

Pearl's do-calculus is complete for many more problems

- Identifiability using surrogate variables Z when X is not experimentally manipulable was solved in 2012 by Bareinboim and Pearl
- Causal effect transportability - solved by Pearl and Bareinboim, Lee and Honavar, Bareinboim and Pearl, Bareinboim, Lee, Honavar, Pearl (2012-2013 AAAI, UAI, NeurIPS)
- Identifying the intervention cover of a causal graph (Kandasamy, Bhattacharya, and Honavar, AAAI 2019)
- Variants of do-calculus for relational causal models (Lee and Honavar, UAI 2016, Lee and Honavar, AAAI 2020)
Do-calculus is for causal inference what Newton's laws of motion are for classical physics

Linear Structural Causal Models

- Linear Regression
- Introduction to Linear Structural Causal Models
- When regression can and cannot be used to find causal effects.
- Identification in linear SCM

Regression

- Predict the value of Y based on X
- Supervised machine learning is often just regression on steroids
- How do we fit a regression line?
- Givena dataset of X, Y pairs, we fit them to $y=m x+b$
so as to minimize

$$
\sum_{i}\left(y_{i}-b-m x_{i}\right)^{2}
$$

- m denotes the slope and b the intercept along the Y axis

Regression Coefficient

- $R_{Y X}$ is slope of regression line of Y on X
- $m=R_{Y X}=\sigma_{X Y} / \sigma_{X}{ }^{2}$
- Slope gives correlation
- Positive slope \rightarrow positive correlation
- Negative slope \rightarrow negative correlation
- Zero slope $\rightarrow X$ and Y are independent or nonlinearly correlated

Variance of X, i.e., $\sigma_{X}{ }^{2}=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$
Covariance $\sigma_{X Y} \triangleq \mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]$
Correlation coefficient $\rho_{X Y}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}$
(0) Dannstate Data Science for Researchers and Scholars

Multiple Regression

- $y=r_{0}+r_{1} \cdot x+r_{2} \cdot z$
- How do we visualize?: a plane
- What happens if we fix X at some value?
- $r_{1} \cdot x$ becomes a constant
- r_{2} is now the slope of slice along X-axis
- What happens if we fix Z at some value?
- $r_{2} \cdot z$ becomes a constant
- r_{1} is now the slope of slice along Z-axis

(3) Pennstate
 Institute for Conn and Data Science
 Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory
 Interpreting regression coefficients

Example: If $y=1+2 x_{1}+3 x_{2}$

- Do not interpret the coefficients unless they are statistically significant.
- It is NOT accurate to say "For each change of 1 unit in x_{1}, y changes 2 units".
- What is correct to say is "If x_{2} is fixed, then for each change of 1 unit in x_{1}, y changes 2 units."

Linear Structural Causal Models

Linear SCM are defined as a system of linear equations representing ground-truth:

$$
Y:=\sum_{i} \lambda_{x_{i} y} X_{i}+\mathcal{E}_{y}
$$

1. All correlations between \mathcal{E} are explicitly specified.
2. X_{i} are the direct causes of Y, and $\lambda_{x_{i} y}$ is the change in Y per X_{i}.
3. WLOG assume normalized data $(\mathrm{E}[X]=0$ and $\mathrm{E}[X X]=1)$ to simplify math
4. Assume $\mathcal{E}_{y} \sim \mathcal{N}$, meaning that the distribution is fully specified by covariance matrix $\Sigma\left(\sigma_{i j}\right)$.

Causal Inference In Linear Systems

- What is the effect of salt intake on blood pressure after adjusting for confounders; or the total effect of an after-school study program on test scores;
- What is the direct effect or the unmediated by other variables, of the program on test scores.
- What is the effect of enrollment in an optional work training program on future earnings, when enrollment and earnings are confounded by a common cause (e.g., motivation).
- Continuous variables
- We need to model with continuous variables.
- We will assume linear relationships and Normal distributions of errors.

Non-Parametric to Linear

The only substantive change we are making is that the function f becomes linear:

$$
V_{i} \leftarrow f_{i}\left(p a_{i}, U_{i}\right) \quad \Rightarrow \quad V_{i} \leftarrow \sum_{j \mid V_{j} \in p a_{i}} \lambda_{j i} V_{j}+\mathcal{E}_{i}
$$

1. $\lambda_{j i}$ is called the "Structural Coefficient".
2. Instead of using U_{i}, we rename it to \mathcal{E}_{i} by convention.
3. If we know all $\lambda_{j i}$, we can find the causal effect of V_{j} on V_{i}.

Example: linear structural causal model

$$
\begin{aligned}
X_{1} & =f_{x_{1}}\left(U_{x_{1}}\right) \\
X_{2} & =f_{x_{2}}\left(U_{x_{2}}\right) \\
Y & =f_{y}\left(X_{1}, X_{2}, U_{y}\right)
\end{aligned}
$$

$$
\begin{aligned}
X_{1} & =\varepsilon x_{1} \\
X_{2} & =\varepsilon x_{2} \\
Y & =\lambda_{x_{1} y} X_{1}+\lambda_{x 2 y} x_{2}+\varepsilon_{y}
\end{aligned}
$$

We can draw the structural coefficients directly on the graph, which then fully specifies the model.

Example: linear structural causal model

The covariance between e_{i} and e_{j} is represented by $e_{i j}$, and is used as the value of a bidirected edge:

Latent Confounding

\Rightarrow

$e_{x y} \equiv \mathbb{E}\left[e_{x} e_{y}\right]$

- $e_{x y}$ is unobserved, since it is covariance of latent variables. It is mathematically useful, however, so wedraw it on the graph just like structural coefficients.

Linear SCM: Interventions

$$
\mathbb{E}[Y \mid d o(X=x)]=?
$$

Linear SCM: Interventions

$$
\begin{aligned}
X \xrightarrow{\lambda} Y & \\
\mathbb{E}[Y \mid d o(X=x)] & =\mathbb{E}\left[\lambda x+\mathrm{e}_{y}\right] \\
& =\lambda x+\mathbb{E}\left[\mathrm{e}_{y}\right] \\
& =\lambda x
\end{aligned}
$$

Note that x is a value of X

Linear SCM

- Graph: We are assuming that you have a hypothesized causal graph structure. In other words, you think you know what causes what, and which variables have an unknown common cause.
- Observational Data: You have a set of data samples with measurements of all of the

$(x 1, y 1)$
$(x 2, y 2)$
...
($x n, y n$) observable variables.
- Goal: Find Structural Coefficients You do NOT have knowledge of the underlying structural
 coefficients. These represent the actual causal effects that we want to find.

Linear SCM: Interventions

Remember that weassumed $e \sim N$, meaning that the distribution is fully specified by covariance matrix $\Sigma\left(\sigma_{x y}\right)$.

$$
\begin{aligned}
& X \xrightarrow{\lambda} \text { (Yy } \\
&=\mathbb{E}[X Y] \\
&=\mathbb{E}\left[X\left(\lambda X+e_{y}\right)\right] \\
&=\mathbb{E}\left[\lambda X X+X e_{y}\right] \\
&=\lambda \mathbb{E}[X X]+\mathbb{E}\left[X e_{y}\right] \\
&=\lambda 1+0 \\
&=\lambda
\end{aligned}
$$

Remember, we
normailize
The mean to 0 and
variance to 1

Connecting Observed with Unobserved

Solve for $\sigma_{x y}$ in terms of the structural coefficients λ and $e_{x y}$

$$
\sigma_{x y}=\mathbb{E}[X Y]
$$

$$
\begin{aligned}
& \sigma_{x y}=\mathbb{E}[X Y] \\
&=\lambda+e_{x y}
\end{aligned}
$$

PennState
 A Curious Property of Linear Causal Models

$$
\begin{aligned}
\sigma_{x y} & =\mathbb{E}[X Y] \\
& =\lambda_{z y} \lambda_{x z}
\end{aligned}
$$

Paths and Covariances

There is a relationship between covariances and paths in the graph.

$$
\begin{aligned}
\sigma_{x y} & =\mathbb{E}[X Y]=\mathbb{E}\left[X\left(\lambda_{x y} X+e_{y}\right)\right] \\
& =\lambda_{x y} \mathbb{E}[X X]+\mathbb{E}\left[X e_{y}\right] \\
& =\lambda_{x y}+\mathbb{E}\left[\left(\lambda_{z x} Z+e_{x}\right) e_{y}\right] \\
& =\lambda_{x y}+\lambda_{z x} \mathbb{E}\left[e_{z} e_{y}\right]+\mathbb{E}\left[e_{x} e_{y}\right] \\
& =\lambda_{x y}+\lambda_{z x} e_{z y}
\end{aligned}
$$

e_{x} and e_{y} are uncorrelated
$\mathrm{E}\left[e_{z} e_{y}\right]=e_{z y}$ by definition

```
(0)Penssite
    Istitue for Computational

\section*{Paths and Covariances}
```

There is a relationship between covariances and paths in the graph.

```

```

$$
\sigma_{x y}=\lambda x y+\lambda_{z x} e_{z y}
$$

The resulting terms correspond to paths between X and Y in the causal graph

Reading Covariances off the Graph

The covariance between variables X and Y is the sum of open paths between them in the causal graph, so paths with no colliding arrowheads $(\rightarrow \leftarrow)$

$$
\sigma_{x y}=\lambda_{x y}+\lambda_{w x} e_{w y}+\lambda_{z x} \lambda_{w z} e_{w y}
$$

Wright's Rules

$$
\begin{gathered}
\sigma_{x y}=\text { Sum of products of path coefficients } \\
\text { along all open paths between } X \text { and } Y
\end{gathered}
$$

- $\sigma_{x y}$ is 0 only when X and Y are d-separated.
- If there is an edge $X{ }_{\rightarrow}^{\alpha} Y$ in the model, then $\sigma_{x y}=\alpha+$ contributions of other paths between X and Y.
- $\sigma_{x y}=\alpha$ if X and Y are d-separated in $G_{\alpha}(G$ with edge α removed)
- Wright's rules are defined for acyclic models (DAG)


```
PennState
Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory
- Suppose you want to determine if a new drug is helpful for curing a disease
```


Why did regression mislead us here?

The following world model is implicitly assumed when attributing causal meaning to the regression coefficient:

$$
\begin{aligned}
& X:=e_{x} \\
& Y:=\lambda_{x y} X+e_{y} \quad e_{x}, e_{y} \text { independent }
\end{aligned}
$$

Why did regression mislead us here?

The following world model is implicitly assumed when attributing causal meaning to the regression coefficient:

Regression $Y=\beta X+e$ gives correct $\beta=\lambda_{x y}$
The key assumption is lack of confounding!

Why did regression mislead us here?

The following world model (lack of confounding) is implicitly assumed when attributing causal meaning to the regression coefficient:

Covariance gives the same answer:

$$
\sigma_{x y}=\mathbb{E}[X Y]=\mathbb{E}\left[X\left(\lambda_{x y} X+e_{y}\right)\right]=\lambda_{x y} \mathbb{E}[X X]+\mathbb{E}\left[X e_{y}\right]=\lambda_{x y}
$$

```
PennState
Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory
Clinical and Translational
nstitule for Cor
The True Scenario
If one is unable to ascertain the assumption of no confounding between X and Y , this is the corresponding graphical model
```


$X:=e_{x}$ $Y:=\lambda_{x y} X+e y$
ex, ey correlated

May be

- The drug is expensive so mostly rich people are getting it.
- Rich people also tend to get better care overall and hence have a better chance of recovery
- But data about financial status not gathered

The True Scenario

If one is unable to ascertain the assumption of no confounding between X and Y, this is the corresponding graphical model

$X:=e_{x}$
$Y:=\lambda_{x y} X+e_{y}$
ex, ey correlated

- Regression $Y=\beta X+e$ gives a biased answer
$\sigma_{x y}=\lambda_{x y} \mathbb{E}[X X]+\mathbb{E}\left[e_{x} e_{y}\right]$
$\sigma_{x y}=\lambda_{x y}+e_{x y}$
- In this case, the causal effect of the drug X on blood antibodies Y is provably unidentifiable from observational data
- What can you do? Run an RCT!

Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory

What does Regression Compute?

$$
Y=\beta X+e
$$

We want to minimize the square of the error between Y and βX

$$
\begin{aligned}
\mathbb{E}\left[(Y-\beta X)^{2}\right] & =\mathbb{E}\left[Y Y-2 \beta X Y+\beta^{2} X X\right] \\
& =\mathbb{E}[Y Y]-2 \beta \mathbb{E}[X Y]+\beta^{2} \mathbb{E}[X X] \\
& =1+\beta^{2}-2 \beta \mathbb{E}[X Y] \\
& =1+\beta^{2}-2 \beta \sigma x y
\end{aligned}
$$

Solving $\frac{\partial}{\partial \beta}\left(1+\beta^{2}-2 \beta \sigma_{x y}\right)=\left(2 \beta-2 \sigma_{x y}\right)=0$
We get: $\beta=\sigma_{x y}$
The regression coefficient is just the covariance between X and Y !

What does Regression Compute?

- The regression equation $Y=\beta X+e$ assumes $e ~ \amalg X$
- The solution of the regression equation is: $\beta=\sigma_{x y}$.
- We will call this value $r_{y x}$ (solved value of linear regression of Y on X)
- Knowledge of $r_{y x}$ supports no causal claims.
- In contrast, the structural causal model

- Corresponds to the structural equation $Y=\lambda X+e_{y}$
- which implies $\mathbb{E}[Y \mid d o(X)]=\lambda X$
- The structural model makes causal claims, that is, claims about the interventional distribution which can be tested, and can be falsified.
- The SCM and regression equation look similar but have different interpretations.

Equations for Causal Effect Identification in Linear Causal Models

$$
\left[\begin{array}{ccc}
\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right]=\left[\begin{array}{ccc}
1 & \lambda_{x y}+\lambda_{z x} \epsilon_{z y} & \lambda_{z x} \\
\lambda_{x y}+\lambda_{z x} \epsilon_{z y} & 1 & \lambda_{z x} \lambda_{x y}+\epsilon_{z y} \\
\lambda_{z x} & \lambda_{z x} \lambda_{x y}+\epsilon_{z y} & 1
\end{array}\right]
$$

- Note that the sigmas can be expressed in terms of lambdas using techniques previously introduced (path analysis)

Equations for Causal Effect Identification in Linear Causal Models

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\sigma_{x x} & \sigma_{x y} & \sigma_{x z} \\
\sigma_{y x} & \sigma_{y y} & \sigma_{y z} \\
\sigma_{z x} & \sigma_{z y} & \sigma_{z z}
\end{array}\right]=\left[\begin{array}{ccc}
1 & \lambda_{x y}+\lambda_{z x} \epsilon_{z y} & \lambda_{z x} \\
\lambda_{x y}+\lambda_{z x} \epsilon_{z y} & 1 & \lambda_{z x} \lambda_{x y}+\epsilon_{z y} \\
\lambda_{z x} & \lambda_{z x} \lambda_{x y}+\epsilon_{z y} & 1
\end{array}\right]}
\end{gathered}
$$

- Covariance matrix Σ is symmetric
- Only the entries in the lower or upper triangle need to be considered

Causal Effect Identification in Linear Causal Models

- Can Λ be solved in terms of Σ ?

$$
\begin{aligned}
\sigma_{x z} & =\lambda_{z x} \\
\sigma_{x y} & =\lambda_{x y}+\lambda_{z x} e_{z y} \\
\sigma_{z y} & =\lambda_{z x} \lambda_{x y}+e_{z y}
\end{aligned}
$$

- $\lambda_{z x}$ can be solved from the first equation
- Substituting $\lambda_{z x}$ into the remaining 2 equations, we get 2 equations in 2 unknowns
- Hence, we can solve for Λ from Σ
- The given linear causal model can be identified from observational data

Causal Effect Identification in Linear Causal Models

- Can Λ e solved in terms of Σ ?

Causal Effect Identification in Linear Causal Models

- Can Λ e solved in terms of Σ ?

$$
\left[\begin{array}{ll}
\sigma_{x x} & \sigma_{x y} \\
\sigma_{y x} & \sigma_{y y}
\end{array}\right]=\left[\begin{array}{cc}
1 & \lambda_{x y}+\epsilon_{x y} \\
\lambda_{x y}+\epsilon_{x y} & 1
\end{array}\right]
$$

- We have one equation in 2 unknowns

$$
\sigma_{x y}=\lambda_{x y}+e_{x y}
$$

- There is no unique solution for $\lambda_{x y}$ or $e_{x y}$

Causal Effect Identification in Linear Causal Models

$$
\begin{array}{ll}
\sigma_{x w}=\lambda_{x w}+\mathrm{e}_{x w} & \sigma_{w z}=\lambda_{x w} \lambda_{x z}+\lambda_{x z} e_{x w}+\lambda_{x w} e_{x z} \\
\sigma_{x z}=\lambda_{x z}+\mathrm{e}_{x z} & \sigma_{w y}=\lambda_{x w} \lambda_{x y}+\lambda_{x w} e_{x y}+\lambda_{x y} e_{x w} \\
\sigma_{x y}=\lambda_{x y}+\mathrm{e}_{x y} & \sigma_{z y}=\lambda_{x z} \lambda_{x y}+\lambda_{x z} e_{x y}+\lambda_{x y} e_{x z}
\end{array}
$$

- Can we identify $\lambda_{X Y}$?
- Yes, by solving the system of equations

Causal Effect Identification in Linear Causal Models

- $P(Y \mid d o(X))$ Identifiable: Unique value of $\lambda_{X Y}$ consistent with observational data
- $P(Y \mid d o(X))$ NOT identifiable: Infinite set of possible solutions for $\lambda_{X Y}$ consistent with observational data
- $P(Y \mid d o(X))$ finite identifiable: if there is only a finite number of solutions for $\lambda_{X Y}$ that are consistent with observational data

Causal transportability ${ }^{1}$

- Suppose we have run a study in Chicago and learned a causal relationship, say between poverty and obesity
- Suppose we want to see if the relationship is true in some form in Los Angeles
- Los Angeles is different from Chicago in some respects, e.g., demographics
- We now have tools to answer if the causal relationship which we learned from a study in Chicago can be tweaked in some way so that it applies to Los Angeles
${ }^{1}$ Bareinboim and Pearl, 2012; Lee and Honavar, 2013a; 2013b, Bareinboim, Lee, Honavar, and Pearl, 2013, Bareinboim and Pearl, 2016; Lee et al., 2019.

```
(6) Penstate
Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory Clinical and Translational
Transportability of Causal Effects Across Populations
```


Selection Diagrams

- Represent different causal mechanisms across the source and target distributions (Π and Π^{*})

Selection Diagrams

Selection diagrams

- Allow for different causal mechanisms across the source and target distributions (Π and Π^{*})

Π_{1}^{*}

Π_{2}^{*}

Π_{3}^{*}

```
(23) Pennstate Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory
```


Causal transportability


```
Experimental study in LA
Measured: \(P(x, y, z), P(y \mid d o(x), z)\)
Needed:
\[
Q=P^{*}(y \mid d o(x))=\sum_{z} P(y \mid d o(x), z) P^{*}(z)
\]
Transport Formula: \(F\left(P, P_{d o}, P^{*}\right)\)



\section*{3 PennState \\ Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory \\ Causal transportability reduced to docalculus}
- Theorem: A causal relation \(\boldsymbol{R}\) is transportable from a source domain \(\Pi\) to a target domain \(\Pi^{*}\)
- if and only if it is reducible, using the rules of docalculus, to an expression in which the selection variable(s) \(\boldsymbol{S}\) is(are) separated from do( ).


\section*{Transportability and do-calculus}




\section*{Trivial Transportability}
- We clearly don't have direct transportability

- \(P(y \mid d o(t), x) \neq P^{*}(y \mid d o(t), x)\)
- Suppose we have access to observational data from the target population: \(P^{*}(y, t, x)\)
- Then we can identify \(P^{*}(y \mid d o(t), x)\) using only target data
- \(P^{*}(y \mid d o(t), x)=P^{*}(y \mid t, x)\)
- If a causal effect is identifiable from observational data in the target domain,
-We do not need any information from the source domain to estimate it
- It is trivially transportable from any source domain

\section*{(23) PennState \\ istitute for Computational \\ Causal transportability - general version}
- How to combine results of
- several experimental and observational studies,
- each conducted on a different population and under a different set of conditions,
- to construct a valid estimate a causal effect of interest,
- in a new (target) population,
- that may be different from any of the ones studied



\section*{Summary}
- Given the commonalities and differences between one or more source domains and a target domain encoded in selection diagrams, transportability of a causal effect of interest from the source domain(s) to a target domain can be determined using do-calculus
- When an effect is transportable, the transport formula can be derived in time that is polynomial in the size of the formula
- The algorithm is sound and complete
- Corollary do-calculus is complete for causal transportability
```

M PennState
Istiute for Con
Center for Artificial Intelligence Foundations \& Scientific Application
Artificial Intelligence Research Laboratory

Further generalizations

```
- mz-transportability
- Identification from proxy experiments
- Multiple transportability
- Meta analysis

Do calculus for causal inference
Do calculus is complete for
\(\checkmark\) Causal transportability
- Bareinboim \& Pearl, 2012
\(\checkmark\) Causal m-transposability
- Bareinboim \& Pearl, 2013; Lee and Honavar, 2013
\(\checkmark\) Causal z transposability
- Bareinboim \& Pearl, 2013; Lee \& Honavar, 2013
\(\checkmark\) Causal mz-transportability
- Bareinboim, Lee, Honavar \& Pearl, 2013
\(\checkmark\) Meta analysis
- Bareinboim et al., 2016; Lee et al., 2019

Analyses have been extended to non IID setting (Lee and Honavar, 2015, 2016, 2020)
Do-calculus is for causal inference what Newton's laws of motion are for classical physics
(4) Penssare Data scence for Researchers and Scholars Vasant Honavarf Fall 2023```

