
 and Scholars

Vasant G. Honavar
Dorothy Foehr Huck and J. Lloyd Huck Chair in Biomedical Data Sciences and Artificial Intelligence
Professor of Data Sciences, Informatics, Computer Science and Engineering, Bioinformatics \& Genomics, Public Health Sciences and Neuroscience
Director, Center for Artificial Intelligence Foundations and Scientific Applications
Associate Director, Institute for Computational and Data Sciences
Pennsylvania State University
vhonavar@psu.edu
http://faculty.ist.psu.edu/vhonava
http://ailab.ist.psu.edu

Random Variables

- A variable x is a random variable if the value that it assumes, corresponding to the outcome of an experiment is a chance or random event.
- Random variables can be discrete or continuous

Examples

- $x=$ SAT score for a randomly selected student
- $x=$ number of people who click on your website on a randomly chosen of the year 2023
- $x=$ outcome of a die toss

Probability Distributions of Discrete Random Variables
- The probability distribution for a discrete random variable x is a graph, table or formula that gives the probability $p(x)$ associated with each value of x
- Note that
- $\forall x 0 \leq p(x) \leq 1$
- $\sum_{x} p(x)=1$

Probability Distributions
- Probability distributions can be used to describe the population, just as we described samples using statistics
- Shape: Symmetric, skewed, mound-shaped..
- Outliers: unusual or unlikely measurements
- Center and spread: mean and standard deviation. A population mean is called μ and a population standard deviation is called σ.
- Let x be a discrete random variable with probability distribution $p(x)$. Then the mean, variance and standard deviation of x are given as

Mean: $\mu=\sum x p(x)$
Variance: $\sigma^{2}=\sum(x-\mu)^{2} p(x)$
Standard deviation : $\sigma=\sqrt{\sigma^{2}}$

		eror Arific	Intill	ntific Applications	
Example					
Toss a fair coin 3 times and record x, the number of heads.					
x	$p(x)$	$x p(x)$	$(x-\mu)^{2} p(x)$		
0	1/8	0	$(-1.5)^{2}(1 / 8)$,	$x)=\frac{12}{8}=1.5$
1	3/8	3/8	$(-0.5)^{2}(3 / 8)$		
2	3/8	6/8	$(0.5)^{2}(3 / 8)$	$\sigma^{2}=\sum($	(x- $)^{2} p(x)$
3	1/8	3/8	$(1.5)^{2}(1 / 8)$		
$\begin{aligned} & \sigma^{2}=.28125+.09375+.09375+.28125=.75 \\ & \sigma=\sqrt{.75}=.688 \end{aligned}$					
Oemsme		onat stare	refor Resercresers and scrolass		Vasant Honavar, Fal 1203

Random Variable and Distribution

- A random variable X is an outcome of a random experiment
- The distribution of a random variable is a table, graph or a formula that gives the probability $P(X)$ associated with each possible value of X
- In the case of discrete random variables, we write

$$
P(X=x)=p_{\theta}(x)
$$

to mean probability that the random variable X takes the value x is $p_{\theta}(x)$, a function of x, parameterized by θ

- $\forall x 0 \leq p_{\theta}(x) \leq 1$
- $\sum_{x} p_{\theta}(x)=1$

Bernoulli distribution

- Bernoulli distribution is a discrete probability distribution
- It escribes the probability of achieving a "success" or "failure" from a random experiment (called Bernoulli trial) with only two possible outcomes (success or failure)
- Example: outcome of coin toss with two outcomes - heads (success denoted by 1) or tails (denoted by 0)

$$
P(X=x)=\theta^{x}(1-\theta)^{1-x}
$$

- When $x=1$, we have
$P(X=1)=\theta^{1}(1-\theta)^{1-1}=\theta$
- When $x=0$, we have
$P(X=0)=\theta^{0}(1-\theta)^{1-0}=1-\theta$
- Note that $\forall \theta$ such that $0 \leq \theta \leq 1$,
- $\forall x 0 \leq p_{\theta}(x) \leq 1$ and
- $\sum_{x} p_{\theta}(x)=\theta+1-\theta=1$

(4) Pemsiximevern

Exercise: Mean and variance of Bernoulli distribution

$$
P(X=x)=\theta^{x}(1-\theta)^{1-x}
$$

- Mean $=$ expectation of x

$$
\mu=\sum_{x} x P(X=x)=1(\theta)+0(1-\theta)=\theta
$$

- Variance $=$ expectation of the square of the difference between x and the mean of x
$\sigma^{2}=\sum_{x}(x-\mu)^{2} P(X=x)$
$\sigma^{2}=(1-\mu)^{2} \theta+(0-\mu)^{2}(1-\theta)$
$\sigma^{2}=\theta-\mu^{2} \theta-\mu^{2}+\mu^{2} \theta=\theta-\theta^{2}=\theta(1-\theta)$

Categorical distribution generalizes Bernoulli distribution
- Instead of 2 outcomes, now we have k discrete outcomes
$1,2, \cdots k$ that occur with probabilities $p_{1}, p_{2}, \cdots p_{k}$
- Example: outcome of k-sided die toss

$$
P(X=x)=p_{1}^{\mathrm{I}(x=1)} p_{2}^{\mathrm{I}(x=2)} \cdots p_{k}^{\mathrm{I}(x=k)}
$$

where

$$
\mathrm{I}(x=v)=1 \text { iff } x=v \text { and } \mathrm{I}(x=v)=0 \text { otherwise }
$$

Note that
$P(X=1)=p_{1}, P(X=2)=p_{2}, \cdots P(X=k)=p_{k}$ as desired We further require that $\forall k 0 \leq p_{k} \leq 1$ and $\sum_{v=1}^{k} p_{v}=1$

Categorical distribution

- A convenient way to represent the outcome of a categorical random experiment is one hot encoding, a k-element vector with a 1 in the
position corresponding to the observed outcome and Os everywhere else.
- Outcome $X=1=x_{1}$ is encoded as $\mathbf{v}_{1}=[1,0,0, \cdots 0]$
- Outcome $X=2=x_{2}$ is encoded as $\mathbf{v}_{2}=[0,1,0, \cdots 0]$..
- Outcome $X=k=x_{k}$ is denoted by $\mathbf{v}_{k}=[0,0,0, \cdots k]$
- Now
- \mathbf{v}_{1} occurs with probability p_{1}
- \mathbf{v}_{2} occurs with probability p_{2}
- \mathbf{v}_{k} occurs with probability p_{k}
- The outcomes of the categorical random variable X have a 1-1
correspondence with one-hot vector valued random variable \mathbf{V}
- One hot encoding offers many conveniences
- As an exercise, compute the mean of the categorical distribution with
- Scalar discrete representation of the outcomes
- One hot encoding of the outcomes

Categorical distribution

- A convenient way to represent the outcome of a categorical random experiment is one hot encoding, a k-element vector with a 1 in the position corresponding to the observed outcome and 0 s everywhere else
- Outcome $X=1=x_{1}$ is encoded as $\mathbf{v}_{1}=[1,0,0, \cdots 0]$
- Outcome $X=2=x_{2}$ is encoded as $\mathbf{v}_{2}=[0,1,0, \cdots 0]$.
- Outcome $X=k=x_{k}$ is denoted by $\mathbf{v}_{k}=[0,0,0, \cdots k]$
- Now
- \mathbf{v}_{1} occurs with probability p_{1}
- \mathbf{v}_{2} occurs with probability p_{2}..
- \mathbf{v}_{k} occurs with probability p_{k}
- The outcomes of the categorical random variable X have a 1-1 correspondence with one-hot vector valued random variable \mathbf{V}
(4)

One hot encoding of categorical outcomes

Example: 6-sided die

- The correspondence between x and \mathbf{v} is a bijection
- x and \mathbf{v} contain the identical information
- Outcome of the categorical random experiment
- Example, outcome of tossing a 6 -sided die

Mean and variance of Categorical distribution
Discrete scalar representation of outcomes

$$
P(X=x)=p_{1}^{\mathrm{I}(x=1)} p_{2}^{\mathrm{I}(x=2)} \cdots p_{k}^{\mathrm{I}(x=k)}
$$

- Mean $=$ expectation of X
- $\mu=\sum_{i} x_{i} P\left(X=x_{i}\right)=1 p_{1}+2 p_{2}+\cdots+k p_{k}$

One hot vector representation of outcomes

$\forall i \in\{1, \cdots k\}, P\left(\mathbf{V}=\mathrm{v}_{i}\right)=p_{i}$

- Mean = expectation of \mathbf{V}
- $\boldsymbol{\mu}=\sum_{i} \mathrm{v}_{i} P\left(\mathbf{V}=\mathrm{v}_{i}\right)=\sum_{i} \mathrm{v}_{i} p_{i}=\left[p_{1}, p_{2}, \cdots p_{k}\right]$
- One hot encoding is elegant and offers many conveniences
- We will use it often in machine learning

The Binomial Random Variable

- Binomial random variable generalizes the Bernoulli variable
- Bernoulli - Toss a coin once and record the outcome
- Toss a coin n times and record $x=$ number of heads

Binomial distribution of the number of heads in 3 tosses of a fair coin

Bernoulli versus Binomial

- The Bernoulli distribution represents the success or failure of a single Bernoulli trial.
- The Binomial Distribution represents the number of successes and failures in n independent Bernoulli trials for some given value of n.

 The Binomial Random Variable- Many situations in real life resemble the coin toss, but the coin is not necessarily fair, so that $P(H) \neq 1 / 2$.
- Example: A geneticist samples 10 people and counts the number who have APOE-e4 a gene linked to Alzheimer's disease.
- Coin: Person
- Head: Has one or more copies of APOE-e4 gene
- Tail: Has no copy of APOE-e4 gene
- Number of coin tosses: $n=10$
- $\mathrm{P}($ Has Alzheimer's gene $)=\mathrm{P}(\mathrm{H})=$ fraction of the population that has at least 1 copy of the APOE-e4 gene ≈ 0.2 to 0.3

The Binomial Experiment
- The experiment consists of n identical trials.
- Each trial results in one of two outcomes, success (S) or failure (F).
- The probability of success (or failure) on a single trial is p and the probability of failure is $q=1-p$.
- The probabilities p (and hence q) remain constant from trial to trial.
- The trials are independent.
- We are interested in x, the number of successes in n trials.

Binomial or Not?

- Binomial distribution requires that the trials be independent
- Independence is often violated in real life applications
- Select two people from the U.S. population, and suppose that 20% of the population has the APOE-e4 Alzheimer's gene.
- For the first person, $p=\mathrm{P}($ gene $)=0.20$
- For the second person, $p \quad \mathrm{P}$ (gene) $=.20$, even though one person has been removed from the population.

Binomial or Not?

- 1 in 10 PCs are defective.
- We have 20 PCs in the lab
- We randomly select 3 for testing.

Is this a binomial experiment?

- The experiment consists of $n=3$ identical trials
- Each trial results in one of two outcomes
- The probability of success (finding the defective PC) is 0.1 and it remains constant across trials
- But there is a catch
- The trials are not independent.
- $\mathrm{P}\left(\right.$ success on the 2 nd trial | success on the $1^{\text {st }}$ trial $)=$ $1 / 19$, not $2 / 20$
- Rule of thumb: if the sample size n is large relative to the population size N, say $n / N \geq .05$, the trials are likely not independent and the experiment not likely binomial.

Plots of Binomial Distribution

The Binomial Probability Distribution

- For a binomial experiment with n trials and probability p of success on any single trial, the probability of k successes in n trials is

Number of ways to choose k out of n items

Mean and Standard Deviation: Binomial Distribution
Exercise: For a binomial experiment with n trials and probability p of success on a given trial, show that

- Mean $\mu=n p$
- Variance $\sigma^{2}=n p q$
- Standard deviation $\sigma=\sqrt{n p q}$

Example

- Ukrainian missiles hit a target 80% of the time.
- The Ukrainian forces fire five missiles at a target.
- What is the probability that exactly 3 missiles hit the target?

$$
\begin{aligned}
& n=5 \quad \text { success }=\text { hit } \quad p=.8 \quad x=\# \text { of hits } \\
& P(x=3)=C_{3}^{n} p^{3} q^{n-3}=\frac{5!}{3!2!}(.8)^{3}(.2)^{5-3} \\
& =10(.8)^{3}(.2)^{2}=.2048
\end{aligned}
$$

Exercise

- What is the probability that no missiles hit the target?
- What is the probability that fewer than 3 missiles hit the target?
- What is the probability that fewer than 4 but more than 1 missiles hit the target?

The Poisson Random Variable

- The Poisson random variable is often used to model the number of occurrences of a specified event in a given unit of time or space.
- Examples:
- The number of calls received by a switchboard during 9 am to 5 pm.
- The number of times a printer jams in a day
- The number of traffic accidents at the intersection of Atherton Street and College Avenue in State College on a football weekend

The Poisson Probability Distribution

- Let x a Poisson random variable.
- The probability that $X=k$ (k occurrences of the event of interest) for $k=0,1,2, \cdots$ is given by:
$P(X=k)=\frac{\mu^{k} e^{-\mu}}{k!}$ for $k \geq 0$
$P(X=k)=0$ otherwise
- Where μ is the mean of the distribution and standard deviation is $\sqrt{\mu}$ and $e \approx 2.718281828459$ is the base of the natural logarithm
- We get Poisson by fixing the mean of the Binomial distribution, and letting the number of trials approach ∞

(c) Memsume

Exercise

- The average number of traffic accidents on a certain intersection in New York city is two per week.
- What is the probability of exactly one accident during a one-week period?

$$
P(x=1)=\frac{\mu^{k} e^{-\mu}}{k!}=\frac{2^{1} e^{-2}}{1!}=2 e^{-2}=.2707
$$

 Exercise

- What is the probability that 8 or more accidents happen during a 1 -week period?
- What is the probability that no accidents happen during a 1 -week period?
(x) Perssememem

The Hypergeometric Probability Distribution

- A bowl contains M red $\mathrm{M} \& \mathrm{M}$ candies and $N-M$ blue $\mathrm{M} \& \mathrm{M}^{\circ}$ candies.
- Select n candies from the bowl (without replacement) and record x the number of successes - red M\&Ms selected
- Why can't we use the Binomial distribution? - trials are not independent
- Hypergeometric distribution is given by $P(X=k)=\frac{C_{k}^{M} C_{n-k}^{N-M}}{C_{n}^{N}}$
- Where N is the population size
- M is the maximum number of possible successes
- n is the number of trials
- k is the number of successes

Mean and Variance of Hypergeometric distribution

$$
\begin{aligned}
& \text { Mean : } \mu=n\left(\frac{M}{N}\right) \\
& \text { Variance : } \sigma^{2}=n\left(\frac{M}{N}\right)\left(\frac{N-M}{N}\right)\left(\frac{N-n}{N-1}\right)
\end{aligned}
$$

 Exercise
 - A package of 8 AA batteries contains 2 batteries that are defective.

- A student randomly selects 4 batteries and replaces the batteries in his calculator.
- What is the probability that all four batteries work?

Success = working battery

$$
\begin{aligned}
N & =8 \\
M & =6 \\
n & =4 \\
k & =4
\end{aligned}
$$

$$
\begin{aligned}
& P(x=4)=\frac{C_{4}^{6} C_{0}^{2}}{C_{4}^{8}} \\
& =\frac{6(5) / 2(1)}{8(7)(6)(5) / 4(3)(2)(1)}=\frac{15}{70}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Exercise } \\
& \text { - What are the mean and variance for the number of } \\
& \text { batteries that work? } \\
& \begin{array}{|l|}
\mu=n\left(\frac{M}{N}\right)=4\left(\frac{6}{8}\right)=3 \\
\\
\\
=4\left(\frac{6}{8}\right)\left(\frac{2}{8}\right)\left(\frac{4}{7}\right)=.4286
\end{array}
\end{aligned}
$$

Continuous Random Variables

- A random variable is continuous if it can assume the infinitely many values corresponding to points on a line interval.
- Examples
- Height, weight
- Scores on a test
- Measurement error

