PennState Institute for Computational and Data Sciences	Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory PennState Clinical and Translational Science Institute
	Data Science for Researchers and Scholars
Vasant G. Honavar Dorothy Foehr Huck and Professor of Data Scien Public Health Science Director, Center for A Associate Director, In Pennsylvania State Univer vhonavar@psu.edu http://faculty.ist.psu. http://ailab.ist.psu.edu	d J. Lloyd Huck Chair in Biomedical Data Sciences and Artificial Intelligence ces, Informatics, Computer Science and Engineering, Bioinformatics \& Genomics, and Neuroscience ificial Intelligence Foundations and Scientific Applications itute for Computational and Data Sciences versity du/vhonavar
(7) Pennstate	Data Science for Researchers and Scholars Vasant Honavar, Fall 2023

(130) Pennstate Institute for Computaional Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory

Probability

- Why do we care about probability?
- Nothing in life is certain
- In everything we do, from drawing inferences from data, to betting on stocks, to assessing a patient's risk of death, we need a means of quantifying uncertainty
- Probability offers
- A quantitative measure of the chances associated with various outcomes
- A bridge between descriptive and inferential statistics
- A means of making inferences about the population based on what we observe in a sample from the population

(13) Pennstate Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory

Probabilistic vs Statistical Reasoning

- Suppose I know exactly the chance that the outcomes of a coin toss.
- Then I can find the probability that the first toss would be a head.
- This is probabilistic reasoning as I use knowledge of the population to make predictions about any sample.
- Suppose that I do not know the chances of the two outcomes of a coin toss, but would like to estimate them.
- I observe a random sample of tosses of the same coin.
- Suppose I observe n_{H} heads and n_{T} tails in a sample of size $n=n_{H}+n_{T}$.
- I estimate of the chance of heads to be $\frac{n_{H}}{n}$ and of tails to be $\frac{n_{T}}{n}$.
- This is statistical reasoning as I am drawing inferences about the population based on what I observe in a sample.
(17) Pennstate \quad Data Science for Researchers and Scholars \quad Vasant Honavar, Fall 2023

(3) Pennstate \quad Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory

What is Probability?

- In the last lecture, we saw descriptive statistics
- We measured "how often" an outcome of interest is observed in a sample using relative frequency
- For example, the fraction of heads in a sample of coin tosses $\frac{n_{H}}{n}$
- As the sample size n increases
- Sample approaches the population
- Relative frequency of an outcome approaches its probability

(3才) Pennstate $\begin{aligned} & \text { Center for Artificial Intelligence Foundations \& Scientific Applications }\end{aligned}$ Artificial Intelligence Research Laboratory

Some terminology

- An experiment is the process by which an observation (or measurement) is obtained
- An event is an outcome of an experiment, usually denoted by an uppercase letter
- We associate probabilities with events
- Outcome of a coin toss
- The color of a flower in your flower basket
- When an experiment is performed, a particular event either occurs, or it doesn't!
- The event toss = Head occurs if the coin shows up heads
- The event color = Red occurs if you happen to pick a red flower

```
(3) PennState Instite forcomputaional 
Science Institute
```


Experiments and Events

```
- Experiment: Record an age
- A: The person is older than 30
- B: The person is older than 65
- Experiment: Toss a die
- A: The toss comes up odd
- B: The toss comes up even
- Events are
- mutually exclusive if when one event occurs, the other cannot, and vice versa
- exhaustive if they cover all possible outcomes
- An event that cannot be decomposed is called a simple event
- Each simple event has a probability associated with it
- Sample space is the set of all simple events (possible outcomes) of an experiment that are mutually exclusive and exhaustive


\section*{(7) Pensisute}

\section*{Some terminology}
- An event is a collection of one or more simple events.

- The die toss
- A: an odd number
- B: a number > 2
\(A=\left\{E_{1}, E_{3}, E_{5}\right\}\)
\(B=\left\{E_{3}, E_{4}, E_{5}, E_{6}\right\}\)


\section*{3 Pennstate \(\quad \begin{aligned} & \text { Center for Artificial Intelligence Foundations \& Scientific Applications } \\ & \text { Institute for Computational }\end{aligned}\) Artificial Intelligence Research Laboratory}
\[
\begin{aligned}
& \text { PennState } \\
& \text { Clinical and Translational } \\
& \text { Science Institute }
\end{aligned}
\]

\section*{Probability of an Event}
- The probability of an event \(A\) measures "how often" \(A\) occurs.

We denote it by \(P(A)\).
- Suppose in an experiment that is performed \(n\) times the event \(A\) occurs \(n_{A}\) times
- The relative frequency of event \(A\) is \(\left(\frac{n_{A}}{n}\right)\)
- Then \(P(A)=\lim _{n \rightarrow \infty}\left(\frac{n_{A}}{n}\right)\)

\section*{(3) PennState Institute for Computational Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory}

\section*{Probability of an Event}
- \(P(A)\) must be between 0 and 1 .

- If event \(A\) never occurs*, \(P(A)=0\)
- If event \(A\) always occurs*, \(P(A)=1\)
- The sum of the probabilities for all simple events in \(S\) equals 1.
- The probability of an event \(A\) is found by adding the probabilities of all the simple events contained in \(A\)
- Probabilities are estimated from samples
- Simplest estimates are relative frequency based
- More on estimation later
* when the associated experiment is performed
(10) Pennstate \(\quad\) Data Science for Researchers and Scholars \(\quad\) Vasant Honavar, Fall 2023

\section*{(3) PennState \(\quad\) Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory}

PennState Clinical and Translational Science Institute

\section*{Example}
- Suppose we have a fair coin that we toss twice.
- What is the probability of observing at least one head?

\(P(\) at least 1 head \()=P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)=1 / 4+1 / 4+1 / 4=3 / 4\)
(7) PennState

Data Science for Researchers and Scholars
Vasant Honavar, Fall 2023



\section*{(13) Pennstate Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory}

\section*{Example: Throwing a pair of dice}
\begin{tabular}{|l|l|l|}
\hline Event & Simple events & Probability \\
\hline Dice add to 3 & \((1,2),(2,1)\) & \(2 / 36\) \\
\hline Dice add to 6 & \begin{tabular}{l}
\((1,5),(2,4),(3,3)\), \\
\((4,2),(5,1)\)
\end{tabular} & \(5 / 36\) \\
\hline Red die shows 1 & \begin{tabular}{l}
\((1,1),(1,2),(1,3)\), \\
\((1,4),(1,5),(1,6)\)
\end{tabular} & \(6 / 36\) \\
\hline Green die shows 1 & \begin{tabular}{l}
\((1,1),(2,1),(3,1)\), \\
\((4,1),(5,1),(6,1)\)
\end{tabular} & \(6 / 36\) \\
\hline
\end{tabular}

\section*{(33) Pennstate Center for Artificial Intelligence Foundations \& Scientific Applications} Artificial Intelligence Research Laboratory

\section*{The mn Rule}
- If an experiment is performed in two stages, with \(m\) ways to accomplish the first stage and \(n\) ways to accomplish the second stage, then there are mn ways to accomplish the experiment.
- This rule is easily extended to \(k\) stages, with the number of ways equal to \(n_{1} n_{2} n_{3} \ldots n_{k}\)

Example:
- Toss two coins.
- The total number of simple events is: \(2 \times 2=4\)

\section*{(7) Pennstate \(\quad\) Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory}

PennState Clinical and Translational Science Institute

Examples
Toss three coins. The total number of simple events is:
\[
2 \times 2 \times 2=8
\]

Toss two dice. The total number of simple events is:
\[
6 \times 6=36
\]

Toss three dice. The total number of simple events is:
\[
6 \times 6 \times 6=216
\]

Two M\&Ms are drawn from a dish containing two red and two blue candies. The total number of simple events is:
\[
4 \times 3=12
\]

\section*{(70) Penssute \\ Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory}

\section*{Counting events: Permutations}
- The number of ways you can arrange \(n\) distinct objects, taking them \(r\) at a time is
\[
P_{r}^{n}=\frac{n!}{(n-r)!}
\]
\[
\text { where } n!=n(n-1)(n-2) \ldots(2)(1) \text { and } 0!\equiv 1
\]

How many 3-digit lock combinations can we make from the numbers \(1,2,3\), and 4 ?

The order of the choice is important!
\[
P_{3}^{4}=\frac{4!}{1!}=4(3)(2)=24
\]

\section*{(7) Penssute \\ Center for Artificial Intelligence Foundations \& Scientific Applications}

PennState Clinical and Translationa

\section*{Combinations}
- The number of distinct combinations of \(n\) distinct objects that can be formed, taking them \(r\) at a time is
\[
C_{r}^{n}=\frac{n!}{r!(n-r)!}
\]
- Three members of a 5-person committee must be chosen to form a subcommittee.
- How many different subcommittee compositions are there?

The order of the choice is not important!
\[
C_{3}^{5}=\frac{5!}{3!(5-3)!}=\frac{5(4)(3)(2) 1}{3(2)(1)(2) 1}=\frac{5(4)}{(2) 1}=10
\]

\section*{(13) PennState Instituter Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory}

\section*{Example}
- A box contains six M\&Ms, four red and two green.
- A child selects two M\&Ms at random.
- What is the probability that exactly one is red?

The order of the choice is not important!
\[
\begin{aligned}
& C_{2}^{6}=\frac{6!}{2!4!}=\frac{6(5)}{2(1)}=15 \\
& \text { ways to choose } 2 \mathrm{M} \& \mathrm{Ms} .
\end{aligned}
\]
\begin{tabular}{|l|}
\hline\(C_{1}^{2}=\frac{2!}{1!!!}=2\) \\
ways to choose \\
1 green M \& M.
\end{tabular}
\(C_{1}^{4}=\frac{4!}{1!3!}=4\)
ways to choose
1 red \(\mathrm{M} \& \mathrm{M}\).
\begin{tabular}{|l|}
\hline \(4 \times 2=8\) ways to \\
choose 1 red and 1 \\
green M\&M. \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline P(exactly one \\
red \()=8 / 15\) \\
\hline
\end{tabular}

\section*{(7) Pennstate \(\quad\) Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory}

\section*{Event Relations}
- We can combine events to make other events using logical operations: and, or and not.
- The union of two events, \(A\) and \(B\), is the event that either \(A\) or \(B\) or both occur when the experiment is performed.
- We write \(A \cup B\)


\section*{ \\ Center for Artificial Intelligence Foundations \& Scientific Applications}

PennState Clinical and Translational

\section*{Event Relations}
- The intersection of two events, \(A\) and \(B\), is the event that both \(A\) and \(B\) occur when the experiment is performed. We write \(A \cap B\).

- If two events \(A\) and \(B\) are mutually exclusive, then \(P(A \cap B)=0\)

\section*{(73) Pennstate Center for Artificial Intelligence Foundations \& Scientific Applications Pennstate \\ Event Relations \\ - \(A^{C}\), the complement of an event \(A\) consists of all outcomes of the experiment that do not result in event \(A\).}


\section*{Fif Pennstate \(\quad\) Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory}

PennState Clinical and Translational Science Institute

\section*{Example}
- Select a student from a classroom with only male or female students and record the student's hair color and gender.
- A: student has brown hair
- \(B\) : student is female
- \(C\) : student is male
\[
\text { Mutually exclusive; } B=C^{C}
\]

What is the relationship between events \(B\) and \(C\) ?
- \(A^{C}\) : Student does not have brown hair
\(-B \cap C\) : Student is both male and female \(=\varnothing\)
\(-B \cup C\) : Student is either male and female \(=\) all students \(=S\)

\section*{(7) Penssite \\ Center for Artificial Intelligence Foundations \& Scientific Applications} Clinical and Trans
Science Institute

\section*{Probabilities of unions}
- For any two events, \(A\) and \(B\), the probability of their union, \(P(A \cup B)\), is
\[
P(A \cup B)=P(A)+P(B)-P(A \cap B)
\]


\section*{(3) PennState \(\quad\) Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory}

\section*{Example: Additive Rule}

Example: Suppose that there were 120 students in the classroom, and that they could be classified as follows

A: brown hair
\(P(A)=50 / 120\)
\(B\) : female
\(P(B)=60 / 120\)
\begin{tabular}{|l|l|l|}
\hline & Brown & Not Brown \\
\hline Male & 20 & 40 \\
\hline Female & 30 & 30 \\
\hline
\end{tabular}
\(P(A \cup B)=P(A)+P(B)-P(A \cap B)\)
\(=50 / 120+60 / 120-30 / 120\)
\(=80 / 120=2 / 3\)
Check: \(\mathrm{P}(\mathrm{A} \cup \mathrm{B})\)
\(=(20+30+30) / 120\)


\section*{(3i) Pennstate \(\begin{aligned} & \text { Center for Artificial Intelligence Foundations \& Scientific Applications }\end{aligned}\) Artificial Intelligence Research Laboratory}

PennState Clinical and Translational Science Institute

\section*{A Special Case}
- When two events \(A\) and \(B\) are mutually exclusive,

- \(P(A \cap B)=0\) and \(P(A \cup B)=P(A)+P(B)\).

A: male with brown hair
\[
P(A)=20 / 120
\]
\(B\) : female with brown hair
\[
P(B)=30 / 120
\]
\(A\) and \(B\) are mutually exclusive, so that
\begin{tabular}{|l|l|l|}
\hline & Brown & Not Brown \\
\hline Male & 20 & 40 \\
\hline Female & 30 & 30 \\
\hline
\end{tabular}
\[
\begin{gathered}
P(A \cup B)=P(A)+P(B) \\
=20 / 120+30 / 120 \\
=50 / 120
\end{gathered}
\]


\section*{(33) Pennstate \(\begin{aligned} & \text { Center for Artificial Intelligence Foundations \& Scientific Applications } \\ & \text { Intional }\end{aligned}\) Artificial Intelligence Research Laboratory}

\section*{Probabilities of Complements}
- We know that for any event \(A\) :
\[
P\left(A \cap A^{C}\right)=0
\]
- Since either \(A\) or \(A^{C}\) must occur,

\[
P\left(A \cup A^{C}\right)=1
\]
- so that
\[
P\left(A \cup A^{C}\right)=P(A)+P\left(A^{C}\right)=1
\]
\[
P\left(A^{C}\right)=1-P(A)
\]

\section*{(3) PennState \begin{tabular}{l|l} 
Institute for Computational & \(\begin{array}{l}\text { Center for Artificial Intelligence Foundations \& Scientific Applications } \\
\text { Artificial Intelligence }\end{array}\) \\
\hline
\end{tabular} Artificial Intelligence Research Laboratory}

\section*{Example}
- Select a student at random from the
 classroom.

A: male
\[
P(A)=60 / 120
\]
\(B\) : female
\[
P(B)=\text { ? }
\]
\begin{tabular}{|l|l|l|}
\hline & Brown & Not Brown \\
\hline Male & 20 & 40 \\
\hline Female & 30 & 30 \\
\hline
\end{tabular}
\(A\) and \(B\) are
complementary, so that
\[
\begin{gathered}
P(B)=1-P(A) \\
=1-60 / 120=60 / 120
\end{gathered}
\]

\section*{(13) PennState Instite Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory}

\section*{Independence}
- Two events, \(A\) and \(B\), are said to be independent if the occurrence or nonoccurrence of one of the events does not change the probability of the occurrence of the other event.
- Example: The color of my shirt being blue and whether the Intel stock price goes up

\section*{(70) penssute \\ Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory}

\section*{Conditional Probabilities}

The probability that \(A\) occurs, given that event \(B\) has occurred is called the conditional probability of \(A\) given \(B\) (written \(P(A \mid B)\) )
\[
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \text { if } P(B) \neq 0
\]

\section*{(70) penssute \\ Center for Artificial Intelligence Foundations \& Scientific Applications}

PennState Clinical and Translational

\section*{Example: Conditional probability}
- Toss a fair coin twice.
- The tosses are independent
- \(P(A \mid B)=1 / 2=P\left(A \mid B^{c}\right)\)
- \(A\) : head on second toss
- \(B\) : head on first toss


HT

\section*{TH}

HT \(1 / 4\)
\(\mathrm{P}(\mathrm{A})\) does not
change, whether \(\quad A\) and \(B\) are
1/4 happens or not...

\section*{(4) Pemssute \\ Center for Artificial Intelligence Foundations \& Scientific Applications}

PennState Clinical and Translational

\section*{Example 2}
- A bowl contains five M\&Ms, two red and three blue.
- Randomly select two candies
- A: second candy is red.
- \(B\) : first candy is blue.
\[
\begin{gathered}
P(A \mid B)=P\left(2^{\text {nd }} \text { red } \mid 1^{\text {st }} \text { blue }\right)=2 / 4=1 / 2 \\
P\left(A \mid B^{c}\right)=P\left(2^{\text {nd }} \text { red } \mid 1^{\text {st }} \text { red }\right)=1 / 4
\end{gathered}
\]



\section*{ \\ Defining Independence}

Center for Artificial Intelligence Foundations \& Scientific Applications
PennState Clinical and Translational
- We can redefine independence in terms of conditional probabilities
- Two events A and B are independent if and only if
- \(P(A \mid B)=P(A)\) or \(P(B \mid A)=P(B)\)

\section*{(rio Pensite}

Center for Artificial Intelligence Foundations \& Scientific Applications
PennState Clinical and Translational

\section*{The Multiplicative Rule for Intersections}
- For any two events, \(A\) and \(B\), the probability that both \(A\) and \(B\) occur is \(P(A \cap B)=P(A) P(B \mid A)\)
- If \(A\) and \(B\) are independent then \(P(A \cap B)=P(A) P(B)\)

\section*{(70) Penssue \\ Center for Artificial Intelligence Foundations \& Scientific Applications \\ Institute for Computational Artificial Intelligence Research Laboratory}

PennState Clinical and Translationa Science Institute

\section*{Example}
- In a certain population, \(10 \%\) of the people can be classified as being high risk for a heart attack.
- Three people are randomly selected from this population.
- What is the probability that exactly one of the three are high risk?
\(H\) : high risk \(N\) : not high risk
\[
\begin{gathered}
P(\text { exactly one high risk })=P(H N N)+P(N H N)+P(N N H) \\
=P(H) P(N) P(N)+P(N) P(H) P(N)+P(N) P(N) P(H) \\
=(.1)(.9)(.9)+(.9)(.1)(.9)+(.9)(.9)(.1) \\
=3(.1)(.9)^{2}=.243
\end{gathered}
\]

\section*{(135) PennState \(\begin{aligned} & \text { Institute or computational } \\ & \text { Center for Artificial Intelligence Foundations \& Scientific Applications }\end{aligned}\) Artificial Intelligence Research Laboratory}

\section*{Example}
- Suppose we know that \(49 \%\) of the population are female.
- Also, of the female patients, \(8 \%\) are high risk.
- A single person is selected at random.
- What is the probability that it is a high risk female?
\(H\) : high risk \(F\) : female
\[
P(F)=.49 \text { and } P(H \mid F)=.08
\]

From the Multiplicative Rule,
\[
\begin{gathered}
P(\text { high risk female })=P(H \cap F) \\
=P(F) P(H \mid F) \\
=.49(.08) \\
=.0392
\end{gathered}
\]

\section*{(76) pensme}

\section*{The Law of Total Probability}
- Let \(\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}, \ldots, \mathrm{~S}_{k}\) be mutually exclusive and exhaustive events (that is, one and only one can occur).
- Then the probability of any event A can be written as
\[
\begin{aligned}
& P(A)=P\left(A \cap S_{1}\right)+P\left(A \cap S_{2}\right)+\ldots+P\left(A \cap S_{k}\right) \\
& =P\left(S_{1}\right) P\left(A \mid S_{1}\right)+P\left(S_{2}\right) P\left(A \mid S_{2}\right)+\ldots+P\left(S_{k}\right) P\left(A \mid S_{k}\right)
\end{aligned}
\]

\section*{(6) Penssute}

\section*{The Law of Total Probability}


\section*{(73) Pennstate \(\begin{aligned} & \text { Center for Artificicial Intelligence Foundations \& Scientific Applications }\end{aligned}\) Artificial Intelligence Research Laboratory}

\section*{Bayes' Rule}

Let \(S_{1}, S_{2}, S_{3}, \ldots, S_{k}\) be mutually exclusive and exhaustive events with prior probabilities \(P\left(S_{1}\right), P\left(S_{2}\right), \ldots, P\left(S_{k}\right)\). If an event A occurs, the posterior probability of \(\mathrm{S}_{i}\), given that A occurred is
\[
P\left(S_{i} \mid A\right)=\frac{P\left(S_{i}\right) P\left(A \mid S_{i}\right)}{\sum P\left(S_{i}\right) P\left(A \mid S_{i}\right)} \text { for } i=1,2, \ldots k
\]

\section*{(x) Penstite \\ Center for Artificial Intelligence Foundations \& Scientific Applications}

PennState Clinical and Translation

\section*{Example}
- \(49 \%\) of the population are female.

- Of the female patients, \(8 \%\) are high risk for heart attack, while \(12 \%\) of the male patients are high risk.
- A single person is selected at random and found to be high risk.
- What is the probability that it is a male?
\(H\) : high risk \(F\) : female \(\quad M\) : male
\[
\begin{array}{rlrl}
P(F) & =0.49 & P(M \mid H) & =\frac{P(M) P(H \mid M)}{P(M) P(H \mid M)+P(F) P(H \mid F)} \\
P(M) & =0.51 & & =\frac{.51(.12)}{.51(.12)+.49(.08)}=.61
\end{array}
\]

\section*{(3) Pennstate \(\begin{aligned} & \text { Center for Artificial Intelligence Foundations \& Scientific Applications } \\ & \text { Ins }\end{aligned}\) Artificial Intelligence Research Laboratory}

\section*{Exercise}
- Suppose a rare disease infects one out of every 1000 people in a population.
- Suppose that there is a good, but not perfect, test for this disease
- if a person has the disease, the test comes back positive \(99 \%\) of the time.
- On the other hand, the test also produces some false positives: \(2 \%\) of uninfected people are also test positive.
- And someone just tested positive.
- What are his chances of having this disease?

\section*{(173) Pennstate \\ Center for Artificial Intelligence Foundations \& Scientific Applications}

PennState
Clinical and Tran Clinical and Translational
Science Institute

\section*{Example}

A survey of job satisfaction \({ }^{2}\) of teachers gave the following results
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{3}{|l|}{Job Satisfaction} \\
\hline & & Satisfied & Unsatisfied & Total \\
\hline L & College & 74 & 43 & 117 \\
\hline \(v\) & High School & 224 & 171 & 395 \\
\hline L & Elementary & 126 & 140 & 266 \\
\hline & Total & 424 & 354 & 778 \\
\hline
\end{tabular}

2 "Psychology of the Scientist: Work Related Attitudes of U.S. Scientists" (Psychological Reports (1991): 443 - 450).

\section*{(3) \begin{tabular}{l|l} 
PennState & Center for Artificial Intelligence Foundations \& Scientific Applications \\
Institute for computational
\end{tabular} Artificial Intelligence Research Laboratory}

\section*{PennState} Clinical and Translation Science Institute

\section*{Example}
- If each cell is divided by the total number surveyed, 778, the resulting table is a table of estimated probabilities.

Job Satisfaction
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{} & Satisfied & Unsatisfied & Total \\
\hline L & College & 0.095 & 0.055 & 0.150 \\
\hline \(v\) & High School & 0.288 & 0.220 & 0.508 \\
\hline L & Elementary & 0.162 & 0.180 & 0.342 \\
\hline & Total & 0.545 & 0.455 & 1.000 \\
\hline
\end{tabular}

Let \(S=\) Satisfied, \(C=\) College \(\ldots . .\).
- \(P(C)=0.15\) (proportion of teachers who are college teachers)
- \(P(S)=0.545\) (proportion of teachers who are satisfied with their jobs)
- \(P(S \cap C)=0.095\) (proportion of teachers who are college teachers and are satisfied with their jobs)

\begin{tabular}{|c|c|c|c|c|c|}
\hline  & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Center for Artificial Intelligence Foundations Artificial Intelligence Research Laboratory}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{ll} 
cientific Applications & \begin{tabular}{l} 
PennState \\
Clinical andTranslational \\
Science Institute
\end{tabular}
\end{tabular} Science Institute}} \\
\hline \multirow{6}{*}{Example} & & & & & \\
\hline & & & Satisfied & Unsatisfied & Total \\
\hline & & College & 0.095 & 0.055 & 0.150 \\
\hline & E & High School & 0.288 & 0.220 & 0.508 \\
\hline & L & Elementary & 0.162 & 0.180 & 0.342 \\
\hline & & Total & 0.545 & 0.455 & 1.000 \\
\hline
\end{tabular}

\section*{Are \(C\) and \(S\) independent events?}
\[
\begin{gathered}
P(C)=0.150 \\
P(C \mid S)=0.175
\end{gathered}
\]

So clearly, \(C\) and \(S\) are NOT independent

\section*{(38) Pennstate \(\begin{aligned} & \text { Penter for Artificial Intelligence Foundations \& Scientific Applications }\end{aligned}\)} Artificial Intelligence Research Laboratory

\section*{Exercise}
- Tom and Jane are going to take a driver's test at the nearest DMV office.
- Tom estimates that his chances to pass the test are \(70 \%\) and Jane estimates her chances of passing as \(80 \%\).
- Tom and Jane take their tests independently.
- What is the probability that at least one of the two friends pass the test?
- Suppose we learn that only one of the two friends passed the test. What is the probability that it was Jane?

\section*{(73) Pennstate \(\begin{aligned} & \text { Institut for Computational } \\ & \text { Artificial Intelificial Intelligence Foundations \& Scientific Applications }\end{aligned}\) Artificial Intelligence Research Laboratory}

\section*{Random Variables}
- A variable \(x\) is a random variable if the value that it assumes, corresponding to the outcome of an experiment is a chance or random event.
- Random variables can be discrete or continuous

Examples
- \(x=\) SAT score for a randomly selected student
- \(x=\) number of people who click on your website on a randomly chosen of the year 2023
- \(x=\) outcome of a die toss

\section*{ Artificial Intelligence Research Laboratory \(\begin{aligned} & \text { Clinical and Trans } \\ & \text { Science Institute }\end{aligned}\)}

\section*{Probability Distributions of Discrete Random Variables}
- The probability distribution for a discrete random variable \(x\) is a graph, table or formula that gives the probability \(p(x)\) associated with each value of \(x\)
- Note that
- \(\forall x 0 \leq p(x) \leq 1\)
- \(\sum_{i} p\left(x=v_{i}\right)=1\) (i indexes over the possible values \(v_{i}\) of \(x\)



\section*{(173) Pennstate \\ Center for Artificial Intelligence Foundations \& Scientific Applications}

PennState Clinical and Translationa Science Institute

\section*{Probability Distributions}
- Probability distributions can be used to describe the population, just as we described samples using statistics
- Shape: Symmetric, skewed, mound-shaped...
- Outliers: unusual or unlikely measurements
- Center and spread: mean and standard deviation. A population mean is called \(\mu\) and a population standard deviation is called \(\sigma\).
- Let \(x\) be a discrete random variable with probability distribution \(p(x)\). Then the mean, variance and standard deviation of \(x\) are given as
\[
\begin{aligned}
& \text { Mean : } \mu=\sum x p(x) \\
& \text { Variance }: \sigma^{2}=\sum(x-\mu)^{2} p(x) \\
& \text { Standard deviation }: \sigma=\sqrt{\sigma^{2}}
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{3}{|l|}{Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory} &  \\
\hline \multicolumn{6}{|l|}{Example} \\
\hline \multicolumn{6}{|l|}{Toss a fair coin 3 times and record \(x\), the number of heads.} \\
\hline \(x\) & \(p(x)\) & \(x p(x)\) & \((x-\mu)^{2} p(x)\) & & \\
\hline 0 & 1/8 & 0 & \((-1.5)^{2}(1 / 8)\) & \(\mu=\sum x p(x)\) & ) \(=\frac{12}{8}\) \\
\hline 1 & 3/8 & 3/8 & \((-0.5)^{2}(3 / 8)\) & & \\
\hline 2 & 3/8 & 6/8 & \((0.5)^{2}(3 / 8)\) & \(\sigma^{2}=\sum(\) & - \(-\mu)^{2} p\) \\
\hline 3 & 1/8 & 3/8 & \((1.5)^{2}(1 / 8)\) & & \\
\hline \multicolumn{4}{|l|}{\[
\begin{aligned}
& \sigma^{2}=.28125+.09375+.09375+.28125=.75 \\
& \sigma=\sqrt{.75}=.688
\end{aligned}
\]} & \[
=.75
\] & \\
\hline
\end{tabular}
```

