

PennState Institute for Computational and Data Sciences	Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory	Q	PennState Clinical and Translational Science Institute
Random V	ariables		
 A variable correspo random e 	e x is a random variable if the value that it nding to the outcome of an experiment is event.	ass a ch	umes, ance or
Random	variables can be discrete or continuous		

Examples

- x = SAT score for a randomly selected student
 x = number of people who click on your website on a randomly chosen of the year 2023
 x = outcome of a die toss

PennState

PennState Institute for Computational and Data Sciences	Center for Artificial Intelligence Foundations & Scientific Applicatio Artificial Intelligence Research Laboratory	PennState Clinical and Translational Science Institute			
Probability	y Distributions				
 Probabilit just as we 	y distributions can be used to describe described samples using statistics	the population,			
 Shape: Sy Outlie 	 Shape: Symmetric, skewed, mound-shaped Outliers: unusual or unlikely measurements 				
 Cente popul deviat 	r and spread: mean and standard devia ation mean is called μ and a population ion is called σ .	tion. A standard			
• Let x be a $p(x)$. The	discrete random variable with probabi n the mean, variance and standard dev	lity distribution iation of <i>x</i> are			
given as	Mean : $\mu = \sum xp(x)$				
	Variance: $\sigma^2 = \sum (x - \mu)^2 p(x)$				
	Standard deviation : $\sigma = \sqrt{\sigma^2}$				
PennState Compa af Streamstern Sciences And Technology	Data Science for Researchers and Scholars	Vasant Honavar, Fall 2023			

G	PennState	Ce putational Art	nter for Artifici ificial Intelliger	al Intelligence Foundations & nce Research Laboratory	& Scientific Applications PennState Clinical and Translation.
E T	xampl oss a fair	e coin 3 t	times an	d record x , the n	umber of heads.
	x	p(x)	xp(x)	$(x-\mu)^2 p(x)$	12
	0	1/8	0	$(-1.5)^2(1/8)$	$\mu = \sum xp(x) = \frac{12}{8} = 1.5$
	1	3/8	3/8	$(-0.5)^2(3/8)$	0
	2	3/8	6/8	$(0.5)^2(3/8)$	$\sigma^2 = \sum (x - \mu)^2 p(x)$
	3	1/8	3/8	$(1.5)^2(1/8)$	$= \underline{\Box}(n + \mu) p(n)$
	$\sigma^2 = .28$ $\sigma = \sqrt{.7}$	3125 + .000	09375+ 8	.09375+.28125	= .75
3	PennState College af Johorstation Sciences And Technology		Data Scien	ce for Researchers and Scholars	Vasant Honavar, Fall 2023

Exercise: Mean and variance of Bernoulli distribution

$$P(X = x) = \theta^{x}(1-\theta)^{1-x}$$
• Mean = expectation of x

$$\mu = \sum_{x} xP(X = x) = 1(\theta) + 0(1-\theta) = \theta$$
• Variance = expectation of the square of the difference between x
and the mean of x

$$\sigma^{2} = \sum_{x} (x-\mu)^{2}P(X = x)$$

$$\sigma^{2} = (1-\mu)^{2}\theta + (0-\mu)^{2}(1-\theta)$$

$$\sigma^{2} = \theta - \mu^{2}\theta - \mu^{2} + \mu^{2}\theta = \theta - \theta^{2} = \theta(1-\theta)$$

EXAMPLE 1 For Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory **Categorical distribution generalizes Bernoulli distribution** • Instead of 2 outcomes, now we have k discrete outcomes 1, 2, ... k that occur with probabilities $p_1, p_2, ... p_k$ • Example: outcome of k-sided die toss $P(X = x) = p_1^{I(x=1)} p_2^{I(x=2)} ... p_k^{I(x=k)}$ where I(x = v)=1 iff x = v and I(x = v)=0 otherwise Note that $P(X = 1) = p_1$, $P(X = 2) = p_2$, ... $P(X = k) = p_k$ as desired We further require that $\forall k \ 0 \le p_k \le 1$ and $\sum_{v=1}^k p_v = 1$

PennState Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory	PennState Clinical and Translational Science Institute				
Categorical distribution					
• A convenient way to represent the outcome of a categorical random					
experiment is one hot encoding, a k -element vector with a 1 in the					
position corresponding to the observed outcome and 0s everywhere else. • Outcome $X = 1 = x_1$ is encoded as $\mathbf{v}_1 = [1,0,0, \cdots 0]$					
• Outcome $X = 2 = x_2$ is encoded as $\mathbf{v}_2 = [0, 1, 0, \dots 0]$					
• Outcome $X = k = x_k$ is denoted by $\mathbf{v}_k = [0,0,0,\cdots k]$					
• Now					
• \mathbf{v}_1 occurs with probability p_1					
• \mathbf{v}_2 occurs with probability p_2					
• $\mathbf{v}_{\mathbf{k}}$ occurs with probability p_k					
 The outcomes of the categorical random variable X have a 1-1 					
correspondence with one-hot vector valued random variable ${f V}$					
 One hot encoding offers many conveniences 					
 As an exercise, compute the mean of the categorical distribution with 					
 Scalar discrete representation of the outcomes 					
 One hot encoding of the outcomes 					
PennState Data Science for Researchers and Scholars	Vasant Honavar, Fall 2023				

PennState Institute for Comput and Data Sciences	Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory	PennState Clinical and Translationa Science Institute
Categor	ical distribution	
 A conversion of a conversion of a	enient way to represent the outcome of a category in experiment is one hot encoding, a <i>k</i> -element 1 in the position corresponding to the observer everywhere else. In the position correspondence of the observer everywhere else.	gorical vector d outcome ·· 0] ·· 0]
• Out	scome $X = 2 = x_2$ is encoded as $\mathbf{v}_2 = [0,1,0,1]$ scome $X = k = x_k$ is denoted by $\mathbf{v}_k = [0,0,0,1]$	$\cdots k$]
 Now v₁ o v₂ o v_k o The our correspondence 	occurs with probability p_1 occurs with probability p_2 occurs with probability p_k tcomes of the categorical random variable X has a single probability p_k to be a single probability	ave a 1-1 /ariable V
PennState	Data Science for Researchers and Scholars	Vasant Honavar, Fall 2023

Center for Artificial Intelligence Foundations & Scientific Applications PennState Clinical and Translation Science Institute Artificial Intelligence Research Laboratory Mean and variance of Categorical distribution Discrete scalar representation of outcomes $P(X = x) = p_1^{I(x=1)} p_2^{I(x=2)} \cdots p_k^{I(x=k)}$ • Mean = expectation of *X* • $\mu = \sum_{i} x_i P(X = x_i) = 1p_1 + 2p_2 + \dots + kp_k$ One hot vector representation of outcomes $\forall i \in \{1, \dots k\}, P(\mathbf{V} = \mathbf{v}_i) = p_i$ • Mean = expectation of V • $\boldsymbol{\mu} = \sum_i \mathbf{v}_i P(\mathbf{V} = \mathbf{v}_i) = \sum_i \mathbf{v}_i p_i = [p_1, p_2, \cdots p_k]$ • One hot encoding is elegant and offers many conveniences • We will use it often in machine learning nnState

Conter for Artificial Intelligence Foundations & Scientific Applications & Constant and Science Artificial Intelligence Research Laboratory Chany situations in real life resemble the coin toss, but the coin is not necessarily fair, so that P(H) ≠ 1/2. Example: A geneticist samples 10 people and counts the number who have APOE-e4 a gene linked to Alzheimer's disease. Coin: Person Head: Has one or more copies of APOE-e4 gene Tail: Has no copy of APOE-e4 gene Number of coin tosses: n = 10 P(Has Alzheimer's gene) = P(H) = fraction of the population that has at least 1 copy of the APOE-e4 gene ≈ 0.2 to 0.3

PennState

Researchers and Scholars

PennState Artificial Intelligence Research Laboratory Artificial Intelligence Research Laboratory Clinical and Translational Science Institute
Binomial of Not?
 1 in 10 PCs are defective.
We have 20 PCs in the lab
 We randomly select 3 for testing.
 Is this a binomial experiment? The experiment consists of n = 3 identical trials Each trial results in one of two outcomes The probability of success (finding the defective PC) is 0.1 and it remains constant across trials But there is a catch. The trials are not independent.
 P(success on the 2nd trial success on the 1st trial) = 1/19, not 2/20
• Rule of thumb: if the sample size n is large relative to the population size N , say $n/N \ge .05$, the trials are likely not independent and the experiment not likely binomial.
PennState Data Science for Researchers and Scholars Vasant Honavar, Fall 2023

PennState Institute for Computation and Data Sciences

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory
Clinical and Transl
Science Institute
Clinical I

Exercise

- What is the probability that no missiles hit the target?
- What is the probability that fewer than 3 missiles hit the target?
- What is the probability that fewer than 4 but more than 1 missiles hit the target?

