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Generative Adversarial Networks
An overview

Generative adversarial networks (GANs) provide a way to 
learn deep representations without extensively annotated 
training data. They achieve this by deriving backpropaga-

tion signals through a competitive process involving a pair of 
networks. The representations that can be learned by GANs may 
be used in a variety of applications, including image synthesis, 
semantic image editing, style transfer, image superresolution, 
and classification. The aim of this review article is to provide 
an overview of GANs for the signal processing community, 
drawing on familiar analogies and concepts where possible. In 
addition to identifying different methods for training and con-
structing GANs, we also point to remaining challenges in their 
theory and application.

Introduction
GANs are an emerging technique for both semisupervised and 
unsupervised learning. They achieve this through implicitly 
modeling high-dimensional distributions of data. Proposed in 
2014 [1], they can be characterized by training a pair of net-
works in competition with each other. A common analogy, apt 
for visual data, is to think of one network as an art forger and 
the other as an art expert. The forger, known in the GAN lit-
erature as the generator, ,G  creates forgeries, with the aim of 
making realistic images. The expert, known as the discrimina-
tor, ,D  receives both forgeries and real (authentic) images, and 
aims to tell them apart (see Figure 1). Both are trained simulta-
neously, and in competition with each other.

Crucially, the generator has no direct access to real images—
the only way it learns is through its interaction with the dis-
criminator. The discriminator has access to both the synthetic 
samples and samples drawn from the stack of real images. 
The error signal to the discriminator is provided through the 
simple ground truth of knowing whether the image came from 
the real stack or from the generator. The same error  signal, via 
the discriminator, can be used to train the generator, leading it 
toward being able to produce forgeries of better quality.

The networks that represent the generator and discriminator 
are typically implemented by multilayer networks consisting 
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of convolutional and/or fully connected layers. The generator 
and discriminator networks must be differentiable, though it is 
not necessary for them to be directly invertible. If one consid-
ers the generator network as mapping from some representa-
tion space, called a latent space, to the space of the data 
(we shall focus on images), then we may express this more for-
mally as ,: ( ) RzG G x

"  where Rz | |z!  is a sample from the 
latent space, Rx | |x!  is an image and ·  denotes the number 
of dimensions.

In a basic GAN, the discriminator network, ,D  may be sim-
ilarly characterized as a function that maps from image data to 
a probability that the image is from the real data distribution, 
rather than the generator distribution: : ( ) ( , ) .0 1xDD "  For 
a fixed generator, ,G  the discriminator, ,D  may be trained to 
classify images as either being from the training data (real, 
close to one) or from a fixed generator (fake, close to zero). 
When the discriminator is optimal, it may be frozen, and the 
generator, ,G  may continue to be trained so as to lower the 
accuracy of the discriminator. If the generator distribution is 
able to match the real data distribution perfectly, then the dis-
criminator will be maximally confused, predicting 0.5 for all 
inputs. In practice, the discriminator might not be trained until 
it is optimal; we explore the training process in more depth in 
the section “Training GANs.”

On top of the interesting academic problems related to 
training and constructing GANs, the motivations behind train-
ing GANs may not necessarily be the generator or the discrim-
inator per se: the representations embodied by either of the pair 
of networks can be used in a variety of subsequent tasks. We 
explore the applications of these representations in the section 
“Application of GANs.”

Preliminaries

Terminology
Generative models learn to capture the statistical distribution 
of training data, allowing us to synthesize samples from the 
learned distribution. On top of synthesizing novel data sam-
ples, which may be used for downstream tasks such as seman-
tic image editing [2], data augmentation [3], and style transfer 
[4], we are also interested in using the representations that 
such models learn for tasks such as classification [5] and 
image retrieval [6].

We occasionally refer to fully connected and convolutional 
layers of deep networks; these are generalizations of percep-
trons or spatial filter banks with nonlinear postprocessing. 
In all cases, the network weights are learned through 
backpropagation [7].

Notation
The GAN literature generally deals with multidimensional vec-
tors and often represents vectors in a probability space by ital-
ics (e.g., latent space is ) .z  In the field of signal processing, it is 
common to represent vectors by bold, lowercase symbols, and 
we adopt this convention to emphasize the multidimensional 
nature of variables. Accordingly, we will commonly refer to 

( )p xdata  as representing the probability density function over a 
random vector x  that lies in .R | |x  We will use ( )p xg  to denote 
the distribution of the vectors produced by the generator net-
work of the GAN. We use the calligraphic symbols G and D  
to denote the generator and discriminator networks, respec-
tively. Both networks have sets of parameters (weights), DH  
and ,GH  that are learned through optimization, during training.
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Figure 1. The two models that are learned during the training process for a GAN are the discriminator D^ h and the generator .G^ h  These are typically 
implemented with neural networks, but they could be implemented by any form of differentiable system that maps data from one space to another; see 
article text for details.
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As with all deep-learning systems, training requires that 
we have some clear objective function. Following the usual 
notation, we use ( ; )JG G DH H  and ( ; )JD D GH H  to refer to the 
objective functions of the generator and discriminator, respec-
tively. The choice of notation reminds us that the two objective 
functions are, in a sense, codependent on the evolving param-
eter sets GH  and DH  of the networks as they are iteratively 
updated. We shall explore this further in the section “Training 
GANs.” Finally, note that multidimensional gradients are used 
in the updates; we use GdH  to denote the gradient operator with 
respect to the weights of the generator parameters and DdH  
to denote the gradient operator with respect to the weights of 
the discriminator. The expected gradients are indicated by the 
notation .E •d

Capturing data distributions
A central problem of signal processing and statistics is that 
of density estimation: obtaining a representation—implicit 
or explicit, parametric or nonparametric—of data in the real 
world. This is the key motivation behind GANs. In the GAN 
literature, the term data generating distribution is often used to 
refer to the underlying probability density or probability mass 
function of observation data. GANs learn through implicitly 
computing some sort of similarity between the distribution of 
a candidate model and the distribution corresponding to real 
data (see Figure 2).

Why bother with density estimation at all? The answer lies 
at the heart of—arguably—many problems of visual infer-
ence, including image categorization, visual object detection 
and recognition, object tracking, and object registration. In 
principle, through Bayes’ theorem, all inference problems of 
computer vision can be addressed through estimating condi-
tional density functions, possibly indirectly in the form of a 
model that learns the joint distribution of variables of interest 
and the observed data. The difficulty we face is that likelihood 
functions for high-dimensional, real-world image data are dif-
ficult to construct. While GANs don’t explicitly provide a way 
of evaluating density functions, for a generator-discriminator 

pair of suitable capacity, the generator implicitly captures the 
distribution of the data.

Related work
One may view the principles of generative models by mak-
ing comparisons with standard techniques in signal process-
ing and data analysis. For example, signal processing makes 
wide use of the idea of representing a signal as the weighted 
combination of basis functions. Fixed basis functions underlie 
standard techniques such as Fourier-based and wavelet repre-
sentations. Data-driven approaches to constructing basis func-
tions can be traced back to the Hotelling [8] transform, rooted 
in Pearson’s observation that principal components minimize 
a reconstruction error according to a minimum squared error 
criterion. Despite its wide use, standard principal component 
analysis (PCA) does not have an overt statistical model for the 
observed data, though it has been shown that the bases of PCA 
may be derived as a maximum likelihood parameter estima-
tion problem.

Despite wide adoption, PCA is limited—the basis func-
tions emerge as the eigenvectors of the covariance matrix 
over observations of the input data, and the mapping from the 
representation space back to signal or image space is linear. 
So, we have both a shallow and a linear mapping, limiting 
the complexity of the model and, hence, of the data, that can 
be represented.

Independent component analysis (ICA) provides another 
level up in sophistication, in which the signal components no 
longer need to be orthogonal; the mixing coefficients used to 
blend components together to construct examples of data are 
merely considered to be statistically independent. ICA has 
various formulations that differ in their objective functions 
used during estimating signal components or in the genera-
tive model that expresses how signals or images are generated 
from those components. A recent innovation explored through 
ICA is noise contrastive estimation (NCE); this may be seen as 
approaching the spirit of GANs [9]: the objective function for 
learning independent components compares a statistic applied 
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Figure 2. During GAN training, the generator is encouraged to produce a distribution of samples, ( )p xg  to match that of real data, ( ).p xdata  For an ap-
propriately parameterized and trained GAN, these distributions will be nearly identical. The representations embodied by GANs are captured in the learned 
parameters (weights) of the generator and discriminator networks.
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to noise with that produced by a candidate generative model 
[10]. The original NCE approach did not include updates to 
the generator.

What other comparisons can be made between GANs and 
the standard tools of signal processing? For PCA, ICA, Fou-
rier, and wavelet representations, the latent space of GANs is, 
by analogy, the coefficient space of what we commonly refer to 
as transform space. What sets GANs apart from these standard 
tools of signal processing is the level of complexity of the mod-
els that map vectors from latent space to image space. Because 
the generator networks contain nonlinearities, and can be of 
almost arbitrary depth, this mapping—as with many other 
deep-learning approaches—can be extraordinarily complex.

With regard to deep image-based models, modern approach-
es to generative image modeling can be grouped into explicit 
and implicit density models. Explicit density models are either 
tractable (change of variables models, autoregressive models) 
or intractable (directed models trained with variational infer-
ence, undirected models trained using Markov chains). Implicit 

density models capture the statistical distribution of the data 
through a generative process that makes use of either ancestral 
sampling [11] or Markov chain-based sampling. GANs fall into 
the directed implicit model category. A more detailed over-
view and relevant papers can be found in [12].

GAN architectures

Fully connected GANs
The first GAN architectures used fully connected neural net-
works for both the generator and discriminator [1]. This type 
of architecture was applied to relatively simple image data sets: 
MNIST (handwritten digits), CIFAR-10 (natural images), and 
the Toronto Face Data Set (TFD).

Convolutional GANs
Going from fully connected to convolutional neural networks 
(CNNs) is a natural extension, given that CNNs are extremely 
well suited to image data. Early experiments conducted on 

CIFAR-10 suggested that it was more 
difficult to train generator and discrim-
inator networks using CNNs with the 
same level of capacity and representa-
tional power as those used for super-
vised learning.

The Laplacian pyramid of adversar-
ial networks (LAPGAN) [13] offered 
one solution to this problem, by decom-
posing the generation process using 
multiple scales: a ground-truth image is 
itself decomposed into a Laplacian pyr-
amid and a conditional, convolutional 
GAN is trained to produce each layer 
given the one above.

Additionally, Radford et al. [5] pro-
posed a family of network architec-
tures called deep convolutional GAN 
(DCGAN), which allows training a 
pair of deep convolutional generator 
and discriminator networks. DCGANs 
make use of strided and fractionally 
strided convolutions, which allow the 
spatial downsampling and upsam-
pling operators to be learned during 
training. These operators handle the 
change in sampling rates and loca-
tions, a key requirement in mapping 
from image space to possibly lower-
dimensional latent space, and from 
image space to a discriminator. Fur-
ther details of the DCGAN architec-
ture and training are presented in the 
section “Training Tricks.”

As an extension to synthesizing 
images in two dimensions, Wu et al. 
[14] presented GANs that were able to 
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Figure 3. (a) The conditional GAN, proposed by Mirza et al. [15] performs class-conditional image 
synthesis; the discriminator performs class-conditional discrimination of real from fake images. (b) The 
InfoGAN [16], on the other hand, has a discriminator network that also estimates the class label.
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synthesize three-dimensional (3-D) data samples using volu-
metric convolutions. Wu et al. [14] synthesized novel objects 
including chairs, a table, and cars; in addition, they also pre-
sented a method to map from two-dimensional (2-D) images to 
3-D versions of objects portrayed in those images.

Conditional GANs
Mirza et al. [15] extended the (2-D) GAN framework to the 
conditional setting by making both the generator and the dis-
criminator networks class-conditional (Figure 3). Conditional 
GANs have the advantage of being able to provide better rep-
resentations for multimodal data generation. A parallel can be 
drawn between conditional GANs and InfoGAN [16], which 
decomposes the noise source into an incompressible source 
and a “latent code,” attempting to discover latent factors of 
variation by maximizing the mutual information between the 
latent code and the generator’s output. This latent code can be 
used to discover object classes in a purely unsupervised fash-
ion, although it is not strictly necessary that the latent code be 
categorical. The representations learned by InfoGAN appear 
to be semantically meaningful, dealing with complex intertan-
gled factors in image appearance, including variations in pose, 
lighting, and emotional content of facial images [16].

GANs with inference models
In their original formulation, GANs lacked a way to map a 
given observation, x, to a vector in latent space—in the GAN 
literature, this is often referred to as an inference mechanism. 
Several techniques have been proposed to invert the genera-
tor of pretrained GANs [17], [18]. The independently proposed 

adversarially learned inference (ALI) [19] and bidirectional 
GANs (BiGANs) [20] provide simple but effective extensions, 
introducing an inference network in which the discriminators 
examine joint (data, latent) pairs.

In this formulation, the generator consists of two networks: 
the “encoder” (inference network) and the “decoder.” They 
are jointly trained to fool the discriminator. The discriminator 
itself receives pairs of ( , )x z  vectors (see Figure 4), and has to 
determine which pair constitutes a genuine tuple consisting of 
real image sample and its encoding, or a fake image sample 
and the corresponding latent-space input to the generator.

Ideally, in an encoding-decoding model, the output, referred 
to as a reconstruction, should be similar to the input. Typi-
cally, the fidelity of reconstructed data samples synthesized 
using an ALI/BiGAN are poor. The fidelity of samples may be 
improved with an additional adversarial cost on the distribu-
tion of data samples and their reconstructions [21].

Adversarial autoencoders
Autoencoders are networks, composed of an encoder and 
decoder, which learn to map data to an internal latent represen-
tation and out again. That is, they learn a deterministic map-
ping (via the encoder) from a data space, e.g., images, into a 
latent or representation space, and a mapping (via the decoder) 
from the latent space back to data space. The composition of 
these two mappings results in a reconstruction, and the two 
mappings are trained such that a reconstructed image is as 
close as possible to the original.

Autoencoders are reminiscent of the perfect-reconstruction 
filter banks that are widely used in image and signal processing. 
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However, autoencoders generally learn nonlinear mappings in 
both directions. Further, when implemented with deep net-
works, the possible architectures that can be used to implement 
autoencoders are remarkably flexible. Training can be unsu-
pervised, with backpropagation being applied between the 
reconstructed image and the original to learn the parameters 
of both the encoder and the decoder.

As suggested previously, one often wants the latent space 
to have a useful organization. Additionally, one may want to 
perform feed-forward, ancestral sampling [11] from an auto-
encoder. Adversarial training provides a route to achieve these 
two goals. Specifically, adversarial training may be applied 
between the latent space and a desired prior distribution on the 
latent space (latent-space GAN). This results in a combined 
loss function [22] that reflects both the reconstruction error 
and a measure of how different the distribution of the prior 
is from that produced by a candidate encoding network. This 
approach is akin to a variational autoencoder (VAE) [23] for 
which the latent-space GAN plays the role of the Kullback–
Leibler (KL)-divergence term of the loss function.

Mescheder et al. [24] unified VAEs with adversarial train-
ing in the form of the adversarial variational Bayes (AVB) 
framework. Similar ideas were presented in [12]. AVB tries to 
optimize the same criterion as that of VAEs, but uses an adver-
sarial training objective rather than the KL divergence.

Training GANs

Introduction
The training of GANs involves both finding the parameters 
of a discriminator that maximize its classification accuracy 
and finding the parameters of a generator that maximally con-

fuse the discriminator. This training process is summarized 
in Figure 5.

The cost of training is evaluated using a value function, 
,V G D^ h that depends on both the generator and the discrimi-

nator. The training involves solving

, ,maxmin V G D
GD

^ h
where

, ( ) ( ( )) .log logV 1x xE EG D D D( ) ( )p px xgdata= + -^ h

During training, the parameters of one model are updat-
ed, while the parameters of the other are fixed. Goodfellow 
et al. [1] show that, for a fixed generator, there is a unique 
optimal discriminator, ( ) ( ) ( ) ( ) .p p px x x xD*

gdata data= +^ h  
They also show that the generator, ,G  is optimal when 

( ) ( ),p px xg data=  which is equivalent to the optimal discrimi-
nator predicting 0.5 for all samples drawn from .x  In other 
words, the generator is optimal when the discriminator, ,D  is 
maximally confused and cannot distinguish real samples from 
ones that are fake.

Ideally, the discriminator is trained until optimal with 
respect to the current generator; then the generator is again 
updated. However in practice, the discriminator might not be 
trained until optimal but rather may only be trained for a small 
number of iterations, and the generator is updated simultane-
ously with the discriminator. Further, an alternate, nonsaturat-
ing training criterion is typically used for the generator, using 

( ( ))max log zD GG  rather than ( ( ( ))).min log 1 zD GG -

Despite the theoretical existence of unique solutions, GAN 
training is challenging and often unstable for several reasons 
[5], [25], [26]. One approach to improving GAN training is to 
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asses the empirical “symptoms” that might be experienced 
during training. These symptoms include:

 ■ difficulties in getting the pair of models to converge [5]
 ■ the generative model “collapsing” to generate very simi-

lar samples for different inputs [25]
 ■ the discriminator loss converging quickly to zero [26], pro-

viding no reliable path for gradient updates to the generator.
Several authors suggested heuristic approaches to address 
these issues [1], [25]; these are discussed in the next section.

Early attempts to explain why GAN training is unstable 
were proposed by Goodfellow and Sali-
mans et al. [1], [25], who observed that 
gradient descent methods typically used 
for updating both the parameters of the 
generator and discriminator are inap-
propriate when the solution to the opti-
mization problem posed by GAN training 
actually constitutes a saddle point. Sali-
mans et al. provided a simple example 
that shows this [25]. However, stochastic 
gradient descent is often used to update 
neural networks and there are well-devel-
oped machine-learning programming 
environments that make it easy to construct and update net-
works using stochastic gradient descent.

Although an early theoretical treatment [1] showed that the 
generator is optimal when ( ) ( ),p px xg data=  a very neat result 
with a strong underlying intuition, the real data samples reside 
on a manifold that sits in a high-dimensional space of possible 
representations. For instance, if color image samples are of 
size N N 3# #  with pixel values [ , ] ,0 R 3+  the space that may 
be represented—which we can call X—is of dimensionality 

,N3 2  with each dimension taking values between zero and the 
maximum measurable pixel intensity. The data samples in the 
support of ,pdata  however, constitute the manifold of the real 
data associated with some particular problem, typically occu-
pying a very small part of the total space, .X  Similarly, the 
samples produced by the generator should also occupy only a 
small portion of .X

Arjovsky et al. [26] showed that the support ( )p xg  and 
( )p xdata  lie in a lower-dimensional space than that correspond-

ing to .X  The consequence of this is that ( )p xg  and ( )p xdata  
may have no overlap, and so there exists a nearly trivial dis-
criminator that is capable of distinguishing real samples, 

~ ( )px xdata  from fake samples, ~ ( )px xg  with 100% accuracy. 
In this case, the discriminator error quickly converges to zero. 
Parameters of the generator may only be updated via the dis-
criminator, so when this happens, the gradients used for updat-
ing parameters of the generator also converge to zero and may 
no longer be useful for updates to the generator. Arjovsky et 
al.’s explanations account for several of the symptoms related 
to GAN training [26].

Goodfellow et al. [1] also showed that when D  is optimal, 
training G  is equivalent to minimizing the Jensen–Shannon 
(JS) divergence between ( )p xg  and ( ) .p xdata  If D  is not opti-
mal, the update may be less meaningful or inaccurate. This 

theoretical insight has motivated research into cost functions 
based on alternative distances. Several of these are explored 
in the section “Alternative Formulations.”

Training tricks
One of the first major improvements in the training of GANs 
for generating images were the DCGAN architectures pro-
posed by Radford et al. [5]. This work was the result of an 
extensive exploration of CNN architectures previously used 
in computer vision, and it resulted in a set of guidelines 

for constructing and training both the 
generator and discriminator. In the section 
“Convolutional GANs,” we alluded to the 
importance of strided and fractionally strid-
ed convolutions [27], which are key compo-
nents of the architectural design. This allows 
both the generator and the discriminator to 
learn good upsampling and downsampling 
operations, which may contribute to improve-
ments in the quality of image synthesis. More 
specifically to training, batch normalization 
[28] was recommended for use in both net-
works to stabilize training in deeper models. 

Another suggestion was to minimize the number of fully con-
nected layers used to increase the feasibility of training deeper 
models. Finally, Radford et al. [5] showed that using leaky rec-
tifying linear units (ReLUs) activation functions between the 
intermediate layers of the discriminator gave superior perfor-
mance over using regular ReLUs.

Later, Salimans et al. [25] proposed further heuristic 
approaches for stabilizing the training of GANs. The first, fea-
ture matching, changes the objective of the generator slightly 
to increase the amount of information available. Specifically, 
the discriminator is still trained to distinguish between real and 
fake samples, but the generator is now trained to match the dis-
criminator’s expected intermediate activations (features) of its 
fake samples with the expected intermediate activations of the 
real samples. The second, minibatch discrimination, adds an 
extra input to the discriminator, which is a feature that encodes 
the distance between a given sample in a minibatch and the 
other samples. This is intended to prevent mode collapse, as 
the discriminator can easily tell if the generator is producing 
the same outputs.

A third trick, heuristic averaging, penalizes the network 
parameters if they deviate from a running average of previ-
ous values, which can help convergence to an equilibrium. The 
fourth, virtual batch normalization, reduces the dependency 
of one sample on the other samples in the minibatch by cal-
culating the batch statistics for normalization with the sample 
placed within a reference minibatch that is fixed at the begin-
ning of training.

Finally, one-sided label smoothing makes the target for the 
discriminator 0.9 instead of one, smoothing the discriminator’s 
classification boundary, hence preventing an overly confident 
discriminator that would provide weak gradients for the gen-
erator. Sønderby et al. [29] advanced the idea of challenging 

The representations 
that can be learned by 
gANs may be used in a 
variety of applications, 
including image synthesis, 
semantic image editing, 
style transfer, image 
superresolution, and 
classification.
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the discriminator by adding noise to the 
samples before feeding them into the dis-
criminator. Sønderby et al. [29] argued that 
one-sided label smoothing biases the opti-
mal discriminator, while their technique, 
instance noise, moves the manifolds of the 
real and fake samples closer together, at the 
same time preventing the discriminator eas-
ily finding a discrimination boundary that 
completely separates the real and fake sam-
ples. In practice, this can be implemented by adding Gaussian 
noise to both the synthesized and real images, annealing the 
standard deviation over time. The same process was indepen-
dently proposed by Arjovsky et al. [26].

Alternative formulations
The first part of this section considers other information-the-
oretic interpretations and generalizations of GANs. The sec-
ond part looks at alternative cost functions that aim to directly 
address the problem of vanishing gradients.

Generalizations of the GAN cost function
Nowozin et al. [30] showed that GAN training may be gener-
alized to minimize not only the JS divergence, but an estimate 
of f-divergences; these are referred to as f-GANs. The f-diver-
gences include well-known divergence measures such as the 
KL-divergence. Nowozin et al. showed that the f-divergence may 
be approximated by applying the Fenchel conjugates of the 
desired f-divergence to samples drawn from the distribution of 
generated samples, after passing those samples through a dis-
criminator [30]. They provide a list of Fenchel conjugates for 
commonly used f-divergences, as well as activation functions 
that may be used in the final layer of the generator network, 
depending on the choice of f-divergence. Having derived the 
generalized cost functions for training the generator and dis-
criminator of an f-GAN, Nowozin et al. [30] observe that, in 
its raw form, maximizing the generator objective is likely to 
lead to weak gradients, especially at the start of training, and 
proposed an alternative cost function for updating the genera-
tor, which is less likely to saturate at the beginning of training. 
Nowozin et al. proposed that when the discriminator is trained, 
the derivative of the f-divergence on the ratio of the real and 
fake data distributions is estimated, while when the generator 
is trained only an estimate of the f-divergence is minimized. 
Uehara et al. [31] extend the f-GAN further, where in the dis-
criminator step the ratio of the distributions of real and fake 
data are predicted, and in the generator step the f-divergence is 
directly minimized. Alternatives to the JS-divergence are also 
covered by Goodfellow [12].

Alternative cost functions to prevent vanishing gradients
Arjovsky et al. [32] proposed the Wasserstein GAN (WGAN),  
a GAN with an alternative cost function that is derived from an 
approximation of the Wasserstein distance. Unlike the origi-
nal GAN cost function, the WGAN is more likely to provide 
gradients that are useful for updating the generator. The cost 

function derived for the WGAN relies on 
the discriminator, which they refer to as 
the critic, being a k-Lipschitz continuous 
function; practically, this may be imple-
mented by simply clipping the parameters 
of the discriminator. However, more recent 
research [33] suggested that weight clipping 
adversely reduces the capacity of the dis-
criminator model, forcing it to learn simpler 
functions. Gulrajani et al. [33] proposed an 

improved method for training the discriminator for a WGAN, 
by penalizing the norm of discriminator gradients with respect 
to data samples during training, rather than performing param-
eter clipping.

A brief comparison of GAN variants
GANs allow us to synthesize novel data samples from random 
noise, but they are considered difficult to train due partially to 
vanishing gradients. All GAN models that we have discussed 
in this article require careful hyperparameter tuning and model 
selection for training. However, perhaps the easier models to 
train are the adversarial autoencoder (AAE) and the WGAN. 
The AAE is relatively easy to train because the adversarial loss 
is applied to a fairly simple distribution in lower dimensions 
(than the image data). The WGAN [33], is designed to be easier 
to train, using a different formulation of the training objective 
that does not suffer from the vanishing gradient problem. The 
WGAN may also be trained successfully even without batch 
normalization; it is also less sensitive to the choice of nonlin-
earities used between convolutional layers.

Samples synthesized using a GAN or WGAN may belong 
to any class present in the training data. Conditional GANs 
provide an approach to synthesizing samples with user-
specified content.

It is evident from various visualization techniques (Fig-
ure 6) that the organization of the latent space harbors some 
meaning, but vanilla GANs do not provide an inference 
model to allow data samples to be mapped to latent repre-
sentations. Both BiGANs and ALI provide a mechanism 
to map image data to a latent space (inference), however, 
reconstruction quality suggests that they do not necessarily 
faithfully encode and decode samples. A very recent devel-
opment shows that ALI may recover encoded data samples 
faithfully [21]. However, this model shares a lot in common 
with the AVB and AAE. These are autoencoders, similar 
to VAEs, where the latent space is regularized using adver-
sarial training rather than a KL-divergence between encoded 
samples and a prior.

The structure of latent space
GANs build their own representations of the data they are 
trained on, and in doing so produce structured geometric vec-
tor spaces for different domains. This is a quality shared with 
other neural network models, including VAEs [23], as well 
as linguistic models such as word2vec [34]. In general, the 
domain of the data to be modeled is mapped to a vector space, 

What sets gANs apart from 
these standard tools of 
signal processing is the 
level of complexity of the 
models that map vectors 
from latent space to  
image space. 
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which has fewer dimensions than the data 
space, forcing the model to discover in-
teresting structure in the data and repre-
sent it efficiently. This latent space is 
at the “originating” end of the generator 
network, and the data at this level of rep-
resentation (the latent space) can be highly 
structured and may support high-level se-
mantic operations [5]. Examples include 
the rotation of faces from trajectories 
through latent space, as well as image analogies that have 
the effect of adding visual attributes such as eyeglasses onto 
a “bare” face.

All (vanilla) GAN models have a generator that maps data 
from the latent space into the space to be modeled, but many 
GAN models have an encoder that additionally supports the 
inverse mapping [19], [20]. This becomes a powerful meth-
od for exploring and using the structured latent space of the 
GAN network. With an encoder, collections of labeled images 
can be mapped into latent spaces and analyzed to discover 
“concept vectors” that represent high-level attributes such as 
“smiling” or “wearing a hat.” These vectors can be applied at 
scaled offsets in latent space to influence the behavior of the 
generator (Figure 6). Similar to using an encoding process to 
model the distribution of latent samples, Gurumurthy et al. 
[35] propose modeling the latent space as a mixture of Gauss-
ians and learning the mixture components that maximize the 
likelihood of generated data samples under the data generat-
ing distribution.

Applications of GANs
Discovering new applications for adversarial training of deep 
networks is an active area of research. We examine a few 
computer vision applications that have appeared in the litera-
ture and been subsequently refined. These applications were 
chosen to highlight some different approaches to using GAN-
based representations for image manipulation, analysis, or 
characterization and do not fully reflect the potential breadth 
of application of GANs.

Using GANs for image classification places them within 
the broader context of machine learning and provides a useful 
quantitative assessment of the features extracted in unsuper-

vised learning. Image synthesis remains a 
core GAN capability and is especially use-
ful when the generated image can be subject 
to pre-existing constraints. Superresolution 
[36]–[38] offers an example of how an exist-
ing approach can be supplemented with an 
adversarial loss component to achieve high-
er-quality results. Finally, image-to-image 
translation demonstrates how GANs offer a 
general-purpose solution to a family of tasks 

that require automatically converting an input image into an 
output image.

Classification and regression
After GAN training is complete, the neural network can be 
reused for other downstream tasks. For example, outputs of 
the convolutional layers of the discriminator can be used as 
a feature extractor, with simple linear models fitted on top of 
these features using a modest quantity of (image, label) pairs 
[5], [25]. The quality of the unsupervised representations with-
in a DCGAN network have been assessed by applying a regu-
larized L2-SVM classifier to a feature vector extracted from 
the (trained) discriminator [5]. Good classification scores were 
achieved using this approach on both supervised and semisu-
pervised data sets, even those that were disjoint from the origi-
nal training data.

The quality of the data representation may be improved 
when adversarial training includes jointly learning an infer-
ence mechanism such as with ALI [19]. A representation vec-
tor was built using last three hidden layers of the ALI encoder, 
a similar L2-SVM classifier, yet achieved a misclassification 
rate significantly lower than the DCGAN [19]. Additionally, 
ALI has achieved state-of-the art classification results when 
label information is incorporated into the training routine.

When labeled training data is in limited supply, adversarial 
training may also be used to synthesize more training samples. 
Shrivastava et al. [39] use GANs to refine synthetic images 
while maintaining their annotation information. By training 
models only on GAN-refined synthetic images (i.e., no real 
training data) Shrivastava et al. [39] achieved state-of-the-art 
performance on pose- and gaze-estimation tasks. Similarly, 
good results were obtained for gaze estimation and prediction 

Figure 6. An example of applying a “smile vector” with an ALI model [19]. The first image is an example of an unsmiling woman and the last is an 
example of a woman smiling. A z  value for the first image is inferred, z1  and for the last, .z2  Interpolating along a vector that connects z1  and ,z2  gives 
z  values that may be passed through a generator to synthesize novel samples. Note the implication: a displacement vector in latent space traverses smile 
“intensity” in image space. (Figure used courtesy of Tom White.)

gANs build their own 
representations of the 
data they are trained on, 
and in doing so produce 
structured geometric 
vector spaces for  
different domains. 
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using a spatiotemporal GAN architecture [40]. In some cases, 
models trained on synthetic data do not generalize well when 
applied to real data [3]. Bousmalis et al. [3] propose to address 
this problem by adapting synthetic samples from a source 
domain to match a target domain using adversarial training. 
Additionally, Liu et al. [41] propose using multiple GANs—
one per domain—with tied weights to synthesize pairs of cor-
responding images samples from different domains. Because 
the quality of generated samples is hard to quantitatively 
judge across models, classification tasks are likely to remain 
an important quantitative tool for performance assessment 
of GANs, even as new and diverse applications in computer 
vision are explored.

Image synthesis
Much of the recent GAN research focuses on improving the 
quality and utility of the image-generation capabilities. The 
LAPGAN model introduced a cascade of convolutional net-
works within a Laplacian pyramid framework to generate 
images in a coarse-to-fine fashion [13]. A similar approach is 
used by Huang et al. [42] with GANs operating on intermediate 
representations rather than lower-resolution images.

LAPGAN also extended the conditional version of the GAN 
model where both G and D  networks receive additional label 
information as input; this technique has proved useful and is 
now a common practice to improve image quality. This idea 
of GAN conditioning was later extended to incorporate natural 
language. For example, Reed et al. [43] used a GAN architec-
ture to synthesize images from text descriptions, which one 

might describe as reverse captioning.  
For example, given a text caption of  
a bird such as “white with some black 
on its head and wings and a long, 
orange beak,” the trained GAN can 
generate several plausible images that 
match the description.

In addition to conditioning on text 
descriptions, the generative adversarial 
what-where network (GAWWN) con-
ditions on image location [44]. The 
GAWWN system supported an inter-
active interface in which large images 
could be built up incrementally with 
textual descriptions of parts and user-
supplied bounding boxes (Figure 7).

Conditional GANs not only allow us 
to synthesize novel samples with specif-
ic attributes, they also allow us to devel-
op tools for intuitively editing images; 
e.g., changing the hairstyle of a person 
in an image, making them wear glass-
es, or editing the image so they appear 
younger [35]. Additional applications of 
GANs to image editing include work by 
Zhu and Brock et al. [2], [45].

Image-to-image translation
Conditional adversarial networks are well suited for translat-
ing an input image into an output image, which is a recurring 
theme in computer graphics, image processing, and computer 
vision. The pix2pix model offers a general-purpose solu-
tion to this family of problems [46]. In addition to learning 
the mapping from input image to output image, the pix2pix 
model also constructs a loss function to train this mapping. 
This model has demonstrated effective results for different 
problems of computer vision that had previously required sepa-
rate machinery, including semantic segmentation, generating 
maps from aerial photos, and colorization of black and white 
images. Wang et al. present a similar idea, using GANs to first 
synthesize surface-normal maps (similar to depth maps) and 
then map these images to natural scenes.

CycleGAN [4] extends this work by introducing a cycle 
consistency loss that attempts to preserve the original image 
after a cycle of translation and reverse translation. In this for-
mulation, matching pairs of images are no longer needed for 
training. This makes data preparation much simpler, and opens 
the technique to a larger family of applications. For example, 
artistic style transfer [47] renders natural images in the style of 
artists, such as Picasso or Monet, by simply being trained on an 
unpaired collection of paintings and natural images (Figure 8).

Superresolution
Superresolution allows a high-resolution image to be generated 
from a lower-resolution image, with the trained model infer-
ring photo-realistic details while upsampling. The SRGAN 

This bird is completely black.

This bird is bright blue.

A Man in an Orange Jacket, Black Pants, and a Black Cap Wearing Sunglasses Skiing

Head

Right Leg

Belly

Beak

Figure 7. Examples of image synthesis using the GAWWN. In the GAWWN, images are conditioned 
on both text descriptions and image location specified as either a keypoint or bounding box. (Figure 
reproduced from [44] with permission.)
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model [36] extends earlier efforts by adding an adversarial loss 
component, which constrains images to reside on the manifold 
of natural images.

The SRGAN generator is conditioned on a low-resolution 
image and infers photo-realistic natural images with 4 #  
upscaling factors. Unlike most GAN applications, the adver-
sarial loss is one component of a larger loss function, which 
also includes perceptual loss from a pretrained classifier, and a 
regularization loss that encourages spatially coherent images. 
In this context, the adversarial loss constrains the overall solu-
tion to the manifold of natural images, producing perceptually 
more convincing solutions.

Customizing deep-learning applications can often be ham-
pered by the availability of relevant curated training data sets. 
However, SRGAN is straightforward in customizing to specific 
domains, as new training image pairs can easily be constructed 
by downsampling a corpus of high-resolution images. This is 
an important consideration in practice, since the inferred pho-
to-realistic details that the GAN generates will vary depending 
on the domain of images used in the training set.

Discussion

Open questions
GANs have attracted considerable attention due to their ability 
to leverage vast amounts of unlabeled data. While much prog-
ress has been made to alleviate some of the challenges related 
to training and evaluating GANs, there still remain several 
open challenges.

Mode collapse
As articulated in the section “Training GANs,” a common 
problem of GANs involves the generator collapsing to produce 
a small family of similar samples (partial collapse) and, in the 
worst case, producing simply a single sample (complete col-
lapse) [26], [48]. Diversity in the generator can be increased by 
practical hacks to balance the distribution of samples produced 

by the discriminator for real and fake batches, or by employing 
multiple GANs to cover the different modes of the probability 
distribution [49]. Yet another solution to alleviate mode collapse 
is to alter the distance measure used to compare statistical distri-
butions. Arjovsky [32] proposed to compare distributions based 
on a Wasserstein distance rather than a KL-based divergence 
(DCGAN [5]) or a total-variation distance (energy-based GAN 
[50]). Metz et al. [51] proposed unrolling the discriminator for 
several steps, i.e., letting it calculate its updates on the current 
generator for several steps, and then using the “unrolled” dis-
criminators to update the generator using the normal minimax 
objective. As normal, the discriminator only trains on its update 
from one step, but the generator now has access to how the dis-
criminator would update itself. With the usual one step generator 
objective, the discriminator will simply assign a low probability 
to the generator’s previous outputs, forcing the generator to move, 
resulting either in convergence, or an endless cycle of mode hop-
ping. However, with the unrolled objective, the generator can 
prevent the discriminator from focusing on the previous update, 
and update its own generations with the foresight of how the dis-
criminator would have responded.

Training instability—saddle points
In a GAN, the Hessian of the loss function becomes indefinite. 
The optimal solution, therefore, lies in finding a saddle point 
rather than a local minimum. In deep learning, a large num-
ber of optimizers depend only on the first derivative of the loss 
function; converging to a saddle point for GANs requires good 
initialization. By invoking the stable manifold theorem from 
nonlinear systems theory, Lee et al. [52] showed that, were we 
to select the initial points of an optimizer at random, gradient 
descent would not converge to a saddle with probability one 
(also see [25] and [53]). Additionally, Mescheder et al. [54] have 
argued that convergence of a GAN’s objective function suffers 
from the presence of a zero real part of the Jacobian matrix as 
well as eigenvalues with large imaginary parts. This is disheart-
ening for GAN training; yet, due to the existence of second-order 

Monet

Monet

Zebras SummerPhotos

Photo

Horses

Zebra Horse

Winter

Summer Winter

Photo Monet Horse Zebra Winter Summer
(a) (b) (c)

Figure 8. The CycleGAN model learns image to image translations between two unordered image collections. Shown here are the examples of bidirection-
al image mappings: (a) Monet paintings to landscape photos, (b) zebras to horses, and (c) summer to winter photos in Yosemite National Park. (Figure 
reproduced from [4] with permission.)
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optimizers, not all hope is lost. Unfortunately, Newton-type 
methods have compute-time complexity that scales cubically or 
quadratically with the dimension of the parameters. Therefore, 
another line of questions lies in applying and scaling second-
order optimizers for adversarial training.

A more fundamental problem is the existence of an equilib-
rium for a GAN. Using results from Bayesian nonparametrics, 
Arora et al. [48] connects the existence of the equilibrium to a 
finite mixture of neural networks—this means that, below a cer-
tain capacity, no equilibrium might exist. On a closely related 
note, it has also been argued that, while GAN training can appear 
to have converged, the trained distribution could still be far away 
from the target distribution. To alleviate this issue, Arora et al. 
[48] propose a new measure called the neural net distance.

Evaluating generative models
How can one gauge the fidelity of samples synthesized by a gen-
erative models? Should we use a likelihood estimation? Can a 
GAN trained using one methodology be compared to another 
(model comparison)? These are open-ended questions that are 
not only relevant for GANs but also for probabilistic models, in 
general. Theis [55] argued that evaluating GANs using differ-
ent measures can lead conflicting conclusions about the quality 
of synthesized samples; the decision to select one measure over 
another depends on the application.

Conclusions
The explosion of interest in GANs is driven not only by their 
potential to learn deep, highly nonlinear mappings from a latent 
space into a data space and back but also by their potential to 
make use of the vast quantities of unlabeled image data that 
remain closed to deep representation learning. Within the subtle-
ties of GAN training, there are many opportunities for devel-
opments in theory and algorithms, and with the power of deep 
networks, there are vast opportunities for new applications.
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