
128

k-Nearest Neighbour Classifiers - A Tutorial

PÁDRAIG CUNNINGHAM, School of Computer Science, University College Dublin

SARAH JANE DELANY, School of Computer Science, Technological University Dublin

Perhaps the most straightforward classifier in the arsenal or Machine Learning techniques is the Nearest

Neighbour Classifier—classification is achieved by identifying the nearest neighbours to a query example

and using those neighbours to determine the class of the query. This approach to classification is of par-

ticular importance, because issues of poor runtime performance is not such a problem these days with the

computational power that is available. This article presents an overview of techniques for Nearest Neighbour

classification focusing on: mechanisms for assessing similarity (distance), computational issues in identifying

nearest neighbours, and mechanisms for reducing the dimension of the data.

This article is the second edition of a paper previously published as a technical report [16]. Sections on

similarity measures for time-series, retrieval speedup, and intrinsic dimensionality have been added. An Ap-

pendix is included, providing access to Python code for the key methods.

CCS Concepts: • Computing methodologies→ Machine learning

Additional Key Words and Phrases: k-Nearest neighbour classifiers

ACM Reference format:

Pádraig Cunningham and Sarah Jane Delany. 2021. k-Nearest Neighbour Classifiers - A Tutorial. ACM Comput.

Surv. 54, 6, Article 128 (July 2021), 25 pages.

https://doi.org/10.1145/3459665

1 INTRODUCTION

The intuition underlying Nearest Neighbour Classification is quite straightforward: examples are
classified based on the class of their nearest neighbours. It is often useful to take more than one
neighbour into account, so the technique is more commonly referred to as k-Nearest Neighbour

(k-NN) Classification, where k nearest neighbours are used in determining the class. Since the
training examples are needed at runtime, i.e., they need to be in memory at runtime, it is sometimes
also called Memory-based Classification. Because induction is delayed to runtime, it is considered
a Lazy Learning technique. Because classification is based directly on the training examples, it is
also called Example-based Classification, or Case-based Classification.

The basic idea is as shown in Figure 1, which depicts a 3-Nearest Neighbour Classifier on
a two-class problem in a two-dimensional feature space. In this example the decision for q1 is

This work was funded by Science Foundation Ireland through I-From: The SFI Centre for Advance Manufacturing Research

(16/RC/3872) and the SFI Centre for Research Training in Machine Learning (Grant No. 18/CRT/6183).

Authors’ addresses: P. Cunningham, School of Computer Science, University College Dublin; email: padraig.cunningham@

ucd.ie; S. J. Delany, School of Computer Science, Technological University Dublin; email: sarahjane.delany@

tudublin.ie.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0360-0300/2021/07-ART128 $15.00

https://doi.org/10.1145/3459665

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

https://doi.org/10.1145/3459665
mailto:permissions@acm.org
https://doi.org/10.1145/3459665
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3459665&domain=pdf&date_stamp=2021-07-13

128:2 P. Cunningham and S. J. Delany

Fig. 1. 3-Nearest Neighbour Classification in a 2D feature space (Monthly_Sal and Amount).

straightforward—all three of its nearest neighbours are of class O, so it is classified as an O . The
situation for q2 is a bit more complicated, as it has two neighbours of class X and one of class O .
This can be resolved by simple majority voting or by distance weighted voting (see below). So,
k-NN classification has two stages: the first is the determination of the nearest neighbours, and
the second is the determination of the class using those neighbours.

Let us assume that we have a training dataset D made up of (xi)i ∈[1,n] training samples (where
n = |D |). The examples are described by a set of features F and any numeric features have been
normalised to the range [0,1]. Each training example is labelled with a class label yj ∈ Y . Our
objective is to classify an unknown example q. For each xi ∈ D, we can calculate the distance
between q and xi as follows:

d (q, xi) =
∑
f ∈F

wf δ (qf , xi f). (1)

This is a summation over all the features in F withwf the weight for each feature. There is a large
range of possibilities for this distance metric; a basic version for continuous and discrete attributes
would be:

δ (qf , xi f) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 f discrete and qf = xi f,

1 f discrete and qf � xi f,

|qf − xi f | f continuous.

(2)

The k nearest neighbours are selected based on this distance metric. Then there is a variety
of ways in which the k nearest neighbours can be used to determine the class of q. The most
straightforward approach is to assign the majority class among the nearest neighbours to the
query.

It will often make sense to assign more weight to the nearer neighbours in deciding the class
of the query. A fairly general technique to achieve this is distance-weighted voting where the
neighbours get to vote on the class of the query case with votes weighted by the inverse of their
distance to the query.

Vote (yj) =
k∑

c=1

1

d (q, xc)p
1(yj ,yc) (3)

Thus, the vote assigned to class yj by neighbour xc is 1 divided by the distance to that neighbour,
i.e., 1(yj ,yc) returns 1 if the class labels match and 0 otherwise. In Equation (3)p would normally be
1 but values greater than 1 can be used to further reduce the influence of more distant neighbours.

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

k-Nearest Neighbour Classifiers - A Tutorial 128:3

Another approach to voting is based on Shepard’s work [48] and uses an exponential function
rather than inverse distance, i.e:

Vote (yj) =
k∑

c=1

ed (q,xc)1(yj ,yc). (4)

It is worth mentioning that k-NN can also be effective for regression [2]. In regression, the
dependant variabley is a real number (y ∈ R), so the predicted value ŷ can be the mean or weighted
mean of the y value for the neighbours. The weighted mean would be defined as follows:

ŷ =
1

k

k∑
c=1

1

d (q, xc)p
yc . (5)

The objective for this article is to present a comprehensive tutorial resource on the use of
k-NN. While other k-NN resources exist, most notably the 1991 book by Dasarathy [17] and the
more recent survey by Bhatia [11], our focus is on the implementation of a wide variety of k-NN
methods and we provide supporting code in Python. To this end, we consider three important fac-
tors that must be considered with the use of k-NN. In the next section, we look at the core issue of
similarity and distance measures and explore some exotic (dis)similarity measures to illustrate the
generality of the k-NN idea. In Section 3, we look at computational complexity issues and review
some speedup techniques for k-NN. In Section 4, we look at dimension reduction—both feature se-
lection and sample selection. Dimension reduction is of particular importance with k-NN, as it has
a big impact on computational performance and accuracy. The article concludes with a summary
of the advantages and disadvantages of k-NN.

2 SIMILARITY AND DISTANCE METRICS

While the terms similarity metric and distance metric are often used colloquially to refer to any
measure of affinity between two objects, the term metric has a formal meaning in mathematics. A
metric must conform to the following four criteria (where d (x ,y) refers to the distance between
two objects x and y):

(1) d (x ,y) ≥ 0; non-negativity
(2) d (x ,y) = 0 only if x = y; identity
(3) d (x ,y) = d (y,x); symmetry
(4) d (x , z) ≥ d (x ,y) + d (y, z); triangle inequality.

It is possible to build a k-NN classifier that incorporates an affinity measure that is not a proper
metric, however, there are some performance optimisations to the basic k-NN algorithm that re-
quire the use of a proper metric [10, 46, 59, 59]. In brief, these techniques can identify the nearest
neighbour of an object without comparing that object to every other object but the affinity measure
must be a metric; in particular, it must satisfy the triangle inequality.

The basic distance metric described in Equations (1) and (2) is a special case of the Minkowski
Distance metric—in fact, it is the 1-norm (L1) Minkowski distance. The general formula for the
Minkowski distance is

MDp (q, xi) = ��
�

∑
f ∈F

|qf − xi f |p	

�

1
p

. (6)

The L1 Minkowski distance is the Manhattan distance and the L2 distance is the Euclidean dis-
tance. It is unusual but not unheard of to use p values greater than 2. Larger values of p have the
effect of giving greater weight to the attributes on which the objects differ most. To illustrate this,

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

128:4 P. Cunningham and S. J. Delany

Fig. 2. Cosine Similarity: Q, C, and D are three examples in a 2D feature space, using Cosine Similarity the
nearest neighbour to Q is D.

we can consider three points in 2D space: A = (1, 1),B = (5, 1), andC = (4, 4). Since A and B differ
on one attribute only, the MDp (A,B) is 4 for all p, whereas MDp (A,C) is 6, 4.24, and 3.78 for p
values of 1, 2, and 3, respectively. So, C becomes the nearer neighbour to A for p values of 3 and
greater.

The other important Minkowski distance is the L∞ or Chebyshev distance:

MD∞ (q, xi) = max
f ∈F
|qf − xi f |.

This is simply the distance in the dimension in which the two examples are most different; it
is sometimes referred to as the chessboard distance, as it is the number of moves it takes a chess
king to reach any square on the board.

While the Euclidean and Manhattan distances are probably the most popular k-NN distance
measures, much of the usefulness of k-NN derives from the potential to work with metrics that
are specific to the data under analysis. In the next subsections, we will look at the merits of Cosine
Similarity and (Pearson) Correlation. Then, we will look at some more complex distance measures
that are specialised for particular data types, i.e., Earth Mover’s Distance for image data and Dy-
namic Time Warping for time-series data. These were chosen because they enable the application
of machine learning on data that is not in a feature vector format. This section concludes with a
brief introduction to Metric Learning whereby a metric can be induced from the data.

2.1 Cosine Similarity

Like Minkowski distance, Cosine Similarity works with feature vector data. However, similarity
is based on the angles between the feature vectors—see Figure 2. While C would be the closer
example to Q based on Euclidean distance, D is closer to Q when the angles between the features
vectors is considered. The Cosine similarity between a query q and xi is as follows:

Cos(q, xi) =

∑
f ∈F qf · xi f√∑

f ∈F q2
f

√∑
f ∈F x2

i f

. (7)

This is the dot product of the feature values normalised by the lengths of the feature vectors.
Cosine similarity is a popular metric in text analytics. When text is processed as a bag of words
the features are word counts and Cosine similarity has the advantage that it is independent of
the magnitude of the feature vectors. Thus, it is insensitive to document size. Cosine similarity
requires that all feature values are positive real numbers.

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

k-Nearest Neighbour Classifiers - A Tutorial 128:5

Fig. 3. Correlation: Q, A, and B are three examples described by 10 features (X0–X9), correlation recognises
that Q is more similar to A than to B.

If feature values are positive, then the Cosine similarity will be in the interval [0, 1]. So, we can
define a Cosine distance measure:

CosD(q, xi) = 1 − Cos(q, xi). (8)

2.2 Correlation

Figure 3 shows a scenario where correlation would be the appropriate similarity measure. While
B is the more similar example to the query Q in terms of feature values, the pattern in A better
correlates with Q. Sometimes this correlation is the key to the underlying similarity. This would be
appropriate where the feature values reflect resource allocation (for example, household expendi-
ture on 10 categories (X0–X9)). The magnitudes might be quite different, but the allocation pattern
could be the same.

The two most popular correlation coefficients are the Pearson and Spearman measures [20].
The Pearson is applicable for features that are normally distributed. When reference is made to
a correlation coefficient without specifying which one, it is probably the Pearson. The Pearson
correlation between a query q and a sample xi is defined as follows:

r (q, xi) =

∑
f ∈F (qf − q̄) (xi f − x̄i)

(n − 1)sqsxi

=

∑
f ∈F (qf − q̄) (xi f − x̄i)√∑

f ∈F (qf − q̄)2
∑

f ∈F (xi f − x̄i)2
, (9)

where x̄i and sx are the mean and standard deviation of xi . This is the dot product of the mean-
adjusted q and xi vectors divided by their standard deviations. This mean adjustment makes the
measure insensitive to variations in scale.

In circumstances where the features are not normally distributed the Spearman (rank) correla-
tion can be used. The feature values are ranked and the statistic is calculated using ranks rather
than the original values.

Correlation scores range from [−1, 1]. A score of 1 represents a perfect correlation, 0 is no cor-
relation and −1 means the samples are anti-correlated. A correlation is a similarity score and so
can be converted to a distance in the same manner as for Cosine—see Equation (8).

2.3 Other Distances Metrics for Multimedia Data

The Minkowski distance defined in Equation (6) is a very general metric that can be used in a
k-NN classifier for any data that is represented as a feature vector. When working with image data
a convenient representation for the purpose of calculating distances is a colour histogram. An
image can be considered as a grey-scale histogram H of N levels or bins where hi is the number
of pixels that fall into the interval represented by bin i (this vector h is the feature vector). The

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

128:6 P. Cunningham and S. J. Delany

Minkowski distance formula (6) can be used to compare two images described as histograms. L1,
L2, and less often L∞ norms are used. Other popular measures for comparing histograms are the
Kullback-Leibler divergence (10) [32] and the χ 2 statistic (11) [45].

dK L (H ,K) =
N∑

i=1

hi log

(
hi

ki

)
, (10)

dχ 2 (H ,K) =
N∑

i=1

hi −mi

hi
, (11)

where H and K are two histograms, h and k are the corresponding vectors of bin values, and

mi =
hi+ki

2 .
While these measures have sound theoretical support, in information theory and in statistics

they have some significant drawbacks. The first drawback is that they are not metrics in that
they do not satisfy the symmetry requirement. However, this problem can easily be overcome by
defining a modified distance between x andy that is in some way an average ofd (x ,y) andd (y,x)—
see Reference [45] for the Jeffrey divergence, which is a symmetric version of the Kullback-Leibler
divergence.

A more significant drawback is that these measures are prone to errors due to bin boundaries.
The distance between an image and a slightly darker version of itself can be great if pixels fall into
an adjacent bin, as there is no consideration of adjacency of bins in these measures.

Earth Mover’s Distance. The Earth Mover’s Distance (EMD) is a distance measure that over-
comes many of these problems that arise from the arbitrariness of binning. As the name implies,
the distance is based on the notion of the amount of effort required to convert one image to an-
other based on the analogy of transporting mass from one distribution to another. If we think of
two images as distributions and view one distribution as a mass of earth in space and the other
distribution as a hole (or set of holes) in the same space, then the EMD is the minimum amount of
work involved in filling the holes with the earth.

In their analysis of the EMD Rubner et al. argue that a measure based on the notion of a signature

is better than one based on a histogram. A signature {sj = mj ,wmj
} is a set of j clusters where

mj is a vector describing the mode of cluster j and wmj
is the fraction of pixels falling into that

cluster. Thus, a signature is a generalisation of the notion of a histogram where boundaries and the
number of partitions are not set in advance; instead j should be “appropriate” to the complexity of
the image [45].

The example in Figure 4 illustrates this idea. We can think of the clustering as a quantisation
of the image in some colour space so the image is represented by a set of cluster modes and their
weights. In the figure the source image is represented in a 2D space as two points of weights 0.6 and
0.4; the target image is represented by three points with weights 0.5, 0.3, and 0.2. In this example,
the EMD is calculated to be the sum of the amounts moved (0.2, 0.2, 0.1, and 0.5) multiplied by the
distances they are moved. Calculating the EMD involves discovering an assignment that minimises
this amount.

For two images described by signatures S = {mj ,wmj
}nj=1 and Q = {pk ,wpk

}r
k=1

, we are inter-

ested in the work required to transfer from one to the other for a given flow pattern F:

WORK (S,Q, F) =
n∑

j=1

r∑
k=1

djk fjk , (12)

where djk is the distance between clusters mj and pk and fjk is the flow between mj and pk

that minimises overall cost. An example of this in a 2D colour space is shown in Figure 4. Once

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

k-Nearest Neighbour Classifiers - A Tutorial 128:7

Fig. 4. An example of the EMD between two 2D signatures with two points (clusters) in one signature and
three in the other (based on example in Reference [44]).

the transportation problem of identifying the flow that minimises effort is solved (using dynamic
programming), the EMD is defined to be:

EMD (S,Q) =

∑n
j=1

∑r
k=1 djk fjk∑n

j=1

∑r
k=1 fjk

. (13)

Efficient algorithms for the EMD are described in Reference [45], however, this measure is expen-
sive to compute with cost increasing more than linearly with the number of clusters. Nevertheless,
it is an effective measure for capturing similarity between images.

Compression-based Dissimilarity. In recent years the idea of basing a similarity metric on
compression has received a lot of attention [28, 34]. Indeed, Li et al. [34], refer to this as The

similarity metric. The basic idea is quite straightforward; if two documents are very similar, then
the compressed size of the two documents concatenated together will not be much greater than
the compressed size of a single document. This will not be true for two documents that are very
different. Slightly more formally, the difference between two documents A and B is related to the
compressed size of documentB when compressed using the codebook produced when compressing
document A.

The theoretical basis of this metric is in the field of Kolmogorov complexity, specifically, in
conditional Kolmogorov complexity:

dKv (x ,y) =
Kv (x |y) + Kv (y |x)

Kv (xy)
, (14)

whereKv (x |y) is the length of the shortest program that computesx wheny is given as an auxiliary
input to the program, andKv (xy) is the length of the shortest program that outputsy concatenated
to x . While this is an abstract idea, it can be approximated using compression:

dC (x ,y) =
C (x |y) +C (y |x)

C (xy)
. (15)

C (x) is the size of data x after compression, andC (x |y) is the size of x after compressing it with the
compression model built for y. If we assume that Kv (x |y) = Kv (xy) − Kv (y), then we can define
a normalised compression distance:

dN C (x ,y) =
C (xy) −min(C (x),C (y))

min(C (x),C (y))
. (16)

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

128:8 P. Cunningham and S. J. Delany

It is important that C (.) should be an appropriate compression metric for the data. Delany and
Bridge [21] show that compression using Lempel-Ziv (GZip) is effective for text. They show that
this compression-based metric is more accurate in k-NN classification than distance-based metrics
on a bag-of-words representation of the text.

2.4 Similarity Metrics for Time Series

Time-series data can be as diverse as human activity measured by wearable sensors [37] or mea-
surements coming from a manufacturing process. There is a long history of machine learning
research on time-series analysis and 1-NN is the baseline metric for time-series classification [5].
However, the special characteristics of time series do present challenges for k-NN. Consider a
query time-series q and a target x:

q = q1,q2, . . . ,qj , . . . ,qm , (17)

x = x1,x2, . . . ,x j , . . . ,xn . (18)

While both time series are vectors, the Euclidean distance between these two vectors may be quite
large even if they have the same general shape (see Figure 5). Furthermore, the two time-series
might be of different lengths. To complicate things further, similarity might depend on specific
features (motifs) in the time series rather than similarity across the time series as a whole.

A number of methods for scoring similarity between time series have been developed that allow
k-NN to work with time-series data. Three popular methods are:

• Dynamic Time Warping (DTW): Because two time series may be fundamentally similar
but offset or slightly distorted, DTW allows the time axis to be warped to identify underlying
similarities [29].
• Symbolic Aggregate Approximation (SAX): The idea with SAX is to discretise the time

series so it can be represented as a sequence of symbols [35]. Then methods for scoring
sequence similarity can be applied.
• Symbolic Fourier Approximation (SFA): SFA is like SAX except the sequence represen-

tation is produced from a discrete Fourier transform representation of the signal rather than
a discretisation of the signal itself. So, SFA is a frequency domain rather than a time domain
representation of the signal [47].

By far, the most popular of these is DTW, so we will provide some detail here on how DTW
works. As the name suggests, the idea is to allow the time series to be stretched (warped) to find
the best mapping. The DTW distance is defined as follows:

DTW (q, x) = min
π

√ ∑
(i, j)∈π

d (qi ,x j)2, (19)

where π = [π1, . . . ,πl , . . . ,πL] is the optimum path (mapping) having the following properties:

• m = |q|,n = |x|,
• π1 = (1, 1),πL = (m,n),
• πl+1 − πl ∈ {(1, 0), (0, 1), (1, 1)}.

The DTW path for the two time series in Figure 5 is shown on the right. It starts at the top
left (1,1) and finishes at the bottom right (m,n). Each point (i, j) on the path indicates the map-
ping between qi and x j . The extent of the deviation from the main diagonal reflects the warping.
In practice, the path may be restricted to a band around the main diagonal to restrict warping.

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

k-Nearest Neighbour Classifiers - A Tutorial 128:9

Fig. 5. The image on the left illustrates the main challenge in quantifying similarity between time series. The
two series are similar but the Euclidean distance between them is large. The image on the right shows the
DTW mapping between the two time series (produced using tslearn [51]).

The computational complexity of DTW is O (n,m), because it entails a search through the matrix
shown on the right is Figure 5. This is effectively O (n2) in the length of the time-series—so DTW
is computationally expensive.

Finally, DTW is not a proper metric, because it fails two of the criteria laid out at the beginning
of this section. DTW (q, x) = 0 � x = x and the triangle inequality may not hold. This means
that speedup mechanisms such as Ball Trees (Section 3.2) that work for proper similarity metrics
cannot be applied. Neither can mechanisms that work for vector space representations, i.e., Kd-
Trees (Section 3.1) and Random Projection Trees (Section 3.3.2).

2.5 Metric Learning

So far, we have considered scenarios where the system designer selects a metric that is considered
appropriate based on their insight into the data. It is also possible to induce a metric from the data.
This Metric Learning has been the subject of extensive research [53, 54]. In this section, we briefly
outline two general strategies:

• Linear Discriminant Analysis (LDA) is a linear projection method similar to PCA (see
Section 4.1). However, LDA is supervised in the sense that the objective is to discover a
projection that does a good job of separating the classes. Thus, LDA can be used as the basis
of a learned metric for k-NN.
• The Mahalanobis Distance is defined to be:

dM (x ,y) =
√

(x − y)�S(x − y), (20)

where S is the covariance matrix of the data. If we replace S with any Positive Semi-Definite
Matrix M, then we have a very general metric that can be learned from the data—this is the
Generalized Mahalanobis distance [53]:

dGM (x ,y) =
√

(x − y)�M(x − y). (21)

Of these two approaches, strategies based on Generalized Mahalanobis distance have received
the most attention [53]. If the data is described by m features, then M is an m × m matrix so
the learned metric has considerable expressive power. Appendix I provides a link to Python code
presenting an example of metric learning based on the large margin nearest neighbor method [54].

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

app:code

128:10 P. Cunningham and S. J. Delany

Code for metric learning is not included in scikit-learn, but a dedicated metric learning extension
for scikit-learn is available [19].

3 COMPUTATIONAL COMPLEXITY

Computationally expensive metrics such as the Earth-Mover’s Distance and compression-based
(dis)similarity metrics focus attention on the computational issues associated with k-NN classifiers.
Basic k-NN classifiers that use a simple Minkowski distance will have a time behaviour that is
O (dn) where n is the number of data samples and d is the number of features that describe the data,
i.e., the distance metric is linear in the number of features and the comparison process increases
linearly with the amount of data. The computational complexity of the EMD and compression
metrics is more difficult to characterise, but a k-NN classifier that incorporates an EMD metric is
likely to be O (nc3logc) where c is the number of clusters [45].

For these reasons there has been considerable research on editing down the training data and
on reducing the number of features used to describe the data (see Section 4). There has also been
considerable research on alternatives to the exhaustive search strategy (brute force) that is used
in the standard k-NN algorithm. In the remainder of this section, we review Kd-Trees and Cover
Trees, the two speedup strategies included in Scikit-learn. We also review some approximate k-NN
algorithms that do not guarantee to retrieve nearest neighbours but offer dramatic speedup with
little loss of accuracy. In the final sub-section, a simple comparison of Kd-Trees and Cover Trees
against brute force search is presented.

3.1 Kd Trees

Kd-Trees represent the longest established strategy for speedup in k-NN [6]. It is best to think of
Kd-Trees as a general strategy rather than a single algorithm. The general idea is that a binary tree
is used to successively partition the dataset with training samples sorted to the leaves of the tree.
This offers the potential for retrieval time that is O (d log(n)) rather than O (dn).

A sample Kd-Tree is shown in Figure 6. The data is described by two features so it can be repre-
sented as a 2D plot. The plot on the left corresponds to the binary tree on the right. The Kd-Tree
always partitions the data along hyperplanes (lines in the 2D case) that are perpendicular to the
axes.

The figure shows a query point Q (2, 5). The search for nearest neighbours for Q will locate it
to the appropriate node in the tree G (2, 6). It can be seen in the plot that the nearest neighbour
for Q is not guaranteed to be located in the hypercube represented by G. However, the distance
betweenG andQ gives us an upper bound on the distance to the nearest neighbour. It is clear that
the grey box (hypercube) needs also to be considered; the rest of the tree can be bounded out from
consideration. It is this potential to bound out large parts of the data that yields the O (d log(n))
performance.

Some other aspects of Kd-Trees that need to be considered are as follows:

• Constructing Kd-Trees entails a straightforward binary partitioning of the data and sort-
ing the data to leaf nodes so the construction process is comparatively quick. The partition
is typically at the median value for the selected feature.
• At each step in the building of the tree, a decision has to be made on feature selection. The

policy could be to cycle through the features in order or to select the feature in which the
variance (spread) in the data is highest.
• The query time will increase with the number of neighbours required (k). For very large k,

query time will exceed that for brute force search.

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

k-Nearest Neighbour Classifiers - A Tutorial 128:11

Fig. 6. A Kd-Tree based on the example in the original paper by Bentley [7]). The partitioning of the 2D
feature space shown on the left corresponds to the tree on the right.

• The O (d log(n)) retrieval time depends on a balanced tree. If the tree is not well balanced,
then some retrieval times will be poor [6].
• The main drawback with Kd-Trees is that the curse of dimensionality still applies. The

benefits of using a binary tree as an indexing structure cease to apply when d is large (say,
> 20). Kleinberg [30] points out that when d > loд(n), O (d log(n)) is no better than O (dn).

3.2 Ball Trees

Figure 6 shows that a Kd-Tree indexes the data by partitioning the feature space. By contrast, a
Ball Tree is a “metric tree” in the sense that it is based on a metric defined on pairs of samples
[23, 59]. The construction of the ball tree is akin to a hierarchical clustering problem that can be
tackled top-down or bottom-up:

• Bottom-up: Initially, each data point is a point sized bounding ball. At each step, select the
closest pair of balls, the pair that have the smallest bounding ball that covers them. Join these
balls. Continue until the top-level bounding ball is reached.
• Top-down: At each step, two data points are chosen that have the maximum distance be-

tween them. The remaining points are partitioned by allocating to the closer or these. This
process is repeated recursively until a stopping criterion is met, e.g., number of samples at
a leaf node.

In contrast to Kd-Trees, the construction of a Ball tree depends on a metric defined on the data
rather than a feature space representation. However, it should be noted that the distance measure
must be a metric so a Ball Tree cannot be applied for measures such as Earth Mover’s Distance or
Dynamic Time Warping. Compared with Kd-Trees, Ball Trees have the potential to perform better
for high-dimension data, for example, in image analysis [33].

3.3 Approximate k-NN

Brute force search for k-NN is O (dn). As we have seen in the preceding sections, we can get over
the linear dependence on n but high dimension data is still a problem. Fortunately, for many appli-
cations, it is not essential to retrieve the absolute nearest neighbours. For instance, in recommender
systems, the most similar item is not necessarily required—indeed, items that are reasonably close
may offer some serendipitous discovery. In k-NN classification, neighbours that are close (but not
necessarily closest) are probably of the correct class. So, in this section, we review the two most

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

128:12 P. Cunningham and S. J. Delany

Table 1. Overview of the Datasets Used to Test
the Speedup Algorithms

HTRU Shuttle Letter Credit

Samples 17,898 43,494 20,000 30,000
Features 8 9 16 23

Winning Alg. kd-tree kd-tree kd-tree brute-force

popular strategies for Approximate k-NN; these are Locality Sensitive Hashing and Random Pro-
jection Trees [36].

3.3.1 Locality Sensitive Hashing. With Locality Sensitive Hashing (LSH) the objective is to
map similar items into the same “buckets” with high probability. This contrasts with conventional
hashing where the objective of minimising hashing collisions means that similar items will have
very different hashes. Given that LSH maps similar items to the same buckets, it can be used to
implement approximate nearest neighbour search. The strategy is to use a number of variants of
LSH algorithms to retrieve a candidate set of nearest neighbours. This candidate set is the union of
the items in the buckets returned by the LSH algorithms. Then the similarity metric can be applied
to these candidates to find nearest neighbours that will be near-optimal [27, 36].

3.3.2 Random Projection Trees. In Section 3.1, we saw that exact nearest neighbour search is
a two-stage process. First, the query is located to the correct leaf node in the tree and candidate
nearest neighbours are identified. Then there is a backtracking process that finds better candidates
or bounds out sections of the tree from consideration. The retrieval of nearest neighbours is guar-
anteed without explicitly measuring against all data points. Random Projection Trees depends on
two extensions to this basic Kd-tree idea:

• Defeatist Search: The query item is located to the correct leaf node but the backtracking
process to ensure optimality is dropped or at least greatly curtailed [36]. The search gives
up early, which might be considered a bit defeatist.
• Multiple Trees: If the search returns without backtracking, then the prospect of finding

good neighbours can be improved by repeating with multiple trees. Different variants of the
tree can be produced by including a random element in the Kd-Tree generation process [49].
Since there is a risk that there will not be great variety in the Kd-Tree variants, it is common
to produce different trees by randomly projecting the data into a different space (i.e., perform
a simple linear transformation on the data) [30].

In the next section, we provide a demonstration of the effectiveness of Approximate k-NN on
a number of datasets. The results show significant speedup with little or no loss of accuracy. The
caveat is that it only works for feature vector data.

3.4 Speedup Evaluation

The objective in this section is to show the potential speedup that is possible with these methods—
it is not meant as a comprehensive evaluation. In our first evaluation, we assess the three op-
tions available in the k-NN implementation in scikit-learn (scikit-learn.org). These are brute-force
search, Kd-Trees, and Ball Trees. The evaluation covers the four datasets summarised in Table 1.
Two of these datasets are low dimension (< 10). The Credit dataset would be considered high-
dimension with 23 features.

We present two sets of results (see Figure 7), one using 2-fold cross-validation and one using
10-fold. The objective is to show the impact of the tree building phase; while both cross-validations

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

scikit-learn.org)

k-Nearest Neighbour Classifiers - A Tutorial 128:13

Fig. 7. Processing time for Kd-Tree and Ball Tree compared with brute force search. Times are normalised to
the brute force time. (<1 is an improvement). 2-fold cross-validation on the left and 10-fold on the right.

Fig. 8. The plot on the left shows the accuracy of ANN using a single tree compared with “full search”
k-NN. The time saving is significant. The plot on the right shows that accuracy on the Letter dataset can be
improved with the addition of more trees.

use all the data for testing, the 10-fold cross-validation incurs the tree building overhead 10 times
instead of twice.

The bar charts show the processing time divided by the time for brute force search. It is clear
that significant speedup is possible for the low-dimension datasets. The Kd-Tree results are slightly
better than Ball Tree in all cases. However, the performance for the Credit dataset is worse than
brute-force search. This is to be expected, given that it is high-dimension.

This poor performance on high-dimension data shows that the curse of dimensionality cannot be
avoided in exact nearest neighbour search. Figure 8 shows the speedup that can be achieved with
Approximate Nearest Neighbour. The method we evaluate is called Annoy (github.com/spotify/
annoy) and uses Random Projection Trees [9]. Annoy stands for “Approximate Nearest Neighbor
Oh Yeah” but the name probably stems from the fact that the method is “annoyingly” effective. The
results in Figure 8 show dramatic speedup with almost no loss of accuracy except for the Letter
dataset. When more trees are added, the accuracy reaches that achievable with exact k-NN with a
four-fold improvement in processing time.

4 DIMENSION REDUCTION

Given the high dimension nature of the data, Dimension Reduction is a core research topic in
Machine Learning. Research on Dimension Reduction has itself two dimensions; the dimensions

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

github.com/spotify/annoy

128:14 P. Cunningham and S. J. Delany

of a dataset of |D | examples described by |F | features can be reduced by selecting a subset of the
examples or by selecting a subset of the features (an alternative to this is to transform the data into
a representation with less features). It is important to emphasise that dimension reduction through
feature selection can be achieved without loss of information, because the intrinsic dimension of
the data may be considerably less than the number of features. This notion of intrinsic dimension
is discussed in Section 4.1.

Dimension reduction as achieved by supervised feature selection is described in Section 4.2.
Unsupervised feature transformation using Principal Component Analysis (PCA) [15] can be
used as a preprocessing step for k-NN [4]. PCA is discussed in the next section in the context of
intrinsic dimension. However, there is no evidence that PCA can be combined with k-NN without
sacrificing accuracy, so PCA will not be covered in this article. The other aspect of dimension
reduction is the deletion of redundant or noisy instances in the training data—this is reviewed in
Section 4.3.

4.1 Intrinsic Dimension

Colloquially, we can think of the intrinsic dimension as the minimum number of features required
to provide a “good” representation of the data. This notion of a “good” representation can be
considered in terms of PCA. We can represent a dataset D as a rectangular matrix D of dimension
n × p, that is, n samples described by p features. If we perform PCA on D, then we get:

Tn×r = Dn×pWp×r . (22)

The PCA provides a linear mapping of the data into a lower dimension representation T. The PCA
also provides a ranking of the principal components (PCs) in terms of the variance in the data
that they capture. We can select the top s PCs that together capture (1−ϵ) fraction of the variance
in the data. This s is an approximation of the intrinsic dimension of the data.

Tn×s = Dn×pWp×s (23)

The variance captured by the first four PCs for the HTRU and Shuttle datasets is shown in Figure 9.
The four PCs capture almost all of the variance for the HTRU data but less than 80% for Shuttle. We
can think of four as a reasonable assessment of the intrinsic dimension of the HTRU data, whereas
the intrinsic dimension for Shuttle is greater than four.

This PCA-inspired notion of intrinsic dimension is a global approximation and there may be
parts of the space where the intrinsic dimension is locally less than s . Imagine a neighbourhood
of radius r around a point q (e.g., among the k nearest neighbours), (1−ϵ) fraction of the variance
will be covered by s ′ features, where s ′ < p.

Dasgupta & Freund [18] provide an insightful example to explain intrinsic dimension. Imagine a
motion capture system with 13 markers attached to a person to facilitate processing (see Figure 10).
In a 2D image, these markers can be represented by 26 x ,y coordinates. So, the dimension of the
motion capture data will be 26. However, it is clear from Figure 10(c) that very many points in the
26D space are not reachable. This system does not really have 26 degrees of freedom. Instead, the
person could be represented by the joint angles in the body, a number much smaller than 26.

4.2 Feature Selection

When the objective is to reduce the number of features used to describe data there are two strate-
gies that can be employed. Techniques such as PCA may be employed to transform the data into a
lower dimension representation. Alternatively, feature selection may be employed to discard some

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

k-Nearest Neighbour Classifiers - A Tutorial 128:15

Fig. 9. The first four principal components of the HTRU and Shuttle datasets.

Fig. 10. Consider a simple motion capture system where 13 coloured balls capture the motion of the stick
figure (a). (b) shows a valid configuration of these balls. (c) shows a configuration in this space that is not
reachable. (Motivated by example in Reference [18].)

of the features. In using k-NN with high dimension data, there are several reasons why it is useful
to perform feature selection:

— For many distance measures, the retrieval time increases directly with the number of features
(see Section 3).

— Noisy or irrelevant features can have the same influence on retrieval as predictive features,
so they will impact negatively on accuracy.

— Things look more similar on average the more features used to describe them (see Figure 11).

Feature Selection techniques typically incorporate a search strategy for exploring the space
of feature subsets, including methods for determining a suitable starting point and generating
successive candidate subsets, and an evaluation criterion to rate and compare the candidates,
which serves to guide the search process. The evaluation schemes can be divided into two broad
categories:

— Filter approaches attempt to remove irrelevant features from the feature set prior to the ap-
plication of the learning algorithm. Initially, the data is analysed to identify those dimensions

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

128:16 P. Cunningham and S. J. Delany

Fig. 11. The more dimensions used to describe objects, the more similar on average things appear. This figure
shows the cosine similarity between objects described by 5 and by 20 features. It is clear that in 20 dimensions
similarity has a lower variance than in 5.

that are most relevant for describing its structure. The chosen feature subset is subsequently
used to train the learning algorithm. Feedback regarding an algorithm’s performance is not
required during the selection process, though it may be useful when attempting to gauge
the effectiveness of the filter.

— Wrapper methods for feature selection make use of the learning algorithm itself to choose a
set of relevant features. The wrapper conducts a search through the feature space, evaluating
candidate feature subsets by estimating the predictive accuracy of the classifier built on that
subset. The goal of the search is to find the subset that maximises this criterion.

It is worth mentioning at this point that some other classification techniques perform implicit
feature selection. For instance, the process of building a decision tree will very often not select all
the features for use in the tree. Features not used in the tree have no role then in classification.

Filter Techniques. Central to the Filter strategy for feature selection is the criterion used to
score the predictiveness of the features. In recent years Information Gain (IG) has become per-
haps the most popular criterion for feature selection. The Information Gain of a feature is a mea-
sure of the amount of information that a feature brings to the training set [41]. It is defined as
the expected reduction in entropy caused by partitioning the training set D using the feature f
as shown in Equation (24), where Dv is that subset of the training set D where feature f has
value v .

IG (D, f) = Entropy (D) −
∑

v ∈values (f)

|Dv |
|D | Entropy (Dv). (24)

Entropy is a measure of how much randomness or impurity there is in the dataset. It is defined
in Equation (14), where c equals the number of classes in the training set and pi is the proportion
of class i in the data—entropy is highest when the proportions are equal.

Entropy (D) =
c∑

i=1

−pi log2 pi (25)

In binary classification, this can be simplified to Entropy (D) = −p+ log2 p+ − p− log2 p− where
p+ represents the class and p− the non-class. For comparison purposes, we will also consider Odds

Ratio (OR) [39], which is an alternative filtering criterion. For binary classification, OR calculates

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

k-Nearest Neighbour Classifiers - A Tutorial 128:17

Fig. 12. Comparing Information Gain with Odds Ratio. Results of the average of three 10-fold cross-
validation experiments on a dataset of 1,000 emails—500 spam and 500 legitimate—where word features
only were used.

the ratio of the odds of a feature occurring in the class to the odds of the feature occurring in the
non-class:

OR (f , c) =
Odds (f |c)

Odds (f |c̄)
. (26)

Where a specific feature does not occur in a class, it can be assigned a small fixed value so the OR
can still be calculated. For feature selection, the features can be ranked according to their OR with
high values, indicating features that are very predictive of the class. The same can be done for the
non-class to highlight features that are predictive of the non-class.

We can look at the impact of these feature selection criteria in an email spam classification
task. In this experiment, we selected the n

2n features with the highest IG value and n features
each fromOR (f , spam) andOR (f ,nonspam) sets. The results, displayed in Figure 12, show that IG
performed significantly better than OR. The reason for this is that OR is inclined to select features
that occur rarely but are very strong indicators of the class. This means that some objects (emails)
are described by no features and thus have no similarity to any cases in the case base. In this
experiment, this occurs in 8.8% of cases with OR compared with 0.2% for the IG technique. This
shows a simple but effective strategy for feature selection in very high dimension data. IG can be
used to rank features, then a cross-validation process can be employed to identify the number of
features above which classification accuracy is not improved. This evaluation suggests that the top
350 features as ranked by IG are adequate.

While this is an effective strategy for feature selection, it has the drawback that features are
considered in isolation, so redundancies or dependancies are ignored. Two strongly correlated fea-
tures may both have high IG scores but one may be redundant once the other is selected. More
sophisticated filter techniques that address these issues using Mutual Information to score groups

of features have been researched by Novovičová et al. [40] and have been shown to be more effec-
tive than these simple Filter techniques.

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

128:18 P. Cunningham and S. J. Delany

Fig. 13. The feature subspace.

Wrapper Techniques. The obvious criticism of the Filter approach to feature selection is that
the filter criterion is separate from the induction algorithm used in the classifier. This is overcome
in the Wrapper approach by using the performance of the classifier to guide search in feature
selection—the classifier is wrapped in the feature selection process [31]. In this way, the merit of
a feature subset is the generalisation accuracy it offers as estimated using cross-validation on the
training data. If 10-fold cross-validation is used, then 10 classifiers will be built and tested for each
feature subset evaluated—so the wrapper strategy is very computationally expensive. If there are
p features under consideration, then the search space is of size 2p , so it is an exponential search
problem.

A simple example of the search space for feature selection where p = 4 is shown in Figure 13.
Each node is defined by a feature mask; the node at the top of the figure has no features selected,
while the node at the bottom has all features selected. For large values of p, an exhaustive search
is not practical because of the exponential nature of the search.

The two most popular strategies are:

— Forward Selection, which starts with no features selected, evaluates all the options with just
one feature, selects the best of these, and considers the options with that feature plus one
other, and so on.

— Backward Elimination starts with all features selected, considers the options with one feature
deleted, selects the best of these, and continues to eliminate features.

These strategies will terminate when adding (or deleting) a feature will not produce an improve-
ment in classification accuracy as assessed by cross-validation. Both of these are greedy search
strategies and so are not guaranteed to discover the best feature subset. More sophisticated search

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

k-Nearest Neighbour Classifiers - A Tutorial 128:19

Fig. 14. Instance selection techniques demonstrating competence preservation (redundancy reduction) and
competence enhancement (noise reduction).

strategies can be employed to better explore the search space; however, Reunanen [42] cautions
that more intensive search strategies are more likely to overfit the training data.

4.3 Instance Selection and Noise Reduction

The second aspect of dimension reduction is instance selection, reducing the size of the training set
by removing redundant or noisy instances while maintaining or even improving performance. This
aspect of dimension reduction is explored and researched in two different areas, nearest-neighbour
classification, and case-based reasoning (CBR). It is known as Instance Selection or Prototype
Selection by those who focus on nearest neighbour classification [24] and Case-base Editing or
Case-base Maintenance by the CBR community [38].

Instance selection techniques can be categorised as competence preservation or competence
enhancement techniques [12]. Competence preservation corresponds to redundancy reduction,
removing superfluous instances that do not contribute to classification competence. Competence
enhancement is effectively noise reduction, removing noisy or corrupt instances from the training
set. Figure 14 illustrates both of these with a classification example, where instances of one class
are represented by stars, and instances of the other class are represented by circles. Competence
preservation techniques aim to remove internal instances in a cluster of instances of the same class
and can predispose towards preserving noisy instances as exceptions or border cases.

Noise reduction, however, aims to remove noisy or corrupt instances but can remove exceptional
or border instances that may not be distinguishable from true noise, so a balance of both can be
useful. Techniques that combine a balance of both redundancy reduction and noise removal are
known as hybrid approaches.

Editing strategies normally operate in one of two ways: incremental, which involves adding
selected instances from the training set to an initially empty edited set, and decremental, which
involves contracting the training set by removing selected instances.

Early Techniques. An early competence preservation technique is Hart’s Condensed Nearest

Neighbour (CNN) [26]. CNN is an incremental technique that adds to an initially empty edited
set any instance from the training set that cannot be classified correctly by the edited set. This
technique is very sensitive to noise and to the order of presentation of the training set instances—
in fact, CNN by definition will tend to preserve noisy instances. Improvements on CNN included
the Selective NN (SNN) [43], which imposes the rule that every instance in the training set must
be closer to an instance of the same class in the edited set than to any other training instance of
a different class. The Reduced NN Rule [25] took the opposite, decremental approach, removing

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

128:20 P. Cunningham and S. J. Delany

an instance from the training set where its removal does not cause any other instance to be mis-
classified. This technique will allow for the removal of noisy cases but is sensitive to the order of
presentation of cases.

Competence enhancement or noise reduction techniques start with Wilson’s Edited Nearest

Neighbour (ENN) algorithm [55], a decremental strategy, which removes instances from the train-
ing set that do not agree with theirk nearest neighbours. These instances are considered to be noise
and appear as exceptional examples in a group of instances of the same class. Extensions to ENN
include the repeated ENN (RENN) and the all k-NN algorithms [52]. Both make multiple passes
over the training set, the former repeating the ENN algorithm until no further eliminations can be
made from the training set and the latter using incrementing values of k . These techniques focus
on noisy or exceptional instances and do not result in the same storage reduction gains as the
competence preservation approaches.

Hybrid techniques were introduced with a series of instance based learning IBn algorithms[1].
IB2 is similar to CNN, adding only instances that cannot be classified correctly by the reduced
training set. IB2’s susceptibility to noise is handled by IB3, which records how well instances are
classifying and only keeps those that classify correctly to a statistically significant degree. Other
researchers have provided variations on the IBn algorithms [13, 14, 58].

Competence-based Case-base Editing. Approaches to case-base editing build a competence
model of the training data and use the competence properties of the cases to determine which cases
to include in the edited set. Measuring and using case competence to guide case-base maintenance
was first introduced by Smyth and Keane [50] and developed by Zhu and Yang [59]. Smyth and
Keane [50] introduce two important competence properties, the reachability and coverage sets for
a case in a case-base. The reachability set of a case c is the set of all cases that can successfully
classify c , and the coverage set of a case c is the set of all cases that c can successfully classify.
The coverage and reachability sets represent the local competence characteristics of a case and are
used as the basis of a number of editing techniques.

A family of competence-guided editing methods for case-bases combine both incremental and
decremental strategies using a combination of rules [38]:

(1) an ordering policy for the presentation of the cases that is based on the competence charac-
teristics of the cases;

(2) an addition rule to determine the cases to be added to the edited set;
(3) a deletion rule to determine the cases to be removed from the training set; and
(4) an update policy, which indicates whether the competence model is updated after each edit-

ing step.

One of these algorithms, Conservative Redundancy Removal (CRR) [22], is included in the
assessment in Section 4.3.1. This algorithm is similar in concept to the FCNN rule [3], which can
be applied to huge collections of data.

Other approaches also use the coverage and reachability properties of cases. Iterative Case

Filtering (ICF) [12] is a decremental strategy contracting the training set by removing those cases
c , where the number of other cases that can correctly classify c is higher that the number of cases
that c can correctly classify. This strategy focuses on removing cases far from class borders. After
each pass over the training set, the competence model is updated and the process repeated until
no more cases can be removed. ICF includes a pre-processing noise reduction stage, effectively
RENN, to remove noisy cases. McKenna and Smyth compared their family of algorithms to ICF
and concluded that the overall best algorithm of the family delivered improved accuracy (albeit
marginal, 0.22%) with less than 50% of the cases needed by the ICF edited set [38].

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

k-Nearest Neighbour Classifiers - A Tutorial 128:21

Fig. 15. The impact of CNN and CRR on training set size and accuracy.

Wilson and Martinez [57] present a series of reduction techniques called DROP1 to DROP5,1

which, although published before the definitions of coverage and reachability, could also be consid-
ered to use a competence model. They define the set of associates of a case c , which is comparable
to the coverage set of McKenna and Smyth except that the associates set will include cases of a
different class from case c, whereas the coverage set will only include cases of the same class as c .

The DROPn algorithms use a decremental strategy. Their comprehensive evaluation found
DROP3 to be the best mix of generalisation accuracy and storage requirements, performing consis-
tently well in comparison with other reduction techniques. A comparison of ICF against DROP3
found that neither algorithm consistently out-performed the other and both represented the “cut-
ting edge in instance set reduction techniques” [12].

4.3.1 Instance Selection Performance. Figure 15 shows the impact of two instance selection tech-
niques (CNN & CRR) on training set size and generalisation accuracy. The evaluation shows that,
at least for some datasets, the training set size can be dramatically reduced with almost no im-
pact on generalisation accuracy. If there is a lot of redundancy in the training data, then dramatic
speedup can be achieved through instance selection without any significant impact on accuracy.

5 MODEL SELECTION

With the large number of decisions to be made in setting up a k-NN classifier, model selection
and hyper-parameter tuning is a key part of the process. Model selection is recognised as funda-
mental to Machine Learning, and toolkits such as scikit-learn include extensive support for model
selection and parameter tuning. The fundamental strategy is to use cross-validation to evaluate
the model/hyper-parameter combinations [8].

Even a simple k-NN deployment will require some model choices, for example:

• What is the best value for k?
• What distance measure is best for the data, e.g., Cosine, Euclidean, Correlation?
• Does it help to include distance weighting?

The normal practice is to use grid-search to explore this hyper-parameter space, as shown in
Figure 16. If five alternatives for k are considered and three alternative distance measures, then a
grid of 3 × 5 needs to be explored. When two instance weighting alternatives are added, the grid
expands to 3 × 5 × 2. These alternatives can be tested using cross-validation on the training data
and the generalisation accuracy of the best combination can be assessed using a hold-out set. A
link to Python code for grid search is provided in the Appendix.

1Three of these algorithms were originally published in [56] as Reduction Techniques (RT1 to RT3).

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

128:22 P. Cunningham and S. J. Delany

Fig. 16. (a) Grid Search for k-NN considering k , the distance metric and instance weighting policy (Weighted
or Uniform).
(b) Typically, Grid Search will be performed on the training data with the impact assessed on a hold-out set.

6 CONCLUSION: ADVANTAGES AND DISADVANTAGES

k-NN is very simple to understand and easy to implement. So, it should be considered in seeking
a solution to any classification problem. Some advantages of k-NN are as follows (many of these
derive from its simplicity and interpretability):

— Because the process is transparent, it is easy to implement and debug.
— k-NN can be applied to data that cannot be described as a feature vector provided a similarity

measure is available. Thus, k-NN can be used in situations where other ML mechanisms will
not be applicable.

— In situations where an explanation of the output of the classifier is useful, k-NN can be very
effective if an analysis of the neighbours is useful as explanation.

— There are some noise reduction techniques that work only for k-NN that can be effective in
improving the accuracy of the classifier [22].

— In some circumstances, speedup mechanisms such as Kd-Trees or Ball Trees can improve
retrieval times without any loss of accuracy.

— Approximate Nearest Neighbour techniques can greatly improve retrieval times, sometimes
with minimal impact on accuracy [30].

These advantages of k-NN, particularly those that derive from its interpretability, should not be
underestimated. However, some significant disadvantages are as follows:

— Because all the work is done at runtime, k-NN can have poor runtime performance if the
training set is large.

— k-NN is very sensitive to irrelevant or redundant features, because all features contribute to
the similarity (see Equation (1)) and thus to the classification. This can be ameliorated by
careful feature selection or feature weighting.

— On very difficult classification tasks, k-NN may be outperformed by more exotic techniques
such as Support Vector Machines or Neural Networks.

A APPENDIX I: PYTHON CODE

The GitHub repository2 associated with this article contains the following Python Notebooks:

• kNN-Basic: Code for a basic k-NN classifier in scikit-learn.
• kNN-Correlation: How to use correlation as the k-NN metric in scikit-learn (see Section 2.2).
• kNN-Cosine: How to use Cosine as the k-NN metric in scikit-learn. Using Cosine similarity

for text classification (Section 2.1).

2https://github.com/PadraigC/kNNTutorial.

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

https://github.com/PadraigC/kNNTutorial

k-Nearest Neighbour Classifiers - A Tutorial 128:23

• kNN-DTW: Using the tslearn library for time-series classification using DTW (Section 2.4).
• kNN-MetricLearn: Using the metric-learn library to learn a similarity metric.
• kNN-Speedup: scikit-learn provides some options for speeding up nearest neighbour re-

trieval. This notebook tests the speedup on four datasets (Section 3.4).
• kNN-Annoy: Testing the speedup offered by the Approximate Nearest Neighbour implemen-

tation in annoy (Section 3.4).
• kNN-PCA: Some code to use PCA to estimate the intrinsic dimension of the four datasets.
• kNN-InstSel: An evaluation of the impact of two Instance selection algorithms (CRR & CNN)

on training set size and accuracy.
• kNN-Model-Selection: Using grid-search for model selection (hyper-parameter tuning).

REFERENCES

[1] David W. Aha, Dennis Kibler, and Marc K. Albert. 1991. Instance-based learning algorithms. Mach. Learn. 6, 1 (1991),

37–66.

[2] Naomi S. Altman. 1992. An introduction to kernel and nearest-neighbor nonparametric regression. Amer. Statist. 46,

3 (1992), 175–185.

[3] Fabrizio Angiulli. 2007. Fast nearest neighbor condensation for large data sets classification. IEEE Trans. Knowl. Data

Eng. 19, 11 (2007), 1450–1464. DOI:https://doi.org/10.1109/TKDE.2007.190645

[4] Kyungim Baek, Bruce A. Draper, J. Ross Beveridge, and Kai She. 2002. PCA vs. ICA: A comparison on the FERET data

set. In Joint Conference on Information Sciences. 824–827.

[5] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh. 2017. The great time series classifi-

cation bake off: A review and experimental evaluation of recent algorithmic advances. Data Mining Knowl. Discov. 31,

3 (2017), 606–660.

[6] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching. Commun. ACM 18, 9

(1975), 509–517.

[7] Jon Louis Bentley. 1979. Multidimensional binary search trees in database applications. IEEE Trans. Softw. Eng. SE-5,

4 (1979), 333–340.

[8] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 1

(2012), 281–305.

[9] Erik Bernhardsson. 2018. Annoy: Approximate Nearest Neighbors in C++/Python. Retrieved from https://pypi.org/

project/annoy/.

[10] Alina Beygelzimer, Sham Kakade, and John Langford. 2006. Cover trees for nearest neighbor. In 23rd International

Conference on Machine Learning. ACM, 97–104.

[11] Nitin Bhatia et al. 2010. Survey of nearest neighbor techniques. arXiv preprint arXiv:1007.0085 (2010).

[12] Henry Brighton and Chris Mellish. 2002. Advances in instance selection for instance-based learning algorithms. Data

Mining Knowl. Discov. 6, 2 (2002), 153–172.

[13] Carla E Brodley. 1993. Addressing the selective superiority problem: Automatic algorithm/model class selection. In

Proceedings of the 10th International Conference on Machine Learning. 17–24.

[14] R. Mike Cameron-Jones. 1992. Minimum description length instance-based learning. In 5th Australian Joint Conference

on Artificial Intelligence. World Scientific, 368–373.

[15] Pádraig Cunningham. 2008. Dimension reduction. In Machine Learning Techniques for Multimedia. Springer, 91–112.

[16] Padraig Cunningham and Sarah Jane Delany. 2007. k -Nearest Neighbour Classifiers. Technical Report UCD-CSI-2007-4.

School of Computer Science & Informatics, University College Dublin.

[17] Belur V. Dasarathy. 1991. Nearest Neighbor (NN) Norms: Nn Pattern Classification Techniques. IEEE Computer Society

Press.

[18] Sanjoy Dasgupta and Yoav Freund. 2008. Random projection trees and low dimensional manifolds. In Proceedings of

the 40th ACM Symposium on Theory of Computing. 537–546.

[19] William de Vazelhes, C. J. Carey, Yuan Tang, Nathalie Vauquier, and Aurélien Bellet. 2020. metric-learn: Metric learn-

ing algorithms in Python. J. Mach. Learn. Res. 21, 138 (2020), 1–6.

[20] Joost C. F. de Winter, Samuel D. Gosling, and Jeff Potter. 2016. Comparing the Pearson and Spearman correlation

coefficients across distributions and sample sizes: A tutorial using simulations and empirical data. Psychol. Meth. 21,

3 (2016), 273.

[21] Sarah Jane Delany and Derek Bridge. 2007. Catching the drift: Using feature-free case-based reasoning for spam

filtering. In Case-based Reasoning Research and Development, Rosina O. Weber and Michael M. Richter (Eds.). Springer

Berlin, 314–328.

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

https://doi.org/10.1109/TKDE.2007.190645
https://pypi.org/project/annoy/

128:24 P. Cunningham and S. J. Delany

[22] Sarah Jane Delany and Pádraig Cunningham. 2004. An analysis of case-base editing in a spam filtering system. In

European Conference on Case-based Reasoning. Springer, 128–141.

[23] Keinosuke Fukunaga and Patrenahalli M. Narendra. 1975. A branch and bound algorithm for computing k-nearest

neighbors. IEEE Trans. Comput. 100, 7 (1975), 750–753.

[24] Salvador García, Joaquín Derrac, José Ramón Cano, and Francisco Herrera. 2012. Prototype selection for nearest

neighbor classification: Taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 34, 3 (2012), 417–435.

DOI:https://doi.org/10.1109/TPAMI.2011.142

[25] Geoffrey Gates. 1972. The reduced nearest neighbor rule (Corresp.). IEEE Trans. Inf. Theor. 18, 3 (1972), 431–433.

[26] Peter Hart. 1968. The condensed nearest neighbor rule (Corresp.). IEEE Trans. Inf. Theor. 14, 3 (1968), 515–516.

[27] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: Towards removing the curse of dimensionality.

In 30th ACM Symposium on Theory of Computing. 604–613.

[28] Eamonn Keogh, Stefano Lonardi, and Chotirat Ann Ratanamahatana. 2004. Towards parameter-free data mining.

In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM,

206–215.

[29] Eamonn J. Keogh and Michael J. Pazzani. 2001. Derivative dynamic time warping. In SIAM International Conference

on Data Mining. SIAM, 1–11.

[30] Jon M. Kleinberg. 1997. Two algorithms for nearest-neighbor search in high dimensions. In 29th ACM Symposium on

Theory of Computing. 599–608.

[31] Ron Kohavi and George H. John. 1997. Wrappers for feature subset selection. Artif. Intell. 97, 1–2 (1997), 273–324.

[32] Solomon Kullback and Richard A. Leibler. 1951. On information and sufficiency. Ann. Math. Statist. 22, 1 (1951), 79–86.

[33] Neeraj Kumar, Li Zhang, and Shree Nayar. 2008. What is a good nearest neighbors algorithm for finding similar

patches in images? In European Conference on Computer Vision. Springer, 364–378.

[34] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul M. B. Vitányi. 2004. The similarity metric. IEEE Trans. Inf. Theor. 50, 12

(2004), 3250–3264.

[35] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. 2003. A symbolic representation of time series, with

implications for streaming algorithms.In 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge

Discovery. DOI:https://doi.org/10.1145/882082.882086

[36] Ting Liu, Andrew W. Moore, Ke Yang, and Alexander G. Gray. 2005. An investigation of practical approximate nearest

neighbor algorithms. In International Conference on Advances in Neural Information Processing Systems. 825–832.

[37] Vivek Mahato, William Johnston, and Pádraig Cunningham. 2019. Scoring performance on the Y-balance test. In

International Conference on Case-based Reasoning. Springer, 281–296.

[38] Elizabeth McKenna and Barry Smyth. 2000. Competence-guided editing methods for lazy learning. In 14th European

Conference on Artificial Intelligence. IOS Press, 60–64.

[39] Dunja Mladenić. 1998. Feature subset selection in text-learning. In European Conference on Machine Learning. Springer,

95–100.

[40] Jana Novovičová, Antonín Malík, and Pavel Pudil. 2004. Feature selection using improved mutual information for

text classification. In Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR’04) and

Structural and Syntactic Pattern Recognition (SSPR’04). Springer, 1010–1017.

[41] J. Ross Quinlan. 2014. C4. 5: Programs for Machine Learning. Elsevier.

[42] Juha Reunanen. 2003. Overfitting in making comparisons between variable selection methods. J. Mach. Learn. Res. 3,

Mar. (2003), 1371–1382.

[43] G. Ritter, H. Woodruff, S. Lowry, and T. Isenhour. 1975. An algorithm for a selective nearest neighbor decision rule

(Corresp.). IEEE Trans. Inf. Theor. 21, 6 (1975), 665–669.

[44] Yossi Rubner, Leonidas J. Guibas, and Carlo Tomasi. 1997. The earth mover’s distance, multi-dimensional scaling, and

color-based image retrieval. In ARPA Image Understanding Workshop, Vol. 661. 668.

[45] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. 2000. The earth mover’s distance as a metric for image retrieval.

Int. J. Comput. Vis. 40, 2 (2000), 99–121.

[46] Jörg Walter Schaaf. 1996. Fish and Shrink. A next step towards efficient case retrieval in large scaled case bases. In

European Workshop on Advances in Case-based Reasoning. Springer, 362–376.

[47] Patrick Schäfer and Mikael Högqvist. 2012. SFA: A symbolic fourier approximation and index for similarity search in

high dimensional datasets. In 15th International Conference on Extending Database Technology. ACM, 516–527.

[48] Roger N. Shepard. 1988. Toward a universal law of generalization. Science 242, 4880 (1988), 944–944.

[49] Chanop Silpa-Anan and Richard Hartley. 2008. Optimised KD-trees for fast image descriptor matching. In IEEE Con-

ference on Computer Vision and Pattern Recognition. IEEE, 1–8.

[50] Barry Smyth and Mark T. Keane. 1995. Remembering to forget. In 14th International Joint Conference on Artificial

Intelligence. 377–382.

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

https://doi.org/10.1109/TPAMI.2011.142
https://doi.org/10.1145/882082.882086

k-Nearest Neighbour Classifiers - A Tutorial 128:25

[51] Romain Tavenard. 2017. Tslearn: A machine learning toolkit dedicated to time-series data. Retrieved from https://

github.com/rtavenar/tslearn.

[52] Ivan Tomek. 1976. An experiment with the edited nearest-neighbor rule. IEEE Trans. Syst., Man, Cyber. 6, 6 (1976),

448–452.

[53] Fei Wang and Jimeng Sun. 2015. Survey on distance metric learning and dimensionality reduction in data mining.

Data Mining Knowl. Discov. 29, 2 (2015), 534–564.

[54] Kilian Q. Weinberger and Lawrence K. Saul. 2009. Distance metric learning for large margin nearest neighbor classi-

fication. J. Mach. Learn. Res. 10, 2 (2009).

[55] Dennis L. Wilson. 1972. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst., Man,.

Cyber. SMC-2, 3 (1972), 408–421.

[56] D. Randall Wilson and Tony R. Martinez. 1997. Instance pruning techniques. In International Conference on Machine

Learning, Vol. 97. 400–411.

[57] D. Randall Wilson and Tony R. Martinez. 2000. Reduction techniques for instance-based learning algorithms. Mach.

Learn. 38, 3 (2000), 257–286. DOI:https://doi.org/10.1023/A:1007626913721

[58] Jianping Zhang. 1992. Selecting typical instances in instance-based learning. In Machine Learning Proceedings 1992.

Elsevier, 470–479.

[59] Jun Zhu and Qiang Yang. 1999. Remembering to add: competence-preserving case-addition policies for case-base

maintenance. In International Joint Conference on Artificial Intelligence, Vol. 99. 234–241.

Received April 2020; revised February 2020; accepted March 2021

ACM Computing Surveys, Vol. 54, No. 6, Article 128. Publication date: July 2021.

https://github.com/rtavenar/tslearn
https://doi.org/10.1023/A:1007626913721

