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Abstract. Performance evaluation of supervised classification learning
method related to its prediction ability on independent data is very
important in machine learning. It is also almost unthinkable to carry
out any research work without the comparison of the new, proposed
classifier with other already existing ones. This paper aims to review the
most important aspects of the classifier evaluation process including the
choice of evaluating metrics (scores) as well as the statistical compari-
son of classifiers. Critical view, recommendations and limitations of the
reviewed methods are presented. The article provides a quick guide to
understand the complexity of the classifier evaluation process and tries
to warn the reader about the wrong habits.
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1 Introduction

In a supervised classification problem one aims to learn a classifier from a dataset
U = {(x(1), t(1)), . . . , (x(n), t(n))} of n labeled data instances and each instance
x(i) is characterized by d predictive variables/features, X = (X1, . . . , Xd),
and a class T to which it belongs. This dataset is obtained from a physi-
cal process described by an unknown probability distribution f(X,T ). Then,
the learned classifier, after evaluating its quality (usually on test dataset), can
be used to classify new samples, i.e. to obtain their unknown class labels.
We do not make here a distinction between a classifier (being a function
that maps an input feature space to a set of class labels) and a classifica-
tion learning algorithm which is a general methodology that can be used,
given a specific dataset, to learn a specific classifier. Theoretical background
on supervised classification problem as well as the whole description of clas-
sifier construction process can be found in many books on machine learn-
ing and pattern recognition (see for example [2,8,31,33,34,44,47,49]). Usu-
ally, the problem of evaluating a new classifier is tackled by using the score
that try to summarize the specific conditions of interest. Classification error
and accuracy are widely used scores in the classification problems. In prac-
tice, classification error must be estimated from all the available samples.
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The k-fold cross-validation, for example, is on of the most frequently used such
estimation methods. Then, questions are whether such a new, proposed classifier
(or enhancement of the existing one) yields an improved score over the competi-
tor classifier (or classifiers) or the state of the art. It is almost impossible now
to do any research work without an experimental section where the score of a
new classifier is tested and compared with the scores of the existing ones. This
last step also requires the selection of datasets on which the compared classi-
fiers are learned and evaluated. The purpose of dataset selection step should
not be to demonstrate classifiers superiority to another in all cases, but rather
to identify its areas of strengths with respect to domain characteristics. This
paper is focused only on a supervised classification problem as defined in the
beginning. Other types of classification such as classification from data streams
or multi-label classification are not addressed here, since they may impose spe-
cific conditions to the calculation of the score (for the most important reference
in evaluating (static) data streams, see for example [15]). The whole evaluation
process of a classifier should include the following steps [41]:

1. choosing an evaluation metric (i.e. a score) according to the properties of a
classifier,

2. deciding the score estimation method to be used,
3. checking whether the assumptions made by (1) and (2) are fulfilled,
4. running the evaluation method and interpret the results with respect to the

domain,
5. compare a new classifier with the existing ones selected according to the

different criteria, for example problem dependent; this step requires selection
of datasets.

The main purpose of this paper is to provide the reader with a better under-
standing about the overall classifier evaluation process. As there is no fixed,
concrete recipe for the classifier evaluation procedure, we believe that this paper
will facilitate the researcher in the machine learning area to decide which alterna-
tive to choose for each specific case. The paper is set up as follows. In Sect. 2 we
describe measures of classifier quality while in Sect. 3, a short overview of their
estimation methods. Section 4 focuses on statistical methods for classifier quality
comparison. Finally, in Sect. 5 we conclude giving some recommendations.

2 Measures of Classifier Quality

Usually the problem of evaluating a new classifier (i.e. measuring its quality) is
tackled by using the score that try to summarize the specific conditions of interest
when evaluating a classifier. There may be many scores according to how we aim
to quantify classifiers behavior. In this section, we only present some of the most
extended scores. Typical scores for measuring the performance of a classifier are
accuracy and classification error, which for a two-class problem can be easily
derived from a 2 × 2 confusion matrix as that given in Table 1. These scores can
be computed as:
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Acc = (TP + TN)/(TP + FN + TN + FP )

Err = (FP + FN)/(TP + FN + TN + FP )

Sometimes, accuracy and classification error are selected without considering
in depth whether it is the most appropriate score to measure the quality of a
classifier for the classification problem at hand. When both class labels are rel-
evant and the proportion of data samples for each class is very similar, these
scores are a good choice. Unfortunately, equally class proportions are quite
rare in real problems. This situation is known as the imbalance problem [29,45].
Empirical evidence shows that accuracy and error rate are biased with respect
to data imbalance: the use of these scores might produce misleading conclu-
sions since they do not take into account misclassification costs, the results are
strongly biased to favor the majority class, and are sensitive to class skews. In
some application domains, we may be interested in how our classifier classi-
fies only a part of the data. Examples of such measures are: True positive rate
(Recall or Sensitivity): TPrate = TP/(TP+FN), True negative rate (Specificity):
TNrate = TN/(TN + FP), False positive rate: FPrate = FP/(TN + FP), False
negative rate: FNrate = FN/(TP + FN), Precision = TP/(TP + FP). Short-
comings of the accuracy or error rate have motivated search for new measures
which aim to obtain a trade-off between the evaluation of the classification abil-
ity on both positive and negative data samples. Some straightforward examples
of such alternative scores are: the harmonic mean between Recall and Preci-
sion values: F-measure = 2 × TPrate × Precision/(TPrate + Precision), and the
geometric mean of accuracies measured separately on each class: G-mean =√

TPrate × TNrate [3]. Harmonic and geometric means are symmetric functions
that give the same relevance to both components. There are other proposals that
try to enhance one of the two components of the mean. For instance, index of
balaned accuracy [18], the adjusted geometric mean [1], the optimized precision
OP from [37] computed as: OP = Acc−(|TNrate−TPrate|/(TNrate+TPrate)),
and F-score [30]:

F -score =
(β2 + 1)Precision × TPrate
β2 × Precision + TPrate

A parameter β can be tuned to obtain different trade-offs between both compo-
nents. When a classifier classifies an instance into a wrong class group, a loss is
incurred. Cost-sensitive learning [10] aims to minimize this loss incurred by the
classifier. The above introduced scores use the 0/1 loss function, i.e. they treat
all the different types of misclassification as equally severe. The cost matrix can
be used if the severity of misclassifications can be quantified in terms of costs.
Unfortunately, in real applications, specific costs are difficult to obtain. In such
situations, however, the described above scores may be useful since they may
also be used to set more relevance into the costliest misclassification: minimizing
the cost may be equivalent to optimal trade-off between Recall and Specificity
[7]. When the classification costs cannot be accessed, another most widely-used
techniques for the evaluation of classifiers is the ROC curve [4,11], which is a
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Table 1. Confusion matrix for a two-class problem

Predicted positive Predicted negative

Positive class True Positive (TP) False Negative (FN)

Negative class False Positive (FP) True Negative (TN)

graphical representation of Recall versus FPrate (1-Specificity). The information
about classification performance in the ROC curve can be summarized into a
score known as AUC (Area under the ROC curve) which is more insensitive to
skewness in class distribution since it is a trade-off between Recall and Speci-
ficity [43]. However, recent studies have shown that AUC is a fundamentally
incoherent measure since it treats the costs of misclassification differently for
each classifier. This is undesirable because the cost must be a property of the
problem, not of the classification method. In [21,22], the H measure is proposed
as an alternative to AUC. While all of the scores described above in this section
are appropriate for two-class imbalanced learning problems, some of them can be
modified to accommodate the multi-class imbalanced learning problems [23]. For
example [46] extends the G-mean definition to the geometric mean of Recall val-
ues of every class. Similarly, in [12] they defined mean F-measure for multi-class
imbalance problem. The major advantage of this measure is that it is insensi-
tive to class distribution and error costs. However, it is now an open question
if such extended scores for multi-class classification problem are appropriate on
scenarios where there exist multiple minority and multiple majority classes [40].
In ([20] they proposed the M measure, a generalization approach that aggre-
gates all pairs of classes based on the inherent characteristics of the AUC. In
this paper, we focus on the scores since they are popular way to measure clas-
sification quality. But these measures do not capture all the information about
the quality of classification methods some graphical methods may do. However,
the use of quantitative measures of quality makes the comparison among the
classifiers easier (for more information on graphical methods see for example
[9,30,36]). The presented list of scores is by no means exhaustive. The described
scores are focused only on the evaluating the performance of a classifier. How-
ever, there are other important aspects of classification such as robustness to
noise, scalability, stability under data shifts, etc. which are not addressed here.

3 Quality Estimation Methods

Various methods are commonly used to estimate classification error and the other
described classifier scores (the review of estimation methods can also be found
in the mentioned literature on machine learning). Holdout method of estimation
of classification error divides randomly the available dataset into independent
training and testing subsets which are then used for learning and evaluating a
classifier. This method gives a pessimistically biased error estimate (calculated as
a ratio of misclassified test samples to a size of test subset), moreover it depends
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on a particular partitioning of a dataset. These limitations are overcome with
a family of resampling methods: cross validation (random sub-sampling, k-fold
cross-validation, leave-one-out) and bootstrap. Random subsampling performs k
random data splits of the entire dataset into training and testing subsets. For
each data split, we retrain a classifier and then estimate error with test samples.
The true error estimate is the average of separate errors obtained from k splits.
The k-fold cross-validation creates a k fold partition of the entire dataset once:
Then, for each of k experiments, it uses (k − 1) folds for training and a different
fold for testing. The classification error is estimated as the average of separate
errors obtained from k experiments. It is approximately unbiased, although at
the expense of an increase in the variance of the estimate. Leave-one-out is the
degenerate case of k-fold cross-validation where k is chosen as the total number
of samples. This results in the unbiased error estimate, but have large variance.
In the bootstrap estimation, we randomly select with replacement the samples
and use this set for training. The remaining samples that were not selected for
training are used for testing. We repeat this procedure k times. The error is
estimated as the average error on test samples from k procedures. The benefit of
this method is its ability to obtain accurate measures of both bias and variance
of classification error estimate.

4 Statistical Comparison of Classifiers

The comparison of the scores obtained by two or more classifiers in a set of
problems is a central task in machine learning, so it is almost impossible to do any
research work without an experimental section where the score of a new classifier
is tested and compared with the scores of the existing ones. When the differences
are very clear (e.g., when the classifier is the best in all the problems considered),
the direct comparison of the scores may be enough. But in most situations, a
direct comparison may be misleading and not enough to draw sound conclusions.
In such situations, the statistical assessment of the scores such as hypothesis
testing is required. Statistical tests arise with the aim of giving answers to the
above mentioned questions, providing more precise assessments of the obtained
scores by analyzing them to decide whether the observed differences between the
classifiers are real or random. However, although the statistical tests have been
established as a basic part of classifier comparison task, they are not a definitive
tool, we have to be aware about their limitations and misuses. The statistical
tests for comparing classifiers are usually bound to a specific estimation method
of classifier score. Therefore, the selection of a statistical test is also conditioned
by this estimation method. For the comparison of two classifiers on one dataset,
the situation which is very common in machine learning problems, the corrected
resampled t test has been suggested in the literature [35]. This test is associated
with a repeated estimation method (for example holdout): in i-th of the m
iterations, a random data partition is conducted and the values for the scores
A

(i)
k1 and A

(i)
k2 of compared classifiers k1 and k2, are obtained. The statistic is:
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t =
A√(

1
m + Ntest

Ntrain

)
· ∑m

i=1
(A(i)−A)2

m−1

where A = 1
m

∑m
i=1 A(i), A(i) = (A(i)

k1 − A
(i)
k2), Ntest, Ntrain are the number

of samples in the test and train partitions. The second parametric test that
can be used in this scenario whose behavior, however, has not been studied as
for previous, is the corrected t test for repeated cross-validation [3]. These tests
assume the data follow the normal distribution which should be first checked
using the suitable normality test. A non-parametric alternative for comparing
two classifiers that is suggested in the literature is McNemars test [26]. For the
comparison of two classifiers on multiple datasets the Wilcoxon signed-ranks test
[26] is widely recommended. It ranks the differences di = A

(i)
k1 − A

(i)
k2 between

scores of two classifiers k1 and k2 obtained on i-th of N datasets, ignoring the
signs. The test statistic of this test is:

T = min(R+, R−)

where:

R+ =
∑
di>0

rank(di) +
1
2

∑
di=0

rank(di), R− =
∑
di<0

rank(di) +
1
2

∑
di=0

rank(di)

are the sums of ranks on which the k2 classifier outperforms k1, respectively.
Ranks di = 0 are split evenly among the sums. Other test that can be used
is the sign test, but it is much weaker than the Wilcoxon signed-ranks test.
Comparison among multiple classifiers on multiple datasets arise in machine
learning when a new proposed classifier is compared with the state of the art. For
this situation, the general recommended methodology is as follows [5,6,16,39,41].
First, we apply an omnibus test to detect if at least one of the classifiers performs
different than the others. Friedman nonparametric test [14] with Iman-Davenport
extension [28] is probably the most popular omnibus test. It is a good choice when
comparing more than five different classifiers. Let Rij be the rank of the j-th of
K classifiers on the i-th of N data sets and

Rj =
1
N

N∑
i=1

Rij

is the mean rank of j-th classifier. The test compares the mean ranks of the
classifiers and is based on the test statistic:

FF =
(N − 1)χ2

F

N(K − 1) − χ2
F

χ2
F =

12N

K(K + 1)

⎡
⎣ K∑

j=1

R2
j − K(K + 1)2

4

⎤
⎦

which follows a F distribution with (K − 1) and (K − 1)(N − 1) degrees of
freedom. For the comparison of five or less different classifiers, Friedman aligned
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ranks [17] or the Quade test [25,38] are the more powerful alternatives. Second,
if we find such a significant difference, then we apply a pair-wise test with the
corresponding post-hoc correction for multiple comparisons. For the described
above Friedman test, comparing the r-th and s-th classifiers is based on the
mean ranks and has the form:

z =
Rr − Rs√

K(K+1)
6N

The z value is used to find the corresponding probability from the table of normal
distribution, which is then compared with an appropriate significance level α. As
performing pair-wise comparisons is associated with a set or family of hypotheses,
the value of α must be adjusted for controlling the family-wise error [42]. There
are multiple proposals in the literature to adjust the significance level α: Holm
[27], Hochberg [24], Finner [13]. The results of pair-wise comparisons, often,
give not disjoint groups of classifiers. In order to identify disjoint, homogenous
groups, in [19] they apply special cluster analysis approach. Their method results
in dividing K classifiers into groups in such a way that classifiers belonging to
the same group do not significantly differ with respect to the chosen distance.

5 Recommendations and Conclusions

This paper covers the basic steps of classifier evaluation process, focusing mainly
on the evaluation metrics and conditions for their proper usage as well as the sta-
tistical comparison of classifiers. The evaluation of classification performance is
very important to the construction and selection of classifiers. The vast majority
of the published articles use the accuracy (or classification error) as the score in
the classifier evaluation process. But these two scores may be appropriate only
when the datasets are balanced and the misclassification costs are the same for
false positives and false negatives. In the case of skew datasets, which is rather
typical situation, the accuracy/error rate is questionable and other scores such
as Recall, Specificity, Precision, Optimized Precision, F-score, geometric or har-
monic means, H or M measures are more appropriate. The comparison of two
classifiers on a single dataset is generally unsafe due to the lack of independence
between the obtained score values. Thus, the corrected versions of the resampled
t test or t test for repeated cross-validation are more appropriate. McNemars test,
being non-parametric, does not make the assumption about distribution of the
scores (like the two previous tests) but it does not directly measure the variability
due to the choice of the training set nor the internal randomness of the learning
algorithm. When comparing two classifiers on multiple datasets (especially from
different sources), the measured scores are hardly commensurable. Therefore,
the Wilcoxon signed-rank test is more appropriate. Regarding the comparison of
multiple classifiers on multiple datasets, if the number of classifiers involved is
higher than five, the use of the Friedman test with Iman and Davenport extension
is recommended. When this number is low, four or five, Friedman aligned ranks
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and the Quade test are more useful. If the null hypothesis has been rejected, we
should proceed with a post-hoc test to check the statistical differences between
pairs of classifiers. The last but not least conclusion follows from no free lunch
theorem [48] which states that for any two classifiers, there are as many classi-
fication problems for which the first classifier performs better than the second
as vice versa. Thus, it does not make sense to demonstrate that one classifier
is, on average, better than the others. Instead, we should focus our attention on
exploring the conditions of the classification problems which make our classifier
to perform better or worse than others. We must carefully choose the datasets to
be included in the evaluation process to reflect the specific conditions, for exam-
ple class imbalance, classification cost, dataset size, application domain, etc. In
other words, the choice of the datasets should be guided in order to identify
specific conditions that make a classifier to perform better than others. Summa-
rizing, this review tries to provide the reader with a better understanding about
the overall process of comparison in order to decide which alternative to choose
for each specific case. We believe, that this review can improve the way in which
researchers and practitioners in machine learning contrast the results achieved
in their experimental studies using statistical methods.
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Pacheco-Sánchez, J.H.: Empirical analysis of assessments metrics for multi-class
imbalance learning on the back-propagation context. In: Tan, Y., Shi, Y., Coello,
C.A.C. (eds.) ICSI 2014. LNCS, vol. 8795, pp. 17–23. Springer, Cham (2014).
doi:10.1007/978-3-319-11897-0 3

41. Santafe, G., et al.: Dealing with the evaluation of supervised classification algo-
rithms. Artif. Intell. Rev. 44, 467–508 (2015)

42. Shaffer, J.P.: Multiple hypothesis testing. Annu. Rev. Psychol. 46, 561–584 (1995)
43. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for

classification tasks. Inf. Proc. Manag. 45, 427–437 (2009)
44. St ↪apor, K.: Classification methods in computer vision. In: PWN, Warszawa (2011)

(in Polish)
45. Sun, Y., et al.: Classification of imbalanced data: a review. Int. J. Pattern Recogn.

Artif. Intell. 23(4), 687–719 (2009)
46. Sun, Y., et. al.: Boosting for learning multiple classes with imbalanced class distri-

bution. In: Proceedings of International Conference on Data Mining, pp. 592–602
(2006)
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