbiased	es0mator	
For	large	n1	and	large	n2	the	corresponding	error	es0mates	

follow	Normal	distribu0on	
Difference	of	two	Normal	distribu0ons	yields	a	normal	

distribu0on	with	variance	equal	to	the	sum	of	the	variances	of	
the	individual	distribu0ons	

)()( 21 hErrorhErrord DD −≡

)()( 21 21
hErrorhErrord SS −≡
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Difference	between	errors	of	two	hypotheses	

)()( 21 hErrorhErrord DD −≡

)()(ˆ
21 21
hErrorshErrorsd SS −≡
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When	S1=S2,	the	variance	of										is	smaller	and	the	confidence	
interval	correct	but	overly	conserva0ve	

d̂
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Hypothesis	tes0ng	

Is	one	hypothesis	likely	to	be	beIer	than	another?	
What	is	the	probability	that	
	
Suppose		
	
What	is	the	probability	that		

?)()( 21 hErrorhError DD >

100200300 21 21
.ˆ  ;.)(  ;.)( === dhErrorhError SS

?.ˆ that given 1000 => dd

).ˆPr().ˆ|Pr( ˆ 1001000 +<==> dddd µ
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Hypothesis	tes0ng	

061010021 . , If ˆ ≈== dσnn

9506411000 .).ˆPr().ˆ|Pr( ˆˆ =+<≈=> ddddd σµ
We	accept	the	hypothesis	that			

)()( 21 hErrorhError DD >
with	95%	confidence	

Equivalently,	we	reject	the	opposite	hypothesis	–		
the	null	hypothesis	at	a	(1-0.95)	=	0.05	level	of	significance		
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Comparing	learning	algorithms	LA	and	LB	

Which	learning	algorithm	is	beIer	at	learning	f	?	
Unlimited	data	–		
	

Run	LA	and	LB	on	large	training	set	Strain	drawn	according	to	D	
	

Test	the	resul0ng	hypotheses	on	a	large	independent		test	set	STest		
drawn	according	to	D	

	

Es0mate	
	 		

))](())((Pr[ TrainBDTrainAD SLErrorSLError >

))((  and ) )(( TrainBSTrainAS SLErrorSLError
TestTest

Using		
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Es0mate	the	expected	value	of	the	difference	in	errors	of	LA	
and	LB	where	expecta0on	is	taken	over	training	sets	STrain	
drawn	according	to	D		

Comparing	learning	algorithms	LA	and	LB	

[ ]))(())(( TrainBDTrainADDS
SLErrorSLErrorE

Train

−
⊂

We	have	a	limited	data	set	S	drawn	from	an	unknown	D	!!	
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Comparing	learning	algorithms	LA	and	LB	

Limited	data	–	Paired	t-test	
	Run	LA	and	LB	on	large	training	set	STrain	drawn	according	to	D	
	Test	the	resul0ng	hypotheses	on	a	large	independent		test	
set	STest		drawn	according	to	D	
	Es0mate	
	 		

))](())((Pr[ TrainBDTrainAD SLErrorSLError >

))((  and ) )(( TrainBSTrainAS SLErrorSLError
TestTest

using	
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Comparing	learning	algorithms	LA	and	LB	

Par00on	S	into	k	disjoint	test	sets	T1,	T2,	...	,	Tk	of	equal	size	

))(())(( TrainBSTrainASi SLErrorSLError
TestTest

−←δ

For	i	from	1	to	k	do	{	
	STest	ß	Ti		;		STrain	ß	S	-	Ti	

Return			 ∑
=

≡
k

i
ik

1

1 δδ

}	

Paired	t-test	
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Comparing	learning	algorithms	LA	and	LB	

For	large	test	sets,	each									has	Normal	distribu0on	
	has	Normal	distribu0on	if						are	independent	

Can	we	es0mate	confidence	interval	for							as	before?	
	
					are	not	exactly	independent	because	of	sampling	from	S	as	
opposed	to	the	distribu0on	D	(but	we	will	pretend	that	they	are)	
	
We	don’t	know	the	standard	devia0on	of	this	distribu0on.	
So	we	es0mate	it	from	sample	..But	when	the	es0mated	variance	is	
used,	the	distribu0on	is	no	longer	Normal	unless	K	is	large	(which	
typically	it	is	not)	

iδ

δ
δ iδ

iδ
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Approximate	N%	confidence	interval	for		

δψδ 1−± kNt ,

∑
=

− −≡
k

i
ikk

1

2
1

1 )()( δδψδ

Comparing	learning	algorithms	LA	and	LB	

δ

[ ]))(())(( TrainBDTrainADSS
SLErrorSLErrorE

Train

−
⊂

is	given	by	

where	

is	the	es0mate	of	standard	devia0on	of	the	t	distribu0on	governing									
and															plays	a	role	analogous	to	that	of									.	
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Performance	evalua0on	summary	

§  Rigorous	sta0s0cal	evalua0on	is	extremely	important	in	experimental	computer	
science	in	general	and	machine	learning	in	par0cular	
§  How	good	is	a	learned	hypothesis?	
§  Is	one	hypothesis	beIer	than	another?	
§  Is	one	learning	algorithm	beIer	than	another	on	a	par0cular	learning	task?	

(No	learning	algorithm	outperforms	all	others	on	all	tasks	–	No	free	lunch	
theorem)	

§  Different	procedures	for	evalua0on	are	appropriate	under	different	condi0ons	
(large	versus	limited	versus	small	sample)	–	Important	to	know	when	to	use	
which	evalua0on	method	and	be	aware	of	pathological	behavior	(tendency	to	
grossly	overes0mate	or	underes0mate	the	target	value	under	specific	
condi0ons	
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Modeling	dependencies	between	aIributes		
•  Naïve	Bayes	classifier	assumes	that	the	aIributes	are	

independent	given	the	class	
•  What	if	the	independence	assump0on	does	not	hold?	

–  We	need	more	sophis0cated	models	
• Support	Vector	Machines	
• Higher	order	Markov	models	
• Bayesian	networks	
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Genera0ve	Versus	Discrimina0ve	Models	

§  Genera0ve	models	 		
§  Naïve	Bayes,	Bayes	networks,	etc.		

§  Discrimina0ve	models	
§  Perceptron,	Support	vector	machines,	Logis0c	regression	..	

§  Rela0ng	genera0ve	and	discrimina0ve	models	
§  Tradeoffs	between	genera0ve	and	discrimina0ve	models	
§  Generaliza0ons	and	extensions	
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Alterna0ve	realiza0ons	of	the	Bayesian	recipe	
Chef	1:	Genera0ve	model	

	

Chef	2:	Discrimina0ve	Model	
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Genera0ve	vs.	Discrimina0ve	Classifiers	

Genera0ve	classifiers	
§  Assume	some	func0onal	form	for	P(X|C), P(C) 
§  Es0mate	parameters	of	P(X|C), P(C)	directly	from	training	data	
§  Use	Bayes	rule	to	calculate	P(C|X=x)  
Discrimina0ve	classifiers		
§  Assume	some	func0onal	form	for	P(C|X) 
§  Es0mate	parameters	of	P(C|X)	directly	from	training	data	
Discrimina0ve	classifiers	–	maximum	margin	version	
§  Assume	a	func0onal	form	f(W)	for	the	discriminant		
§  Find	W that	minimizes	predic0on	error	
§  E.g.,	find		W that	maximizes	the	margin	of	separa;on	between	

classes	(e.g.,	SVM)	
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Genera0ve	vs.	Discrimina0ve	Models	
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Which	Chef	cooks	a	beIer	Bayesian	recipe?	

In	theory,	genera0ve	and	condi0onal	models	produce	iden0cal	
results	in	the	limit	

•  The	classifica0on	produced	by	the	genera0ve	model	is	the	
same	as	that	produced	by	the	discrimina0ve	model		

•  That	is,	given	unlimited	data,	assuming	that	both	approaches	
select	the	correct	form	for	the	relevant	probability	
distribu0ons	or	the	model	for	the	discriminant	func0on,	they	
will	produce	iden0cal	results	(Why?)	

•  If	the	assumed	form	of	the	probability	distribu0ons	is	incorrect,	
then	it	is	possible	that	the	genera0ve	model	might	have	a	
higher	classifica0on	error	than	the	discrimina0ve	model	
(Why?)	

How		about	in	prac0ce?	
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Which	Chef	cooks	a	beIer	Bayesian	recipe?	

In	prac0ce	
•  The	error	of	the	classifier	that	uses	the	discrimina0ve	model	

can	be	lower	than	that	of	the	classifier	that	uses	the	
genera0ve	model	(Why?)	

•  Naïve	Bayes	is	a	genera0ve	model	
•  A	perceptron	is	a	discrimina0ve	model,	and	so	is	SVM	
•  An	SVM	can	outperforms	Naïve	Bayes	on	classifica0on	

If	the	goal	is	classifica0on,	it	might	be	useful	to	consider	
discrimina0ve	models	that	directly	learn	the	classifier	
without	going	solving	the	harder	intermediate	problem	of	
modeling	the	joint	probability	distribu0on	of	inputs	and	
classes	(Vapnik)	
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Neural	Networks	

•  Decision	trees	are	good	at	modeling	nonlinear	interac0ons	
among	a	small	subset	of	aIributes		

•  Some0mes	we	are	interested	in	linear	interac0ons	among	all	
aIributes	

•  Simple	neural	networks	are	good	at	modeling	such	interac0ons		
•  The	resul0ng	models	have	close	connec0ons	with	naïve	Bayes		

–  Naïve	Bayes	can	be	seen	as	a	special	case	
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A	simple	discrimina0ve	model:	Neural	Networks	

•  Outline	
•  Background	
•  Threshold	logic	func0ons	
•  Connec0on	to	logic	
•  Connec0on	to	geometry	
•  Learning	threshold	func0ons	–	perceptron	
algorithm	and	its	variants	

•  Perceptron	convergence	theorem	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Background	–	Neural	computa0on	

•  1900	–	Birth	of	neuroscience	–	Ramon	Cajal	et	al.	
•  1913	–	Behaviorist	or	s0mulus	response	psychology	
•  1930-50:	Theory	of	Computa0on,	Church-Turing	Thesis	
•  1943:	McCulloch	&	PiIs	“A	logical	calculus	of	neuronal	

ac0vity”	
•  1949:	Hebb	–	Organiza0on	of	Behavior	
•  1956	–	Birth	of	Ar0ficial	Intelligence	–	“Computers	and	

Thought”	
•  1960-65:	Perceptron	model	developed	by	RosenblaI	
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Background	–	Neural	computa0on	
•  1969:	Minsky	and	Papert	cri0cize	Perceptron		
•  1969:	Chomsky	argues	for	universal	innate	grammar	
•  1970:	Rise	of	cogni0ve	psychology	and	knowledge-based	AI	
•  1975:	Learning		algorithms	for	mul0-layer	neural	networks	
•  1985:	Resurgence	of	neural	networks	and	machine	learning	
•  1988:	Birth	of	computa0onal	neuroscience	
•  1990:	Successful	applica0ons	(stock	market,	OCR,	robo0cs)	
•  1990-2000	New	synthesis	of	behaviorist	and	cogni0ve	or	

representa0onal	approaches	in	AI	and	psychology	
•  2000-2010	Synthesis	of	logical	and	probabilis0c	approaches	to	

representa0on	and	learning	
•  2010-	Data	science,	deep	learning,	big	data	…	
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Background	–	Brains	and	Computers	
•  Brain	consists	of	1011 neurons,	each	of	which	is	connected	to	104 

neighbors	
•  Each	neuron	is	slow	(1	millisecond	to	respond	to	a	s0mulus)	but	

the	brain	is	astonishingly	fast	at	perceptual	tasks	(e.g.	face	
recogni0on)	

•  Brain	processes	and	learns	from	mul0ple	sources	of	sensory	
informa0on	(visual,	tac0le,	auditory…)	

•  Brain	is	massively	parallel,	shallowly	serial,	modular	and	roughly	
hierarchical	with	recurrent	and	lateral	connec0vity	within	and	
between	modules	

•  If	cogni0on	is		--	or	at	least	can	be	modeled	by	--	computa0on,	it	
is	natural	to	ask	how	and	what	brains	compute	
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Brain	and	informa0on	processing	

Visual	associa0on	area	

Primary	motor	
cortex	

Motor	associa0on	
cortex	

Primary	somato-sensory	cortex	

Primary	visual	cortex	

Auditory	cortex	

Auditory	associa0on	
area	

Prefrontal	cortex	

Speech	comprehension	

Sensory	associa0on	area	
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Neural	Networks	

Ramon	Cajal,	1900	
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Neurons	and	Computa0on	
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McCulloch-PiIs	computa0onal	model	of	a	
neuron	
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Threshold	neuron	–	Connec0on	with	Geometry	
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McCulloch-PiIs	Neuron	or	Threshold	Neuron	
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Threshold	neuron–	Connec0on	with	Geometry	
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Threshold	neuron	–	Connec0on	with	Geometry	

Instance	space		

Hypothesis	space	is	the	set	of	(n-1)-dimensional	hyperplanes	
defined	in	the	n-dimensional	instance	space	

A	hypothesis	is	defined	by		

•  Orienta0on	of	the	hyperplane	is	governed	by	
•  and	the	perpendicular	distance	of	the	hyperplane	from	the	origin	

is	given	by		
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Threshold	neuron	as	a	paIern	classifier	

•  The	threshold	neuron	can	be	used	to	classify	a	set	of	
instances	into	one	of	two	classes	C1,	C2	

•  If	the	output	of	the	neuron	for	input	paIern	Xp is	+1	then	Xp	
is	assigned	to	class	C1	

•  If	the	output		is	-1	then	the	paIern	Xp	is	assigned	to	C2	

•  Example	
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Threshold	neuron	–	Connec0on	with	Logic	

•  Suppose	the	input	space	is	{0,1}n	
•  Then	threshold	neuron	computes	a	Boolean	func0on	

f	:{0,1}n	à	{-1,1}		
x1	 x2	 g(X)	 y	

0	 0	 -1.5	 -1	

0	 1	 -0.5	 -1	

1	 0	 -0.5	 -1	

1	 1	 0.5	 1	

Example	

Let	w0=	-1.5;	w1	=	w2	=	1	

In	this	case,	the		threshold	
neuron	implements	the	logical	
AND	func0on	
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Threshold	neuron	–	Connec0on	with	Logic	

•  A	threshold	neuron	with	the	appropriate	choice	of	weights	can	
implement	Boolean	AND,	OR,	and	NOT	func0on	

•  Theorem:	For	any	arbitrary	Boolean	func0on	f,	there	exists	a	
network	of	threshold	neurons	that	can	implement	f.	

•  Theorem:		Any	arbitrary	finite	state	automaton	can	be	realized	
using	threshold	neurons	and	delay	units	

•  Networks	of	threshold	neurons,	given	access	to	unbounded	
memory,	can	compute	any	Turing-computable	func0on	

•  Corollary:	Brains	if	given	access	to	enough	working	memory,	can	
compute	any	computable	func0on	
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Threshold	neuron:	Connec0on	with	Logic	

Theorem:	There	exist	func0ons	that	cannot	be	implemented	by	a	
single	threshold	neuron.	

Example	Exclusive	OR	

x1	

x2	

Why?	
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Threshold	neuron	–		Connec0on	with	Logic	

•  Defini0on:	A	func0on	that	can	be	computed	by	a	single	
threshold	neuron	is	called	a	threshold	func0on	

•  Of	the	16		2-input	Boolean	func0ons,	14	are	Boolean	
threshold	func0ons	

•  As	n	increases,	the	number	of	Boolean	threshold	func0ons	
becomes	an	increasingly	small	frac0on	of	the	total	number	
of	n-input	Boolean	func0ons	

( ) 2

2nThreshold nN ≤ ( ) n

nNBoolean
22=
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Terminology	and	Nota0on	

•  Synonyms:	Threshold	func0on,	Linearly	separable	
func0on,	linear	discriminant	func0on	

•  Synonyms:	Threshold	neuron,	McCulloch-PiIs	neuron,	
Perceptron,	Threshold	Logic	Unit	(TLU)	

•  We	oien	include	w0		as	one	of	the	components	of	W	
and	incorporate	x0	as	the	corresponding	component	of	X	
with	the	understanding	that	x0	=1.	Then	y=1	if	W.X	>	0	
and	y=-1	otherwise.	
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Learning	Threshold	func0ons	

A	training	example	Ek	is	an	ordered	pair	(Xk,	dk)	where		
	
	
is	an	(n+1)	dimensional	input	paIern,		
is	the	desired	output	of	the	classifier	and	f		is	an	unknown	target	

func0on	to	be	learned.	
	
A	training	set	E	is	simply	a	mul0-set	of	examples.	

[ ]Tnkkkk xxx  ....  10X =
}1 ,1{)( −∈= kk fd X
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Learning	Threshold	func0ons	
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Learning	Task:	Given	a	linearly	separable	training	set	E,	find	a	
solu0on		

We	say	that	a	training	set	E	is	linearly	separable	if	and	only	if			
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RosenblaI’s	Perceptron	Learning	Algorithm	

[ ]T000W ..... =

EEk ∈
)( kk signy XW•←

Initialize  
 
Repeat until a complete pass through E results in no 

weight updates		

{	
( ) kkk yd XWW −η+← }	

( )**  Return        ; WWW ←

0 rate learningSet >η

For	each	training	example		
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Perceptron	learning	algorithm	–Example		

Let		
	S+=	{(1,	1,	1),	(1,	1,	-1),	(1,	0,	-1)}																																	
	S-	=	{(1,-1,	-1),	(1,-1,	1),	(1,0,	1)	}										

	W=	(0	0	0);		
	
	

2
1

=η

Xk dk W W.Xk yk Update? Updated W 
(1, 1, 1) 1 (0, 0, 0) 0 -1 Yes (1, 1, 1) 
(1, 1, -1) 1 (1, 1, 1) 1 1 No (1, 1, 1) 
(1,0, -1) 1 (1, 1, 1) 0 -1 Yes (2, 1, 0) 

(1, -1, -1) -1 (2, 1, 0) 1 1 Yes (1, 2, 1) 
(1,-1, 1) -1 (1, 2, 1) 0 -1 No (1, 2, 1) 
(1,0, 1) -1 (1, 2, 1) 2 1 Yes (0, 2, 0) 
(1, 1, 1) 1 (0, 2, 0) 2 1 No (0, 2, 0) 
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Perceptron	(1957)	
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Perceptron	
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Perceptron	Convergence	Theorem	(Novikoff)	

Theorem	Let																					be	a	training	set	where										

and															.		

n
k ℜ×∈ }1{X( ){ }kk dE  ,X=

( ){ } ( ){ }1,1, −=∈==∈= −+
kkkkkkkk dEdSdEdS  &     and     & XXXX

}1,1{−∈kd

Let	

δδ −≤•∈∀≥•∈∀ −+
kkkk SS XWXXWXW *** ,,   and      that such 

for	some		 ,0>δ

The	perceptron	algorithm	is	guaranteed	to	terminate	aier	a	
bounded	number		t	of	weight	updates	with	a	weight	vector		
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Proof	of	Perceptron	Convergence	Theorem	
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Proof	of	Perceptron	Convergence	Theorem	
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Proof	of	Perceptron	Convergence	Theorem	
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Proof	of	Perceptron	Convergence	Theorem	
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Proof	of	Perceptron	Convergence	Theorem	
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Notes	on	the	Perceptron	Convergence	Theorem	

•  The	bound	on	the	number	of	weight	updates	does	not	
depend	on	the	learning	rate	

•  The	bound	is	not	useful	in	determining	when	to	stop	the	
algorithm	because	it	depends	on	the	norm	of	the	unknown	
weight	vector	and	delta		

•  The	convergence	theorem	offers	no	guarantees	when	the	
training	data	set	is	not	linearly	separable	

Exercise:	Prove	that	the	perceptron	algorithm	is	robust	with	
respect	to	fluctua0ons	in	the	learning	rate		

∞<≤≤< maxmin ηηη t0
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Mul0ple	classes	

sclassifierbinary   1−K

One-versus-rest One-versus-one 

sclassifierbinary   1−K ( ) sclassifierbinary   
2
1−KK

Problem:	Green	region	has	ambiguous	class	membership	
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Mul0-category	classifiers		

C2	
	

C1	

C3	
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Linear	separator	for	K	classes	

•  Decision	regions	defined	by		

	are	singly	connected	and	convex	
( ) ( ) 000 =−+− kk

T
jk wwXWW
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Winner-Take-All	Networks	

otherwise 
   iff 

0

1

=

≠∀•>•=

ip

pjpiip

y
ijy XWXW

[ ] [ ] [ ]TTT  
3

 
2

 
1 0  0  2 ,1  1  1 ,1-  1-  1 === WWW

W1.Xp	 W2.Xp	 W3.Xp	 y1	 y2	 y3	
1	 -1	 -1	 3	 -1	 2	 1	 0	 0	
1	 -1	 +1	 1	 1	 2	 0	 0	 1	
1	 +1	 -1	 1	 1	 2	 0	 0	 1	
1	 +1	 +1	 -1	 3	 2	 0	 1	 0	

What	does	neuron	3	compute?	

Note: Wj are	augmented	weight	vectors  
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Linear	separability	of	mul0ple	classes	
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Training	WTA	Classifiers	
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WTA	Convergence	Theorem	

Given	a	linearly	separable	training	set,	the	WTA	learning	
algorithm	is	guaranteed	to	converge	to	a	solu0on	within	a		
finite	number	of	weight	updates.	
	
Proof	Sketch:	Transform	the	WTA	training	problem	to	the		
problem	of	training	a	single	perceptron	using	a	suitably		
transformed	training	set.	Then	the	proof	of	WTA	learning	
algorithm	reduces	to	the	proof	of	perceptron	learning		
algorithm	
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WTA	Convergence	Theorem	
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WTA	Convergence	Theorem	
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Weight	space	representa0on	

PaIern	space	representa0on	
	Coordinates	of	space	correspond	to	aIributes	(features)	
	A	point	in	the	space	represents	an	instance	
	Weight	vector	Wv	defines	a	hyperplane	Wv	.X=0	

Weight	space	(dual)	representa0on	
	Coordinates	define	a	weight	space	
	A	point	in	the	space	represents	a	choice	of	weights	Wv		
	An	instance	Xp	defines	a	hyperplane	W.	Xp=0	
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Weight	space	representa0on	
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0XW =• r

Solu0on	region	
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−∈ S
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Weight	space	representa0on	
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Weight	space	representa0on	
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								The	Perceptron	Algorithm	Revisited	

The	perceptron	works	by	adding	misclassified	posi0ve	or	
subtrac0ng	misclassified	nega0ve	examples	to	an	arbitrary	
weight	vector,	which	(without	loss	of	generality)	we	
assumed	to	be	the	zero	vector.	So	the	final	weight	vector	is	a	
linear	combina0on	of	training	points	

	
	
    where,	since	the	sign	of	the	coefficient	of									is	given	by	

label	yi,		the								are	posi0ve	values,	propor0onal	to	the	
number	of	0mes,	misclassifica0on	of					has	caused	the	
weight	to	be	updated.	It	is	called	the	embedding	strength	of	
the	paIern								.		
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																						Dual	Representa0on	

The	decision	func0on	can	be	rewriIen	as:	
	
	
	
	
	
									
	
The	update	rule	is:	
	
	
WLOG,	we	can	take		
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Limita0ons	of	perceptrons		

•  Perceptrons	can	only	represent	threshold	func0ons	
•  Perceptrons	can	only	learn	linear	decision	boundaries	
What	if	the	data	are	not	linearly	separable?	
§  More	complex	networks?	
§  Non-linear	transforma0ons	into	a	feature	space	where	the	data	

become	separable?	
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	Extending	Linear	Classifiers	Learning	in	feature	spaces	     

     
     

Map data into a feature space where they are linearly 
separable 

( )ϕ→x x
x ( )ϕ x

X Φ
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In	the	feature	(hidden)	space:	

	
	
When	mapped	into	the	feature	space	<	z1	,	z2	>,	C1	and	C2	become	linearly	

separable.	So	a	linear	classifier	with	ϕ1(x)	and	ϕ2(x)	as	inputs	can	be	used	to	solve	
the	XOR	problem.		

Exclusive	OR	revisited		

2212
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2

2

2
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Decision	boundary	
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“Perceptrons”	(1969)	

“The perceptron […] has many features 
that attract attention: its linearity, its 
intriguing learning theorem; its clear 
paradigmatic simplicity as a kind of 
parallel computation. There is no reason to 
suppose that any of these virtues carry over to 
the many-layered version. Nevertheless, we 
consider it to be an important research 
problem to elucidate (or reject) our intuitive 
judgement that the extension is sterile.”  
[pp. 231 – 232] 
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																					Learning	in	the	Feature	Spaces	
High	dimensional	Feature	spaces	
	
	
where	typically	d	> > n	solve	the	problem	of	expressing	complex	

func0ons	
	
But	this	introduces	a	
§  computa0onal	problem	(working	with	very		large	vectors)	

§  Solved	using	the	kernel	trick	–	implicit	feature	spaces	
§  generaliza0on	problem	(curse	of	dimensionality)	

§  Solved	by	maximizing	the	margin	of	separa0on	–	first	
implemented	in	SVM	(Vapnik)	

We	will	return	to	SVM	later	

     

     
     

 
 
 

( ) ( ) ( ) ( ) ( )( )xxxxx dnxxx ϕϕϕ=ϕ→= ,....,...., 2121
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Linear	Classifiers	–	Linear	discriminant	func0ons	

•  Perceptron	implements	a	linear	discriminant	func0on	–	a	linear	
decision	surface	given	by	
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The	solu0on	hyper-plane	simply	has	to	separate	the	classes	

We	can	consider	alterna0ve	criteria	for	separa0ng	hyper-planes	



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Least	Squares	for	Classifica0on	
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Least	Squares	for	Classifica0on	
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Because	least	square	criterion	minimizes	this	quan0ty		
with	respect	to	W, we	have	

assuming	that	the	func0ons																					are	expressive	enough	
to	represent		 ( )X|kP ω

( )WX;kg

Exercise:	Show	that	Fisher	discriminant	is	a	special	case	of	Least	
Squares	classifica0on	
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Project	data	onto	a	line	joining	the	means	of	the	two	classes	
	

Problems:		
•  Separa0on	can	be	made	arbitrarily	large	by	increasing	the	

magnitude	of	W	–	constrain	W	to	be	of	unit	length	
•  Classes	that	are	well	separated	in	the	original	space	can	have	

non	trivial	overlap	in	the	projec0on	–		
–  Maximize	between	class	variance	in	the	projec0on	

( )1212 µµW −=− Tmm
means projected the of separation -

 classes of separation of Measure
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Fisher’s	Linear	Discriminant	
Given	two	classes,	find	the	linear	discriminant	W ∈ℜ n	that	

maximizes	Fisher’s	discriminant	ra0o:	
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Fisher’s	Linear	Discriminant	

	
	
	
	

( ) ( ) ( ) ( )
( ) ( )

) as direction same the has const..(        

const)(   

)())((')(')(

)())((

0)(2))(())((2)(

0)())((
))((

)(

2121212121

212121

212121212121

212121
2121

21

µµWµµµµWΣΣµµ

WΣΣWµµµµ

WΣΣWµµµµWWµµµµWΣΣW

WΣΣW
W

WµµµµW
W

WµµµµW
WΣΣW

−−−=+=−

=+=−−

=+−−−−−+

=+
∂

∂
−−−

∂

−−∂
+

T

T

TTTT

TTT
TT

T

kk

kk

∵

( ) ( ) ( ) ( )
( )221

212121
2121

21
2221

21

2121
2221

)(

)())((
))((

)(),,,;(

)(
))((

),,,;(

WΣΣW

WΣΣW
W

WµµµµW
W

WµµµµW
WΣΣW

W
ΣµΣµW

WΣΣW
WµµµµW

ΣµΣµW

+

+
∂
∂

−−−
∂

−−∂
+

=
∂

∂

+

−−
=

T

TTT
TT

T

T

TT

f

f

)()( 21
1

21
* µµΣΣW −+∝ −



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Fisher’s	Linear	Discriminant	
W ∈ℜ n	that	maximizes	Fisher’s	discriminant	ra0o:	
	
	
	
	

)()( 21
1

21
* µµΣΣW −+= −

§  Unique	solu0on		
§  Easy	to	compute	
§  Has	a	probabilis0c	interpreta0on	
§  Can	be	updated	incrementally	as	new	data	become	available	
§  Naturally	extends	to	K-class	problems	
§  Can	be	generalized	(using	kernel	trick)	to	handle	non	linearly	

separable	class	boundaries	
 
 
 



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Project	data	based	on	Fisher	discriminant 
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Fisher’s	linear	discriminant	

•  Can	be	shown	to	maximize	between	class	separa0on		
•  If	the	samples	in	each	class	have	Gaussian	distribu0on,	then	

classifica0on	using	the	Fisher	discriminant	can	be	shown	to	
yield	minimum	error	classifier		

•  If	∑1			and	∑2	are	propor0onal	to	the	iden0ty	matrix	I, W 
corresponding	to	the	Fisher	discriminant	is	propor0onal	to	the	
difference	between	the	class	means		

•  Can	be	generalized	to	K classes		
•  A	special	case	of	least	squares	classifica0on	(next)	

( )21 µµ −
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Genera0ve	Versus	Discrimina0ve	Models	

§  Genera0ve	models	 		
§  Naïve	Bayes	

§  Discrimina0ve	models	
§  Perceptron,	Support	vector	machines,	Logis0c	regression	..	

§  Rela0ng	genera0ve	and	discrimina0ve	models	
§  Tradeoffs	between	genera0ve	and	discrimina0ve	models	
§  Generaliza0ons	and	extensions	
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Rela0ng	Genera0ve	and	Discrimina0ve	Models	
Chef	1:	Genera0ve	model	

	

Chef	2:	Discrimina0ve	Model	
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Basic	concepts	

•  Vector	in	Rn	is	an	ordered	set	of	
n	real	numbers.	
–  e.g.	v	=	(1,6,3,4)	is	in	R4	
–  “(1,6,3,4)”	is	a	column	vector:	
–  as	opposed	to	a	row	vector:	

•  m-by-n	matrix	is	an	object	with	
m	rows	and	n	columns,	each	
entry	filled	with	a	real	number:	

⎟⎟
⎟
⎟
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Basic	concepts	

•  Transpose:	 ( )ba
b
a T

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠
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⎝

⎛
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⎠

⎞
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⎝

⎛

db
ca

dc
ba T

	We	will	define	matrix	mul0plica0on	shortly	
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(Ax)T = xTAT

Lp  norm of v= v1!vk( )  is vi
p

i
∑
⎛

⎝
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1
p

L1  norm of v= v1!vk( )  is vi
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L2  norm of v= v1!vk( )  is vi
2

i
∑

L∞  norm of v= v1!vk( )  is maxi vi
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Basic	concepts	

•  Vector	dot	product:	
–  Note	dot	product	of	u	
with	itself	is	the	square	of	
the	length	of	u.	

•  Matrix	product:	

( ) ( ) 22112121 vuvuvvuuvu +=•=•
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Basic	concepts	

•  Vector	products:	
–  Dot	product:	

–  Outer	product:	
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Matrices	as	linear	transforma0ons	
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Matrices	as	linear	transforma0ons	
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Using	matrices	to	express	as	sets	of	(linear)	constraints	

22
1
=+−

=++

zyx
zyx

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

− 2
1

112
111

z
y
x

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Special	matrices	
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Matrix	inversion	

•  To	solve	Ax=b,	we	can	write	a	closed-form	solu0on	if	we	can	
find	a	matrix	A-1	
	s.t.	AA-1	=A-1A=I	(iden0ty	matrix)	

•  Then	Ax=b	iff	x=A-1b:	
x	=	Ix	=	A-1Ax	=	A-1b	

•  A	is	non-singular	iff	A-1	exists	iff	Ax=b	has	a	unique	solu0on.	
•  Note:	If	A-1,B-1	exist,	then	(AB)-1	=	B-1A-1,	
	and	(AT)-1	=	(A-1)T	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Special	matrices	

•  Matrix	A	is	symmetric	if	A	=	AT	

•  A	is	posi;ve	definite	if	xTAx>0	for	all	non-zero	x	(posi;ve	semi-definite	
if	inequality	is	not	strict)	
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Special	matrices	

•  Matrix	A	is	symmetric	if	A	=	AT	

•  A	is	posi;ve	definite	if	xTAx>0	for	all	non-zero	x	(posi;ve	semi-definite	
if	inequality	is	not	strict)	

•  Useful	fact:	Any	matrix	of	form	ATA	is	posi0ve	semi-definite.	

	 	To	see	this,	xT(ATA)x	=	(xTAT)(Ax)	=	(Ax)T(Ax)	≥	0	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Determinants	

•  If	det(A)	=	0,	then	A	is	
singular.	

•  If	det(A)	≠	0,	then	A	is	
inver0ble.	

•  To	compute:	
–  Simple	example:	

–  Matlab:	det(A)	
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ba

−=⎟⎟
⎠

⎞
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⎛
det
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Determinants	

•  m-by-n	matrix	A	is	rank-deficient	if	it	has	rank	r	<	m	(≤	n)	
•  Thm:	rank(A)	<	r	iff	
	 	det(A)	=	0	for	all	t-by-t	submatrices,	
	 	r	≤	t	≤	m	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Eigenvalues	&	eigenvectors	

•  How	can	we	characterize	matrices?	
•  The	solu0ons	to	Ax	=	λx	in	the	form	of	eigenpairs	(λ,x)	=	

(eigenvalue,eigenvector)	where	x	is	non-zero	
•  To	solve	this,	(A	–	λI)x	=	0	
•  λ	is	an	eigenvalue	iff	det(A	–	λI)	=	0	

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 
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Eigenvalues	&	eigenvectors	

(A	–	λI)x	=	0	
λ	is	an	eigenvalue	iff	det(A	–	λI)	=	0	
Example:	
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From	genera0ve	to	discrimina0ve	models	
	

•  Assume	classes	are	binary	
•  Suppose	we	model	the	class	by	a	binomial	distribu0on	with	

parameter	q		

•  Assume	each	component	Xj		of	input	X	each		have	Gaussian	
distribu0ons	with	parameters		Θj	and	are	independent	given	the	
class	
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From	genera0ve	to	discrimina0ve	models	
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where Θ j  = µ0 j,µ1 j,σ j( )
(Note:we have assumed that ∀j σ 0 j =σ1 j =σ j )
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From	genera0ve	to	discrimina0ve	models	
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The	calcula0on	of	the	posterior	probability	p(Y=1|x, Θ)	is	
simplified	if	we		use	matrix	nota0on	
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From	genera0ve	to	discrimina0ve	models	
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From	genera0ve	to	discrimina0ve	models	
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The	posterior	probability	that	Y=1	takes	the	form	

where	

( ) ( )γ−β−+
=Θ=

x
x,yp Texp
|

1
11

is	an	affine	func0on	of	x 
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Sigmoid	or	Logis0c	Func0on	
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Implica0ons	of	the	logis0c	posterior	

•  Posterior	probability	of	Y	is	a	logis0c	func0on	of	an	affine	
func0on	of	x 

•  Contours	of	equal	posterior	probability	are	lines	in	the	input	
space	

•  βTx is	propor0onal	to	the	projec0on	of x on β and	this	
projec0on	is	equal	for	all	vectors x that	lie	along		a	line	that	is	
orthogonal to β 

•  Special	case		
–  variances	of	Gaussians	=	1		
–  the	contours	of	equal	posterior	probability	are	lines	that	are	
orthogonal	to	the	difference	vector	between	the	means	of	
the	two	classes	

•  Equal	posterior	for	the	two	classes	when	z=0 
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Geometric	interpreta0on	(diagonal	∑)	
Contour	plot	
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Geometric	interpreta0on	
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In	this	case,	the	posterior	probabili0es	for	the	two	classes	
are	equal	when	x	is	equidistant	from	the	two	means	
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Geometric	interpreta0on	

•  If	the	prior	probabili0es	of	the	classes	are	such	that	q > 
0.5	the	effect	is	to	shii	the	logis0c	func0on	to	the	lei	
resul0ng	in	a	larger	value	for	the	posterior	probability	for	
Y=1	for	any	given	point	in	the	input	space.	

•  q < 0.5 results	in	a	shii	of	the	logis0c	func0on	to	the	
right	resul0ng	in	a	smaller	value	for	the	posterior	
probabilty	for	Y=1	(or	larger	value	for	the	posterior	
probability	for	Y=0)	
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Geometric	interpreta0on	(general	∑)	

Now	the	equi-
probability	contours	
are	s0ll	lines	in	the	
input	space	although	
the	lines	are	no	
longer	orthogonal	to	
the	difference	in	
means	of	the	two	
classes	
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Generaliza0on	to	mul0ple	classes	–	Soimax	func0on	

•  Y	is	a	mul0nomial	variable	which	takes	on	one	of	K	values	

•  As	before,	x	is	a	mul0variate	Gaussian	
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Generaliza0on	to	mul0ple	classes	–	Soimax	func0on	

Posterior	probability	for	class	k	is	obtained	via	Bayes	rule	
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Generaliza0on	to	mul0ple	classes	–	Soimax	func0on	

We	have	shown	that	

Defining	parameter	vectors	
and	augmen0ng	the	input		
Vector	x	by	adding	a		
constant	input	of	1	we	

	have		
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Generaliza0on	to	mul0ple	classes	–	Soimax	func0on	

corresponds	to	the	decision	rule:		

Consider	the	ra0o	of	posterior	prob.	for	classes	k	and	j ≠ k 
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Equi-probability	contours	of	the	soimax	func0on	

( ) 021 =− xββ T

( ) 032 =− xββ T

( ) 013 =− xββ T
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Naïve	Bayes	classifier	with	discrete	aIributes	and	K	classes	

qk= prior	probability	of	class k 
ηkji= probability	that xj (the	jth	component	of x)	
takes	the  ith value	in	its	domain	when x belongs	
to	class k.  
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Naïve	Bayes	classifier	with	discrete	aIributes	and	K	classes		
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From	genera0ve	to	discrimina0ve	models	

•  A	curious	fact	about	all	of	the	genera0ve	models	we	have	
considered	so	far	is	that	
–  The	posterior	probability	of	class	can	be	expressed	in	the	
form	of	a	logis0c	func0on	in	the	case	of	a	binary	classifier	
and	a	soimax	func0on	in	the	case	of	a	K-class	classifier		
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From	genera0ve	to	discrimina0ve	models	

•  For	mul0nomial	and	Gaussian	class	condi0onal	densi0es	(in	the	
case	of	the	laIer,	with	equal	but	otherwise	arbitrary	covariance	
matrices)	
–  	the	contours	of	equal	posterior	probabili0es	of	classes	are	
hyperplanes	in	the	input	(feature)	space.	

•  The	result	is	a	simple	linear	classifier	analogous	to	the	
perceptron	(for	binary	classifica0on)	or	winner-take-all	network	
(for	K-ary	classifica0on)	

•  Next,	we	see	that	these	results	hold	for	a	more	general	class	of	
distribu0ons	
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Digression:	The	exponen0al	family	of	distribu0ons		

The	exponen0al	family	is	specified	by		

where	η	is	a	parameter	vector	and	A(η),	h(x)	and	G(x)	are	
appropriately	chosen	func0ons.		

•  Gaussian,	Binomial,	and	mul0nomial	(and	many	other	
“textbook”)	distribu0ons	belong	to	the	exponen0al	family	

•  Likelihood	func0on	for	exponen0al	family	is	provably	convex	
•  Maximum	entropy	es0mate	of	unknown	probability	distribu0ons	

under	moment	constraints	yields	an	exponen0al	form	

( ) ( ) ( ) ( ){ }ηxηxηx AGTehp −=|
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The	Bernoulli	distribu0on	belongs	to	the	exponen0al	family		
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Bernoulli	distribu0on	with	success	rate	q	is	given	by	

We	can	see	that	Bernoulli	distribu0on	belongs	to	the	
exponen0al	family	by	choosing	
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The	Gaussian	distribu0on	belongs	to	the	exponen0al	family		
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Univariate	Gaussian	distribu0on	can	be	wriIen	as	

We	see	that	Gaussian	
distribu0on	belongs	to	the	
exponen0al	family	by	
choosing	
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The	exponen0al	family		

The	exponen0al	family	which	is	given	by	

	
where	η	is	a	parameter	vector	and	A(η),	h(x)	and	G(x)	are	

appropriately	chosen	func0ons	–	can	be	shown	to	include	
several	addi0onal	distribu0ons	such	as	the	mul0nomial,	the	
Poisson,	the	Gamma,	the	Dirichlet,	among	others.	

Exercise:	Show	that	the	mul0nomial	distribu0on	belongs	to	the	
exponen0al	family.	

( ) ( ) ( ) ( ){ }ηxηxηx AGTehp −=|
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From	genera0ve	to	discrimina0ve	models	

•  In	the	case	of	the	genera0ve	models	we	have	seen		
•  The	posterior	probability	of	class	can	be	expressed	in	the	form	of	

a	logis0c	func0on	in	the	case	of	a	binary	classifier	and	a	soimax	
func0on	in	the	case	of	a	K-class	classifier		

•  The	contours	of	equal	posterior	probabili0es	of	classes	are	
hyperplanes	in	the	input	(feature)	space	yielding	a	linear		
classifier	for	binary	classifica0on)	or	winner-take-all	network	(for	
K-ary	classifica0on).		
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From	genera0ve	to	discrimina0ve	models	

•  We	just	showed	that	the	probability	distribu0ons	
underlying	the	genera0ve	models	considered	belong	to	
the	exponen0al	family	

•  What	can	we	say	about	the	classifiers	when	the	
underlying	genera0ve	models	are	distribu0ons	from	the	
exponen0al	family?	
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Classifica0on	problem	for	generic	class	condi0onal	density	
from	the	exponen0al	family		
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Consider	Binary	classifica0on	task	with	density	for	class 0 and	class 1 
parameterized	by η0	and	η1. Further	assume G(x) is	a	linear	func0on	
of x (before	augmen0ng	x	with	a	1)	

( ) ( ) ( ) ( ){ }ηxηxηx AGTehp −=|

Note	that	this	is	a	logis0c	func0on	of	a	linear	func0on	of	x 
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Classifica0on	problem	for	generic	class	condi0onal	density	
from	the	exponen0al	family		
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Consider	K-ary	classifica0on	task;	Suppose	G(x)	is	a	linear	func0on	
of	x 

which	is	a	soimax	func0on	of	a	linear	
func0on	of	x !! 
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Summary	

•  A	variety	of	class	condi0onal	densi0es	all	yield	the	same	
logis0c-linear	or	soimax-linear	(with	respect	to	parameters)	
form	for	the	posterior	probability		

•  In	prac0ce,	choosing	a	class	condi0onal	density	can	be	difficult	
–	especially	in	high	dimensional	spaces	–	e.g.,	mul0-variate	
Gaussian	where	the	covariance	matrix	grows	quadra0cally	in	
the	number	of	dimensions!	

•  The	invariance	of	the	func0onal	form	of	the	posterior	
probability	with	respect	to	the	choice	of	the	distribu0on	is	
good	news!	

•  It	is	not	necessary	to	specify	the	class	condi0onal	density	at	all	
if	we	can	work	directly	with	the	posterior	–	which	brings	us	to	
discrimina0ve	models!	
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Discrimina0ve	Models	

•  We	saw	that	under	fairly	general	assump0ons	concerning	the	
underlying	genera0ve	model,	the	posterior	probability	of	class	
given	x	can	be	expressed	in	the	form	of	a	logis0c	func0on	of	an	
affine	or	polynomial	(in	the	simplest	case,	linear)	func0on	of	x	in	
the	case	of	a	binary	classifica0on	task.	

	where		
•  In	the	discrimina0ve	se�ng,	we	simply	assume	this	form	and	

proceed	without	regard	to	details	of	the	underlying	genera0ve	
model	
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Discrimina0ve	Models	
Note	that	the	posterior	probability	of	Y=1	is	same	as	the	

condi0onal	expecta0on	of	y	given	x: 

	
where		

	
Hence	es0ma0ng	P(Y=1|x) is	equivalent	to	performing	logis0c	

regression		
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Some	Proper0es	of	the	Logis0c	Func0on	
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Maximum	likelihood	es0ma0on	of	w 
( ) ( ) { }{ }

ne
µxη

NnyDomainXyxD

nn
T

n

nnnn

η−+
==

=∈∈=

1
1   ;

..1  ;1,0   ;;,

w

x

( ) ( ) ( )( )nn y
n

N

n

y
nNN µµxxyyP −

=

−=∏ 1

1
11 1 ,...|... wLikelihood	

( ) ( ) ( ){ }∑
=

−−+=
N

n
nnnn µyµyDLL

1
11 loglog:w

Log	likelihood	

We	need	to	find	w that	maximizes	log likelihood	
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Digression	–	Minimizing	/	Maximizing	Func0ons	
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Minimizing/Maximizing	Func0ons	
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Minimizing/Maximizing	Func0ons	

( )

( )

2v
dx
dvu

dx
duv

dx
v
ud

dx
duv

dx
dvu

dx
uvd

dx
dv

dx
du

dx
vud

⎟
⎠

⎞
⎜
⎝

⎛
−⎟
⎠

⎞
⎜
⎝

⎛

=
⎟
⎠

⎞
⎜
⎝

⎛

+=

+=
+



Pennsylvania	State	University	
	 	 		

College of Information Sciences and Technology 
Artificial Intelligence Research Laboratory 

Principles of Machine Learning, IST 597K, Spring 2017, (C) Vasant Honavar 

Taylor	Series	Approxima0on	of	Func0ons	
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Chain	rule	
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Taylor	Series	Approxima0on	of	Mul0variate	Func0ons	
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Minimizing	/	Maximizing	Mul0variate	Func0ons	
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Minimizing	/	Maximizing	Func0ons	

x2 

Gradient	descent	/	ascent		
is	guaranteed	to	find	the	
minimum	/	maximum	
when	the	func0on	has	a	
single	minimum	/	
maximum	

x1 

f (x1, x2) 

XC= (x1
C, x2

C) 

X* 
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Maximum	likelihood	es0ma0on	of	w 
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Maximum	likelihood	es0ma0on	of	w 
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Simple	gradient	ascent	algorithm	can	be	quite	slow	and	has	
liIle	to	recommend	it	in	prac0ce	

The	momentum	trick	provides	a	simple	approach	to	speeding	
up	the	simple	gradient	ascent	algorithm	
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Maximum	likelihood	es0ma0on	of	w 
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The	momentum	trick	can	also	be	applied	in	the	on	line	version	
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Maximum	likelihood	es0ma0on	of	w 

•  More	sophis0cated	op0miza0on	algorithms	–	line	search,	
conjugate	gradient,	Newton-Raphson,	itera0vely	reweighted	
least	squares,	and	related	methods	can	be	used	to	maximize	the	
log	likelihood	func0on	which	although	not	quadra0c,	is	
approximately	quadra0c.		

•  For	details,	see	standard	texts	on	op0miza0on.	
•  When	the	form	of	the	underlying	genera0ve	model	is	known,	we	

can	ini0alize	the	parameter	vector	w	based	on	the	maximum	
likelihood	es0mates	for	which	oien	closed	form	solu0ons	are	
available	and	then	run	a	few	itera0ons	of	gradient	ascent	to	
improve	classifica0on	accuracy.	
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Mul0-class	Discrimina0ve	Model	

Soimax-linear	model	is	the	mul0-class	generaliza0on	of	the	
logis0c-linear	model	
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In	the	discrimina0ve	se�ng,	we	simply	assume	this	
form	and	proceed	without	regard	to	details	of	the	
underlying	genera0ve	model	
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Mul0-class	Discrimina0ve	Model	
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Some	proper0es	of	the	soimax	func0on	

Soimax-linear	func0on	is	
inver0ble	up	to	an	addi0ve	
constant.	
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Some	proper0es	of	the	soimax	func0on	
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Maximum	likelihood	es0ma0on	of	w 
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We	need	to	find	parameters that	maximize	log likelihood	
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Maximum	likelihood	es0ma0on	of	w 
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Maximum	likelihood	es0ma0on	of	w 
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which	we	can	be	speed	up	using	the	momentum	trick	as	before	

Basic	gradient	ascent	update	rule	is	given	by		
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Maximum	likelihood	es0ma0on	of	w 
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The	momentum	trick	provides	a	simple	approach	to	speeding	
up	the	simple	gradient	ascent	algorithm	
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Maximum	likelihood	es0ma0on	of	w 
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which		we	can	speed	up	using	the	momentum	trick	as	before	

Basic	online		gradient	ascent	update	rule	is	given	by		
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Maximum	likelihood	es0ma0on	of	w 
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The	momentum	trick	can	also	be	applied	in	the	on	line	version	
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Summary	
•  For	a	large	class	of	genera0ve	models,	the	probability	

distribu0on	of	class	condi0oned	on	the	input	can	be	modeled	by	
the	exponen0al	family	

•  Genera0ve	models	can	perform	poorly	when	the	assumed	
parametric	form	for	the	distribu0on	is	incorrect	

•  Discrimina0ve	models	can	perform	poorly	when	the	assumed	
form	of	G(x)	is	inappropriate	–	but	it	is	oien	easier	to	choose	
the	form	of	G(x)	than	it	is	to	specify	the	precise	form	of	the	
genera0ve	model	

•  Discrimina0ve	models	focus	on	the	classifica0on	problem	
without	solving	(poten0ally	more	difficult)	problem	of	learning	
the	genera0ve	model	for	data	

•  Es0ma0ng	the	parameters	in	the	discrimina0ve	se�ng	requires	
solving	an	op0miza0on	problem	although	their	genera0ve	
counterparts	have	closed	form	solu0ons	(via	sufficient	sta0s0cs)	
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Summary	

•  We	can	learn	classifiers	in	a	discrimina0ve	se�ng	using	maximum	
likelihood	or	maximum	a	posteriori	or	bayesian	es0ma0on	of	
parameters	

•  Discrimina0ve	models	may	overfit	the	data	–	use	of	priors	or	
regulariza0on	recommended	

•  Ini0alizing	the	discrimina0ve	model	parameters	with	es0mates	
based	on	genera0ve	model	helps	


