

Sampling distributions

- Parameters are numerical descriptive measures for populations.
- Two parameters for a normal distribution: mean μ and standard deviation σ.
- One parameter for a binomial distribution: the success probability of each trial p.
- Often the values of parameters that specify the exact form of a distribution are unknown.
- You must rely on the sample to learn about these parameters.

Examples of Sampling

- A pollster is sure that the responses to his "agree/disagree" question will follow a binomial distribution, but p, the proportion of those who "agree" in the population, is unknown.
- An agronomist believes that the yield per acre of a variety of wheat is approximately normally distributed, but the mean μ and the standard deviation σ of the yields are unknown.
- If you want the sample to provide reliable information about the population, you must select your sample such that it is representative of the population!

Simple Random Sampling

- The sampling plan or experimental design determines
- The amount of information you can extract, and
- Often allows you to measure the reliability of your inference.
- Simple random sampling ensures that each possible sample of size n has an equal probability of being selected.

Sampling Distributions

- Any numerical descriptive measures calculated from the sample are called statistics.
- Statistics vary from sample to sample and hence are random variables. This variability is called sampling variability.
- The probability distributions of the statistics are called sampling distributions.
- In repeated sampling, they tell us what values of the statistics can occur and how often each value occurs.


```
    3 PennState
    Institue for Compulational
Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

\section*{Example}
- Consider a population that consists of the numbers \(1,2,3,4,5\) generated such that the probability of each of the values is 0.2 regardless of previous selections.
- This population could be described as the outcome associated with a roulette wheel shown with the distribution.

\begin{tabular}{c|c}
x & \(\mathrm{p}(\mathrm{x})\) \\
\hline 1 & 0.2 \\
\hline 2 & 0.2 \\
\hline 3 & 0.2 \\
\hline 4 & 0.2 \\
\hline 5 & 0.2
\end{tabular}

Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory

\section*{Example}
- If the sampling distribution for the means of samples of size two is analyzed, it looks like
\begin{tabular}{c|c} 
Sample & \\
\hline 1,1 & 1 \\
\hline 1,2 & 1.5 \\
\hline 1,3 & 2 \\
\hline 1,4 & 2.5 \\
\hline 1,5 & 3 \\
\hline 2,1 & 1.5 \\
\hline 2,2 & 2 \\
\hline 2,3 & 2.5 \\
\hline 2,4 & 3 \\
\hline 2,5 & 3.5 \\
\hline 3,1 & 2 \\
\hline 3,2 & 2.5 \\
\hline 3,3 & 3 \\
\hline
\end{tabular}
\begin{tabular}{c|c} 
Sample & \\
\hline 3,4 & 3.5 \\
\hline 3,5 & 4 \\
\hline 4,1 & 2.5 \\
\hline 4,2 & 3 \\
\hline 4,3 & 3.5 \\
\hline 4,4 & 4 \\
\hline 4,5 & 4.5 \\
\hline 5,1 & 3 \\
\hline 5,2 & 3.5 \\
\hline 5,3 & 4 \\
\hline 5,4 & 4.5 \\
\hline 5,5 & 5 \\
\hline
\end{tabular}
\begin{tabular}{c|c|c} 
& frequency & \(p(\mathbf{x})\) \\
\hline 1 & 1 & 0.04 \\
\hline 1.5 & 2 & 0.08 \\
\hline 2 & 3 & 0.12 \\
\hline 2.5 & 4 & 0.16 \\
\hline 3 & 5 & 0.20 \\
\hline 3.5 & 4 & 0.16 \\
\hline 4 & 3 & 0.12 \\
\hline 4.5 & 2 & 0.08 \\
\hline 5 & 1 & 0.04 \\
\cline { 1 - 3 } & 25 &
\end{tabular}

\section*{Example}

The original distribution and the sampling distribution of means of samples with \(n=2\) are given below.


Original distribution


Sampling distribution for \(n=2\)
```

 PennState

Example

- Sampling distributions for $n=3$ and $n=4$ are shown below.
- What do you notice as n gets larger?
- The sampling distribution approaches normal distribution

Sampling distribution $n=3$

Sampling distribution $n=2$

Sampling distribution $n=4$

```
(7) PennState Center for Artificial Intelligence Foundations & Scientific Applications
    Artificial Intelligence Research Laboratory
Sampling Distribution of \(\bar{x}\)
If a random sample of \(n\) measurements is selected from a population with mean \(\mu\) and standard deviation \(\sigma\), the sampling distribution of the sample mean \(\bar{X}\) will have a mean
\[
\mu_{\bar{x}}=\mu
\]
and a standard deviation
\[
\sigma_{\bar{x}}=\sigma / \sqrt{n}
\]
Central Limit Theorem: If random samples of \(n\) observations are drawn from a nonnormal population with finite \(\mu\) and standard deviation \(\sigma\), then, when \(n\) is large, the sampling distribution of the sample mean \(\bar{x}\) is approximately normally distributed, with mean \(\mu\) and standard deviation \(\sigma / \sqrt{n}\).
The approximation becomes more accurate as \(n\) becomes large.

\section*{Why is this Important?}

- The Central Limit Theorem also implies that the sum of \(n\) measurements is approximately normal with mean \(n \mu\) and standard deviation \(\sigma \sqrt{n}\).
- Many statistics that are used for statistical inference are sums or averages of sample measurements.
- When \(n\) is large, these statistics will have approximately normal distributions.
- This will allow us to describe their behavior and evaluate the reliability of our inferences.

\section*{How Large is Large?}
- If the sample is normal, then the sampling distribution of \(\bar{x}\) will also be normal, no matter what the sample size.
- When the sample population is approximately symmetric, the distribution becomes approximately normal for relatively small values of \(n\).
- When the sample population is skewed, the sample size must be at least 30 before the sampling distribution of \(\bar{x}\) becomes approximately normal.


Symmetric distributions that resemble the normal distribution


Data Science for Researchers and Scholars
Vasant Honavar, Fall 2023

\section*{Finding Probabilities for the Sample Mean}
- If the sampling distribution of \(\bar{x}\) is normal or approximately normal, standardize or rescale the interval of interest in terms of
\[
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
\]
- Find the appropriate area using the \(z\) distribution.

Example: A random sample of size \(n=16\) from a normal distribution with \(\mu=10\) and \(\sigma=8\).
\[
\begin{aligned}
& P(\bar{x}>12)=P\left(\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}<\frac{12-10}{8 / \sqrt{16}}\right) \\
& =P(z>1)=.5-.3413=.1587
\end{aligned}
\]

\section*{(7) Pennstate andute for Compulational \\ Example \\ - A soda filling machine is supposed to fill cans of soda with 12 fluid ounces. \\ - Suppose that the fills are actually normally distributed with a mean of 12.1 oz and a standard deviation of .2 oz . \\ - The probability of one can less than 12 is \\ \[
P(x<12)=P\left(\frac{x-\mu}{\sigma}<\frac{12-12.1}{.2}\right)=P(z<-.5)=.5-.1915=.3085
\]}

What is the probability that the average fill for a 6-pack is less than 12 oz ?
\[
\begin{aligned}
& P(\bar{x}<12)= \\
& P\left(\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}<\frac{12-12.1}{.2 / \sqrt{6}}\right)= \\
& P(z<-1.22)=.1112
\end{aligned}
\]


\section*{Center for Artificial Intelligence Foundations \& Scientific Applications \\ The Sampling Distribution of the Sample Proportion \\ }
- The Central Limit Theorem can be used to conclude tnat tne binomial random variable \(x\) is approximately normal when \(n\) is large, with mean \(n p\) and variance \(n p q\).
- The sample proportion, \(\hat{p}=\frac{x}{n}\) is simply a rescaling of the binomial random variable \(x\), dividing it by \(n\).
- From the Central Limit Theorem, the sampling distribution of \(\hat{p}\) will also be approximately normal, with a rescaled mean and standard deviation.

\section*{The Sampling Distribution of the Sample Proportion}
\(\checkmark\) A random sample of size \(n\) is selected from a binomial population with parameter \(p\).
\(\checkmark\) The sampling distribution of the sample proportion, \(\hat{p}=\frac{x}{n}\) will have mean \(p\) and standard deviation \(\sqrt{\frac{p q}{n}}\)
\(\checkmark\) If \(n\) is large, and \(p\) is not too close to zero or one, the sampling distribution of \(\hat{p}\) will be approximately normal.
- The standard deviation of \(p\)-hat is sometimes called the STANDARD ERROR (SE) of \(p\)-hat.

Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory

\section*{Finding Probabilities for the Sample Proportion}
\(\checkmark\) If the sampling distribution of \(\hat{p}\) is normal or approximately normal, standardize or rescale the interval of interest in terms of
\[
z=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}}
\]
\(\checkmark\) Find the appropriate area using the normal table.

\section*{Example}
- The soda bottler in the previous example claims that only \(5 \%\) of the soda cans are underfilled.
- A quality control technician randomly samples 200 cans of soda.
- What is the probability that more than \(10 \%\) of the cans are underfilled?
\(n=200\)
S : underfilled can
\(p=\mathrm{P}(\mathrm{S})=.05\)
\(q=.95\)
\(n p=10 n q=190\)
OK to use the normal approximation
\[
\begin{aligned}
& P(\hat{p}>.10) \\
= & P\left(z>\frac{.10-.05}{\sqrt{\frac{.05(.95)}{200}}}\right)=P(z>3.24) \\
& <.5-.4990=.001
\end{aligned}
\]

This would be very unusual, if indeed \(p=.05\) !
- Suppose \(3 \%\) of the people contacted by phone are receptive to a certain sales pitch and buy your product. If your sales staff contacts 2000 people, what is the probability that more than 100 of the people contacted will purchase your product?
\[
n=2000, \quad p=0.03, n p=60, n q=1940
\]

OK to use the normal approximation
\[
P(\hat{p}>100 / 2000)=P\left(z>\frac{.05-.03}{\sqrt{\frac{.03(.97)}{2000}}}\right)=P(z>5.24) \approx 0
\]

\section*{Sampling - Summary}
- Simplest sampling technique - random sampling
- Each possible sample is equally likely
- Sampling distributions describe the possible values of a statistic and how often they occur in repeated sampling.
- If the underlying data are normally distributed, sampling distribution is a normal distribution
- The Central Limit Theorem states that sums and averages of measurements from an arbitrarily distributed population with finite mean \(\mu\) and standard deviation \(\sigma\) have approximately normal distributions for large samples of size \(n\).

\section*{Sampling - Sampling Distribution of the Sample Mean}
- When samples of size \(n\) are drawn from a normal population with mean \(\mu\) and variance \(\sigma^{2}\), the sample mean \(\bar{x}\) has a normal distribution with mean \(\mu\) and variance \(\sigma^{2} / n\).
- When samples of size \(n\) are drawn from a nonnormal population with mean \(\mu\) and variance \(\sigma^{2}\), the Central Limit Theorem ensures that the sample mean \(\bar{x}\) will have an approximately normal distribution with mean \(\mu\) and variance \(\sigma^{2} / n\) when \(n\) is large ( \(n^{3} 30\) ).
- Probabilities involving the sample mean \(\mu\) can be calculated by standardizing the value of \(\bar{x}\) using \(z=\frac{x-\mu}{\sigma / \sqrt{n}}\)

\section*{(3) Pennstate \\ Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory}

\section*{Summary - Sampling Distribution of the Sample Proportion}
- When samples of size \(n\) are drawn from a binomial population with parameter \(p\), the sample proportion \(\hat{p}\) will have an approximately normal distribution with mean \(p\) and variance \(p q / n\) as long as \(n p>5\) and \(n q>5\).
- Probabilities involving the sample proportion \(\hat{p}\) can be calculated by standardizing the value \(\hat{p}\) using \(z=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}}\)

\section*{Probabilistic vs Statistical Reasoning}
- In the last lecture, we looked at how the properties of a population govern what we see in sample(s) of the population
- Now we turn to going in the other direction: Given a sample, we try to understand the data generating process that could have generated the observed data
- This shift our mode of thinking from deductive reasoning to induction

Probability/deduction


\section*{Probabilistic vs Statistical Reasoning}
- In many ways, science, or scholarly inquiry, is like detective work.
- We begin with a set of observations, we ask what can be said about the data generating process

- "Data! Data! Data!.. I can't make bricks without clay"
- Sherlock Holmes, 1892
- " The Adventure of the Copper Beeches"


\section*{Parameters}
- Populations are described by their probability distributions
- If we assume a parametric form for the distribution, e.g., Normal, binomial, etc., then populations are described by the parameters of the respective distributions
- Binomial populations are determined by a single parameter, \(p\).
- Normal distributions are described by the mean \(\mu\) and the standard deviation \(\sigma\).
- If the values of parameters are unknown, we have to make inferences about them using information provided by a sample from the underlying distribution
- Sample or data : distribution :: shadows : shadow puppetry
- The puppeteer whose machinations generate the shadows you see is hidden from you. Your goal is to learn his or her modus operandi.

\section*{Two types of statistical inference}
- Estimation
- Estimating or inferring the value of the parameter(s)
- Maximum likelihood: What is the mean height of individuals of Asian descent given the sample of individuals of Asian descent you have observed?
- Bayesian: What is the likely height of the next person of Asian descent you may encounter, given your prior belief about the heights of individuals of Asian descent, the heights of individuals of Asian descent that you have observed?
- Hypothesis testing
- Deciding if the data support a preconceived idea or theory one has about a population
- "Did the sample of individuals you have come from a population with mean height of 5.6 " ?
- "Was the newly discovered manuscript of unknown authorship written by Shakespeare?

\section*{Specify the type of statistical inference}
- A consumer wants to estimate the average price of similar homes in her city before putting her home on the market.

- Estimation: Estimate the average price of similar homes in the city
- A manufacturer wants to know if a new type of steel is more resistant to high temperatures than an old type was.
- Hypothesis testing: Is the average efficacy of the new Covid vaccine \(\mu_{N e w}\) greater than that of the old Covid vaccine \(\mu_{\text {Old }}\) ?

\section*{Methods of Statistical Inference}
- Whether you are estimating parameters or testing hypotheses, statistical methods
- Offer a sound basis for inference
- A measure of the goodness or reliability of the inference

An estimator is a formula, that tells you how to calculate the estimate of a parameter of interest from the given sample.
- Point estimation yields a single value for the parameter
- Example: The estimated probability of a coin coming up heads is 0.4
- Underlying assumption:
- The coin has a fixed parameter \(p\)
- Our job is to estimate it.
- How realistic is this assumption?
- Confidence interval is an interval such that for a chosen degree of confidence, expressed as a probability, the true value of the parameter is likely to fall inside the interval.
- Example: \(95 \%\) confidence interval for \(p\) is \([0.3,0.5]\)

\section*{Point Estimator of Population Mean}
- Given a sample \(S=\left\{x_{1} \cdots x_{n}\right\}\), the point estimate of the population mean, \(\mu\), is the sample mean
\[
\hat{\mu}=\frac{\sum_{i=1}^{n} x_{i}}{n}
\]
- Example: Suppose \(S=\{4,5,6,3,4,6,3,5,8,1\}\) were the ratings given by viewers of the movie "Back to the future".
- Suppose you believe that the viewers are a random sample of the viewers of "Back to the future".
- What is the sample estimate of the mean rating of "Back to the future?
- 4.5
- But why?

\section*{Point Estimation of Population Proportion}
- A point estimate of \(p\), population success rate of a binary experiment (e.g., coin tosses with outcomes \(H\) and \(T\) ) is sample proportion of successes observed in the sample:
\[
\hat{p}=\frac{n_{H}}{n_{H}+n_{T}}
\]
- Example: Out of 100 people tested for Covid, 10 were positive.
- What is the point estimate of \(p\), the Covid positive rate in the population?
\[
\hat{p}=\frac{10}{100}=0.1
\]
- But why?

\section*{Properties of Point Estimators}
- Since an estimator is calculated from sample values, it varies from sample to sample according to its sampling distribution.
- An estimator is unbiased if
- The mean of its sampling distribution equals the parameter of interest.
- It does not systematically overestimate or underestimate the target parameter.
- Both sample mean and sample proportion are unbiased estimators of population mean and proportion.
- Given \(n\) samples, the following sample variance is an unbiased estimator of population variance \(\sigma^{2}\)
\[
\hat{\sigma}^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\widehat{\mu}\right)^{2}}{n-1}
\]

\section*{Properties of Point Estimators}
- Of all the unbiased estimators, we prefer the estimator whose sampling distribution has the smallest spread or variability.

```

2% PennState
Center for Artificial Intelligence Foundations \& Scientific Application Artificial Intelligence Research Laboratory

Confidence Intervals

```
- Confidence intervals depend on sampling distributions
- The shape of sampling distributions depend on sample sizes
- For large sample sizes, central limit theorem applies which allow us to use normal distributions
- For small sample sizes, we need to choose the right sampling distribution

\section*{PennState Instiute for Con}

\section*{Quantifying the error of Point Estimates}
- Assumption: The sample sizes are large
- From the Central Limit Theorem, the sampling distributions of \(\hat{\mu}\) and \(\hat{p}\) will be approximately normal
- For unbiased estimators with normal sampling distributions, 95\% of all point estimates will lie within 1.96 standard deviations of the parameter of interest.
- Margin of error: an upper bound on the difference between a particular estimate and the parameter that it estimates.
- Margin of error \(=1.96 \times\) standard deviation of the estimate


\section*{Estimating Means and Proportions}

Point estimator of population mean \(\mu: \bar{x}\)
Margin of error \((n \geq 30): \pm 1.96 \frac{s}{\sqrt{n}}\)
For a binomial population,
Point estimator of population proportion \(\mathrm{p}: \hat{\mathrm{p}}=\mathrm{x} / \mathrm{n}\)
Margin of error \(: \pm 1.96 \sqrt{\frac{\hat{p} \hat{q}}{n}}\)
Assumption : \(\mathrm{np}>5\) and \(\mathrm{nq}>5 ;\) or \(0<\mathrm{p} \pm 2 \sqrt{\frac{\mathrm{pq}}{\mathrm{n}}}<1\)

\section*{(3) PennState \\ Institute for Compulational \\ Example}

Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory
- A homeowner randomly samples 64 homes similar to her own and finds that the average selling price is \(\$ 250,000\) with a standard deviation of \(\$ 15,000\).
- Estimate the average selling price for all similar homes in the city.
- What is the margin of error?

Point estimatorof \(\mu: \bar{x}=250,000\)
Marginof error: \(\pm 1.9 \mathrm{o} \frac{\hat{\sigma} s}{\sqrt{n}}= \pm 1.96 \frac{15,000}{\sqrt{64}}= \pm 3675\)

\section*{Example}
- A quality control technician wants to estimate the proportion of soda cans that are underfilled.
- He randomly samples 200 cans of soda and finds 10 underfilled cans.
\(n=200 \quad p=\) proportion of underfilled cans
Point estimator of \(p: \hat{p}=x / n=10 / 200=.05\)
Margin of error \(: \pm 1.96 \sqrt{\frac{\hat{p} \hat{q}}{n}}= \pm 1.96 \sqrt{\frac{(.05)(.95)}{200}}= \pm .03\)

\section*{Confidence Interval}
- Create an interval so that you are fairly sure that the parameter lies between these two values.
- "Fairly sure" means "with high probability", measured using the confidence coefficient, \(1-\alpha\).
- Usually, \(1-\alpha=0.9,0.95,0.99\)...
- For large-Sample size,


100(1- \(\alpha\) )\% confidence Interval:
\[
\text { Point Estimate } \pm Z \alpha / 2
\]

\section*{Confidence Level}
- To change to a general confidence level, \(1-\alpha\), pick a value of \(z\) that puts area \(1-\alpha\) in the center of the \(z\) distribution.

- Suppose 1- \(\alpha=.95\)

There is \(95 \%\) probability that the interval constructed in this manner will contain the population mean


Confidence Interval
- Since we don't know the value of the parameter, consider which has a variable center.
Point Estimator \(\pm 1.96\) std error

- Only if the estimator falls in the tail areas will the interval fail to enclose the parameter. This happens only 5\% of the time.

\section*{Interpretation of a Confidence Interval}
- A confidence interval is calculated from one given sample.
- The interval either covers or misses the true parameter.
- Since the true parameter is unknown, you'll never know with certainty
- If independent samples are taken repeatedly from the same population, and a confidence interval calculated for each sample, then a certain percentage (confidence level) of the intervals will include the unknown population parameter.
- The confidence level associated with a confidence interval is the success rate of the confidence interval.

\section*{Confidence Intervals for Means and Proportions}

Confidence interval for a population mean \(\mu\) :
\[
\bar{x} \pm z_{\alpha / 2} \frac{s}{\sqrt{n}}
\]

For a binomial population:
Confidence interval for a population proportion \(p\) :
\[
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}
\]

\section*{7 Penssate \\ Example}

Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory

A random sample of \(n=50\) males showed a mean average daily intake of dairy products equal to 756 grams with a standard deviation of 35 grams. Find a 95\% confidence interval for the population average \(\mu\).
\[
\bar{x} \pm 1.96 \frac{s}{\sqrt{n}} \Rightarrow 756 \pm 1.96 \frac{35}{\sqrt{50}} \Rightarrow 756 \pm 9.70
\]
or \(746.30<\mu<765.70\) grams.


Find a \(99 \%\) confidence interval for \(\mu\), the population average daily intake of dairy products for men.
\[
\begin{aligned}
& \bar{x} \pm 2.58 \frac{s}{\sqrt{n}} \Rightarrow 756 \pm 2.58 \frac{35}{\sqrt{50}} \Rightarrow 756 \pm 12.77 \\
& \text { or } 743.23<\mu<768.77 \text { grams. }
\end{aligned}
\]


\section*{Example}
- Of a random sample of \(n=150\) college students, 104 ot the students said that they had played on a soccer team during their K-12 years.
- Estimate the proportion of college students who played soccer in their youth with a \(90 \%\) confidence interval.
\[
\begin{aligned}
& \hat{p} \pm 1.645 \sqrt{\frac{\hat{p} \hat{q}}{n}} \Rightarrow \frac{104}{150} \pm 1.645 \sqrt{\frac{.69(.31)}{150}} \\
& \Rightarrow .69 \pm .06 \text { or } .63<p<.75
\end{aligned}
\]

\section*{Estimating the Difference between Two Means}
- Sometimes we are interested in comparing the means of two populations.
- The average growth of plants fed using two different nutrients.
- The average scores for students taught with two different teaching methods.
- To make this comparison

A random sample of size \(n_{1}\) drawn from population 1 with mean \(\mu_{1}\) and variance \(\sigma_{1}^{2}\).
A random sample of size \(n_{2}\) drawn from
population 2 with mean \(\mu_{2}\) and variance \(\sigma_{2}^{2}\).
\begin{tabular}{|c|c|c|c|c|}
\hline  & Artificial Intel & nce Foundations \& ch Laboratory & ientific Applicatio & PennState Clinical and Tran \\
\hline \multicolumn{5}{|l|}{Comparing Two Means} \\
\hline & Mean & Variance & \multicolumn{2}{|l|}{Standard Deviation} \\
\hline Population 1 & \(\mu_{1}\) & \(\sigma_{1}{ }^{2}\) & \multicolumn{2}{|l|}{\(\sigma_{1}\)} \\
\hline Population 2 & \(\mu_{2}\) & \(\sigma_{2}{ }^{2}\) & \multicolumn{2}{|l|}{\(\sigma_{2}\)} \\
\hline & Sample size & ple \({ }^{\text {a }}\) Mean & Variance & \begin{tabular}{l}
Standard \\
Deviation
\end{tabular} \\
\hline Sample from Population 1 & & \(\bar{X}_{1}\) & \(\mathrm{s}_{1}{ }^{2}\) & \(\mathrm{S}_{1}\) \\
\hline Sample from Population 2 & n & \(\bar{x}_{2}\) & \(\mathrm{s}_{2}{ }^{2}\) & \(\mathrm{S}_{2}\) \\
\hline (7) renssite & \multicolumn{2}{|l|}{ara Science for Researchers and scholirs} & \multicolumn{2}{|r|}{Vasant Honavar, Fall 2023} \\
\hline
\end{tabular}

\section*{Estimating the Difference between Two Means}
- We compare the two averages by making inferences about \(\mu_{1^{-}}\) \(\mu_{2}\), the difference in the two population averages.
- If the two population averages are the same, then \(\mu_{1}-\mu_{2}=0\).
- The best estimate of \(\mu_{1}-\mu_{2}\) is the difference in the two sample means
\[
\bar{x}_{1}-\bar{x}_{2}
\]

1. The mean of \(\bar{x}_{1}-\bar{x}_{2}\) is \(\mu_{1}-\mu_{2}\), the difference in the population means.
2. The standard deviation of \(\bar{x}_{1}-\bar{x}_{2}\) is \(\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}\).
3. If the sample sizes (both \(\mathrm{n}_{1}\) and \(\mathrm{n}_{2}\) ) are large, the sampling distribution of \(\bar{x}_{1}-\bar{x}_{2}\) is approximately normal, and standard deviation can be estimated as \(\mathrm{SE}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}\).

\section*{Estimating \(\mu_{1}-\mu_{2}\)}
- For large samples, point estimates and their margin of error as well as confidence intervals are based on the standard normal ( \(z\) ) distribution.

Point estimate for \(\mu_{1}-\mu_{2}: \bar{x}_{1}-\bar{x}_{2}\)
Margin of Error : \(\pm 1.96 \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}\)
Assumption :
Both \(\mathrm{n}_{1} \geq 30\) and \(\mathrm{n}_{2} \geq 30\)
Confidence interval for \(\mu_{1}-\mu_{2}\) :
\(\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm z_{\alpha / 2} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}\)

- Compare the average daily intake of dairy products of men and women using a \(95 \%\) confidence interval.
\[
\begin{aligned}
& \left(\bar{x}_{1}-\bar{x}_{2}\right) \pm 1.96 \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \\
& \Rightarrow(756-762) \pm 1.96 \sqrt{\frac{35}{50}+\frac{30}{50}} \quad \Rightarrow-6 \pm 12.78 \\
& \text { or }-18.78<\mu_{1}-\mu_{2}<6.78 .
\end{aligned}
\]

\section*{Example, continued}
\[
-18.78<\mu_{1}-\mu_{2}<6.78
\]
- Could you conclude, based on this confidence interval, that there is a difference in the average daily intake of dairy products for men and women?
- The confidence interval contains the value \(\mu_{1}-\mu_{2}=0\).
- Therefore, it is possible that \(\mu_{1}=\mu_{2}\).
- You would not want to conclude that there is a difference in average daily intake of dairy products for men and women.

\section*{(23) Pennstate \\ Center for Artificial Intelligence Foundations \& Scientific Application Artificial Intelligence Research Laboratory \\ Estimating the Difference between Two Proportions}
- Sometimes we are interested in comparing the proportion of "successes" in two binomial populations.
- The germination rates of untreated seeds and seeds treated with a fungicide.
- The proportion of male and female voters who favor a particular candidate for governor.
- To make this comparison

A random sample of size \(n_{1}\) drawn from binomial population 1 with parameter \(p_{1}\).

A random sample of size \(n_{2}\) drawn from binomial population 2 with parameter \(p_{2}\).

\section*{Comparing Two Proportions}
\begin{tabular}{|l|c|l|l|l|}
\hline & \begin{tabular}{l} 
Sample \\
size
\end{tabular} & \begin{tabular}{l} 
Sample \\
Proportion
\end{tabular} & \begin{tabular}{l} 
Sample \\
Variance
\end{tabular} & \begin{tabular}{l} 
Standard \\
Deviation
\end{tabular} \\
\hline \begin{tabular}{l} 
Sample from \\
Population 1
\end{tabular} & \(\mathrm{n}_{1}\) & \(\hat{p}_{1}=\frac{x_{1}}{n_{1}}\) & \(\frac{\hat{p}_{1} \hat{q}_{1}}{n}\) & \(\sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n}}\) \\
\hline \begin{tabular}{l} 
Sample from \\
Population 2
\end{tabular} & \(\mathrm{n}_{2}\) & \(\hat{p}_{2}=\frac{x_{2}}{n_{2}}\) & \(\frac{\hat{p}_{2} \hat{q}_{2}}{n}\) & \(\sqrt{\frac{\hat{p}_{2} \hat{q}_{2}}{n}}\) \\
\hline
\end{tabular}

\section*{Estimating the Difference between Two Means}
- We compare the two proportions by making inferences about \(p_{1}-p_{2}\), the difference in the two population proportions.
- If the two population proportions are the same, then \(p_{1^{-}}\) \(p_{2}=0\).
- The best estimate of \(p_{1}-p_{2}\) is the difference in the two sample proportions,
\[
\hat{p}_{1}-\hat{p}_{2}=\frac{x_{1}}{n_{1}}-\frac{x_{2}}{n_{2}}
\]

\section*{The Sampling Distribution of \(\hat{p}_{1}-\hat{p}_{2}\)}
1. The mean of \(\hat{p}_{1}-\hat{p}_{2}\) is \(p_{1}-p_{2}\), the difference in the population proportions.
2. The standard deviation of \(\hat{p}_{1}-\hat{p}_{2}\) is \(\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}\).
3. If the sample sizes (both \(\mathrm{n}_{1}\) and \(\mathrm{n}_{2}\) ) are large, the sampling distribution of \(\hat{p}_{1}-\hat{p}_{2}\) is approximately normal, and stanard deviation can be estimated as
\(\mathrm{SE}=\sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}\).

\section*{Estimating \(p_{1}-p_{2}\)}

For large samples, point estimates and their margin of error as well as confidence intervals are based on the standard normal (z) distribution.

Point estimate for \(p_{1}-p_{2}: \hat{p}_{1}-\hat{p}_{2}\)
Margin of Error \(: \pm 1.96 \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}\)

Confidence interval for \(p_{1}-p_{2}\) :
\(\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}\)
Assumption : both \(\mathrm{n}_{1}\) and \(\mathrm{n}_{2}\) are sufficiently large so that
\[
-1 \leq \hat{\mathrm{p}}_{1}-\hat{\mathrm{p}}_{2} \pm 2 S E \leq 1
\]

Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory

\section*{Example}
\begin{tabular}{|l|l|l|}
\hline Youth Soccer & Male & Female \\
\hline Sample size & 80 & 70 \\
\hline Played soccer & 65 & 39 \\
\hline
\end{tabular}
- Compare the proportion of male and female college students who said that they had played on a soccer team during their K-12 years using a \(99 \%\) confidence interval.
\[
\begin{aligned}
& \left(\hat{p}_{1}-\hat{p}_{2}\right) \pm 2.58 \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}} \\
& \Rightarrow\left(\frac{65}{80}-\frac{39}{70}\right) \pm 2.58 \sqrt{\frac{81(.19)}{80}+\frac{.56(.44)}{70}} \Rightarrow .25 \pm .19 \\
& \text { or } .06<p_{1}-p_{2}<.44 .
\end{aligned}
\]

\section*{Example, continued}
\[
.06<p_{1}-p_{2}<.44
\]
- Could you conclude, based on this confidence interval, that there is a difference in the proportion of male and female college students who said that they had played on a soccer team during their K-12 years?
- The confidence interval does not contains the value \(p_{1}-p_{2}=0\). Therefore, it is not likely that \(p_{1}=p_{2}\). You would conclude that there is a difference in the proportions for males and females.

A higher proportion of males than females played soccer in their youth.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & for Artificial Intelligence Foundations \& Intelligence Research Laboratory & ntific Applications \(\begin{aligned} & \text { PennState } \\ & \text { Clinical and Translational } \\ & \text { Science Institute }\end{aligned}\) \\
\hline \multicolumn{4}{|c|}{Summary - Large Sample Point Estimators} \\
\hline \multicolumn{4}{|r|}{To estimate one of four population parameters when the sample sizes are large, use the following point estimators with the appropriate margins of error.} \\
\hline & Parameter & Point Estimator & Margin of Error \\
\hline & \(\mu\) & \[
\bar{x}
\] & \(\pm 1.96\left(\frac{s}{\sqrt{n}}\right)\) \\
\hline & p & \[
\hat{p}=\frac{x}{n}
\] & \[
\pm 1.96 \sqrt{\frac{\hat{p} \hat{q}}{n}}
\] \\
\hline & \[
\mu_{1}-\mu_{2}
\] & \[
\bar{x}_{1}-\bar{x}_{2}
\] & \[
\pm 1.96 \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
\] \\
\hline & \[
p_{1}-p_{2}
\] & \[
\left(\hat{p}_{1}-\hat{p}_{2}\right)=\left(\frac{x_{1}}{n_{1}}-\frac{x_{2}}{n_{2}}\right)
\] & \(\pm 1.96 \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}\) \\
\hline \multicolumn{2}{|l|}{(6) Penssate} & Data Science for Researchers and Scholars & Vasant Honevar, Fall 2023 \\
\hline
\end{tabular}

\section*{Summary - Large Sample Confidence Intervals}

To estimate one of four population parameters when the sample sizes are large, use the following interval estimators.
\[
\begin{array}{ll}
\text { Parameter } & (1-\alpha) \mathbf{1 0 0 \%} \text { Confidence Interval } \\
\hline \mu & \bar{x} \pm z_{\alpha / 2}\left(\frac{s}{\sqrt{n}}\right) \\
p & \hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}} \\
\mu_{1}-\mu_{2} & \left(\bar{x}_{1}-\bar{x}_{2}\right) \pm z_{\alpha / 2} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \\
p_{1}-p_{2} & \left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}_{1} \hat{q}_{1}}{n_{1}}+\frac{\hat{p}_{2} \hat{q}_{2}}{n_{2}}}
\end{array}
\]

\section*{Summary: Large Sample Confidence intervals}
- All values in the interval are possible values for the unknown population parameter.
- Any values outside the interval are unlikely to be the value of the unknown parameter.
- To compare two population means or proportions, look for the value 0 in the confidence interval.
- If 0 is in the interval, it is possible that the two population means or proportions are equal, and you should not declare a difference.
- If 0 is not in the interval, it is unlikely that the two means or proportions are equal, and you can confidently declare a difference.```

