
To appear as a part of Prof. Ali Ghodsi’s material on deep learning.

Attention Mechanism, Transformers, BERT, and GPT: Tutorial and Survey

Benyamin Ghojogh BGHOJOGH@UWATERLOO.CA

Department of Electrical and Computer Engineering,
Machine Learning Laboratory, University of Waterloo, Waterloo, ON, Canada

Ali Ghodsi ALI.GHODSI@UWATERLOO.CA

Department of Statistics and Actuarial Science & David R. Cheriton School of Computer Science,
Data Analytics Laboratory, University of Waterloo, Waterloo, ON, Canada

Abstract
This is a tutorial and survey paper on the atten-
tion mechanism, transformers, BERT, and GPT.
We first explain attention mechanism, sequence-
to-sequence model without and with attention,
self-attention, and attention in different areas
such as natural language processing and com-
puter vision. Then, we explain transformers
which do not use any recurrence. We ex-
plain all the parts of encoder and decoder in
the transformer, including positional encoding,
multihead self-attention and cross-attention, and
masked multihead attention. Thereafter, we in-
troduce the Bidirectional Encoder Representa-
tions from Transformers (BERT) and Generative
Pre-trained Transformer (GPT) as the stacks of
encoders and decoders of transformer, respec-
tively. We explain their characteristics and how
they work.

1. Introduction
When looking at a scene or picture, our visual system, so as
a machine learning model (Li et al., 2019b), focuses on or
attends to some specific parts of the scene/image with more
information and importance and ignores the less informa-
tive or less important parts. For example, when we look at
the Mona Lisa portrait, our visual system attends to Mona
Lisa’s face and smile, as Fig. 1 illustrates. Moreover, when
reading a text, especially when we want to try fast read-
ing, one technique is skimming (Xu, 2011) in which our
visual system or a model skims the data with high pacing
and only attends to more informative words of sentences
(Yu et al., 2018). Figure 1 shows a sample sentence and
highlights the words to which our visual system focuses

Figure 1. Attention in visual system for (a) seeing a picture by
attending to more important parts of scene and (b) reading a sen-
tence by attending to more informative words in the sentence.

more in skimming.
The concept of attention can be modeled in machine learn-
ing where attention is a simple weighting of data. In the
attention mechanism, explained in this tutorial paper, the
more informative or more important parts of data are given
larger weights for the sake of more attention. Many of the
state-of-the-art Natural Language Processing (NLP) (In-
durkhya & Damerau, 2010) and deep learning techniques
in NLP (Socher et al., 2012) use attention.
Transformers are also autoencoders which encode the in-
put data to a hidden space and then decode those to another
domain. Transfer learning is widely used in NLP (Wolf
et al., 2019b). Transformers can also be used for trans-
fer learning. Recently, transformers were proposed merely
composed of attention modules, excluding recurrence and
any recurrent modules (Vaswani et al., 2017). This was a
great breakthrough. Prior to the proposal of transformers
with only attention mechanism, recurrent models such as
Long-Short Term Memory (LSTM) (Hochreiter & Schmid-

Attention Mechanism, Transformers, BERT, and GPT: Tutorial and Survey 2

huber, 1997) and Recurrent Neural Network (RNN) (Kom-
brink et al., 2011) were mostly used for NLP. Also, other
NLP models such as word2vec (Mikolov et al., 2013a;b;
Goldberg & Levy, 2014; Mikolov et al., 2015) and GloVe
(Pennington et al., 2014) were state-of-the-art before the
appearance of transformers. Recently, two NLP methods,
named Bidirectional Encoder Representations from Trans-
formers (BERT) and Generative Pre-trained Transformer
(GPT), are proposed which are the stacks of encoders and
decoders of transformer, respectively.
In this paper, we introduce and review the attention mech-
anism, transformers, BERT, and GPT. In Section 2, we in-
troduce the sequence-to-sequence model with and without
attention mechanism as well as the self-attention. Section 3
explains the different parts of encoder and decoder of trans-
formers. BERT and its different variants of BERT are in-
troduced in Section 4 while GPT and its variants are intro-
duced in Section 5. Finally, Section 6 concludes the paper.

2. Attention Mechanism
2.1. Autoencoder and the Context Vector
Consider an autoencoder with encoder and decoder parts
where the encoder gets an input and converts it to a context
vector and the decoder gets the context vector and converts
to an output. The output is related to the input through
the context vector in the so-called hidden space. Figure
2 illustrates an autoencoder with the encoder (left part of
autoencoder), hidden space (in the middle), and decoder
(right part of autoencoder) parts. For example, the input
can be a sentence or a word in English and the output is
the same sentence or word but in French. Assume the word
“elephant” in English is fed to the encoder and the word
“l’éléphant” in French is output. The context vector mod-
els the concept of elephant which also exists in the mind
of human when thinking to elephant. This context is ab-
stract in mind and can be referred to any fat, thin, huge,
or small elephant (Perlovsky, 2006). Another example for
transformer is transforming a cartoon image of elephant to
picture of a real elephant (see Fig. 2). As the autoencoder
is transforming data from a domain to a hidden space and
then to another domain, it can be used for domain transfor-
mation (Wang et al., 2020), domain adaptation (Ben-David
et al., 2010), and domain generalization (Dou et al., 2019).
Here, every context is modeled as a vector in the hidden
space. Let the context vector be denoted by c ∈ Rp in the
p-dimensional hidden space.

2.2. The Sequence-to-Sequence Model
Consider a sequence of ordered tokens, e.g., a sequence
of words which make a sentence. We want to transform
this sequence to another related sequence. For example,
we want to take a sentence in English and translate it to
the same sentence in French. This model which trans-

Figure 2. Using an autoencoder for Transformation of one domain
to another domain. The used images are taken from the PACS
dataset (Li et al., 2017).

forms a sequence to another related sequence is named the
sequence-to-sequence model (Bahdanau et al., 2015).
Suppose the number of words in a document or
considered sentence be n. Let the ordered in-
put tokens or words of the sequence be denoted by
{x1,x2, . . . ,xi−1,xi, . . . ,xn} and the output sequence
be denoted by {y1,y2, . . . ,yi−1,yi, . . . ,yn}. As Fig. 3-a
illustrates, there exist latent vectors, denoted by {li}ni=1,
in the decoder part for every word. In the sequence-to-
sequence model, the probability of generation of the i-th
word conditioning on all the previous words is determined
by a function g(.) whose inputs are the immediate previous
word yi−1, the i-th latent vector li, and the context vector
c:

P(yi|y1, . . . ,yi−1) = g(yi−1, li, c). (1)

Figure 3-a depicts the sequence-to-sequence model. In the
sequence-to-sequence model, every word xi produces a
hidden vector hi in the encoder part of the autoencoder.
The hidden vector of every word, hi, is fed to the next hid-
den vector, hi+1, by a projection matrix W . In this model,
for the whole sequence, there is only one context vector
c which is equal to the last hidden vector of the encoder,
i.e., c = hn. Note that the encoder and decoder in the
sequence-to-sequence model can be any sequential model
such as RNN (Kombrink et al., 2011) or LSTM (Hochreiter
& Schmidhuber, 1997).

2.3. The Sequence-to-Sequence Model with Attention
The explained sequence-to-sequence model can be with at-
tention (Chorowski et al., 2014; Luong et al., 2015). In the
sequence-to-sequence model with attention, the probability
of generation of the i-th word is determined as (Chorowski
et al., 2014):

P(yi|y1, . . . ,yi−1) = g(yi−1, li, ci). (2)

Figure 3-b shows the sequence-to-sequence model with
attention. In this model, in contrast to the sequence-to-
sequence model which has only one context vector for the
whole sequence, this model has a context vector for every
word. The context vector of every word is a linear combi-
nation, or weighted sum, of all the hidden vectors; hence,

Attention Mechanism, Transformers, BERT, and GPT: Tutorial and Survey 3

Figure 3. Sequence-to-sequence model (a) without and (b) with attention.

the i-th context vector is:

ci =

n∑
j=1

aijhj , (3)

where aij ≥ 0 is the weight of hj for the i-th context
vector. This weighted sum for a specific word in the se-
quence determines which words in the sequence have more
effect on that word. In other words, it determines which
words this specific word “attends” to more. This notion of
weighted impact, to see which parts have more impact, is
called “attention”. It is noteworthy that the original idea of
arithmetic linear combination of vectors for the purpose of
word embedding, similar to Eq. (3), was in the Word2Vec
method (Mikolov et al., 2013a;b).
The sequence-to-sequence model with attention considers
a notion of similarity between the latent vector li−1 of the
decoder and the hidden vector hj of the encoder (Bahdanau
et al., 2015):

R 3 sij := similarity(li−1,hj). (4)

The intuition for this similarity score is as follows. The
output word yi depends on the previous latent vector li−1
(see Fig. 3) and and the hidden vector hj depends on the
input word xj . Hence, this similarity score relates to the
impact of the input xj on the output yi. In this way, the
score sij shows the impact of the j-th word to generate the
i-th word in the sequence. This similarity notion can be
a neural network learned by backpropagation (Rumelhart
et al., 1986).

In order to make this score a probability, these scores
should sum to one; hence, we make its softmax form as
(Chorowski et al., 2014):

R 3 aij :=
esij∑n
k=1 e

sik
. (5)

In this way, the score vector [ai1, ai2, . . . , ain]
> behaves

as a discrete probability distribution. Therefore, In Eq. (3),
the weights sum to one and the weights with higher values
attend more to their corresponding hidden vectors.

2.4. Self-Attention
2.4.1. THE NEED FOR COMPOSITE EMBEDDING

Many of the previous methods for NLP, such as word2vec
(Mikolov et al., 2013a;b; Goldberg & Levy, 2014; Mikolov
et al., 2015) and GloVe (Pennington et al., 2014), used to
learn a representation for every word. However, for un-
derstanding how the words relate to each other, we can
have a composite embedding where the compositions of
words also have some embedding representation (Cheng
et al., 2016). For example, Fig. 4 shows a sentence which
highlights the relation of words. This figure shows, when
reading a word in a sentence, which previous words in the
sentence we remember more. This relation of words shows
that we need to have a composite embedding for natural
language embedding.

2.4.2. QUERY-RETRIEVAL MODELING

Consider a database with keys and values where a query
is searched through the keys to retrieve a value (Garcia-
Molina et al., 1999). Figure 5 shows such database. We

Attention Mechanism, Transformers, BERT, and GPT: Tutorial and Survey 4

Figure 4. The relation of words in a sentence raising the need for
composite embedding. The credit of this image for (Cheng et al.,
2016).

Figure 5. Query-retrieval in a database.

can generalize this hard definition of query-retrieval to a
soft query-retrieval where several keys, rather than only
one key, can be corresponded to the query. For this, we
calculate the similarity of the query with all the keys to see
which keys are more similar to the query. This soft query-
retrieval is formulated as:

attention(q, {ki}ni=1, {vi}ni=1) :=

n∑
i=1

aivi, (6)

where:

R 3 si := similarity(q,ki), (7)

R 3 ai := softmax(si) =
esi∑n

k=1 e
sk
, (8)

and q, {ki}ni=1, and {vi}ni=1 denote the query, keys, and
values, respectively. Recall that the context vector of a
sequence-to-sequence model with attention, introduced by
Eq. (3), was also a linear combination with weights of nor-
malized similarity (see Eq. (5)). The same linear combina-
tion is the Eq. (6) where the weights are the similarity of
query with the keys. An illustration of Eqs. (6), (7), and
(8) is shown in Fig. 6. Note that the similarity si can be
any notion of similarity. Some of the well-known similarity

Figure 6. Illustration of Eqs. (6), (7), and (8) in attention mecha-
nism. In this example, it is assumed there exist five (four keys and
one query) words in the sequence.

measures are (Vaswani et al., 2017):

inner product: si = q>ki, (9)

scaled inner product: si =
q>ki√
p
, (10)

general inner product: si = q>Wki, (11)

additive similarity: si = w>q q +w>k ki, (12)

where W ∈ Rp×p, wq ∈ Rp, and wk ∈ Rp are some
learnable matrices and vectors. Among these similarity
measures, the scaled inner product is used most often.
The Eq. (6) calculates the attention of a target word (or
query) with respect to every input word (or keys) which are
the previous and forthcoming words. As Fig. 4 illustrates,
when processing a word which is considered as the query,
the other words in the sequence are the keys. Using Eq.
(6), we see how similar the other words of the sequence
are to that word. In other words, we see how impactful the
other previous and forthcoming words are for generating a
missing word in the sequence.
We provide an example for Eq. (6), here. Consider a sen-
tence “I am a student”. Assume we are processing the word
“student” in this sequence. Hence, we have a query cor-
responding to the word “student”. The values are corre-
sponding to the previous words which are “I”, “am”, and
“a”. Assume we calculate the normalized similarity of the
query and the values and obtain the weights 0.7, 0.2, and
0.1 for “I”, “am”, and “a”, respectively, where the weights
sum to one. Then, the attention value for the word “stu-
dent” is 0.7vI + 0.2vam + 0.1va.

2.4.3. ATTENTION FORMULATION

Let the words of a sequence of words be in a d-dimensional
space, i.e., the sequence is {xi ∈ Rd}ni=1. This d-

Attention Mechanism, Transformers, BERT, and GPT: Tutorial and Survey 5

dimensional representation of words can be taken from any
word-embedding NLP method such as word2vec (Mikolov
et al., 2013a;b; Goldberg & Levy, 2014; Mikolov et al.,
2015) or GloVe (Pennington et al., 2014). The query, key,
and value are projection of the words into p-dimensional,
p-dimensional, and r-dimensional subspaces, respectively:

Rp 3 qi = W>
Q xi, (13)

Rp 3 ki = W>
K xi, (14)

Rr 3 vi = W>
V xi, (15)

where WQ ∈ Rd×p, WK ∈ Rd×p, and W V ∈
Rd×r are the projection matrices into the low-dimensional
query, key, and value subspaces, respectively. Consider
the words, queries, keys, and values in matrix forms as
X := [x1, . . . ,xn] ∈ Rd×n, Q := [q1, . . . , qn] ∈ Rp×n,
K := [k1, . . . ,kn] ∈ Rp×n, and V := [v1, . . . ,vn] ∈
Rr×n, respectively. It is noteworthy that in the similar-
ity measures, such as the scaled inner product, we have
the inner product q>ki. Hence, the similarity measures
contain q>ki = x>i WQ W>

K xi. Note that if we had
WQ = WK , this would be a kernel matrix so its be-
haviour is similar to the kernel for measuring similarity.
Considering Eqs. (7), and (8) and the above definitions,
the Eq. (6) can be written in matrix form, for the whole
sequence of n words, as:

Rr×n 3 Z := attention(Q,K,V)

= V softmax(
1
√
p
Q>K),

(16)

where Z = [z1, . . . ,zn] is the attention values, for all the
words, which shows how much every word attends to its
previous and forthcoming words. In Eq. (16), the softmax
operator applies the softmax function on every row of its
input matrix so that every row sums to one.
Note that as the queries, keys, and values are all from the
same words in the sequence, this attention is referred to as
the “self-attention” (Cheng et al., 2016).

2.5. Attention in Other Fields Such as Vision and
Speech

Note that the concept of attention can be used in any field of
research and not merely in NLP. The attention concept has
widely been used in NLP (Chorowski et al., 2014; Luong
et al., 2015). Attention can be used in the field of com-
puter vision (Xu et al., 2015). Attention in computer vision
means attending to specific parts of image which are more
important and informative (see Fig. 1). This simulates at-
tention and exception in human visual system (Summer-
field & Egner, 2009) where our brain filters the observed
scene to focus on its important parts.
For example, we can generate captions for an input image
using an autoencoder, illustrated in Fig. 7-a, with the at-
tention mechanism. As this figure shows, the encoder is a

Convolutional Neural Network (CNN) (LeCun et al., 1998)
for extracting visual features and the decoder consists of
LSTM (Hochreiter & Schmidhuber, 1997) or RNN (Kom-
brink et al., 2011) modules for generating the caption text.
Literature has shown that the lower convolutional layers in
CNN capture low-level features and different partitions of
input images (Lee et al., 2009). Figure 8 shows an exam-
ple of extracted features by CNN layers trained on facial
images. Different facial organs and features have been ex-
tracted in lower layers of CNN. Therefore, as Fig. 7-b
shows, we can consider the extracted low-layer features,
which are different parts of image, as the hidden vectors
{hj}n

′

j=1 in Eq. (4), where n′ is the number of features for
extracted image partitions. Similarity with latent vectors
of decoder (LSTM) is computed by Eq. (4) and the query-
retrieval model of attention mechanism, introduced before,
is used to learn a self-attention on the images. Note that,
as the partitions of image are considered to be the hidden
variables used for attention, the model attends to important
parts of input image; e.g., see Fig. 1.
Note that using attention in different fields of science is
usually referred to as “attend, tell, and do something...”.
Some examples of applications of attention are caption
generation for images (Xu et al., 2015), caption gener-
ation for images with ownership protection (Lim et al.,
2020), text reading from images containing a text (Li et al.,
2019a), translation of one image to another related image
(Zhang et al., 2018; Yang et al., 2019a), visual question
answering (Kazemi & Elqursh, 2017), human-robot social
interaction (Qureshi et al., 2017), and speech recognition
(Chan et al., 2015; 2016).

3. Transformers
3.1. The Concept of Transformation
As was explained in Section 2.1, we can have an autoen-
coder which takes an input data, embeds data to a con-
text vector which simulates a concept in human’s mind
(Perlovsky, 2006), and generates an output. The input and
output are related to each other through the context vector.
In other words, the autoencoder transforms the input to a
related output. An example for transformation is translat-
ing a sentence from a language to the same sentence in an-
other language. Another example for transformer is image
captioning in which the image is transformed to its caption
explaining the content of image. A pure computer vision
example for transformation is transforming a day-time in-
put image to the same image but at night time.
An autoencoder, named “transformer”, is proposed in the
literature for the task for transformation (Vaswani et al.,
2017). The structure of transformer is depicted in Fig. 9.
As this figure shows, a transformer is an autoencoder con-
sisting of an encoder and a decoder. In the following, we
explain the details of encoder and decoder of a transformer.

Attention Mechanism, Transformers, BERT, and GPT: Tutorial and Survey 6

Figure 7. Using attention in computer vision: (a) transformer of image to caption with CNN for its encoder and RNN or LSTM for
its decoder. The caption for this image is “Elephant is in water”, (b) the convolutional filters take the values from the image for the
query-retrieval modeling in attention mechanism.

Figure 8. The low-level and high-level features learned in the low
and high convolutional layers, respectively. The credit of this im-
age is for (Lee et al., 2009).

3.2. Encoder of Transformer
The encoder part of transformer, illustrated in Fig. 9, em-
beds the input sequence of nwords X ∈ Rd×n into context
vectors with the attention mechanism. Different parts of the
encoder are explained in the following.

3.2.1. POSITIONAL ENCODING

We will explain in Section 3.4 that the transformer in-
troduced here does not have any recurrence and RNN or

LSTM module. As there is no recurrence and no convolu-
tion, the model has no sense of order in sequence. As the
order of words is important for meaning of sentences, we
need a way to account for the order of tokens or words in
the sequence. For this, we can add a vector accounting for
the position to each input word embedding.
Consider the embedding of the i-th word in the sequence,
denoted by xi ∈ Rd. For encoding the position of the i-th
word in the sequence, the position vector pi ∈ Rd can be
set as: 

pi(2j + 1) := cos
(

i

10000
2j
p

)
,

pi(2j) := sin
(

i

10000
2j
p

)
,

(17)

for all j ∈ {0, 1, . . . , bd/2c}, where pi(2j+1) and pi(2j)
denote the odd and even elements of pi, respectively. Fig-
ure 10 illustrates the dimensions of the position vectors
across different positions. As can be seen in this figure,
the position vectors for different positions of words are dif-
ferent as expected. Moreover, this figure shows that the dif-
ference of position vectors concentrate more on the initial
dimensions of vectors. As Fig. 9 shows, for incorporating
the information of position with data, we add the positional
encoding to the input embedding:

xi ← xi + pi. (18)

3.2.2. MULTIHEAD ATTENTION WITH
SELF-ATTENTION

After positional encoding, data are fed to a multihead atten-
tion module with self-attention. The multihead attention is

Attention Mechanism, Transformers, BERT, and GPT: Tutorial and Survey 7

Figure 9. The encoder and decoder parts of a transformer. The
credit of this image is for (Vaswani et al., 2017).

illustrated in Fig. 11. This module applies the attention
mechanism for h times. This several repeats of attention is
for the reason explained here. The first attention determines
how much every word attends to other words. The second
repeat of attention calculates how much every pair of words
attends to other pairs of words. Likewise, the third repeat
of attention sees how much every pair of pairs of words at-
tends to other pairs of pairs of words; and so on. Note that
this measure of attention or similarity between hierarchical
pairs of words reminds us of the maximum mean discrep-
ancy (Gretton et al., 2007; 2012) which measures similarity
between different moments of data distributions.
As Fig. 11 shows, the data, which include positional encod-
ing, are passed from linear layers for obtaining the queries,
values, and keys. These linear layers model linear projec-
tions introduced in Eqs. (13), (15), and (14), respectively.
We have h of these linear layers to generate h set of queries,

Figure 10. The vectors of positional encoding. In this example, it
is assumed that n = 10 (number of positions of words), d = 60,
and p = 100.

Figure 11. Multihead attention with h heads.

values, and keys as:

Rp×n 3 Qi = W>
Q,iX, ∀i ∈ {1, . . . , h}, (19)

Rp×n 3 V i = W>
V,iX, ∀i ∈ {1, . . . , h}, (20)

Rr×n 3Ki = W>
K,iX, ∀i ∈ {1, . . . , h}. (21)

Then, the scaled dot product similarity, defined in Eq. (10)

Attention Mechanism, Transformers, BERT, and GPT: Tutorial and Survey 8

or (16), is used to generate the h attention values {Zi}hi=1.
These h attention values are concatenated to make a new
long flattened vector. Then, by a linear layer, which is a
linear projection, the total attention value, Zt, is obtained:

Zt := W>
O concat(Z1,Z2, . . . ,Zh). (22)

3.2.3. LAYER NORMALIZATION

As Fig. 9 shows, the data (containing positional encoding)
and the total attention value are added:

Z ′t ← Zt +X. (23)

This addition is inspired by the concept of residual intro-
duced by ResNet (He et al., 2016). After this addition, a
layer normalization is applied where for each hidden unit
hi we have:

hi ←
g

σ
(hi − µ), (24)

where µ and σ are the empirical mean and standard devia-
tion over H hidden units:

µ :=
1

H

H∑
i=1

hi, (25)

σ :=

√√√√ H∑
i=1

(hi − µ)2. (26)

This is a standardization which makes the mean zero and
the variance one; it is closely related to batch normalization
and reduces the covariate shift (Ioffe & Szegedy, 2015).

3.2.4. FEEDFORWARD LAYER

Henceforth, let Z ′t denote the total attention after both ad-
dition and layer normalization. We feed Z ′t to a feedfor-
ward network, having nonlinear activation functions, and
then like before, we add the input of feedforward network
to its output:

Z ′′t ← R+Z ′t, (27)

where R denotes the output of feedforward network.
Again, layer normalization is applied and we, henceforth,
denote the output of encoder by Z ′′t . This is the encoding
for the whole input sequence or sentence having the infor-
mation of attention of words and hierarchical pairs of words
to each other.

3.2.5. STACKING

As Fig. 9 shows, the encoder is a stack of N identical lay-
ers. This stacking is for having more learnable parameters
to have enough degree of freedom to learn the whole dic-
tionary of words. Through experiments, a good number of
stacks is found to be N = 6 (Vaswani et al., 2017).

3.3. Decoder of Transformer
The decoder part of transformer is shown in Fig. 9. In the
following, we explain the different parts of decoder.

3.3.1. MASKED MULTIHEAD ATTENTION WITH
SELF-ATTENTION

A part of decoder is the masked multihead attention module
whose input is the output embeddings {yi}ni=1 shifted one
word to the right. Positional encoding is also added to the
output embeddings for including the information of their
positions. For this, we use Eq. (18) where xi is replaced
by yi.
The output embeddings added with the positional encod-
ings are fed to the masked multihead attention module.
This module is similar to the multihead attention mod-
ule but masks away the forthcoming words after a word.
Therefore, every output word only attends to its previous
output words, every pair of output words attends to its pre-
vious pairs of output words, every pair of pairs of output
words attends to its previous pairs of pairs of output words,
and so on. The reason for using the masked version of
multihead attention for the output embeddings is that when
we are generating the output text, we do not have the next
words yet because the next words are not generated yet. It
is noteworthy that this masking imposes some idea of spar-
sity which was also introduced by the dropout technique
(Srivastava et al., 2014) but in a stochastic manner.
Recall Eq. (16) which was used for multihead attention
(see Section 3.2.2). The masked multihead attention is de-
fined as:

Rr×n 3 Zm := maskedAttention(Q,K,V)

= V softmax
(1
√
p

(
Q>K +M

))
,

(28)

where the mask matrix M ∈ Rn×n is:

M(i, j) :=

{
0 if j ≤ i,
−∞ if j > i.

(29)

As the softmax function has exponential operator, the mask
does not have any impact for j ≤ i (because it is multiplied
by e0 = 1) and masks away for j > i (because it is multi-
plied by e−∞ = 0). Note that j ≤ i and j > i correspond
to the previous and next words, respectively, in terms of
position in the sequence.
Similar to before, the output of masked multihead attention
is normalized and then is added to its input.

3.3.2. MULTIHEAD ATTENTION WITH
CROSS-ATTENTION

As Fig. 9 illustrates, the output of masked multihead at-
tention module is fed to a multihead attention module with
cross-attention. This module is not self-attention because

Attention Mechanism, Transformers, BERT, and GPT: Tutorial and Survey 9

Table 1. Comparison of complexities between self-attention and recurrence (Vaswani et al., 2017).
Complexity per layer Sequential operations Maximum path length

Self-Attention O(n2p) O(1) O(1)
Recurrence O(np2) O(n) O(n)

all its values, keys, and queries are not from the same se-
quence but its values and keys are from the output of en-
coder and the queries are from the output of the masked
multihead attention module in the decoder. In other words,
the values and keys come from the processed input embed-
dings and the queries are from the processed output embed-
dings. The calculated multihead attention determines how
much every output embedding attends to the input embed-
dings, how much every pair of output embeddings attends
to the pairs of input embeddings, how much every pair of
pairs of output embeddings attends to the pairs of pairs of
input embeddings, and so on. This shows the connection
between input sequence and the generated output sequence.

3.3.3. FEEDFORWARD LAYER AND SOFTMAX
ACTIVATION

Again, the output of the multihead attention module with
cross-attention is normalized and added to its input. Then,
it is fed to a feedforward neural network with layer nor-
malization and added to its input afterwards. Note that the
masked multihead attention, the multihead attention with
cross-attention, and the feedforward network are stacked
for N = 6 times.
The output of feedforward network passes through a linear
layer by linear projection and a softmax activation function
is applied finally. The number of output neurons with the
softmax activation functions is the number of all words in
the dictionary which is a large number. The outputs of de-
coder sum to one and are the probability of every word in
the dictionary to be the generated next word. For the sake
of sequence generation, the token or word with the largest
probability is the next word.

3.4. Attention is All We Need!
3.4.1. NO NEED TO RNN!
As Fig. 9 illustrates, the output of decoder is fed to the
masked multihead attention module of decoder with some
shift. Note that this is not a notion of recurrence because
it can be interpreted by the procedure of teacher-forcing
(Kolen & Kremer, 2001). Hence, we see that there is not
any recurrent module like RNN (Kombrink et al., 2011)
and LSTM (Hochreiter & Schmidhuber, 1997) in trans-
former. We showed that we can learn a sequence using
the transformer. Therefore, attention is all we need to learn
a sequence and there is no need to any recurrence module.
The proposal of transformers (Vaswani et al., 2017) was a
breakthrough in NLP; the state-of-the-art NLP methods are

all based on transformers nowadays.

3.4.2. COMPLEXITY COMPARISON

Table 1 reports the complexity of operations in the self-
attention mechanism and compares them with those in re-
currence such as RNN. In self-attention, we learn attention
of every word to every other word in the sequence of n
words. Also, we learn a p-dimensional embedding for ev-
ery word. Hence, the complexity of operations per layer
is O(n2p). This is while the complexity per layer in re-
currence is O(np2). Although, the complexity per layer in
self-attention is worse than recurrence, many of its opera-
tions can be performed in parallel because all the words of
sequence are processed simultaneously, as also explained
in the following. Hence, the O(n2p) is not very bad for
being able to parallelize it. That is while the recurrence
cannot be parallelized for its sequential nature.
As for the number of sequential operations, the self-
attention mechanism processes all the n words simultane-
ously so its sequential operations is in the order ofO(1). As
recurrence should process the words sequentially, the num-
ber of its sequential operations is of order O(n). As for
the maximum path length between every two words, self-
attention learns attention between every two words; hence,
its maximum path length is of the order O(1). However,
in recurrence, as every word requires a path with a length
of a fraction of sequence (a length of n in the worst case)
to reach the process of another word, its maximum path
length is O(n). This shows that attention reduces both se-
quential operations and maximum path length, compared
to recurrence.

4. BERT: Bidirectional Encoder
Representations from Transformers

BERT (Devlin et al., 2018) is one of the state-of-the-art
methods for NLP. It is a stack of encoders of transformer
(see Fig. 9). In other words, it is built using transformer en-
coder blocks. Although some NLP methods such as XLNet
(Yang et al., 2019b) have slightly outperformed it, BERT is
still one of the best models for different NLP tasks such
as question answering (Qu et al., 2019), natural language
understanding (Dong et al., 2019), sentiment analysis, and
language inference (Song et al., 2020).
BERT uses the technique of masked language modeling. It
masks 15% of words in the input document/corpus and asks
the model to predict the missing words. As Fig. 12 depicts,

Attention Mechanism, Transformers, BERT, and GPT: Tutorial and Survey 10

Figure 12. Feeding sentences with missing words to the BERT
model for training.

a sentence with a missing word is given to every trans-
former encoding block in the stack and the block is sup-
posed to predict the missing word. 15% of words are miss-
ing in the sentences and every missing word is assigned to
every encoder block in the stack. It is an unsupervised man-
ner because any word can be masked in a sentence and the
output is supposed to be that word. As it is unsupervised
and does not require labels, the huge text data of Internet
can be used for training the BERT model where words are
randomly selected to be masked.
Note that BERT learns to predict the missing word based
on attention to its previous and forthcoming words so it
is bidirectional. Hence, BERT jointly conditions on both
left (previous) and right (forthcoming) context of every
word. Moreover, as the missing word is predicted based
on the other words of sentence, BERT embeddings for
words are context-aware embeddings. Therefore, in con-
trast to word2vec (Mikolov et al., 2013a;b; Goldberg &
Levy, 2014; Mikolov et al., 2015) and GloVe (Pennington
et al., 2014) which provide a single embedding per each
word, every word has different BERT embeddings in var-
ious sentences. The BERT embeddings of words differ in
different sentences based on their context. For example, the
word “bank” has different meanings and therefore different
embeddings in the sentences “Money is in the bank” and
“Some plants grow in bank of rivers”.
It is also noteworthy that, for an input sentence, BERT out-
puts an embedding for the whole sentence in addition to
giving embeddings for every word of the sentence. This
sentence embedding is not perfect but works well enough
in applications. One can use the BERT sentence embed-
dings and train a classifier on them for the task of spam
detection or sentiment analysis.
During training the BERT model, in addition to learning the
embeddings for the words and the whole sentence, paper

(Devlin et al., 2018) has also learned an additional task.
This task is given two sentences A and B, is B likely to be
the sentence that follows A or not?
The BERT model is usually not trained from the scratch as
its training has been done in a long time on huge amount
of Internet data. For using it in different NLP applications,
such as sentiment analysis, researchers usually do transfer
learning and add one or several neural network layers on
top of a pre-trained BERT model and train the network for
their own task. During training, one can either freeze the
weights of the BERT model and just train the added layers
or also fine tune BERT weights by backpropagation.
The parameters of encoder in transformer (Vaswani et al.,
2017) are 6 encoder layers, 512 hidden layer units in the
fully connected network and 8 attention heads (h = 8).
This is while BERT (Devlin et al., 2018) has 24 encoder
layers, 1024 hidden layer units in the fully connected net-
work and 16 attention heads (h = 16). Usually, when
we say BERT, we mean the large BERT (Devlin et al.,
2018) with the above-mentioned parameters. As the BERT
model is huge and requires a lot of memory for saving
the model, it cannot easily be used in embedded systems.
Hence, many commercial smaller versions of BERT are
proposed with less number of parameters and number of
stacks. Some of these smaller versions of BERT are small
BERT (Tsai et al., 2019), tiny BERT (Jiao et al., 2019), Dis-
tilBERT (Sanh et al., 2019), and Roberta BERT (Staliūnaitė
& Iacobacci, 2020). Some BERT models, such as clinical
BERT (Alsentzer et al., 2019) and BioBERT (Lee et al.,
2020), have also been trained on medical texts for the
biomedical applications.

5. GPT: Generative Pre-trained Transformer
GPT, or GPT-1, (Radford et al., 2018) is another state-of-
the-art method for NLP. It is a stack of decoders of trans-
former (see Fig. 9). In other words, it is built using trans-
former decoder blocks. In GPT, the multihead attention
module with cross-attention is removed from the decoder of
transformer because there is no encoder in GPT. Hence, the
decoder blocks used in GPT have only positional encoding,
masked multihead self-attention module and feedforward
network with their adding, layer normalization, and activa-
tion functions.
Note that as GPT uses the masked multihead self-attention,
it considers attention of word, pairs of words, pairs of pairs
of words, and so on, only on the previous (left) words,
pairs of words, pairs of pairs of words, and so on. In other
words, GPT is not bidirectional and conditions only on the
previous words and not the forthcoming words. As was
explained before, the objective of BERT was to predict a
masked word in a sentence. However, GPT model is used
for language model (Rosenfeld, 2000; Jozefowicz et al.,
2016; Jing & Xu, 2019) whose objective is to predict the

Attention Mechanism, Transformers, BERT, and GPT: Tutorial and Survey 11

next word, in an incomplete sentence, given all of the pre-
vious words. The predicted new word is then added to the
sequence and is fed to the GPT as input again and the other
next word is predicted. This goes on until the sentences get
complete with their next coming words. In other words,
GPT model takes some document and continues the text in
the best and related way. For example, if the input sen-
tences are about psychology, the trained GPT model gen-
erates the next words and sentences also about psychology
to complete the document. Note that as any text without la-
bel can be used for predicting the next words in sentences,
GPT is an unsupervised method making it possible to be
trained on huge amount of Internet data.
The successors of GPT-1 (Radford et al., 2018) are GPT-
2 (Radford et al., 2019) and GPT-3 (Brown et al., 2020).
GPT-2 and GPT-3 are extension of GPT-1 with more num-
ber of stacks of transformer decoder. Hence, they have
more learnable parameters and can be trained with more
data for better language modeling and inference. For ex-
ample, GPT-2 has 1.5 billion parameters. GPT-2 and es-
pecially GPT-3 have been trained with much more Internet
data with various general and academic subjects to be able
to generate text in any subject and style of interest. For
example, GPT-2 has been trained on 8 million web pages
which contain 40GB of Internet text data.
GPT-2 is a quite large model and cannot be easily used
in embedded systems because of requiring large memory.
Hence, different sizes of GPT-2, like small, medium, large,
Xlarge, and DistilGPT-2, are provided for usage in embed-
ded systems, where the number of stacks and learnable pa-
rameters differ in these versions. These versions of GPT-
2 can be found and used in the HuggingFace transformer
Python package (Wolf et al., 2019a).
GPT-2 has been used in many different applications such
as dialogue systems (Budzianowski & Vulić, 2019), patent
claim generation (Lee & Hsiang, 2019), and medical text
simplification (Van et al., 2020). A combination of GPT-2
and BERT has been used for question answering (Klein &
Nabi, 2019). It is noteworthy that GPT can be seen as few
shot learning (Brown et al., 2020). A comparison of GPT
and BERT can also be found in (Ethayarajh, 2019).
GPT-3 is a very huge version of GPT with so many number
of stacks and learn-able parameters. For comparison, note
that GPT-2, NVIDIA Megatron (Shoeybi et al., 2019), Mi-
crosoft Turing-NLG (Microsoft, 2020), and GPT-3 (Brown
et al., 2020) have 1.5 billion, 8 billion, 17 billion, and 175
billion learnable parameters, respectively. This huge num-
ber of parameters allows GPT-3 to be trained on very huge
amount of Internet text data with various subjects and top-
ics. Hence, GPT-3 has been able to learn almost all topics
of documents and even some people are discussing whether
it can pass the Turing’s writer’s test (Elkins & Chun, 2020;
Floridi & Chiriatti, 2020). Note that GPT-3 has kind of

memorized the texts of all subjects but not in a bad way,
i.e., overfitting, rather in a good way. This memorization
is because of the complexity of huge number of learnable
parameters (Arpit et al., 2017) and not being overfitted is
because of being trained by big enough Internet data.
GPT-3 has had many different interesting applications such
as fiction and poetry generation (Branwen, 2020). Of
course, it is causing some risks, too (McGuffie & New-
house, 2020).

6. Conclusion
Transformers are very essential tools in natural language
processing and computer vision. This paper was a tuto-
rial and survey paper on attention mechanism, transform-
ers, BERT, and GPT. We explained attention mechanism,
the sequence-to-sequence model with and without atten-
tion, and self-attention. The different parts of encoder and
decoder of a transformer were explained. Finally, BERT
and GPT were introduced as stacks of the encoders and de-
coders of transformer, respectively.

Acknowledgment
The authors hugely thank Prof. Pascal Poupart whose
course partly covered some of materials in this tutorial pa-
per. Some of the materials of this paper can also be found
in Prof. Ali Ghodsi’s course videos.

References
Alsentzer, Emily, Murphy, John R, Boag, Willie, Weng,

Wei-Hung, Jin, Di, Naumann, Tristan, and McDermott,
Matthew. Publicly available clinical BERT embeddings.
arXiv preprint arXiv:1904.03323, 2019.

Arpit, Devansh, Jastrzebski, Stanisław, Ballas, Nicolas,
Krueger, David, Bengio, Emmanuel, Kanwal, Maxin-
der S, Maharaj, Tegan, Fischer, Asja, Courville, Aaron,
Bengio, Yoshua, and Lacoste-Julien, Simon. A closer
look at memorization in deep networks. In International
Conference on Machine Learning, 2017.

Bahdanau, Dzmitry, Cho, Kyunghyun, and Bengio,
Yoshua. Neural machine translation by jointly learning
to align and translate. In International Conference on
Learning Representations, 2015.

Ben-David, Shai, Blitzer, John, Crammer, Koby, Kulesza,
Alex, Pereira, Fernando, and Vaughan, Jennifer Wort-
man. A theory of learning from different domains. Ma-
chine learning, 79(1-2):151–175, 2010.

Branwen, Gwern. GPT-3 creative fiction. https://
www.gwern.net/GPT-3, 2020.

Brown, Tom B, Mann, Benjamin, Ryder, Nick, Subbiah,
Melanie, Kaplan, Jared, Dhariwal, Prafulla, Neelakan-

https://www.gwern.net/GPT-3
https://www.gwern.net/GPT-3

Attention Mechanism, Transformers, BERT, and GPT: Tutorial and Survey 12

tan, Arvind, Shyam, Pranav, Sastry, Girish, Askell,
Amanda, et al. Language models are few-shot learners.
In Advances in neural information processing systems,
2020.

Budzianowski, Paweł and Vulić, Ivan. Hello, it’s GPT-2–
how can I help you? Towards the use of pretrained lan-
guage models for task-oriented dialogue systems. arXiv
preprint arXiv:1907.05774, 2019.

Chan, William, Jaitly, Navdeep, Le, Quoc V, and Vinyals,
Oriol. Listen, attend and spell. arXiv preprint
arXiv:1508.01211, 2015.

Chan, William, Jaitly, Navdeep, Le, Quoc, and Vinyals,
Oriol. Listen, attend and spell: A neural network
for large vocabulary conversational speech recognition.
In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 4960–4964. IEEE,
2016.

Cheng, Jianpeng, Dong, Li, and Lapata, Mirella. Long
short-term memory-networks for machine reading. In
Conference on Empirical Methods in Natural Language
Processing, pp. 551–561, 2016.

Chorowski, Jan, Bahdanau, Dzmitry, Cho, Kyunghyun, and
Bengio, Yoshua. End-to-end continuous speech recog-
nition using attention-based recurrent NN: First results.
arXiv preprint arXiv:1412.1602, 2014.

Devlin, Jacob, Chang, Ming-Wei, Lee, Kenton, and
Toutanova, Kristina. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Dong, Li, Yang, Nan, Wang, Wenhui, Wei, Furu, Liu, Xi-
aodong, Wang, Yu, Gao, Jianfeng, Zhou, Ming, and Hon,
Hsiao-Wuen. Unified language model pre-training for
natural language understanding and generation. In Ad-
vances in Neural Information Processing Systems, pp.
13063–13075, 2019.

Dou, Qi, Coelho de Castro, Daniel, Kamnitsas, Konstanti-
nos, and Glocker, Ben. Domain generalization via
model-agnostic learning of semantic features. Advances
in Neural Information Processing Systems, 32:6450–
6461, 2019.

Elkins, Katherine and Chun, Jon. Can GPT-3 pass a writer’s
Turing test? Journal of Cultural Analytics, 2371:4549,
2020.

Ethayarajh, Kawin. How contextual are contextualized
word representations? Comparing the geometry of
BERT, ELMo, and GPT-2 embeddings. arXiv preprint
arXiv:1909.00512, 2019.

Floridi, Luciano and Chiriatti, Massimo. GPT-3: Its nature,
scope, limits, and consequences. Minds and Machines,
pp. 1–14, 2020.

Garcia-Molina, Hector, D. Ullman, Jeffrey, and Widom,
Jennifer. Database systems: The complete book. Pren-
tice Hall, 1999.

Goldberg, Yoav and Levy, Omer. word2vec explained:
deriving Mikolov et al.’s negative-sampling word-
embedding method. arXiv preprint arXiv:1402.3722,
2014.

Gretton, Arthur, Borgwardt, Karsten, Rasch, Malte,
Schölkopf, Bernhard, and Smola, Alex J. A kernel
method for the two-sample-problem. In Advances in
neural information processing systems, pp. 513–520,
2007.

Gretton, Arthur, Borgwardt, Karsten M, Rasch, Malte J,
Schölkopf, Bernhard, and Smola, Alexander. A kernel
two-sample test. The Journal of Machine Learning Re-
search, 13(1):723–773, 2012.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun,
Jian. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

Hochreiter, Sepp and Schmidhuber, Jürgen. Long short-
term memory. Neural computation, 9(8):1735–1780,
1997.

Indurkhya, Nitin and Damerau, Fred J. Handbook of natu-
ral language processing, volume 2. CRC Press, 2010.

Ioffe, Sergey and Szegedy, Christian. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Jiao, Xiaoqi, Yin, Yichun, Shang, Lifeng, Jiang, Xin, Chen,
Xiao, Li, Linlin, Wang, Fang, and Liu, Qun. Tiny-
BERT: Distilling BERT for natural language understand-
ing. arXiv preprint arXiv:1909.10351, 2019.

Jing, Kun and Xu, Jungang. A survey on neural network
language models. arXiv preprint arXiv:1906.03591,
2019.

Jozefowicz, Rafal, Vinyals, Oriol, Schuster, Mike, Shazeer,
Noam, and Wu, Yonghui. Exploring the limits of
language modeling. arXiv preprint arXiv:1602.02410,
2016.

Kazemi, Vahid and Elqursh, Ali. Show, ask, attend, and
answer: A strong baseline for visual question answering.
arXiv preprint arXiv:1704.03162, 2017.

Attention Mechanism, Transformers, BERT, and GPT: Tutorial and Survey 13

Klein, Tassilo and Nabi, Moin. Learning to answer by
learning to ask: Getting the best of gpt-2 and bert worlds.
arXiv preprint arXiv:1911.02365, 2019.

Kolen, John F and Kremer, Stefan C. A field guide to dy-
namical recurrent networks. John Wiley & Sons, 2001.

Kombrink, Stefan, Mikolov, Tomáš, Karafiát, Martin, and
Burget, Lukáš. Recurrent neural network based language
modeling in meeting recognition. In Twelfth annual con-
ference of the international speech communication asso-
ciation, 2011.

LeCun, Yann, Bottou, Léon, Bengio, Yoshua, and Haffner,
Patrick. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

Lee, Honglak, Grosse, Roger, Ranganath, Rajesh, and Ng,
Andrew Y. Convolutional deep belief networks for scal-
able unsupervised learning of hierarchical representa-
tions. In International Conference on Machine Learning,
pp. 609–616, 2009.

Lee, Jieh-Sheng and Hsiang, Jieh. Patent claim gener-
ation by fine-tuning OpenAI GPT-2. arXiv preprint
arXiv:1907.02052, 2019.

Lee, Jinhyuk, Yoon, Wonjin, Kim, Sungdong, Kim,
Donghyeon, Kim, Sunkyu, So, Chan Ho, and Kang, Jae-
woo. BioBERT: a pre-trained biomedical language rep-
resentation model for biomedical text mining. Bioinfor-
matics, 36(4):1234–1240, 2020.

Li, Da, Yang, Yongxin, Song, Yi-Zhe, and Hospedales,
Timothy M. Deeper, broader and artier domain gener-
alization. In Proceedings of the IEEE international con-
ference on computer vision, pp. 5542–5550, 2017.

Li, Hui, Wang, Peng, Shen, Chunhua, and Zhang, Guyu.
Show, attend and read: A simple and strong baseline
for irregular text recognition. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33,
pp. 8610–8617, 2019a.

Li, Yang, Kaiser, Lukasz, Bengio, Samy, and Si, Si.
Area attention. In International Conference on Machine
Learning, pp. 3846–3855. PMLR, 2019b.

Lim, Jian Han, Chan, Chee Seng, Ng, Kam Woh, Fan,
Lixin, and Yang, Qiang. Protect, show, attend and
tell: Image captioning model with ownership protection.
arXiv preprint arXiv:2008.11009, 2020.

Luong, Minh-Thang, Pham, Hieu, and Manning, Christo-
pher D. Effective approaches to attention-based neural
machine translation. arXiv preprint arXiv:1508.04025,
2015.

McGuffie, Kris and Newhouse, Alex. The radicalization
risks of GPT-3 and advanced neural language models.
arXiv preprint arXiv:2009.06807, 2020.

Microsoft. Turing-NLG: A 17-billion-parameter language
model by Microsoft. Microsoft Blog, 2020.

Mikolov, Tomas, Chen, Kai, Corrado, Greg, and Dean, Jef-
frey. Efficient estimation of word representations in vec-
tor space. In International Conference on Learning Rep-
resentations, 2013a.

Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado,
Greg S, and Dean, Jeff. Distributed representations of
words and phrases and their compositionality. In Ad-
vances in neural information processing systems, pp.
3111–3119, 2013b.

Mikolov, Tomas, Chen, Kai, Corrado, Gregory S, and
Dean, Jeffrey A. Computing numeric representations of
words in a high-dimensional space, May 19 2015. US
Patent 9,037,464.

Pennington, Jeffrey, Socher, Richard, and Manning,
Christopher D. GloVe: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference on
empirical methods in natural language processing, pp.
1532–1543, 2014.

Perlovsky, Leonid I. Toward physics of the mind: Con-
cepts, emotions, consciousness, and symbols. Physics of
Life Reviews, 3(1):23–55, 2006.

Qu, Chen, Yang, Liu, Qiu, Minghui, Croft, W Bruce,
Zhang, Yongfeng, and Iyyer, Mohit. BERT with his-
tory answer embedding for conversational question an-
swering. In Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in In-
formation Retrieval, pp. 1133–1136, 2019.

Qureshi, Ahmed Hussain, Nakamura, Yutaka, Yoshikawa,
Yuichiro, and Ishiguro, Hiroshi. Show, attend and inter-
act: Perceivable human-robot social interaction through
neural attention q-network. In 2017 IEEE International
Conference on Robotics and Automation, pp. 1639–
1645. IEEE, 2017.

Radford, Alec, Narasimhan, Karthik, Salimans, Tim, and
Sutskever, Ilya. Improving language understanding by
generative pre-training. Technical report, OpenAI, 2018.

Radford, Alec, Wu, Jeffrey, Child, Rewon, Luan, David,
Amodei, Dario, and Sutskever, Ilya. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):
9, 2019.

Rosenfeld, Ronald. Two decades of statistical language
modeling: Where do we go from here? Proceedings
of the IEEE, 88(8):1270–1278, 2000.

Attention Mechanism, Transformers, BERT, and GPT: Tutorial and Survey 14

Rumelhart, David E, Hinton, Geoffrey E, and Williams,
Ronald J. Learning representations by back-propagating
errors. Nature, 323(6088):533–536, 1986.

Sanh, Victor, Debut, Lysandre, Chaumond, Julien, and
Wolf, Thomas. DistilBERT, a distilled version of bert:
smaller, faster, cheaper and lighter. arXiv preprint
arXiv:1910.01108, 2019.

Shoeybi, Mohammad, Patwary, Mostofa, Puri, Raul,
LeGresley, Patrick, Casper, Jared, and Catanzaro, Bryan.
Megatron-LM: Training multi-billion parameter lan-
guage models using model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

Socher, Richard, Bengio, Yoshua, and Manning, Chris.
Deep learning for nlp. Tutorial at Association of Com-
putational Logistics (ACL), 2012.

Song, Youwei, Wang, Jiahai, Liang, Zhiwei, Liu, Zhiyue,
and Jiang, Tao. Utilizing BERT intermediate layers for
aspect based sentiment analysis and natural language in-
ference. arXiv preprint arXiv:2002.04815, 2020.

Srivastava, Nitish, Hinton, Geoffrey, Krizhevsky, Alex,
Sutskever, Ilya, and Salakhutdinov, Ruslan. Dropout: a
simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–
1958, 2014.

Staliūnaitė, Ieva and Iacobacci, Ignacio. Compositional
and lexical semantics in RoBERTa, BERT and Dis-
tilBERT: A case study on CoQA. arXiv preprint
arXiv:2009.08257, 2020.

Summerfield, Christopher and Egner, Tobias. Expectation
(and attention) in visual cognition. Trends in cognitive
sciences, 13(9):403–409, 2009.

Tsai, Henry, Riesa, Jason, Johnson, Melvin, Arivazhagan,
Naveen, Li, Xin, and Archer, Amelia. Small and practi-
cal BERT models for sequence labeling. arXiv preprint
arXiv:1909.00100, 2019.

Van, Hoang, Kauchak, David, and Leroy, Gondy. Au-
toMeTS: The autocomplete for medical text simplifica-
tion. arXiv preprint arXiv:2010.10573, 2020.

Vaswani, Ashish, Shazeer, Noam, Parmar, Niki, Uszkoreit,
Jakob, Jones, Llion, Gomez, Aidan N, Kaiser, Łukasz,
and Polosukhin, Illia. Attention is all you need. In
Advances in neural information processing systems, pp.
5998–6008, 2017.

Wang, Yong, Wang, Longyue, Shi, Shuming, Li, Vic-
tor OK, and Tu, Zhaopeng. Go from the general to the

particular: Multi-domain translation with domain trans-
formation networks. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 34, pp. 9233–
9241, 2020.

Wolf, Thomas, Debut, Lysandre, Sanh, Victor, Chaumond,
Julien, Delangue, Clement, Moi, Anthony, Cistac, Pier-
ric, Rault, Tim, Louf, Rémi, Funtowicz, Morgan, et al.
HuggingFace’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771,
2019a.

Wolf, Thomas, Sanh, Victor, Chaumond, Julien, and De-
langue, Clement. TransferTransfo: A transfer learn-
ing approach for neural network based conversational
agents. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 2019b.

Xu, Jun. On the techniques of English fast-reading. In
Theory and Practice in Language Studies, volume 1, pp.
1416–1419. Academy Publisher, 2011.

Xu, Kelvin, Ba, Jimmy, Kiros, Ryan, Cho, Kyunghyun,
Courville, Aaron, Salakhudinov, Ruslan, Zemel, Rich,
and Bengio, Yoshua. Show, attend and tell: Neural im-
age caption generation with visual attention. In Interna-
tional conference on machine learning, pp. 2048–2057,
2015.

Yang, Chao, Kim, Taehwan, Wang, Ruizhe, Peng, Hao, and
Kuo, C-C Jay. Show, attend, and translate: Unsupervised
image translation with self-regularization and attention.
IEEE Transactions on Image Processing, 28(10):4845–
4856, 2019a.

Yang, Zhilin, Dai, Zihang, Yang, Yiming, Carbonell,
Jaime, Salakhutdinov, Russ R, and Le, Quoc V. XL-
net: Generalized autoregressive pretraining for language
understanding. In Advances in neural information pro-
cessing systems, pp. 5753–5763, 2019b.

Yu, Keyi, Liu, Yang, Schwing, Alexander G, and Peng,
Jian. Fast and accurate text classification: Skimming,
rereading and early stopping. In International Confer-
ence on Learning Representations, 2018.

Zhang, Honglun, Chen, Wenqing, Tian, Jidong, Wang,
Yongkun, and Jin, Yaohui. Show, attend and translate:
Unpaired multi-domain image-to-image translation with
visual attention. arXiv preprint arXiv:1811.07483, 2018.

