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1 INTRODUCTION TO KNOWLEDGE

REPRESENTATION

Logic is a way of representing knowledge. The role of Knowledge Representation
in AI is primarily to reduce problems requiring intelligence to search problems.

Knowledge represenation is about describing objects, events, relationships, etc.
in some domain of interest. The ability to describe the world assumes the
existence of a language with appropriate structure (syntax) and meaning (se-
mantics).

In what follows, we will quickly review propositional logic (Boolean logic) which
should be familiar to most of the readers. In the propositional language, we
have a countably infinite set of atoms, and two distinguished atoms (True,
False) and logical connectives ∨, ∧ ¬, →, etc. A well formed sentence in
propositional logic could be an atom, or a sentence that is obtained by using
atom(s) and connectives according to certain syntactic rules. Thus, if ω is a
sentence, so is ¬ω. If ω1 and ω2 are sentences, then so are ω1 ∨ ω2, ω1 ∧ ω2,
and ω1 → ω2. Atoms and their negations are called literals. It is common to
use extra-linguistic symbols such as parentheses to group sentences.

Semantics has to do with associating elements of the logical language with the
properties of the domain of discourse. For instance, we might use the logical
proposition B to denote the fact that the battery is charged. It is important
to emphasize that the atoms do not have any intrinsic meaning. An associ-
ation of atoms with propositions about the world is called an interpretation.
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In a given interpretation, the proposition associated with an atom is called
its denotation. Under a chosen interpretation (i.e., association of atoms with
propositions about the world), atoms have truth values True or False. Thus,
we will assign binary truth values to atoms, yielding a two-valued logic (where
sentences are either True or False with respect to a given interpretation). It is
important to emphasize that True and False have no intrinsic meaning. This
becomes clear when we consider the formal notion of semantics for propositional
logic.

For now, suppose we have a language with no logical symbols. Thus, all we
have are the atomic sentences. Let the atomic sentences be Rich, Poor.

Def: A model M is a subset of the set A of atomic sentences in our language.

By a model M ⊆ A we will mean the state of affairs in which every atomic
sentence in M is true, and every sentence not in M is false. (Note: “True” and
“False” have no intrinsic meaning!)

The possible models in our example are:

M0 { }
M1 { Rich}
M2 { Poor}
M3 { Rich, Poor}

Models can be

thought of as “possible worlds”.

Rich is true in M2,M3

Rich ∨ Poor is true in M1,M2,M3

Rich ∧ Poor is true in M3

Rich ⇒ ¬Poor is true in M0,M1,M2

¬Rich ∨ ¬Poor is true in M0,M1,M2

Def: Given two sentences, p and q we say that p entails q (written as p |= q) if
q holds (q is true) in every model in which p holds (See figure ??).

For example, p ∧ (p⇒ q) |= q

p ∈M and ¬p ∨ q ∈M

p ∈M ∧ ¬p ∨ q ∈M

(p ∧ ¬p) ∨ (p ∧ q) ∈M

p ∧ q ∈M

The relevance of predicate logic to AI hinges on the |= realation.
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Figure 1 p |= q, µq is the set of models in which q holds
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Figure 2 Soundness and Completeness of ⊢

Suppose an agent believes in p1, . . . pm, then one can argue that he/she should
be justified in concluding q wherever p1 ∧ . . . ∧ pm |= q.

In general, trying to determine if p |= q by enumerating the models in µq and
µp and verifying µq ⊆ µp is not feasible.

An alternative approach is to come up with an inference rule/procedure that
derives a sentence q (of a prescribed syntactic form) wherever a sentence p (of
a prescribed syntactic form) is given.

p⇒ q

p

}

p ∧ (p⇒ q)

q
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day of the week(friday)
q

Since the inference may sanction inferences that may or may not be sanctioned
by |=, we should distinguish the inference procedures used from |=.

We will say that p ⊢a q if q is derivable from p using a rule or set of rules or a
procedure a.

Let S|= be the set of sentences sanctioned by |=.
Let S⊢ be the set of sentences deriviable using ⊢.

If ⊢a allows you to derive only those sentences sanctioned by |=, then we say
that a is sound. (See Figure ??)

If ⊢a allows you to derive all sentences sanctioned by |=, we say that ⊢a is
complete.(See Figure ??)

Ideally, we want inference procedures that are both sound and complete.

First Order Predicate Logic(FOPL) extends propositionsal logic in the following
manner:

• It provides “quantifiers” that allow us to talk about all or some objects in
our domain. E.g. ∀x apple(x) ⇒ sweet(x), or loves(John, dog of(John)).

1.1 FOPL Syntax

Logical Symbols(Connectives)
NOT ¬ OR ∨ AND ∧ IMPLIES ⇒ EQUIVALENCE ⇔

Quantifiers FORALL ∀ THERE EXISTS ∃

Non-Logical Symbols constants, or an infinite set of variables (e.g., x, y,
. . . )

Function Symbols e.g., func1(x)

Predicate Symbols e.g., apple(x), (i.e. those that have truth values associ-
ated with them)
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Sentences

atomic sentences, (or literals) e.g. apple(x)

compound sentences, e.g. ∀x apple(x) ⇒ sweet(x), or ∃x big(x)∧ house(x).

Terms constants, variables, or functional expressions (f(x1, · · ·xn))

Functional expressions can be used instead of variables Example

Given the following predicates: purple(x) mushroom(x) poisonous(x) equal(x, y)

Express the following sentences in FOPL:

1. All purple mushrooms are poisonous.

∀x [[purple(x) ∧ mushroom(x)] ⇒ poisonous(x)]

2. No purple mushroom is poisonous.

∀x mushroom(x) ∧ purple(x) ⇒ ¬ poisonous(x)

3. There is exactly one mushroom.

[∃x mushroom(x) ∧ ∀y mushroom(y) ⇒ equal(x, y)]

1.2 Semantics

Suppose we have a language with no logical symbols or variables (we have only
predicate symbols and constants). E.g., predicates: Rich, Poor and constants:
Tom

We have the atomic sentences: { Rich(Tom) and Poor(Tom) }.

Def: A model M is a subset of the set A of atomic sentences in our language.

By a model M ⊆ A we will mean the state of affairs in which every atomic
sentence in M is true, and every sentence not in M is false. (Note: “True” and
“False” have no intrinsic meaning!)
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Back to our example: The possible models are:

M0 { }
M1 { Rich(Tom)}
M2 { Poor(Tom)}
M3 { Rich(Tom), Poor(Tom)}

Models can be thought of as “possible worlds”.

Rich(Tom) is true in M2,M3

Rich(Tom) ∨ Poor(Tom) is true in M1,M2,M3

Rich(Tom) ∧ Poor(Tom) is true in M3

Rich(Tom) ⇒ ¬Poor(Tom) is true in M0,M1,M2

¬Rich(Tom) ∨ ¬Poor(Tom) is true in M0,M1,M2

Consider the FOPL system with P (x) and Dx = {a, b, c} (where Dx is the
domain for x). Then, the set of all possible models is
M = {P (a), P (b), P (c), P (a)∧P (b), P (a)∧P (c), P (b)∧P (c), P (a)∧P (b)∧P (c)}

Quantifiers

∀x P (x) is the same as P (a1) ∧ P (a2) ∧ P (a2) ∧ . . . ∧ P (an)

Suppose Dx = {a1, a2}, then ∀xP (x) is true in any model that contains P (a1)
and P (a2).

∃xP (x) is an infinite version of ∨. ∃xP (x) is true in any model that contains
at least one of P (a1), P (a2).

Example:
Consider a FOPL system with predicates: P (x), Q(x, y)
Dx = {a, b} (domain of x)
Dy = {b, c} (domain of y)

1. Enumerate the set of models.
2. Identify the model(s) in which ∃x∃yQ(x, y) holds.
3. Identify the models in which ∀xP (x) holds.
4. Identify the models in which ¬ ∀xP (x) holds.
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Anwser:
1.
M0 = { }
M1 = { P (a) }
M2 = { P (b) }
M3 = { P (a) P (b) }
M4 = { Q(a, b) }
M5 = { Q(b, b) }
M6 = { Q(a, c) }
M7 = { Q(b, c) }
M8 = { P (a) Q(a, b) }
M9 = { P (a) Q(b, b) }
M10 = { P (a) Q(a, c) }
M11 = { P (a) Q(b, c) }
M12 = { P (b) Q(a, b) }
M13 = { P (b) Q(b, b) }
M14 = { P (b) Q(a, c) }
M15 = { P (b) Q(b, c) }
M16 = { P (a) P (b) Q(a, b) }
M17 = { P (a) P (b) Q(b, b) }
M18 = { P (a) P (b) Q(a, c) }
M19 = { P (a) P (b) Q(b, c) }

2. M4, M5, M6, M7, M8, M9, M10, M11, M12, M13, M14, M15, M16, M17,
M18, and M19.

3. M3, M16, M17, M18, and M19.

4. M1, M2, M8, M9, M10, M11, M12, M13, M14, and M15.

1.3 Entailment and Inference

We can define the notions of entailment, and soundness, and completeness of
inference rules for predicate logic in a manner analogous to propositional logic.

First, we consider the case without variables (and hence without quantifiers).
Then we generalize.

Modus ponens:
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^ (p->q)
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Figure 3 Illustration that µp∧ (p → q) ⊆ µq .

p⇒ q

p

}

p ∧ (p⇒ q)

q

p
p ⇒ q
these two conditions are given. q is infered.

We will show that Modus ponens is sound.

(p ⇒ q) ≡ ¬ p ∨ q

µp∧ (p ⇒ q) ⊆ µq

so, p ∧ (p ⇒ q) |= q.

therefore, Modus ponens is sound.

Ideally, we want inference procedures that are both sound and complete. Is
MP complete? We will show that MP is not complete using proof by counter
example.

Proof (by counter example)
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cs472 meets at 1pm.

classes at ISU meet on MWF or TR.

Joe has to work at 1pm on RF.

Can Joe take cs472?

We will represent these facts in logic:

T ⇒ tr(cs472, 1pm) ∨mwf(cs472, 1pm)
tr(cs472, 1pm) ∧ busy(t, 1pm) ⇒ conflict(cs472)
tr(cs472, 1pm) ∧ busy(r, 1pm) ⇒ conflict(cs472)
mwf(cs472, 1pm) ∧ busy(m, 1pm) ⇒ conflict(cs472)
mwf(cs472, 1pm) ∧ busy(w, 1pm) ⇒ conflict(cs472)
mwf(cs472, 1pm) ∧ busy(f, 1pm) ⇒ conflict(cs472)
T ⇒ busy(r, 1pm)
T ⇒ busy(f, 1pm)

Goal: To prove that “conflict(cs472)”. (It cannot be done with MP) We cannot
show that conflict(cs472) holds given the axioms using MP alone. This is a
situation where something can be shown to be correct but cannot be derived
just based on the rule.

So, we need to modify MP so that we can have a complete inference rule that
is also sound.

1.4 Toward a sound and complete inference

rule

p⇒ q

p

q

This is sound.

Since p doesn’t have to be an atomic sentence, we can rewrite this inference
rule in a more general form:
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a1 ∧ a2 ∧ a3 · · · ai−1 ∧ ai ∧ ai+1 · · · an ⇒ b

T ⇒ ai
a1 ∧ a2 ∧ a3 · · · ai−1 ∧ ai+1 · · · an ⇒ b

It is easy to show that the above rule is sound.

In the following, assume c = ai:

a1 ∧ a2 ∧ a3 · · · ai−1 ∧ ai ∧ ai+1 · · · an ⇒ b

d1 ∧ d2 · · · dm ⇒ c

a1 ∧ a2 ∧ a3 · · · ai−1 ∧ ai+1 · · · an ∧ d1 ∧ d2 · · · dm ⇒ b

Sentences of the form a1∧a2∧· · · an ⇒ b are called Horn Clauses, and it can be
shown that the inference rule is sound and complete for Horn Clauses. What
if the sentences we have to deal with are not Horn Clauses?

Theorem M.P. is not complete for sentences that contain disjunctions.

We will extend MP to obtain an inference rule that is both sound and complete.

First of all, b doesn’t have to be atomic, too. So, we can have the following
sentences:
a1 ∧ a2 ∧ · · · ai−1 ∧ ai ∧ ai+1 ∧ · · · an ⇒ b1 ∨ b2 ∨ · · · ∨ bk
d1 ∧ d2 · · · dm ⇒ c (assume ai = c)
—————————————————————————————
(a1 ∧ a2 · · · ai−1 ∧ ai+1 · · · ∧ an) ∧ (d1 ∧ d2 · · · ∧ dm) ⇒ b1 ∨ b2 · · · ∨ bk

As before, this rule can be shown to be sound.

a1 ∧ a2 ∧ · · · ai−1 ∧ ai ∧ ai+1 ∧ · · · an ⇒ b1 ∨ b2 ∨ · · · ∨ bk
d1 ∧ d2 · · · dm ⇒ c1 ∨ c2 ∨ · · · cj−1 ∨ cj ∨ cj+1 ∨ · · · cl
—————————————————————————————–
(a1 ∧ a2 · · · ai−1 ∧ ai+1 · · · ∧ an) ∧ (d1 ∧ · · · ∧ dm) ⇒
(b1 ∨ b2 · · · ∨ bk) ∨ (c1 ∨ c2 ∨ · · · cj−1 ∨ cj+1 ∨ · · · cl) (assume cj = ai)
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This is the so-called resolution principle which is sound and complete for propo-
sitional logic. This rule is used to show that conflict(cs472) can be derived from
the axioms.

1.5 Example

To show that conflict(cs472) can be derived from the following axioms using
resolution principle.

T → tr(cs472, 1pm) ∨ mwf(cs472, 1pm) (1.1)

busy(m, 1pm) ∧mwf(cs472, 1pm) =⇒ conflict(cs472) (1.2)

busy(w, 1pm) ∧mwf(cs472, 1pm) =⇒ conflict(cs472) (1.3)

busy(f, 1pm) ∧mwf(cs472, 1pm) =⇒ conflict(cs472) (1.4)

busy(t, 1pm) ∧ tr(cs472, 1pm) =⇒ conflict(cs472) (1.5)

busy(r, 1pm) ∧ tr(cs472, 1pm) =⇒ conflict(cs472) (1.6)

T → busy(r, 1pm) (1.7)

T → busy(f, 1pm) (1.8)

Goal: to show conflict(cs472).

Using equations (11.4) and (11.8)

busy(f, 1pm) ∧mwf(cs472, 1pm) =⇒ conflict(cs472)

T → busy(f, 1pm)

mwf(cs472, 1pm) =⇒ conflict(cs472) (1.9)

Using equations (11.6) and (11.7)

busy(r, 1pm) ∧ tr(cs472, 1pm) =⇒ conflict(cs472)

T → busy(r, 1pm)

tr(cs472, 1pm) =⇒ conflict(cs472) (1.10)

Using equations (11.10) and (11.1)

tr(cs472, 1pm) =⇒ conflict(cs472)

T → tr(cs472, 1pm) ∨mwf(cs472, 1pm)
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T → conflict(cs472) ∨mwf(cs472, 1pm) (1.11)

Using equations (11.9) and (11.11)

mwf(cs472, 1pm) =⇒ conflict(cs472)

T → conflict(cs472) ∨mwf(cs472, 1pm)

T → conflict(cs472) ∨ conflict(cs472)

Which implies
T → conflict(cs472)

the required result.

Note:
1. This process involves search of sentences to cencel out appropriate terms.
2. This is a machenical process.

1.6 Variables and Quantifiers

We need 2 things before we can put together a general theorem proving proce-
dure.

Unification to handle variables etc.

Transformation of arbitrary FOPL sentences into clause normal form(CNF)

Unification

Consider the following expressions

p = P (x, f(y), B)

q = P (z, f(w), B)
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We can unify p and q by substituting x for z and y for w in q. The resulting
substitutions are represented by a binding list (or a substitution list) of the
form {ei|vi} where ei is a term and vi is a variable ( terms are constants,
variables, functional expressions).
In the above example the binding list is

σ = {x|z, y|w}(readas“xforzandyforw′′)

so that q|σ = p which means if σ is substituted in q, we get p.

Examples

(1) p1 = P (x, f(y), B) q1 = P (A, f(w), B)
The substitutions are given by σ = {A|x,w|y}.
We can only substitute a constant for a variable but not the other way round.

(2) p2 = P (A,B) q2 = Q(A,B)
p2 and q2 cannot be unified because P and Q are different predicates. σ is
undefined for this example.

(3) p3 = P (A, f(x)) q3 = P (A, x)
In general they cannot be unified because f(x) contains variable x.

(4) p4 = P (A, f(x)) q4 = P (A, y)
Can be unified with σ = {f(x)|y} We can only substitute f(x) for y but not the
other way round, because f(x) could be a constant.

(5) p5 = P (x, y, z, f(w)) q5 = P (A, y, z, f(u))
The substitution list σ = {A|x, u|w} is a Most General Unifier of p5 and q5. σ
is more general than say {A|x,B|y, u|w}
e.g.:
p = P [f(x, g(A, y)), g(A, y)]) q = P [f(x, z), z] the MGU (Most General Unifier)
of p and q is {g(A, y)|z}.

(6) p6 = P (x, y, z, f(w)) q6 = P (A, y, z, g(w))
p6 and q6 can not be unified because f and g are different functions.
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(7) p7 = P (A, y) q7 = P (B, y)
p7 and q7 can not be unified because we can’t substitute a constant for a
constant.

(8) p8 = P (A, y) q8 = P (x,B)
Can be unified with σ = {A|x,B|y}

Generally speaking, we are interested in the most general unifier (mgu) of the
two expressions. So, σ = {A|x,w|y} is less general than σ

′

= {z|x,w|y}.

1.7 Clause Normal Form

This is the general form of resolution principle:
¬a1 ∨ ¬a2 · · · ¬ai−1 ∨ ¬ai ∨ ¬ai+1 · · · ¬an ∨ b1 ∨ b2 · · · ∨ bk
¬c1∨¬c2∨· · · ¬cm∨d1∨d2∨· · ·∨dj−1∨dj ∨dj+1∨· · ·∨dl (assume ai|σ = dj|σ)
———————————————————————————————
(¬a1 ∨ ¬a2 · · · ¬ai−1 ∨ ¬ai+1 · · · ¬an) ∨ (b1 ∨ b2 ∨ · · · bk)∨
(¬c1 ∨ ¬c2 · · · ¬cn) ∨ (d1 ∨ d2 ∨ · · · dj−1 ∨ dj+1 ∨ dl)|σ

Question:
Can we convert arbitrary FOPL sentences into a more regular form, i.e., clause
normal form?

Theorem: Given a set of sentences S in FOPL, ∃ a set S’ of sentences in clause

normal form such that whenever S|= q, S’|= q.

Proof: We will provide an algorithm that performs this transformation with
the following eample.

Example:

Original sentence: ∀x[B(x) ∧H(x) ⇒W (x) ∨ [∃zM(z, x) ∧ ¬∃zG(z, x)]]

1. Remove “⇒” using a⇒ b⇔ ¬a ∨ b

We now have: ∀x[¬(B(x) ∧H(x)) ∨W (x) ∨ [∃zM(z, x) ∧ ¬∃zG(z, x)]]

2. Move negations down to the atomic level.
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Recall the following properties:
¬(¬a) ⇔ a

¬(a ∧ b) ⇔ ¬a ∨ ¬b
¬(a ∨ b) ⇔ ¬a ∧ ¬b
¬(∀xP (x)) ⇔ ∃x(¬P (x))
¬(∃xP (x)) ⇔ ∀x(¬P (x))
(Infinitary versions of DeMorgan’s Law)

Simplifying with these properties, we now have:
∀x[¬B(x) ∨ ¬H(x) ∨ [W (x) ∨ ∃zM(z, x) ∧ ∀z¬G(z, x)]]

3. Standardize Variables

Standardize the variables apart so that each quantifier has a different variable
associated with it. We have:
∀x[¬B(x) ∨ ¬H(x) ∨W (x) ∨ [∃zM(z, x) ∧ ∀w¬G(w, x)]]

4. Eliminate ’∃’ using Skolemization

Skolemization is explained in greater detail after this example. The idea is
to replace existentially quantified variables with a unique function, a skolem
function, whose variables are the universally quantified variables included in
the scope of ∃. The following example demonstrates this.

Consider ∃x housep(John, x)

There is a house that belongs to John.
This assertion is about the existence of an object (whose identity is dependent
on John) that satisfies the predicate housep. Suppose we imagine a function
which accepts John as an argument and returns this object. Let this function
be house of(John).

Given this function, we could write:
housep[John, house of(John)]

Such functions which allow us to eliminate ’∃’ are called Skolem functions
(after the Dutch mathematician Thoralf Skolem).

In our case, ∀x∃zM(z, x) since z depends on x, we can replace z with f(x).
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Using skolemization, we now have: ∀x[¬B(x)∨¬H(x)∨W (x)∨[M(f(x), x) ∧ ∀w¬G(w, x)]]

5. Move all universally quantified variables to the start of the expression (to
the left).

We now have: ∀x∀w[¬B(x) ∨ ¬H(x) ∨W (x) ∨ [M(f(x), x) ∧ ¬G(w, x)]]

6. Drop the quantifiers (with the understanding that all variables are univer-
sally quantified).

We now have: ¬B(x) ∨ ¬H(x) ∨W (x) ∨ [M(f(x), x) ∧ ¬G(w, x)]

7. Distribute ∨ and ∧ to write the expression as a conjunction of disjuncts.

Recall: (a ∨ (b ∧ c)) ≡ (a ∨ b) ∧ (a ∨ c)

We now have: [¬B(x) ∨ ¬H(x) ∨W (x) ∨M(f(x), x)]∧[¬B(x) ∨ ¬H(x) ∨W (x) ∨ ¬G(w, x)]

8. a. Drop the ∧ and replace each conjunct as a separate clause.
b. Rename the variables in each clause.

We now have:
¬B(x) ∨ ¬H(x) ∨W (x) ∨M(f(x), x)
¬B(y) ∨ ¬H(y) ∨W (y) ∨ ¬G(z, y)
The equations are now in Clause Normal Form.

1.8 More Examples of Skolemization

∀y∀z∃xP (x, y, z) becomes ∀y∀zP (f(y, z), y, z)

Rule: Replace each existentially quantified variable by a skolem function of
those universally quantified variables that include the existential quantifier in
their scope.

[∀wP (w)] ⇒ ∃zQ(z,A)
becomes: [∀wP (w)] ⇒ Q(k,A), where k is a skolem constant such that a

function of zero arguments f() = k.

∀x, y, u[∃z[P (x, y, z) ⇒ R(x, y, u, z)]]
becomes: ∀x, y, u[P (x, y, f(x, y, u)) ⇒ R(x, y, u, f(x, y, u))]
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[∀wQ(w)] ⇒ ∃x∃y∃z[P (x, y, z) ⇒ ∀uR(x, y, u, z)]
becomes: [∀wQ(w)] ⇒ [P (c0, c1, c2) ⇒ ∀uR(c0, c1, u, c2)]
where c0, c1, c2 are skolem constants

2 AUTOMATED THEOREM PROVING IN

FOPL

In order to prove a theorem we negate the theorem and add it to the set of
axioms. Then, by repeated application of the resolution principle, if we can
derive a null clause (a contradiction), then the theorem is true. So below S

entails q can be proved by adding S ∨ ¬q to the set of axioms and deriving a
contradiction.

S |= q ⇐⇒ S ∪ ¬q resolves to null clause.

Example:
If a course is interesting, some students are happy.
if a course has a final, no student is happy.

Prove: If a course has a final, then it is not interesting.

Putting this in FOPL we get:

1. ∀cInteresting(c) ⇒ ∃s[Student(s, c) ∧Happy(s)]
2. ∀s∀c[Final(c) ∧ Student(s, c) ⇒ ¬Happy(s)]

Theorem to prove : ∀cF inal(c) ⇒ ¬Interesting(c)
Negation of theorem :
3. ¬[∀cF inal(c) ⇒ ¬Interesting(c)]

By inspection we can translate the above into clause normal form :
a. ¬Interesting(c) ∨ Student(skf(c), c)
b. ¬Interesting(x) ∨ happy(skf(x))
c. ¬Final(z) ∨ ¬Student(s, z) ∨ ¬Happy(s)
d. Final(skφ)
e. Interesting(skφ)

a. ¬Interesting(c) ∨ Student(skf(c), c)
e. Interesting(skφ) σ = {skφ|c}
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—————————————————————
f. [Student(skf(skφ), skφ)]
c. ¬Final(z) ∨ ¬Student(s, z) ∨ ¬Happy(s) σ = {skf(skφ)|s, skφ|z}
—————————————————————-
g. [¬Final(skφ) ∨ ¬Happy(skf(skφ))]
d. Final(skφ) σ = {}
————————————————————
h. ¬Happy(skf(skφ))
b. ¬Interesting(x) ∨Happy(skf(x)) σ = {skφ|x}
—————————————————————————
i. ¬Interesting(skφ)
e. Interesting(skφ)
———————————-
[Null clause]

Therefore we have a contradiction and so we have a proof that if a course has
a final, then it is not interesting.

3 SEARCH CONTROL IN THEORM

PROVING

We know that repeated applications of the resolution inference rule will find a
proof if one exits, but we have no guarantee of the efficiency of this process. In
this section we look at several stategies that have been used to guide the search
toward a proof.

3.1 Unit Preference

This strategy prefers to do resolutions where one of the sentences is a single
literal (also known as a unit clause). The idea behind the strategy is that
we are trying to produce a very short sentence, True ⇒ False, and therefore if
possible pick one of the clauses that has a single literal at each reaolution step.

Example: Consider the clauses p;
¬p∨¬q∨r; and p∨r. In this case, unit preference results in selection of the first
clause over the third as a candidate for resolution against the second clause.
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3.2 Set of Support

Definition: A clause cj ∈ set of support if cj ∈ Negated Theorem(set of
clauses that correspond to the negated theorm) or at least one parent of cj ∈
set of support.

At each step, one of the parent clauses is chosen from the set of support.

Example:
Axioms: I(A), D(A), ¬R(x) ∨ L(x), ¬D(y) ∨ ¬L(y)
Negated theorem: ¬I(z) ∨R(z)

While running inference, at least one of the clauses is in the set of support.
¬I(z) ∨R(z)
I(A) σ = {A|z}
—————————————–
R(A)
¬R(x) ∨ L(x) σ = {A|x}
—————————————–
L(A)
¬D(y) ∨ ¬L(y) σ = {A|y}
—————————————–
¬D(A)
D(A)
——————-
[Null clause]

Theorem: Set of support search control strategy is complete (it is guaranteed
to derive a null clause using the axioms and negated theorem, whenever the
theorem is true) when used with resolution principle.

3.3 Other Simplification Strategies

Clauses that have certain properties can be eliminated even before they are
even considered as candidates for resolution.
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1. Always eliminate tautologies.
e.g. Clause of the form D(x) ∨ ¬D(x) can be disregarded during the proof

2. Eliminate clauses that contain “pure” literals (those literals whose nega-
tion does not appear in any other clause).
e.g.
a. I(z)
b. D(z)
c. ¬L(x) ∨ P (x)
d. ¬I(A)
e. ¬P (A)
Clauses b and c are eliminated since ¬D(z) and L(x) do not appear in any
other clause.
This will not affect the soundness of the proof procedure.

3. Eliminate clauses that are subsumed by other clauses.

Definition: A clause φ subsumes a clause ψ iff ∃ a substitution σ such that
φ|σ ⊆ ψ

Examples:
1.P (x) subsumes {P (x), D(y)}
i.e. {P (x)}|σ={} ⊆ {P (x), D(y)}
2. P (x) ∨Q(y) subsumes P (f(A)) ∨Q(A) ∨R(z) where σ = {f(A)|x,A|y}

Theorem: A set of clauses S′ that is obtained by eliminating every clause c′

that is subsumed by some other clause c in a set of clauses S is unsatisfiable iff
S′ is unsatisfiable.
Proof:
Let S be a set of clauses such that S |= q

Suppose S = {c1, c2, c3, ..., cn, c, c
′}

Let S′ = {c1, c2, ..., cn, c} = S − {c′}
Let S′′ = {c1, c2, ..., cn} = S − {c, c′} = S′ − {c}
Let c subsumes c′

WLOG, let c = l1, c
′ = l1 ∨ l2

(for the time being, assume that l1 and l2 are ground literals.)
Let Ms = the set of models in which S holds.
Let M ′

s = the set of models in which S′ holds.
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Let M ′′
s = the set of models in which S′′ holds.

So, in every model m ∈Ms

c1 ∧ c2 ∧ c3... ∧ cn ∧ c ∧ c′ must hold.
or, S′′ must hold and c and c′ must hold.
Let Mc = set of models in which c holds.
Let M ′

c = set of models in which c′ holds.

Since c subsumes c′, c1 = l1 and c′ = l1 ∨ l2
or Mc ∩M

′
c =Mc

Ms = the set of models in which S holds.
Ms =M ′′

s ∩Mc ∩M
′
c =M ′′

s ∩Mc =M ′
s

Thus S′ holds iff S holds. That means if S |= q, S′ |= q and vice versa. ✷

Thus we can eliminate clauses subsumes by other clauses in any refutation-
complete search strategy.

In set of support, we need to ensure that if the clause eliminated was a member
of the set of support, but the other was not, the latter needs to be added to
the set of support to guarantee completeness.

Observation: FOPL is semi-decidable
If a theorem locically follows from a set of axioms, then a proof can be found
in a finite time. But if a theorem does not follow from the axioms, the search
may not terminate. Contrast this with propositional logic which is decidable
for any finite propositional language.
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4 GREEN’S TRICK FOR ANSWER

EXTRACTION

In many applications (e.g., deductive databases), we are interested not sim-
ply in proving some assertion about some entities, but in finding instances of
such entities that make the assertion true. For instance, consider the assertion
∃xAt(Daisy, x) which we can prove from the following axioms: ∀xAt(Bumstead, x) ⇒
At(Daisy, x)
At(Bumstead, couch)

What if we wanted to also know Daisy’s current whereabouts. We can think of
this in terms of answering the query: Query : At(Daisy, z)?.

This can be accomplished with a simple trick (called Green’s trick) as follows.
We prove the theorem ∃zAt(Daisy, z) as usual using resolution by refutation.
In parallel, we start with the query we want answered At(Daisy, z) and ap-
ply every substitution used in proving the theorem in exactly the same or-
der, into the query expression. The readers are encouraged to verify that this
transforms the query expression into At(Daisy, Couch), thereby answering the
query. Green’s trick finds use in deductive databases and question answering
systems.


