

PennState

Science for Researchers and Sc

Vasant Honavar, Fall 2023

PennState Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory Science Institute														e ranslat ute							
			Sta	an	da	rd	сι	ım	nul	ati	ve	pr	ob	ab	oilit	ty '	tal	ole			
Cumula	uve prop	abilities	UNEGA		alues ale	SHOWIT		owing tai	JIE.		z	.00	.01	.02	.03	.04	.05	.06	.07	08	.09
-	00	01	02	03	04	05	90	07	08	09	0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
-3.0	0013	0013	0013	0012	0012	0011	0011	0011	0010	0010	0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014	0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019	0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026	0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036	0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048	0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064	0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084	0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110	0,9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143	1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183	1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233	1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294	1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367	1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455	1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559	1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681	1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823	1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985	1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170	2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379	2.1	9821	9826	9830	9834	9838	9842	9846	9850	9854	9857
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611	2.2	9861	9864	9868	9871	9875	.9878	9881	9884	9887	9890
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867	2.3	9893	9896	9898	9901	9904	9906	9909	9911	9913	9916
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148	2.4	9918	9920	9922	9925	9927	9929	9931	9932	9934	9936
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451	2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776	2.6	9953	9955	9956	9957	9959	9960	9961	9962	9963	9964
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121	2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483	2.8	9974	9975	9976	9977	9977	9978	9979	9979	9980	9981
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859	2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
-0.1	.4002	.4062	.4022	.4483	.4443	.4404	.4304	.4320	.4280	4641	3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
Penn College of Sciences A	State	,				Dat	a Scie	nce foi	Rese	archers	and Sc	holars						Vasant	Hona	var, Fal	I 2023

<page-header><page-header><image><image><section-header><image><section-header><section-header><section-header>

PennState Institute for Computational and Data Sciences Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory

Sampling Distribution of \overline{x}

If a random sample of *n* measurements is selected from a population with mean μ and standard deviation σ , the sampling distribution of the sample mean \overline{x} will have a mean

 $\mu_{\overline{x}} = \mu$

and a standard deviation

$$\sigma_{\bar{x}} = \sigma / \sqrt{n}$$

Central Limit Theorem: If random samples of n observations are drawn from a nonnormal population with finite μ and standard deviation σ , then, when n is large, the sampling distribution of the sample mean \overline{x} is approximately normally distributed, with mean μ and standard deviation σ / \sqrt{n} .

The approximation becomes more accurate as *n* becomes large.

PennState College of Information Collegeress And Technology Data Science for Researchers and Scholars

Vasant Honavar, Fall 2023

 Control and translations Estimation Estimating or inferring the value of the parameter(s) Maximum likelihood: What is the mean height of individuals of Asian descent given the sample of individuals of Asian descent you have observed? Bayesian: What is the likely height of the next person of Asian descent you may encounter, given your prior belief about the heights of individuals of Asian descent that you have observed? Hypothesis testing Deciding if the data support a preconceived idea or theory one has about a population
 Two types of statistical inference Estimation Estimating or inferring the value of the parameter(s) Maximum likelihood: What is the mean height of individuals of Asian descent given the sample of individuals of Asian descent you have observed? Bayesian: What is the likely height of the next person of Asian descent you may encounter, given your prior belief about the heights of individuals of Asian descent, the heights of individuals of Asian descent that you have observed? Hypothesis testing Deciding if the data support a preconceived idea or theory one has about a population
 Estimation Estimating or inferring the value of the parameter(s) Maximum likelihood: What is the mean height of individuals of Asian descent given the sample of individuals of Asian descent you have observed? Bayesian: What is the likely height of the next person of Asian descent you may encounter, given your prior belief about the heights of individuals of Asian descent, the heights of individuals of Asian descent that you have observed? Hypothesis testing Deciding if the data support a preconceived idea or theory one has about a population
 Estimating or inferring the value of the parameter(s) Maximum likelihood: What is the mean height of individuals of Asian descent given the sample of individuals of Asian descent you have observed? Bayesian: What is the likely height of the next person of Asian descent you may encounter, given your prior belief about the heights of individuals of Asian descent, the heights of individuals of Asian descent that you have observed? Hypothesis testing Deciding if the data support a preconceived idea or theory one has about a population
 Maximum likelihood: What is the mean height of individuals of Asian descent given the sample of individuals of Asian descent you have observed? Bayesian: What is the likely height of the next person of Asian descent you may encounter, given your prior belief about the heights of individuals of Asian descent, the heights of individuals of Asian descent, the heights of individuals of Asian descent that you have observed? Hypothesis testing Deciding if the data support a preconceived idea or theory one has about a population
 Bayesian: What is the likely height of the next person of Asian descent you may encounter, given your prior belief about the heights of individuals of Asian descent, the heights of individuals of Asian descent that you have observed? Hypothesis testing Deciding if the data support a preconceived idea or theory one has about a population
 Hypothesis testing Deciding if the data support a preconceived idea or theory one has about a population
 Deciding if the data support a preconceived idea or theory one has about a population
 "Did the sample of individuals you have come from a population with mean height of 5.6" ?
 "Was the newly discovered manuscript of unknown authorship written by Shakespeare?
PennState Data Science for Researchers and Scholars Vasant Honavar, Fall 2023

	PennState					
-/	Institute for G					

()

Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory

Comparing Two Means

	Mean	Variance	Standard Deviation
Population 1	μ_1	σ_1^2	σ_1
Population 2	μ_2	σ_2^2	σ ₂

	Sample size	Mean	Variance	Standard Deviation	
Sample from Population 1	n ₁	\overline{x}_1	s ₁ ²	s ₁	
Sample from Population 2	n ₂	\overline{x}_2	s ₂ ²	s ₂	
In State Data Science for Researchers and Scholars Vasant Honavar, Fall 2					

PennState Institute for Computational and Data Sciences Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory PennState Clinical and Translationa Science Institute Example Avg Daily Intakes Men Women Sample size 50 50 Sample mean 756 762 Sample Std Dev 30 35 Compare the average daily intake of dairy products of men and ٠ women using a 95% confidence interval. $\int g^2 g^2$

$$(\bar{x}_1 - \bar{x}_2) \pm 1.96 \sqrt{\frac{s_1}{n_1} + \frac{s_2}{n_2}}$$

$$\Rightarrow (756 - 762) \pm 1.96 \sqrt{\frac{35}{50} + \frac{30}{50}} \quad \Rightarrow \quad -6 \pm 12.78$$

or $-18.78 < \mu_1 - \mu_2 < 6.78.$

PennState College of Information Sciences And Technolo

Data Science for Researchers and Scholars

Vasant Honavar, Fall 2023

PennState Institute for Computational Artificial Intelligence Research Laboratory Comparing Two Proportions						
Γ		Sample size	Sample Proportion	Sample Variance	Standard Deviation	T
S P	ample from opulation 1	n ₁	$\hat{p}_1 = \frac{x_1}{n_1}$	$\frac{\hat{p}_1\hat{q}_1}{n}$	$\sqrt{rac{\hat{p}_1\hat{q}_1}{n}}$	
S P	ample from opulation 2	n ₂	$\hat{p}_2 = \frac{x_2}{n_2}$	$\frac{\hat{p}_2\hat{q}_2}{n}$	$\sqrt{rac{\hat{p}_2\hat{q}_2}{n}}$	
PennState Data Science for Researchers and Scholars Vasant Honavar, Fall 2023					23	

PennState Institute for Computational and Data Sciences	r for Artificial Intelligence ial Intelligence Research I	Foundation _aboratory	s & Scientific	Applications	PennState Clinical and Translationa Science Institute		
Example	Youth Soccer	Male	Female	1 6			
	Sample size	80	70				
	Played soccer	65	39				
 Compare the proportion of male and female college students who said that they had played on a soccer team during their K-12 years using a 99% confidence interval. 							

$$(\hat{p}_{1} - \hat{p}_{2}) \pm 2.58 \sqrt{\frac{\hat{p}_{1}\hat{q}_{1}}{n_{1}} + \frac{\hat{p}_{2}\hat{q}_{2}}{n_{2}}}$$

$$\Rightarrow (\frac{65}{80} - \frac{39}{70}) \pm 2.58 \sqrt{\frac{.81(.19)}{80} + \frac{.56(.44)}{70}} \Rightarrow .25 \pm .19$$
or $.06 < p_{1} - p_{2} < .44$.

