

PennState Institute for Comp and Data Science	putational Ar	nter for Artificia tificial Intelligend	I Intelligence Fo ce Research Lat	undations & Sci ooratory	entific Applications	PennState Clinical and Translational Science Institute	
Examp	ole						
• Ten rai hours (ndomly of telev	selected ision they	students watched	were eacl l per mon	h asked to lis th. The resu	st how many ults are	
8	32	66	90	84	75		
8	88	80	94	110	91		
 Find a televis 	 Find a 90% confidence interval for the true mean number of hours of television watched per month by students. 						
• Sar	mple m	ean $x = 8$	36				
• Sar	nple st	andard de	eviation s	= 11.842	2		
• To	find the	e 90% con	tidence i	nterval ar	ound the me	ean	
•	Find th	ne critical	value of t	t in row co	orrespondin	g to $df = n - $	
	1-9	To find th		u 1 _{0.05} ofidonco i	intorval wa	nood to	
 Wny: To find the 90% confidence interval, we need to ovclude 5% of the area under the curve on either side 							
	CACIUU	0.070 01 11					
PennState College of Information Sciences And Technology		Data Scienc	e for Researchers a	ind Scholars		Vasant Honavar, Fall 2023	

Premistate Provinter for computational and Dad Sciences Example	e Foundations & Scientific Applications Laboratory	PennState Clinical and Translational Science Institute
 A student recorded the milea driving to school in his car. He kept track of the mileage involving gasoline of two diffe Compute the 95% confidence mileages. Assume that the variances of identical, the mileages are no represent IID samples 	ge mileage given by his for twelve different tanl erent octane ratings. e interval for the different the two mileage distrib ormally distributed, and	car while ks of fuel, nce of mean putions are data
87 Octane	90 Octane	
26.4, 27.6, 29.7	30.5, 30.9, 29.2	
28.9, 29.3, 28.8	31.7, 32.8, 29.3	
PennState Science for Research Data Science for Research	ers and Scholars	Vasant Honavar, Fall 2023

PennState Institute for Computational Artificial Intelligence Research Laboratory	Scien	tific Applie	cations	Pena Clinica Science	nState Il and Translational e Institute
Example					
Let 87 octane fuel be the first group and	90	octan	e fuel t	the se	cond
group, so we have	df	ť.100	ť.oso	t.025	t,010
• $n_1 = n_2 = 6$	1 2	3.078 1.886	6.314 2.920	12.706 4.303	31.821 6.965
• $df = n_1 + n_2 - 2 = 6 + 6 - 2 = 10$	3 4 5	1.638 1.533 1.476	2.353 2.132 2.015	3.182 2.776 2.571	4.541 3.747 3.365
• $\overline{x_1} = 28.45, s_1 = 1.228$	67	1.440	1.943	2.447	3.143 2.998
• $\overline{x_2} = 30.73, s_2 = 1.392$	8	1.397	1.860	2.306 2.262	2.896 2.821
• $1 - \alpha = 0.95$, so $\alpha = 0.025$	10	1.363	1.812	2.228	2.764
• Critical value of $t = t_{.025} = 2.228$	13 14	1.350	1.771	2.160 2.145	2.650 2.624
	15	1.341	1.753	2.131	2.602
PennState Data Science for Researchers and Scholars			v	asant Hona	var Fall 2023
Data Science for Researchers and Scholars			•	asanenona	val, rail 2025

PennState Institute for Computational and Data Science	is 🔯	PennState Clinical and Translationa Science Institute
Example (contd.)		
$s^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2} = \frac{5 \times 1.508 + 5 \times 1.938}{10} = 1$.723	
$\bar{x}_1 - \bar{x}_2 \pm t_{\alpha/2} \sqrt{s^2 (1/n_1 + 1/n_2)}$		
$= 28.45 - 30.73 \pm 2.228 \sqrt{1.723 \times (1/5 + 1/5)}$		
$=-2.28\pm1.849$		
The 95% confidence interval is (-4.129,431).		

Interpretation: Average mileage of 87 octane fuel is worse than that of 90 octane fuel

PennState

PennState Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory Artificial Intelligence Research Laboratory								
Two Types of Errors								
There are two types of errors which can occur in a statistical test: • Type I error: reject the null hypothesis when it is true • Type II error: fail to reject the null hypothesis when it is false								
Actual Fact	Guilty	Innocent	Actual Fact Your Decision	H₀ true	H ₀ false			
Guilty	Correct	Error	Fail to reject H₀	Correct	Type II Error			
Innocent	Error	Correct	Reject H _o	Type I Error	Correct			
L			L					
PennState Data Science for Researchers and Scholars Vasant Honavar, Fall 2023								

PennState Center for Artificial Intelligence Foundations & Scientific Applications and Data Science PennState Instatute for Computational and Data Science Artificial Intelligence Research Laboratory Clinical and Translational Science Institute						
P-value						
 The p-value is a measure of inconsistency between the hypothesized value under the null hypothesis and the observed sample. 						
 The p-value is the probability, assuming that H₀ is true, of obtaining a test statistic value at least as inconsistent with H₀ as actually obtained. 						
 The p-value measures whether the test statistic is likely or unlikely, assuming H₀ is true. 						
 Small p-values suggest that the null hypothesis is unlikely to be true. 						
 The smaller it is, the more convincing is the rejection of the null hypothesis. 						
- It indicates the strength of evidence for rejecting the null hypothesis $\ensuremath{H_0}$						
PennState Data Science for Researchers and Scholars Vasant Honavar, Fall 2023						

PennState Institute for Com and Data Science	Center for Artificial Intelligence Foundations & S Artificial Intelligence Research Laboratory	cientific Applications PennState Clinical and Translational Science Institute
Large Two P Step 3	Sample Test for Difference E opulation Means 3: Find p-value. Compute	Between
	$z^* = \frac{\overline{x_1} - \overline{x_2} - D_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	
H _a :	$\mu_1 - \mu_2 \neq D_0$ (two-sided test)	$p - value = 2P(z > z^*)$
H _a :	$\mu_1 \!\!-\! \mu_2 \!\!> D_0$ (one-sided test)	p - value = $P(z > z^*)$
H _a :	$\mu_1 \!\!-\! \mu_2 \!\!<\! D_0$ (one-sided test)	$\mathbf{p} - \mathbf{value} = P(z < z^*)$
PennState Conver of Marination Sciences and Technology	Data Science for Researchers and Scholars	Vasant Honavar, Fall 2023

PennState Institute for Computational and Data Sciences	er for Artificial Intelligence Fou icial Intelligence Research Labo	ndations & oratory	Scientific App	Ications PennState Clinical and Translational Science Institute			
Example							
	Avg Daily Intakes	Men	Women				
	Sample size	50	50				
	Sample mean	756	762				
	Sample Std Dev	35	30				
 Is there a c products for H₀: µ₁ - µ 	 Is there a difference in the average daily intakes of dairy products for men versus women? Use a = .05. H₀ : μ₁ − μ₂ = 0 (same) H_a : μ₁ − μ₂ ≠ 0 (different) 						
Test statistic: $z^* = \frac{\overline{x}_1 - \overline{x}_2 - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{756 - 762 - 0}{\sqrt{\frac{35^2}{50} + \frac{30^2}{50}}} =92$							
PennState Scheme of Manadation Schemese And Nethermore	Data Science for Researchers an	d Scholars		Vasant Honavar, Fall 2023			

PennState Institute for Computational and Data Sciences	Artificial Intelligence Research Laboratory	۲	Clinical and Translation Science Institute

Example

Two training procedures are compared by measuring the time that it takes trainees to assemble a device. A different group of trainees are taught using each method. Is there a difference in the two methods? Use a = .01.

Example	Time to Assemble	Method 1	Method 2	
	Sample size	10	12	
	Sample mean	35	31	
	Sample Std Dev	4.9	4.5	
Calculate $s^{2} = \frac{(n_{1} - n_{2})}{(n_{1} - n_{2})^{2}}$ $= \frac{9(4.9^{2})}{(n_{1} - n_{2})^{2}}$	$\frac{1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} + \frac{11(4.5^2)}{20} = 21$.942	Test statist $t^* = \frac{1}{\sqrt{21.9}}$ $= 1.99$	tic: $\frac{35 - 31}{142\left(\frac{1}{10} + \frac{1}{12}\right)}$
PennState	Data Science for Researc	hers and Scholars		Vasant Honavar, Fall 2023

PennState Institute for Computational and Data Sciences	Center for Artif Artificial Intellig	icial Intelligence For gence Research Lab	undations & S oratory	cientific Applications	PennState Clinical and Translational Science Institute				
The Paired-Difference Test									
 We have assumed that samples from two populations are independent. Sometimes the assumption of independent samples is intentionally violated, resulting in a matched-pairs or paired-difference test. By designing the experiment in this way, we can eliminate unwanted variability in the experiment Data: 									
Pair	1	2		n					
Population 1	<i>x</i> ₁₁	<i>x</i> ₁₂		x_{1n}					
Population 2	<i>x</i> ₂₁	<i>x</i> ₂₂		x_{2n}					
Difference $d_1 = x_{11} - x_{21}$ $d_2 = x_{12} - x_{22}$ $d_n = x_{1n} - x_{2n}$									
PennState College of Schemalous Sciences And Technology	Data Sc	ience for Researchers a	nd Scholars		Vasant Honavar, Fall 2023				

1	PennState Institute for Computal and Data Sciences	center fo Artificial	r Artificial Intell Intelligence Res	igence Foundati earch Laborato	ons & Scientific Applications ry	Clinical and Translational Science Institute
l	Paired S	ample E	Example		contin	ued
	Member	Initial Weight	One Week Weight	Difference Initial -1week		
1	1	195	195	0		
	2	153	151	2		
	3	174	170	4		
	4	125	123	2		
	5	149	144	5		
	6	152	149	3		
	7	135	131	4		
	8	143	147	-4		
	9	139	138	1		
	10	198	192	6		
	11	215	211	4		
	12	153	152	1		
Pe St	nnState ge of Information eres And Technology	I	Data Science for Re	esearchers and Sch	olars	Vasant Honavar, Fall 2023

PennState Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory Artificial Science Institute
Summary: Statistical Hypothesis testing
Errors and Statistical Significance
• Type I error: reject the null hypothesis when it is true
• Type II error: fail to reject the null hypothesis when it is false
• The significance level α = P(type 1 error) and β =P(type 2 error)
• The <i>p</i> -value is the probability of observing a test statistic as extreme as or more than the one observed; also, the smallest value of α for which <i>H</i> ₀ can be rejected
- When the $\ensuremath{\textit{p}}\xspace$ value is less than the significance level α , the null hypothesis is rejected
Tests
 Tests for population mean
Tests for difference between population means

PennState