
53IEEE SIgnal ProcESSIng MagazInE | January 2018 |

Antonia Creswell, Tom White, Vincent Dumoulin,
Kai Arulkumaran, Biswa Sengupta, and Anil A. Bharath

Deep learning for visual unDerstanDing:
part 2

1053-5888/18©2018IEEE

Generative Adversarial Networks
An overview

Generative adversarial networks (GANs) provide a way to
learn deep representations without extensively annotated
training data. They achieve this by deriving backpropaga-

tion signals through a competitive process involving a pair of
networks. The representations that can be learned by GANs may
be used in a variety of applications, including image synthesis,
semantic image editing, style transfer, image superresolution,
and classification. The aim of this review article is to provide
an overview of GANs for the signal processing community,
drawing on familiar analogies and concepts where possible. In
addition to identifying different methods for training and con-
structing GANs, we also point to remaining challenges in their
theory and application.

Introduction
GANs are an emerging technique for both semisupervised and
unsupervised learning. They achieve this through implicitly
modeling high-dimensional distributions of data. Proposed in
2014 [1], they can be characterized by training a pair of net-
works in competition with each other. A common analogy, apt
for visual data, is to think of one network as an art forger and
the other as an art expert. The forger, known in the GAN lit-
erature as the generator, ,G creates forgeries, with the aim of
making realistic images. The expert, known as the discrimina-
tor, ,D receives both forgeries and real (authentic) images, and
aims to tell them apart (see Figure 1). Both are trained simulta-
neously, and in competition with each other.

Crucially, the generator has no direct access to real images—
the only way it learns is through its interaction with the dis-
criminator. The discriminator has access to both the synthetic
samples and samples drawn from the stack of real images.
The error signal to the discriminator is provided through the
simple ground truth of knowing whether the image came from
the real stack or from the generator. The same error signal, via
the discriminator, can be used to train the generator, leading it
toward being able to produce forgeries of better quality.

The networks that represent the generator and discriminator
are typically implemented by multilayer networks consisting

Digital Object Identifier 10.1109/MSP.2017.2765202
Date of publication: 9 January 2018

©Istockphoto.com/zapp2photo

Authorized licensed use limited to: Penn State University. Downloaded on November 14,2023 at 03:46:08 UTC from IEEE Xplore. Restrictions apply.

54 IEEE SIgnal ProcESSIng MagazInE | January 2018 |

of convolutional and/or fully connected layers. The generator
and discriminator networks must be differentiable, though it is
not necessary for them to be directly invertible. If one consid-
ers the generator network as mapping from some representa-
tion space, called a latent space, to the space of the data
(we shall focus on images), then we may express this more for-
mally as ,: () RzG G x

" where Rz | |z! is a sample from the
latent space, Rx | |x! is an image and · denotes the number
of dimensions.

In a basic GAN, the discriminator network, ,D may be sim-
ilarly characterized as a function that maps from image data to
a probability that the image is from the real data distribution,
rather than the generator distribution: : () (,) .0 1xDD " For
a fixed generator, ,G the discriminator, ,D may be trained to
classify images as either being from the training data (real,
close to one) or from a fixed generator (fake, close to zero).
When the discriminator is optimal, it may be frozen, and the
generator, ,G may continue to be trained so as to lower the
accuracy of the discriminator. If the generator distribution is
able to match the real data distribution perfectly, then the dis-
criminator will be maximally confused, predicting 0.5 for all
inputs. In practice, the discriminator might not be trained until
it is optimal; we explore the training process in more depth in
the section “Training GANs.”

On top of the interesting academic problems related to
training and constructing GANs, the motivations behind train-
ing GANs may not necessarily be the generator or the discrim-
inator per se: the representations embodied by either of the pair
of networks can be used in a variety of subsequent tasks. We
explore the applications of these representations in the section
“Application of GANs.”

Preliminaries

Terminology
Generative models learn to capture the statistical distribution
of training data, allowing us to synthesize samples from the
learned distribution. On top of synthesizing novel data sam-
ples, which may be used for downstream tasks such as seman-
tic image editing [2], data augmentation [3], and style transfer
[4], we are also interested in using the representations that
such models learn for tasks such as classification [5] and
image retrieval [6].

We occasionally refer to fully connected and convolutional
layers of deep networks; these are generalizations of percep-
trons or spatial filter banks with nonlinear postprocessing.
In all cases, the network weights are learned through
backpropagation [7].

Notation
The GAN literature generally deals with multidimensional vec-
tors and often represents vectors in a probability space by ital-
ics (e.g., latent space is) .z In the field of signal processing, it is
common to represent vectors by bold, lowercase symbols, and
we adopt this convention to emphasize the multidimensional
nature of variables. Accordingly, we will commonly refer to

()p xdata as representing the probability density function over a
random vector x that lies in .R | |x We will use ()p xg to denote
the distribution of the vectors produced by the generator net-
work of the GAN. We use the calligraphic symbols G and D
to denote the generator and discriminator networks, respec-
tively. Both networks have sets of parameters (weights), DH
and ,GH that are learned through optimization, during training.

Synthetic
Data

Sample

The generator is trained
to map a noise sample

to a synthetic data sample
that can “fool”

the discriminator.

Noise
Source

Real Data
Sample

Real
or

Fake?

or

z x

x ′

The discriminator is trained to
distinguish real data

samples from synthesized
samples.

Figure 1. The two models that are learned during the training process for a GAN are the discriminator D^ h and the generator .G^ h These are typically
implemented with neural networks, but they could be implemented by any form of differentiable system that maps data from one space to another; see
article text for details.

Authorized licensed use limited to: Penn State University. Downloaded on November 14,2023 at 03:46:08 UTC from IEEE Xplore. Restrictions apply.

55IEEE SIgnal ProcESSIng MagazInE | January 2018 |

As with all deep-learning systems, training requires that
we have some clear objective function. Following the usual
notation, we use (;)JG G DH H and (;)JD D GH H to refer to the
objective functions of the generator and discriminator, respec-
tively. The choice of notation reminds us that the two objective
functions are, in a sense, codependent on the evolving param-
eter sets GH and DH of the networks as they are iteratively
updated. We shall explore this further in the section “Training
GANs.” Finally, note that multidimensional gradients are used
in the updates; we use GdH to denote the gradient operator with
respect to the weights of the generator parameters and DdH
to denote the gradient operator with respect to the weights of
the discriminator. The expected gradients are indicated by the
notation .E •d

Capturing data distributions
A central problem of signal processing and statistics is that
of density estimation: obtaining a representation—implicit
or explicit, parametric or nonparametric—of data in the real
world. This is the key motivation behind GANs. In the GAN
literature, the term data generating distribution is often used to
refer to the underlying probability density or probability mass
function of observation data. GANs learn through implicitly
computing some sort of similarity between the distribution of
a candidate model and the distribution corresponding to real
data (see Figure 2).

Why bother with density estimation at all? The answer lies
at the heart of—arguably—many problems of visual infer-
ence, including image categorization, visual object detection
and recognition, object tracking, and object registration. In
principle, through Bayes’ theorem, all inference problems of
computer vision can be addressed through estimating condi-
tional density functions, possibly indirectly in the form of a
model that learns the joint distribution of variables of interest
and the observed data. The difficulty we face is that likelihood
functions for high-dimensional, real-world image data are dif-
ficult to construct. While GANs don’t explicitly provide a way
of evaluating density functions, for a generator-discriminator

pair of suitable capacity, the generator implicitly captures the
distribution of the data.

Related work
One may view the principles of generative models by mak-
ing comparisons with standard techniques in signal process-
ing and data analysis. For example, signal processing makes
wide use of the idea of representing a signal as the weighted
combination of basis functions. Fixed basis functions underlie
standard techniques such as Fourier-based and wavelet repre-
sentations. Data-driven approaches to constructing basis func-
tions can be traced back to the Hotelling [8] transform, rooted
in Pearson’s observation that principal components minimize
a reconstruction error according to a minimum squared error
criterion. Despite its wide use, standard principal component
analysis (PCA) does not have an overt statistical model for the
observed data, though it has been shown that the bases of PCA
may be derived as a maximum likelihood parameter estima-
tion problem.

Despite wide adoption, PCA is limited—the basis func-
tions emerge as the eigenvectors of the covariance matrix
over observations of the input data, and the mapping from the
representation space back to signal or image space is linear.
So, we have both a shallow and a linear mapping, limiting
the complexity of the model and, hence, of the data, that can
be represented.

Independent component analysis (ICA) provides another
level up in sophistication, in which the signal components no
longer need to be orthogonal; the mixing coefficients used to
blend components together to construct examples of data are
merely considered to be statistically independent. ICA has
various formulations that differ in their objective functions
used during estimating signal components or in the genera-
tive model that expresses how signals or images are generated
from those components. A recent innovation explored through
ICA is noise contrastive estimation (NCE); this may be seen as
approaching the spirit of GANs [9]: the objective function for
learning independent components compares a statistic applied

–2

–2
–1

0
1

2

–1
0

1
2

X1

X2
–2

–2
–1

0
1

2

–1
0

1
2

X1

X2

pg(x) pdata(x)
pg(x) pdata(x)

Samples Produced
by the Generator Samples of Real Data

Figure 2. During GAN training, the generator is encouraged to produce a distribution of samples, ()p xg to match that of real data, ().p xdata For an ap-
propriately parameterized and trained GAN, these distributions will be nearly identical. The representations embodied by GANs are captured in the learned
parameters (weights) of the generator and discriminator networks.

Authorized licensed use limited to: Penn State University. Downloaded on November 14,2023 at 03:46:08 UTC from IEEE Xplore. Restrictions apply.

56 IEEE SIgnal ProcESSIng MagazInE | January 2018 |

to noise with that produced by a candidate generative model
[10]. The original NCE approach did not include updates to
the generator.

What other comparisons can be made between GANs and
the standard tools of signal processing? For PCA, ICA, Fou-
rier, and wavelet representations, the latent space of GANs is,
by analogy, the coefficient space of what we commonly refer to
as transform space. What sets GANs apart from these standard
tools of signal processing is the level of complexity of the mod-
els that map vectors from latent space to image space. Because
the generator networks contain nonlinearities, and can be of
almost arbitrary depth, this mapping—as with many other
deep-learning approaches—can be extraordinarily complex.

With regard to deep image-based models, modern approach-
es to generative image modeling can be grouped into explicit
and implicit density models. Explicit density models are either
tractable (change of variables models, autoregressive models)
or intractable (directed models trained with variational infer-
ence, undirected models trained using Markov chains). Implicit

density models capture the statistical distribution of the data
through a generative process that makes use of either ancestral
sampling [11] or Markov chain-based sampling. GANs fall into
the directed implicit model category. A more detailed over-
view and relevant papers can be found in [12].

GAN architectures

Fully connected GANs
The first GAN architectures used fully connected neural net-
works for both the generator and discriminator [1]. This type
of architecture was applied to relatively simple image data sets:
MNIST (handwritten digits), CIFAR-10 (natural images), and
the Toronto Face Data Set (TFD).

Convolutional GANs
Going from fully connected to convolutional neural networks
(CNNs) is a natural extension, given that CNNs are extremely
well suited to image data. Early experiments conducted on

CIFAR-10 suggested that it was more
difficult to train generator and discrim-
inator networks using CNNs with the
same level of capacity and representa-
tional power as those used for super-
vised learning.

The Laplacian pyramid of adversar-
ial networks (LAPGAN) [13] offered
one solution to this problem, by decom-
posing the generation process using
multiple scales: a ground-truth image is
itself decomposed into a Laplacian pyr-
amid and a conditional, convolutional
GAN is trained to produce each layer
given the one above.

Additionally, Radford et al. [5] pro-
posed a family of network architec-
tures called deep convolutional GAN
(DCGAN), which allows training a
pair of deep convolutional generator
and discriminator networks. DCGANs
make use of strided and fractionally
strided convolutions, which allow the
spatial downsampling and upsam-
pling operators to be learned during
training. These operators handle the
change in sampling rates and loca-
tions, a key requirement in mapping
from image space to possibly lower-
dimensional latent space, and from
image space to a discriminator. Fur-
ther details of the DCGAN architec-
ture and training are presented in the
section “Training Tricks.”

As an extension to synthesizing
images in two dimensions, Wu et al.
[14] presented GANs that were able to

Synthetic
Data

Sample

Synthetic
Data

Sample

Generator: Must Learn
to Create Class-

Conditional Image
Samples

Generator: Must Learn
to Create Class-

Conditional Image
Samples

Noise
Source

Noise
Source

Class or
Category

Class or
Category

Real Data
Sample

Real Data
Sample

Real
or

Fake?

Real
or

Fake?

OR

OR

Discriminator: Trained to
Distinguish Real Data

from Synthesized Samples,
Conditional on Class, C

Discriminator: Outputs
an Estimated Class Label,

and a Decision
on Authenticity

x ′c

x ′c

x c

x c

z

z

C

C

C

(a)

(b)

Figure 3. (a) The conditional GAN, proposed by Mirza et al. [15] performs class-conditional image
synthesis; the discriminator performs class-conditional discrimination of real from fake images. (b) The
InfoGAN [16], on the other hand, has a discriminator network that also estimates the class label.

Authorized licensed use limited to: Penn State University. Downloaded on November 14,2023 at 03:46:08 UTC from IEEE Xplore. Restrictions apply.

57IEEE SIgnal ProcESSIng MagazInE | January 2018 |

synthesize three-dimensional (3-D) data samples using volu-
metric convolutions. Wu et al. [14] synthesized novel objects
including chairs, a table, and cars; in addition, they also pre-
sented a method to map from two-dimensional (2-D) images to
3-D versions of objects portrayed in those images.

Conditional GANs
Mirza et al. [15] extended the (2-D) GAN framework to the
conditional setting by making both the generator and the dis-
criminator networks class-conditional (Figure 3). Conditional
GANs have the advantage of being able to provide better rep-
resentations for multimodal data generation. A parallel can be
drawn between conditional GANs and InfoGAN [16], which
decomposes the noise source into an incompressible source
and a “latent code,” attempting to discover latent factors of
variation by maximizing the mutual information between the
latent code and the generator’s output. This latent code can be
used to discover object classes in a purely unsupervised fash-
ion, although it is not strictly necessary that the latent code be
categorical. The representations learned by InfoGAN appear
to be semantically meaningful, dealing with complex intertan-
gled factors in image appearance, including variations in pose,
lighting, and emotional content of facial images [16].

GANs with inference models
In their original formulation, GANs lacked a way to map a
given observation, x, to a vector in latent space—in the GAN
literature, this is often referred to as an inference mechanism.
Several techniques have been proposed to invert the genera-
tor of pretrained GANs [17], [18]. The independently proposed

adversarially learned inference (ALI) [19] and bidirectional
GANs (BiGANs) [20] provide simple but effective extensions,
introducing an inference network in which the discriminators
examine joint (data, latent) pairs.

In this formulation, the generator consists of two networks:
the “encoder” (inference network) and the “decoder.” They
are jointly trained to fool the discriminator. The discriminator
itself receives pairs of (,)x z vectors (see Figure 4), and has to
determine which pair constitutes a genuine tuple consisting of
real image sample and its encoding, or a fake image sample
and the corresponding latent-space input to the generator.

Ideally, in an encoding-decoding model, the output, referred
to as a reconstruction, should be similar to the input. Typi-
cally, the fidelity of reconstructed data samples synthesized
using an ALI/BiGAN are poor. The fidelity of samples may be
improved with an additional adversarial cost on the distribu-
tion of data samples and their reconstructions [21].

Adversarial autoencoders
Autoencoders are networks, composed of an encoder and
decoder, which learn to map data to an internal latent represen-
tation and out again. That is, they learn a deterministic map-
ping (via the encoder) from a data space, e.g., images, into a
latent or representation space, and a mapping (via the decoder)
from the latent space back to data space. The composition of
these two mappings results in a reconstruction, and the two
mappings are trained such that a reconstructed image is as
close as possible to the original.

Autoencoders are reminiscent of the perfect-reconstruction
filter banks that are widely used in image and signal processing.

OR

x ′

xz ′

z

ε

Synthetic Data
Sample

Generator: Must Learn
to Create Image

Samples

Noise
Source

Encoding of Data
Sample

Encoder: Must Learn
to Map Real Image

Samples to Latent Space

Discriminator Receives
Tuples of (z, x′)

and (z′, x)

Real Data
Sample

Real
or

Fake?

Figure 4. The ALI/BiGAN structure [19], [20] consists of three networks. One of these serves as a discriminator, another maps the noise vectors from
latent space to image space (decoder, depicted as a generator G in the figure), with the final network (encoder, depicted as)E mapping from image
space to latent space.

Authorized licensed use limited to: Penn State University. Downloaded on November 14,2023 at 03:46:08 UTC from IEEE Xplore. Restrictions apply.

58 IEEE SIgnal ProcESSIng MagazInE | January 2018 |

However, autoencoders generally learn nonlinear mappings in
both directions. Further, when implemented with deep net-
works, the possible architectures that can be used to implement
autoencoders are remarkably flexible. Training can be unsu-
pervised, with backpropagation being applied between the
reconstructed image and the original to learn the parameters
of both the encoder and the decoder.

As suggested previously, one often wants the latent space
to have a useful organization. Additionally, one may want to
perform feed-forward, ancestral sampling [11] from an auto-
encoder. Adversarial training provides a route to achieve these
two goals. Specifically, adversarial training may be applied
between the latent space and a desired prior distribution on the
latent space (latent-space GAN). This results in a combined
loss function [22] that reflects both the reconstruction error
and a measure of how different the distribution of the prior
is from that produced by a candidate encoding network. This
approach is akin to a variational autoencoder (VAE) [23] for
which the latent-space GAN plays the role of the Kullback–
Leibler (KL)-divergence term of the loss function.

Mescheder et al. [24] unified VAEs with adversarial train-
ing in the form of the adversarial variational Bayes (AVB)
framework. Similar ideas were presented in [12]. AVB tries to
optimize the same criterion as that of VAEs, but uses an adver-
sarial training objective rather than the KL divergence.

Training GANs

Introduction
The training of GANs involves both finding the parameters
of a discriminator that maximize its classification accuracy
and finding the parameters of a generator that maximally con-

fuse the discriminator. This training process is summarized
in Figure 5.

The cost of training is evaluated using a value function,
,V G D^ h that depends on both the generator and the discrimi-

nator. The training involves solving

, ,maxmin V G D
GD

^ h
where

, () (()) .log logV 1x xE EG D D D() ()p px xgdata= + -^ h

During training, the parameters of one model are updat-
ed, while the parameters of the other are fixed. Goodfellow
et al. [1] show that, for a fixed generator, there is a unique
optimal discriminator, () () () () .p p px x x xD*

gdata data= +^ h
They also show that the generator, ,G is optimal when

() (),p px xg data= which is equivalent to the optimal discrimi-
nator predicting 0.5 for all samples drawn from .x In other
words, the generator is optimal when the discriminator, ,D is
maximally confused and cannot distinguish real samples from
ones that are fake.

Ideally, the discriminator is trained until optimal with
respect to the current generator; then the generator is again
updated. However in practice, the discriminator might not be
trained until optimal but rather may only be trained for a small
number of iterations, and the generator is updated simultane-
ously with the discriminator. Further, an alternate, nonsaturat-
ing training criterion is typically used for the generator, using

(())max log zD GG rather than ((())).min log 1 zD GG -

Despite the theoretical existence of unique solutions, GAN
training is challenging and often unstable for several reasons
[5], [25], [26]. One approach to improving GAN training is to

Draw m Samples from
the Noise Source

Draw m Samples of
Real Images

Draw m Samples from
the Noise Source

Estimated Expected
Gradient

Estimated Expected
Gradient

Update the
Discriminator’s

Parameters

Update the
Generator’s
Parameters

z

z

x
θG ← Update (θG, ∇θG)

θD ← Update (θD, ∇θD)

∇θD {JθD(θD;θG)} ∇θG {JθG(θG;θD)}

Figure 5. The main loop of GAN training. Novel data samples, ,xl may be drawn by passing random samples, z, through the generator network. The gradi-
ent of the discriminator may be updated k times before updating the generator.

Authorized licensed use limited to: Penn State University. Downloaded on November 14,2023 at 03:46:08 UTC from IEEE Xplore. Restrictions apply.

59IEEE SIgnal ProcESSIng MagazInE | January 2018 |

asses the empirical “symptoms” that might be experienced
during training. These symptoms include:

 ■ difficulties in getting the pair of models to converge [5]
 ■ the generative model “collapsing” to generate very simi-

lar samples for different inputs [25]
 ■ the discriminator loss converging quickly to zero [26], pro-

viding no reliable path for gradient updates to the generator.
Several authors suggested heuristic approaches to address
these issues [1], [25]; these are discussed in the next section.

Early attempts to explain why GAN training is unstable
were proposed by Goodfellow and Sali-
mans et al. [1], [25], who observed that
gradient descent methods typically used
for updating both the parameters of the
generator and discriminator are inap-
propriate when the solution to the opti-
mization problem posed by GAN training
actually constitutes a saddle point. Sali-
mans et al. provided a simple example
that shows this [25]. However, stochastic
gradient descent is often used to update
neural networks and there are well-devel-
oped machine-learning programming
environments that make it easy to construct and update net-
works using stochastic gradient descent.

Although an early theoretical treatment [1] showed that the
generator is optimal when () (),p px xg data= a very neat result
with a strong underlying intuition, the real data samples reside
on a manifold that sits in a high-dimensional space of possible
representations. For instance, if color image samples are of
size N N 3# # with pixel values [,] ,0 R 3+ the space that may
be represented—which we can call X—is of dimensionality

,N3 2 with each dimension taking values between zero and the
maximum measurable pixel intensity. The data samples in the
support of ,pdata however, constitute the manifold of the real
data associated with some particular problem, typically occu-
pying a very small part of the total space, .X Similarly, the
samples produced by the generator should also occupy only a
small portion of .X

Arjovsky et al. [26] showed that the support ()p xg and
()p xdata lie in a lower-dimensional space than that correspond-

ing to .X The consequence of this is that ()p xg and ()p xdata
may have no overlap, and so there exists a nearly trivial dis-
criminator that is capable of distinguishing real samples,

~ ()px xdata from fake samples, ~ ()px xg with 100% accuracy.
In this case, the discriminator error quickly converges to zero.
Parameters of the generator may only be updated via the dis-
criminator, so when this happens, the gradients used for updat-
ing parameters of the generator also converge to zero and may
no longer be useful for updates to the generator. Arjovsky et
al.’s explanations account for several of the symptoms related
to GAN training [26].

Goodfellow et al. [1] also showed that when D is optimal,
training G is equivalent to minimizing the Jensen–Shannon
(JS) divergence between ()p xg and () .p xdata If D is not opti-
mal, the update may be less meaningful or inaccurate. This

theoretical insight has motivated research into cost functions
based on alternative distances. Several of these are explored
in the section “Alternative Formulations.”

Training tricks
One of the first major improvements in the training of GANs
for generating images were the DCGAN architectures pro-
posed by Radford et al. [5]. This work was the result of an
extensive exploration of CNN architectures previously used
in computer vision, and it resulted in a set of guidelines

for constructing and training both the
generator and discriminator. In the section
“Convolutional GANs,” we alluded to the
importance of strided and fractionally strid-
ed convolutions [27], which are key compo-
nents of the architectural design. This allows
both the generator and the discriminator to
learn good upsampling and downsampling
operations, which may contribute to improve-
ments in the quality of image synthesis. More
specifically to training, batch normalization
[28] was recommended for use in both net-
works to stabilize training in deeper models.

Another suggestion was to minimize the number of fully con-
nected layers used to increase the feasibility of training deeper
models. Finally, Radford et al. [5] showed that using leaky rec-
tifying linear units (ReLUs) activation functions between the
intermediate layers of the discriminator gave superior perfor-
mance over using regular ReLUs.

Later, Salimans et al. [25] proposed further heuristic
approaches for stabilizing the training of GANs. The first, fea-
ture matching, changes the objective of the generator slightly
to increase the amount of information available. Specifically,
the discriminator is still trained to distinguish between real and
fake samples, but the generator is now trained to match the dis-
criminator’s expected intermediate activations (features) of its
fake samples with the expected intermediate activations of the
real samples. The second, minibatch discrimination, adds an
extra input to the discriminator, which is a feature that encodes
the distance between a given sample in a minibatch and the
other samples. This is intended to prevent mode collapse, as
the discriminator can easily tell if the generator is producing
the same outputs.

A third trick, heuristic averaging, penalizes the network
parameters if they deviate from a running average of previ-
ous values, which can help convergence to an equilibrium. The
fourth, virtual batch normalization, reduces the dependency
of one sample on the other samples in the minibatch by cal-
culating the batch statistics for normalization with the sample
placed within a reference minibatch that is fixed at the begin-
ning of training.

Finally, one-sided label smoothing makes the target for the
discriminator 0.9 instead of one, smoothing the discriminator’s
classification boundary, hence preventing an overly confident
discriminator that would provide weak gradients for the gen-
erator. Sønderby et al. [29] advanced the idea of challenging

The representations
that can be learned by
gANs may be used in a
variety of applications,
including image synthesis,
semantic image editing,
style transfer, image
superresolution, and
classification.

Authorized licensed use limited to: Penn State University. Downloaded on November 14,2023 at 03:46:08 UTC from IEEE Xplore. Restrictions apply.

60 IEEE SIgnal ProcESSIng MagazInE | January 2018 |

the discriminator by adding noise to the
samples before feeding them into the dis-
criminator. Sønderby et al. [29] argued that
one-sided label smoothing biases the opti-
mal discriminator, while their technique,
instance noise, moves the manifolds of the
real and fake samples closer together, at the
same time preventing the discriminator eas-
ily finding a discrimination boundary that
completely separates the real and fake sam-
ples. In practice, this can be implemented by adding Gaussian
noise to both the synthesized and real images, annealing the
standard deviation over time. The same process was indepen-
dently proposed by Arjovsky et al. [26].

Alternative formulations
The first part of this section considers other information-the-
oretic interpretations and generalizations of GANs. The sec-
ond part looks at alternative cost functions that aim to directly
address the problem of vanishing gradients.

Generalizations of the GAN cost function
Nowozin et al. [30] showed that GAN training may be gener-
alized to minimize not only the JS divergence, but an estimate
of f-divergences; these are referred to as f-GANs. The f-diver-
gences include well-known divergence measures such as the
KL-divergence. Nowozin et al. showed that the f-divergence may
be approximated by applying the Fenchel conjugates of the
desired f-divergence to samples drawn from the distribution of
generated samples, after passing those samples through a dis-
criminator [30]. They provide a list of Fenchel conjugates for
commonly used f-divergences, as well as activation functions
that may be used in the final layer of the generator network,
depending on the choice of f-divergence. Having derived the
generalized cost functions for training the generator and dis-
criminator of an f-GAN, Nowozin et al. [30] observe that, in
its raw form, maximizing the generator objective is likely to
lead to weak gradients, especially at the start of training, and
proposed an alternative cost function for updating the genera-
tor, which is less likely to saturate at the beginning of training.
Nowozin et al. proposed that when the discriminator is trained,
the derivative of the f-divergence on the ratio of the real and
fake data distributions is estimated, while when the generator
is trained only an estimate of the f-divergence is minimized.
Uehara et al. [31] extend the f-GAN further, where in the dis-
criminator step the ratio of the distributions of real and fake
data are predicted, and in the generator step the f-divergence is
directly minimized. Alternatives to the JS-divergence are also
covered by Goodfellow [12].

Alternative cost functions to prevent vanishing gradients
Arjovsky et al. [32] proposed the Wasserstein GAN (WGAN),
a GAN with an alternative cost function that is derived from an
approximation of the Wasserstein distance. Unlike the origi-
nal GAN cost function, the WGAN is more likely to provide
gradients that are useful for updating the generator. The cost

function derived for the WGAN relies on
the discriminator, which they refer to as
the critic, being a k-Lipschitz continuous
function; practically, this may be imple-
mented by simply clipping the parameters
of the discriminator. However, more recent
research [33] suggested that weight clipping
adversely reduces the capacity of the dis-
criminator model, forcing it to learn simpler
functions. Gulrajani et al. [33] proposed an

improved method for training the discriminator for a WGAN,
by penalizing the norm of discriminator gradients with respect
to data samples during training, rather than performing param-
eter clipping.

A brief comparison of GAN variants
GANs allow us to synthesize novel data samples from random
noise, but they are considered difficult to train due partially to
vanishing gradients. All GAN models that we have discussed
in this article require careful hyperparameter tuning and model
selection for training. However, perhaps the easier models to
train are the adversarial autoencoder (AAE) and the WGAN.
The AAE is relatively easy to train because the adversarial loss
is applied to a fairly simple distribution in lower dimensions
(than the image data). The WGAN [33], is designed to be easier
to train, using a different formulation of the training objective
that does not suffer from the vanishing gradient problem. The
WGAN may also be trained successfully even without batch
normalization; it is also less sensitive to the choice of nonlin-
earities used between convolutional layers.

Samples synthesized using a GAN or WGAN may belong
to any class present in the training data. Conditional GANs
provide an approach to synthesizing samples with user-
specified content.

It is evident from various visualization techniques (Fig-
ure 6) that the organization of the latent space harbors some
meaning, but vanilla GANs do not provide an inference
model to allow data samples to be mapped to latent repre-
sentations. Both BiGANs and ALI provide a mechanism
to map image data to a latent space (inference), however,
reconstruction quality suggests that they do not necessarily
faithfully encode and decode samples. A very recent devel-
opment shows that ALI may recover encoded data samples
faithfully [21]. However, this model shares a lot in common
with the AVB and AAE. These are autoencoders, similar
to VAEs, where the latent space is regularized using adver-
sarial training rather than a KL-divergence between encoded
samples and a prior.

The structure of latent space
GANs build their own representations of the data they are
trained on, and in doing so produce structured geometric vec-
tor spaces for different domains. This is a quality shared with
other neural network models, including VAEs [23], as well
as linguistic models such as word2vec [34]. In general, the
domain of the data to be modeled is mapped to a vector space,

What sets gANs apart from
these standard tools of
signal processing is the
level of complexity of the
models that map vectors
from latent space to
image space.

Authorized licensed use limited to: Penn State University. Downloaded on November 14,2023 at 03:46:08 UTC from IEEE Xplore. Restrictions apply.

61IEEE SIgnal ProcESSIng MagazInE | January 2018 |

which has fewer dimensions than the data
space, forcing the model to discover in-
teresting structure in the data and repre-
sent it efficiently. This latent space is
at the “originating” end of the generator
network, and the data at this level of rep-
resentation (the latent space) can be highly
structured and may support high-level se-
mantic operations [5]. Examples include
the rotation of faces from trajectories
through latent space, as well as image analogies that have
the effect of adding visual attributes such as eyeglasses onto
a “bare” face.

All (vanilla) GAN models have a generator that maps data
from the latent space into the space to be modeled, but many
GAN models have an encoder that additionally supports the
inverse mapping [19], [20]. This becomes a powerful meth-
od for exploring and using the structured latent space of the
GAN network. With an encoder, collections of labeled images
can be mapped into latent spaces and analyzed to discover
“concept vectors” that represent high-level attributes such as
“smiling” or “wearing a hat.” These vectors can be applied at
scaled offsets in latent space to influence the behavior of the
generator (Figure 6). Similar to using an encoding process to
model the distribution of latent samples, Gurumurthy et al.
[35] propose modeling the latent space as a mixture of Gauss-
ians and learning the mixture components that maximize the
likelihood of generated data samples under the data generat-
ing distribution.

Applications of GANs
Discovering new applications for adversarial training of deep
networks is an active area of research. We examine a few
computer vision applications that have appeared in the litera-
ture and been subsequently refined. These applications were
chosen to highlight some different approaches to using GAN-
based representations for image manipulation, analysis, or
characterization and do not fully reflect the potential breadth
of application of GANs.

Using GANs for image classification places them within
the broader context of machine learning and provides a useful
quantitative assessment of the features extracted in unsuper-

vised learning. Image synthesis remains a
core GAN capability and is especially use-
ful when the generated image can be subject
to pre-existing constraints. Superresolution
[36]–[38] offers an example of how an exist-
ing approach can be supplemented with an
adversarial loss component to achieve high-
er-quality results. Finally, image-to-image
translation demonstrates how GANs offer a
general-purpose solution to a family of tasks

that require automatically converting an input image into an
output image.

Classification and regression
After GAN training is complete, the neural network can be
reused for other downstream tasks. For example, outputs of
the convolutional layers of the discriminator can be used as
a feature extractor, with simple linear models fitted on top of
these features using a modest quantity of (image, label) pairs
[5], [25]. The quality of the unsupervised representations with-
in a DCGAN network have been assessed by applying a regu-
larized L2-SVM classifier to a feature vector extracted from
the (trained) discriminator [5]. Good classification scores were
achieved using this approach on both supervised and semisu-
pervised data sets, even those that were disjoint from the origi-
nal training data.

The quality of the data representation may be improved
when adversarial training includes jointly learning an infer-
ence mechanism such as with ALI [19]. A representation vec-
tor was built using last three hidden layers of the ALI encoder,
a similar L2-SVM classifier, yet achieved a misclassification
rate significantly lower than the DCGAN [19]. Additionally,
ALI has achieved state-of-the art classification results when
label information is incorporated into the training routine.

When labeled training data is in limited supply, adversarial
training may also be used to synthesize more training samples.
Shrivastava et al. [39] use GANs to refine synthetic images
while maintaining their annotation information. By training
models only on GAN-refined synthetic images (i.e., no real
training data) Shrivastava et al. [39] achieved state-of-the-art
performance on pose- and gaze-estimation tasks. Similarly,
good results were obtained for gaze estimation and prediction

Figure 6. An example of applying a “smile vector” with an ALI model [19]. The first image is an example of an unsmiling woman and the last is an
example of a woman smiling. A z value for the first image is inferred, z1 and for the last, .z2 Interpolating along a vector that connects z1 and ,z2 gives
z values that may be passed through a generator to synthesize novel samples. Note the implication: a displacement vector in latent space traverses smile
“intensity” in image space. (Figure used courtesy of Tom White.)

gANs build their own
representations of the
data they are trained on,
and in doing so produce
structured geometric
vector spaces for
different domains.

Authorized licensed use limited to: Penn State University. Downloaded on November 14,2023 at 03:46:08 UTC from IEEE Xplore. Restrictions apply.

62 IEEE SIgnal ProcESSIng MagazInE | January 2018 |

using a spatiotemporal GAN architecture [40]. In some cases,
models trained on synthetic data do not generalize well when
applied to real data [3]. Bousmalis et al. [3] propose to address
this problem by adapting synthetic samples from a source
domain to match a target domain using adversarial training.
Additionally, Liu et al. [41] propose using multiple GANs—
one per domain—with tied weights to synthesize pairs of cor-
responding images samples from different domains. Because
the quality of generated samples is hard to quantitatively
judge across models, classification tasks are likely to remain
an important quantitative tool for performance assessment
of GANs, even as new and diverse applications in computer
vision are explored.

Image synthesis
Much of the recent GAN research focuses on improving the
quality and utility of the image-generation capabilities. The
LAPGAN model introduced a cascade of convolutional net-
works within a Laplacian pyramid framework to generate
images in a coarse-to-fine fashion [13]. A similar approach is
used by Huang et al. [42] with GANs operating on intermediate
representations rather than lower-resolution images.

LAPGAN also extended the conditional version of the GAN
model where both G and D networks receive additional label
information as input; this technique has proved useful and is
now a common practice to improve image quality. This idea
of GAN conditioning was later extended to incorporate natural
language. For example, Reed et al. [43] used a GAN architec-
ture to synthesize images from text descriptions, which one

might describe as reverse captioning.
For example, given a text caption of
a bird such as “white with some black
on its head and wings and a long,
orange beak,” the trained GAN can
generate several plausible images that
match the description.

In addition to conditioning on text
descriptions, the generative adversarial
what-where network (GAWWN) con-
ditions on image location [44]. The
GAWWN system supported an inter-
active interface in which large images
could be built up incrementally with
textual descriptions of parts and user-
supplied bounding boxes (Figure 7).

Conditional GANs not only allow us
to synthesize novel samples with specif-
ic attributes, they also allow us to devel-
op tools for intuitively editing images;
e.g., changing the hairstyle of a person
in an image, making them wear glass-
es, or editing the image so they appear
younger [35]. Additional applications of
GANs to image editing include work by
Zhu and Brock et al. [2], [45].

Image-to-image translation
Conditional adversarial networks are well suited for translat-
ing an input image into an output image, which is a recurring
theme in computer graphics, image processing, and computer
vision. The pix2pix model offers a general-purpose solu-
tion to this family of problems [46]. In addition to learning
the mapping from input image to output image, the pix2pix
model also constructs a loss function to train this mapping.
This model has demonstrated effective results for different
problems of computer vision that had previously required sepa-
rate machinery, including semantic segmentation, generating
maps from aerial photos, and colorization of black and white
images. Wang et al. present a similar idea, using GANs to first
synthesize surface-normal maps (similar to depth maps) and
then map these images to natural scenes.

CycleGAN [4] extends this work by introducing a cycle
consistency loss that attempts to preserve the original image
after a cycle of translation and reverse translation. In this for-
mulation, matching pairs of images are no longer needed for
training. This makes data preparation much simpler, and opens
the technique to a larger family of applications. For example,
artistic style transfer [47] renders natural images in the style of
artists, such as Picasso or Monet, by simply being trained on an
unpaired collection of paintings and natural images (Figure 8).

Superresolution
Superresolution allows a high-resolution image to be generated
from a lower-resolution image, with the trained model infer-
ring photo-realistic details while upsampling. The SRGAN

This bird is completely black.

This bird is bright blue.

A Man in an Orange Jacket, Black Pants, and a Black Cap Wearing Sunglasses Skiing

Head

Right Leg

Belly

Beak

Figure 7. Examples of image synthesis using the GAWWN. In the GAWWN, images are conditioned
on both text descriptions and image location specified as either a keypoint or bounding box. (Figure
reproduced from [44] with permission.)

Authorized licensed use limited to: Penn State University. Downloaded on November 14,2023 at 03:46:08 UTC from IEEE Xplore. Restrictions apply.

63IEEE SIgnal ProcESSIng MagazInE | January 2018 |

model [36] extends earlier efforts by adding an adversarial loss
component, which constrains images to reside on the manifold
of natural images.

The SRGAN generator is conditioned on a low-resolution
image and infers photo-realistic natural images with 4 #
upscaling factors. Unlike most GAN applications, the adver-
sarial loss is one component of a larger loss function, which
also includes perceptual loss from a pretrained classifier, and a
regularization loss that encourages spatially coherent images.
In this context, the adversarial loss constrains the overall solu-
tion to the manifold of natural images, producing perceptually
more convincing solutions.

Customizing deep-learning applications can often be ham-
pered by the availability of relevant curated training data sets.
However, SRGAN is straightforward in customizing to specific
domains, as new training image pairs can easily be constructed
by downsampling a corpus of high-resolution images. This is
an important consideration in practice, since the inferred pho-
to-realistic details that the GAN generates will vary depending
on the domain of images used in the training set.

Discussion

Open questions
GANs have attracted considerable attention due to their ability
to leverage vast amounts of unlabeled data. While much prog-
ress has been made to alleviate some of the challenges related
to training and evaluating GANs, there still remain several
open challenges.

Mode collapse
As articulated in the section “Training GANs,” a common
problem of GANs involves the generator collapsing to produce
a small family of similar samples (partial collapse) and, in the
worst case, producing simply a single sample (complete col-
lapse) [26], [48]. Diversity in the generator can be increased by
practical hacks to balance the distribution of samples produced

by the discriminator for real and fake batches, or by employing
multiple GANs to cover the different modes of the probability
distribution [49]. Yet another solution to alleviate mode collapse
is to alter the distance measure used to compare statistical distri-
butions. Arjovsky [32] proposed to compare distributions based
on a Wasserstein distance rather than a KL-based divergence
(DCGAN [5]) or a total-variation distance (energy-based GAN
[50]). Metz et al. [51] proposed unrolling the discriminator for
several steps, i.e., letting it calculate its updates on the current
generator for several steps, and then using the “unrolled” dis-
criminators to update the generator using the normal minimax
objective. As normal, the discriminator only trains on its update
from one step, but the generator now has access to how the dis-
criminator would update itself. With the usual one step generator
objective, the discriminator will simply assign a low probability
to the generator’s previous outputs, forcing the generator to move,
resulting either in convergence, or an endless cycle of mode hop-
ping. However, with the unrolled objective, the generator can
prevent the discriminator from focusing on the previous update,
and update its own generations with the foresight of how the dis-
criminator would have responded.

Training instability—saddle points
In a GAN, the Hessian of the loss function becomes indefinite.
The optimal solution, therefore, lies in finding a saddle point
rather than a local minimum. In deep learning, a large num-
ber of optimizers depend only on the first derivative of the loss
function; converging to a saddle point for GANs requires good
initialization. By invoking the stable manifold theorem from
nonlinear systems theory, Lee et al. [52] showed that, were we
to select the initial points of an optimizer at random, gradient
descent would not converge to a saddle with probability one
(also see [25] and [53]). Additionally, Mescheder et al. [54] have
argued that convergence of a GAN’s objective function suffers
from the presence of a zero real part of the Jacobian matrix as
well as eigenvalues with large imaginary parts. This is disheart-
ening for GAN training; yet, due to the existence of second-order

Monet

Monet

Zebras SummerPhotos

Photo

Horses

Zebra Horse

Winter

Summer Winter

Photo Monet Horse Zebra Winter Summer
(a) (b) (c)

Figure 8. The CycleGAN model learns image to image translations between two unordered image collections. Shown here are the examples of bidirection-
al image mappings: (a) Monet paintings to landscape photos, (b) zebras to horses, and (c) summer to winter photos in Yosemite National Park. (Figure
reproduced from [4] with permission.)

Authorized licensed use limited to: Penn State University. Downloaded on November 14,2023 at 03:46:08 UTC from IEEE Xplore. Restrictions apply.

64 IEEE SIgnal ProcESSIng MagazInE | January 2018 |

optimizers, not all hope is lost. Unfortunately, Newton-type
methods have compute-time complexity that scales cubically or
quadratically with the dimension of the parameters. Therefore,
another line of questions lies in applying and scaling second-
order optimizers for adversarial training.

A more fundamental problem is the existence of an equilib-
rium for a GAN. Using results from Bayesian nonparametrics,
Arora et al. [48] connects the existence of the equilibrium to a
finite mixture of neural networks—this means that, below a cer-
tain capacity, no equilibrium might exist. On a closely related
note, it has also been argued that, while GAN training can appear
to have converged, the trained distribution could still be far away
from the target distribution. To alleviate this issue, Arora et al.
[48] propose a new measure called the neural net distance.

Evaluating generative models
How can one gauge the fidelity of samples synthesized by a gen-
erative models? Should we use a likelihood estimation? Can a
GAN trained using one methodology be compared to another
(model comparison)? These are open-ended questions that are
not only relevant for GANs but also for probabilistic models, in
general. Theis [55] argued that evaluating GANs using differ-
ent measures can lead conflicting conclusions about the quality
of synthesized samples; the decision to select one measure over
another depends on the application.

Conclusions
The explosion of interest in GANs is driven not only by their
potential to learn deep, highly nonlinear mappings from a latent
space into a data space and back but also by their potential to
make use of the vast quantities of unlabeled image data that
remain closed to deep representation learning. Within the subtle-
ties of GAN training, there are many opportunities for devel-
opments in theory and algorithms, and with the power of deep
networks, there are vast opportunities for new applications.

Acknowledgments
We would like to thank David Warde-Farley for his valuable
feedback on previous revisions of the article. Antonia Creswell
acknowledges the support of the Engineering and Physical Sci-
ences Research Council through a doctoral training scholarship.

Authors
Antonia Creswell (ac2211@ic.ac.uk) received her first-class
degree from Imperial College London in biomedical engineering
in 2011 and is currently a Ph.D. degree student in the Biologically
Inspired Computer Vision Group at Imperial College London.
The focus of her Ph.D. research is improving the training of gen-
erative adversarial networks and applying them to visual search
and learning representations in unlabeled sources of image data.

Tom White (tom@sixdozen.com) received his B.S. degree in
mathematics from the University of Georgia and his M.S. degree
in media arts and sciences from the Massachusetts Institute of
Technology. He is currently a senior lecturer in the School of
Design at Victoria University of Wellington, New Zealand. His
current research focuses on exploring the growing use of con-

structive machine learning in computational design and the cre-
ative potential of human designers working collaboratively with
artificial neural networks during the exploration of design ideas
and prototyping.

Vincent Dumoulin (vi.dumoulin@gmail.com) received his
B.Sc. degree in physics and computer science from the
University of Montréal, Canada. He is a doctoral candidate at the
Montréal Institute for Learning Algorithms under the cosupervi-
sion of Yoshua Bengio and Aaron Courville, working on deep-
learning approaches to generative modeling.

Kai Arulkumaran (kailash.arulkumaran13@imperial.ac
.uk) received his B.A. degree in computer science from the
University of Cambridge, United Kingdom, in 2012 and his
M.Sc. degree in biomedical engineering from Imperial College
London in 2014, where he is currently a Ph.D. candidate in the
Department of Bioengineering. He was a research intern at
Twitter Magic Pony and Microsoft Research in 2017. His
research focus is deep reinforcement learning and computer
vision for visuomotor control.

Biswa Sengupta (biswasengupta@gmail.com) received his
B.Eng. (honors) degree in electrical and computer engineering in
2004 and his M.Sc. degree in theoretical computer science in
2005 from the University of York, United Kingdom. He received
his second M.Sc. degree in neural and behavioral sciences in
2007 from the Max Planck Institute for Biological Cybernetics,
Germany, and his Ph.D. degree in theoretical neuroscience in
2011 from the University of Cambridge, United Kingdom. He
received further training in Bayesian statistics and differential
geometry at the University College London and University of
Cambridge before leading Cortexica Vision Systems as its chief
scientist. Currently, he is a visiting scientist at Imperial College
London, and he is also leading machine-learning research at
Noah’s Ark Lab of Huawei Technologies United Kingdom.

Anil A. Bharath (a.bharath@imperial.ac.uk) received his B.
Eng. degree in electronic and electrical engineering from
University College London in 1988, and a Ph.D. degree in signal
processing from Imperial College London in 1993, where he is
currently a reader in the Department of Bioengineering. He is an
academic fellow of Imperial’s Data Science Institute and a fel-
low of the Institution of Engineering and Technology. He was an
academic visitor in the Signal Processing Group at the
University of Cambridge in 2006. He is a cofounder of Cortexica
Vision Systems. His research interest is in deep architectures for
visual inference.

References
[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proc. Advances
Neural Information Processing Systems Conf., 2014, pp. 2672–2680.

[2] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros, “Generative visual
manipulation on the natural image manifold,” in Proc. European Conf. Computer
Vision, 2016, pp. 597–613.

[3] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan,
“Unsupervised pixel-level domain adaptation with generative adversarial net-
works,” in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2016, pp.
3722–3731.

[4] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. (2017). Unpaired image-to-image
translation using cycle-consistent adversarial networks, Proc. Int. Conf. Computer
Vision. [Online]. Available: https://arxiv.org/abs/1703.10593

Authorized licensed use limited to: Penn State University. Downloaded on November 14,2023 at 03:46:08 UTC from IEEE Xplore. Restrictions apply.

65IEEE SIgnal ProcESSIng MagazInE | January 2018 |

[5] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning
with deep convolutional generative adversarial networks,” in Proc. 5th Int. Conf.
Learning Representations Workshop Track, 2016.

[6] A. Creswell and A. A. Bharath, “Adversarial training for sketch retrieval,” in
Proc. European Conf. Computer Vision Workshops, Amsterdam, The
Netherlands, 2016, pp. 798–809.

[7] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.
7553, pp. 436–444, 2015.

[8] H. Hotelling, “Analysis of a complex of statistical variables into principal com-
ponents,” J. Educ. Psychol., vol. 24, no. 6, pp. 417, 1933.

[9] I. J. Goodfellow, “On distinguishability criteria for estimating generative mod-
els,” in Proc. Int. Conf. Learning Representations Workshop Track, 2015.

[10] M. Gutmann and A. Hyvärinen, “Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models,” Artif. Intell. Statist., vol. 1, no. 2, p. 6, 2010.

[11] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized denoising auto-
encoders as generative models,” in Proc. Advances Neural Information Processing
Systems Conf., 2013, pp. 899–907.

[12] I. Goodfellow. (2016). NIPS 2016 tutorial: Generative adversarial networks,
Proc. Neural Information Processing Systems Conf. [Online]. Available: https://
arxiv.org/abs/1701.00160

[13] E. L. Denton, S. Chintala, A. Szlam, and R. Fergus, “Deep generative image
models using a Laplacian pyramid of adversarial networks,” in Proc. Advances
Neural Information Processing Systems Conf., 2015, pp. 1486–1494.

[14] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learning a probabi-
listic latent space of object shapes via 3D generative-adversarial modeling,” in Proc.
Advances Neural Information Processing Systems Conf., 2016, pp. 82–90.

[15] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv
Preprint, arXiv:1411.1784, 2014.

[16] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel,
“Infogan: Interpretable representation learning by information maximizing genera-
tive adversarial nets,” in Proc. Advances Neural Information Processing Systems
Conf., 2016, pp. 2172–2180.

[17] A. Creswell and A. A. Bharath, “Inverting the generator of a generative adver-
sarial network,” in Proc. Neural Information Processing Systems Workshop
Adversarial Training, 2016.

[18] Z. C. Lipton and S. Tripathi, “Precise recovery of latent vectors from generative
adversarial networks,” in Proc. Int. Conf. Learning Representations Workshop Track, 2017.

[19] V. Dumoulin, I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky,
and A. Courville, “Adversarially learned inference,” in Proc. Int. Conf. Learning
Representations, 2017.

[20] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” in
Proc. Int. Conf. Learning Representations, 2017.

[21] C. Li, H. Liu, C. Chen, Y. Pu, L. Chen, R. Henao, and L. Carin, “Towards
understanding adversarial learning for joint distribution matching,” in Proc.
Advances Neural Information Processing Systems Conf., 2017.

[22] A. Makhzani, J. Shlens, N. Jaitly, and I. Goodfellow. (2016). Adversarial auto-
encoders, Proc. Int. Conf. Learning Representations. [Online]. Available: http://
arxiv.org/abs/1511.05644

[23] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in Proc. 2nd
Int. Conf. Learning Representations, 2014.

[24] L. M. Mescheder, S. Nowozin, and A. Geiger. (2017). Adversarial variational
Bayes: Unifying variational autoencoders and generative adversarial networks.
[Online]. Available: http://arxiv.org/abs/1701.04722

[25] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X.
Chen, “Improved techniques for training GANS,” in Proc. Advances Neural
Information Processing Systems Conf., 2016, pp. 2226–2234.

[26] M. Arjovsky and L. Bottou, “Towards principled methods for training genera-
tive adversarial networks,” in Proc. Neural Information Processing Systems Conf.
Workshop Adversarial Training, 2016.

[27] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp.
640–651, 2017.

[28] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. 32nd Int. Conf. Machine
Learning, 2015, pp. 448–456.

[29] C. K. Sønderby, J. Caballero, L. Theis, W. Shi, and F. Huszár, “Amortised
map inference for image super-resolution,” in Proc. Int. Conf. Learning
Representations, 2017.

[30] S. Nowozin, B. Cseke, and R. Tomioka, “F-GAN: Training generative neural
samplers using variational divergence minimization,” in Proc. Advances Neural
Information Processing Systems Conf., 2016, pp. 271–279.

[31] M. Uehara, I. Sato, M. Suzuki, K. Nakayama, and Y. Matsuo, “Generative
adversarial nets from a density ratio estimation perspective,” arXiv Preprint,
arXiv:1610.02920, 2016.

[32] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein GAN,” in Proc. 34th
Int. Conf. Machine Learning, 2017, pp. 214–223.

[33] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved training of wasserstein GANS,” in Proc. Advances Neural Information
Processing Systems Conf., 2017.

[34] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” in Proc. Int. Conf. Learning Representations, 2013.

[35] S. Gurumurthy, R. K. Sarvadevabhatla, and V. B. Radhakrishnan, “Deligan:
Generative adversarial networks for diverse and limited data,” in Proc. IEEE Conf.
Computer Vision Pattern Recognition, 2017, pp. 166–174.

[36] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Aitken, A. Tejani, J. Totz, Z.
Wang, and W. Shi, “Photo-realistic single image super-resolution using a generative
adversarial network,” in Proc. IEEE Conf. Computer Vision Pattern Recognition,
2017, pp. 4681–4690.

[37] X. Yu and F. Porikli, “Ultra-resolving face images by discriminative generative
networks,” in Proc. European Conf. Computer Vision, 2016, pp. 318–333.

[38] X. Yu and F. Porikli, “Hallucinating very low-resolution unaligned and noisy
face images by transformative discriminative autoencoders,” in Proc. IEEE Conf.
Computer Vision Pattern Recognition, 2017, pp. 3760–3768.

[39] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb,
“Learning from simulated and unsupervised images through adversarial training,”
in Proc. IEEE Conf. Computer Vision Pattern Recognition, 2016, pp. 2107–
2116.

[40] M. Zhang, K. T. Ma, J. H. Lim, Q. Zhao, and J. Feng, “Deep future gaze: Gaze
anticipation on egocentric videos using adversarial networks,” in Proc. IEEE Conf.
Computer Vision Pattern Recognition, 2017, pp. 4372–4381.

[41] M.-Y. Liu and O. Tuzel, “Coupled generative adversarial networks,” in Proc.
Advances Neural Information Processing Systems Conf., 2016, pp. 469–477.

[42] X. Huang, Y. Li, O. Poursaeed, J. Hopcroft, and S. Belongie, “Stacked genera-
tive adversarial networks,” in Proc. IEEE Conf. Computer Vision Pattern
Recognition, 2016.

[43] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee. (2016).
Generative adversarial text to image synthesis, Proc. Int. Conf. Machine Learning.
[Online]. Available: https://arxiv.org/abs/1605.05396

[44] S. E. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, and H. Lee, “Learning
what and where to draw,” in Proc. Advances Neural Information Processing
Systems Conf., 2016, pp. 217–225.

[45] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Neural photo editing with
introspective adversarial networks,” in Proc. 6th Int. Conf. Learning
Representations, 2017.

[46] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with
conditional adversarial networks,” in Proc. IEEE Conf. Computer Vision Pattern
Recognition, 2016, pp. 1125–1134.

[47] C. Li and M. Wand, “Precomputed real-time texture synthesis with Markovian
generative adversarial networks,” in Proc. European Conf. Computer Vision, 2016,
pp. 702–716.

[48] S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang, “Generalization and equilibri-
um in generative adversarial nets (GANS),” in Proc. 34th Int. Conf. Machine
Learning, 2017, pp. 224–232.

[49] I. Tolstikhin, S. Gelly, O. Bousquet, C.-J. Simon-Gabriel, and B. Schölkopf,
“ADAGAN: Boosting generative models,” arXiv Preprint arXiv:1701.02386.
[Online]. Available: https://arxiv.org/abs/1701.02386

[50] J. Zhao, M. Mathieu, and Y. LeCun. (2017). Energy-based generative adversar-
ial network, Proc. Int. Conf. Learning Representations. [Online]. Available:
https://arxiv.org/abs/1609.03126

[51] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein. (2017). Unrolled generative
adversarial networks, Proc. Int. Conf. Learning Representations. [Online].
Available: https://arxiv.org/abs/1611.02163

[52] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht, “Gradient descent only
converges to minimizers,” in Proc. Conf. Learning Theory, 2016, pp. 1246–1257.

[53] R. Pemantle, “Nonconvergence to unstable points in urn models and stochastic
approximations,” Ann. Probab., vol. 18, no. 2, pp. 698–712, Apr. 1990.

[54] L. M. Mescheder, S. Nowozin, and A. Geiger. (2017). The numerics of GANS,
Proc. Advances Neural Information Processing Systems Conf. [Online]. Available:
http://arxiv.org/abs/1705.10461

[55] L. Theis, A. van den Oord, and M. Bethge, “A note on the evaluation of gener-
ative models,” in Proc. Int. Conf. Learning Representations.

 SP

Authorized licensed use limited to: Penn State University. Downloaded on November 14,2023 at 03:46:08 UTC from IEEE Xplore. Restrictions apply.

