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Pearl’s do-calculus is complete for many more problems
• Identifiability using surrogate variables 𝑍 when 𝑋	is not 

experimentally manipulable was solved in 2012 by Bareinboim and 
Pearl

• Causal effect transportability – solved by Pearl and Bareinboim, Lee 
and Honavar, Bareinboim and Pearl, Bareinboim, Lee, Honavar, Pearl 
(2012-2013 AAAI, UAI, NeurIPS)

• Identifying the intervention cover of a causal graph (Kandasamy, 
Bhattacharya, and Honavar, AAAI 2019)

• Variants of do-calculus for relational causal models (Lee and Honavar, 
UAI 2016, Lee and Honavar, AAAI 2020)

Do-calculus is for causal inference what Newton’s laws of motion are 
for classical physics
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Lecture Outline• Linear Regression
• Introduction to Linear Structural Causal Models

• When regression can and cannot be used to find causal effects.
• Identification in linear SCM

Linear Structural Causal Models
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• Predict the value of 𝑌 based on 𝑋
• Supervised machine learning is often just  

regression on steroids
• How do we fit a regression line?

• Given a data set of 𝑋,𝑌 pairs, we fit them to 
𝑦 = 𝑚𝑥 + 𝑏       

     so as to minimize

,
!
(𝑦! −	𝑏	−	𝑚𝑥!)² 

•  𝑚  denotes the slope and 𝑏 the intercept 
along the 𝑌 axis

Regression

𝑥

𝑦
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§ 𝑅𝑌𝑋 is slope of regression line of 𝑌	on 𝑋
§ 𝑚	 = 	𝑅𝑌𝑋	 = 	𝜎𝑋𝑌/𝜎𝑋²
§ Slope gives correlation

§ Positive slope → positive correlation
§ Negative slope → negative correlation
§ Zero slope → 𝑋 and 𝑌 are independent or non-

linearly correlated

Variance of 𝑋, i.e., 𝜎𝑋² = E 𝑋 −E 𝑋 $

Covariance 𝜎%& ≜ E 𝑋 −E 𝑋 𝑌 −E 𝑌

Correlation coefficient 𝜌%& = '!"
'!	'"

Regression Coefficient
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Multiple Regression

• 𝑦	 =	𝑟₀	+ 	𝑟₁·𝑥	+	𝑟₂ · 𝑧
• How do we visualize?: a plane
• What happens if we fix 𝑋 at some value? 

• 𝑟₁ · 𝑥 becomes a constant
• 𝑟₂ is now the slope of slice along 𝑋-axis
• What happens if we fix 𝑍 at some value?

• 𝑟₂ · 𝑧	becomes a constant
• 𝑟₁	is now the slope of slice along 𝑍-axis
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Example: If 𝑦	 = 	1	 + 	2𝑥1+ 	3𝑥2

• Do not interpret the coefficients unless they are 
statistically significant.

• It is NOT accurate to say "For each change of 1 unit in  𝑥1, 
𝑦 changes 2 units". 

• What is correct to say is "If 𝑥2 is fixed, then for each 
change of 1 unit in  𝑥1, 𝑦	changes 2 units."

Interpreting regression coefficients 
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Linear Structural Causal Models
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Causal Inference In Linear Systems
• What is the effect of salt intake on blood pressure after adjusting 

for confounders; or the total effect of an after-school study 
program on test scores;

• What is the direct effect or the unmediated by other variables, 
of the program on test scores.

• What is the effect of enrollment in an optional work training 
program on future earnings, when enrollment and earnings are 
confounded by a common cause (e.g., motivation).

• Continuous variables
• We need to model with continuous variables. 
• We will assume linear relationships and Normal distributions 

of errors.
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Non-Parametric to Linear

The only substantive change we are making is that the function f becomes linear:
X

j |Vj ∈pai

Vi ←  fi (pai , Ui ) ⇒  Vi ←  λji Vj + Ei

1. λji is called the “Structural Coefficient”.
2. Instead of using Ui , we rename it to Ei by convention.
3. If we know all λji , we can find the causal effect of Vj on Vi .
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Example: linear structural causal model

Y

X1 X2

X1 = fx1 (Ux1 )
X2 = fx2 (Ux2 )
Y = fy (X1, X2, Uy )

Y

X1 X2

X1 = εx
1

X2 = ε x
2

1
Y = λx y X + λ X + ε1 x2y  2 y

We can draw the structural coefficients directly on the graph, which then 
fully specifies the model.
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Latent Confounding

The covariance between 𝑒𝑖	and 𝑒𝑗	is represented by 𝑒𝑖𝑗	, and is used as the value 
of a bidirected edge:

𝑒𝑥

X

𝑒𝑦

Y
⇒ X Y

𝑒	𝑥𝑦

𝑒	𝑥𝑦	 ≡ E[𝑒𝑥	𝑒𝑦	]

• e xy is unobserved, since it is covariance of latent variables. It is 
mathematically useful, however, so we draw it on the graph just like 
structural coefficients.

Example: linear structural causal model
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Linear SCM: Interventions

X Yλ

E[𝑌	|𝑑𝑜(𝑋	 = 	𝑥)] 	=?
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Linear SCM: Interventions

X Yλ

E[Y |do(X = x)] = E[λx + ey ]
= λx + E[ey ]

          = λx

Note that x is a value of X
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Identification In Linear SCM: The Problem Statement

• Graph: We are assuming that you have a 
hypothesized causal graph structure. In other 
words, you think you know what causes what, 
and which variables have an unknown 
common cause.

• Observational Data: You have a set of data 
samples with measurements of all of the 
observable variables.

• Goal: Find Structural Coefficients You do NOT 
have knowledge of the underlying structural 
coefficients. These represent the actual causal 
effects that we want to find.

X Y

(x1, y1)
(x2, y2)

...
(xn, yn)

X Y

e xy

λxy

Linear SCM
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Connecting Observed with Unobserved

Remember that we assumed 𝑒	 ∼ 	𝑁	, meaning that the distribution is 
fully specified by covariance matrix Σ (𝜎𝑥𝑦).

X Yλ

σxy = E[𝑋𝑌	]

= E[𝑋	(𝜆	𝑋	 + 	𝑒𝑦	)]

= E[𝜆	𝑋𝑋	 + 	𝑋	𝑒𝑦	]

= λ E[𝑋𝑋	]	+ E[𝑋	𝑒𝑦	]

= 𝜆	1	+ 	0

= λ

Remember, we 
normailize
The mean to 0 and 
variance to 1

Linear SCM: Interventions
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X

Y

λ e xy

Connecting Observed with Unobserved

Solve for 𝜎𝑥𝑦 in terms of the structural coefficients 𝜆 and 𝑒𝑥𝑦
𝜎𝑥𝑦 = E[𝑋𝑌	]

𝜎𝑥𝑦 = E[𝑋𝑌	]
  = λ + e xy
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A Curious Property of Linear Causal Models

X

Z

Y

λxz

λzy

σxy = E[XY ]
= λzy λxz
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X

Z

λxz

λzy

Y

e xz

A Curious Property of Linear Causal Models

σxy = E[XY ]
 = λzy λxz + λzy e xz
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X

Y

Paths and Covariances

Z

λxy

λzx

e zy

σxy = E	[XY ] = E	[X (λxy X + ey )]
= λxy  E	[XX ] + E	[X ey ]

 
= λxy + E	[(λzx Z + ex )ey ]
= λxy + λzx E	[e z e y] + E	[e x e y]

= λxy + λzx e zy

There is a relationship between covariances and paths in the graph.

e x and e y are uncorrelated
E	[e z e y] = e zy by definition
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Y

Paths and Covariances

There is a relationship between covariances and paths in the graph.

Z

λzx

X

λxy

e zy

𝜎𝑥𝑦	 = 	𝜆𝑥𝑦	 + 	𝜆𝑧𝑥	𝑒𝑧𝑦

The resulting terms correspond to paths 
between 𝑋 and 𝑌 in the causal graph
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Wright’s Rule
The covariance between variables X and Y is the sum of the  
contributions of  the paths between them in the causal graph, 
i.e. any non-self-intersecting path without colliding arrowheads 
(→←)

Z

X

λxy

Y

λzx

e zy σxy = λxy + λzx ezy

𝜎() =𝐴𝑠𝑠𝑜𝑐 𝑋 → 𝑌 +𝐴𝑠𝑠𝑜𝑐(𝑋 ← 𝑍 ← 𝑌)
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X

Reading Covariances off the Graph
The covariance between variables X and Y is the sum 
of open paths between them in the causal graph, so 
paths with no colliding arrowheads (→←)
     
    W

Z

λ

λwx

e wy

xy

Y

ezx X

Z

λ

λwx
ewy

xy

Y

𝜎() = 𝜆() +	 𝜆*( 𝑒*) + 𝜆+(𝜆*+𝑒*)

𝑊
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Wright’s Rules (1921)

Wright’s Rules

σxy = Sum of products of path coefficients
along all open paths between X and Y

•σxy is 0 only when X and Y are d-separated.
• If there is an edge X 𝛼→Y in the model, then
σxy = α + contributions of other paths between X and Y.
• σxy = α if X and Y are d-separated in Gα (G with edge 
α removed)

•Wright’s rules are defined for acyclic models (DAG)
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Linear Regression
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Example: The Medical Researcher• Suppose you want to determine if a new drug is helpful 
for curing a disease

21
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Step 2: Perform a Regression

• Perform a regression 
𝑌	 = 	𝛽𝑋	 + 	𝑒	on 
the data, with 
𝑋	 being drug 
dosage, and 𝑌 
biomarker measured 
giving

• Drug seems helpful, so 
you recommend it

𝛽	 = 	0.375

Perform regression
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What happens when the drug is given to everyone?

• When the drug is 
given to everyone 
in the population, 
you find a clear 
negative association 
between drug 
dosage and blood 
antibodies, with 
slope −1.

• This drug actually 
seems to hurt 
people!
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What’s Happening Here?

• Why was this 
negative effect  
(green line) not 
apparent from 
regression on the 
original dataset?

• Association ≠
	causation!

• Can we get 
causation from 
the original 
dataset?

Why did regression mislead us here? 
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Key Assumption: Lack of Confounding
The following world model is implicitly assumed when attributing 
causal meaning to the regression coefficient:

 𝜆𝑥𝑦	
 

𝑋 ∶= 	𝑒𝑥
𝑌 ∶= 	𝜆	𝑥𝑦	𝑋	 + 	𝑒𝑦 𝑒𝑥	, 𝑒𝑦	independent

Why did regression mislead us here? 

𝑌𝑋
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The following world model is implicitly assumed when attributing 
causal meaning to the regression coefficient:

 λxy 
 

𝑋 ∶= 	𝑒𝑥
𝑌 ∶= 	𝜆	𝑥𝑦	𝑋	 + 	𝑒𝑦 𝑒𝑥	, 𝑒𝑦	independent

Why did regression mislead us here? 

𝑌𝑋

Regression 𝑌	 = 	𝛽𝑋	 + 	𝑒  gives correct 𝛽 = 𝜆𝑥𝑦

The key assumption is lack of confounding! 
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The following world model (lack of confounding) is implicitly assumed 
when attributing causal meaning to the regression coefficient:

 λxy 
 

𝑋 ∶= 	𝑒𝑥
𝑌 ∶= 	𝜆	𝑥𝑦	𝑋	 + 	𝑒𝑦 𝑒𝑥	, 𝑒𝑦	independent

Why did regression mislead us here? 

𝑌𝑋

𝜎𝑥𝑦	 = 	E	[𝑋𝑌	] 	=	E	[𝑋	(𝜆	𝑥𝑦	𝑋	 + 	𝑒𝑦)] 	= 	𝜆	𝑥𝑦	E	[𝑋𝑋] +   E 𝑋𝑒𝑦 = 𝜆	𝑥𝑦	

Covariance gives the same answer:
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The True Scenario

X Y

If one is unable to ascertain the assumption of no confounding 
between X and Y, this is the corresponding graphical model

𝑋 ∶= 	𝑒𝑥
𝑌 ∶= 	𝜆	𝑥𝑦	𝑋	 + 	𝑒𝑦

ex , ey correlated

May be
• The drug is expensive so 

mostly rich people are 
getting it.

• Rich people also tend to get 
better care overall and hence 
have a better chance of 
recovery

• But data about financial 
status not gathered

e xy

𝜆𝑥𝑦
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The True Scenario

X Y

If one is unable to ascertain the assumption of no confounding 
between X and Y, this is the corresponding graphical model

𝑋 ∶= 	𝑒𝑥
𝑌 ∶= 	𝜆	𝑥𝑦	𝑋	 + 	𝑒𝑦

ex , ey correlated

e xy

𝜆𝑥𝑦

• Regression 𝑌	 = 	𝛽𝑋	 + 	𝑒	gives 
a biased answer

 𝜎𝑥𝑦	 = 	𝜆𝑥𝑦	E[𝑋𝑋	]	+ E[𝑒𝑥	𝑒𝑦	]

𝜎𝑥𝑦	 = 	𝜆𝑥𝑦	+ 𝑒𝑥𝑦

• In this case, the causal effect of 
the drug 𝑋 on blood antibodies 
𝑌 is provably unidentifiable from 
observational data

• What can you do? Run an RCT!
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What does Regression Compute?

𝑌	 = 	𝛽𝑋	 + 	𝑒
We want to minimize the square of the error between 𝑌 and 𝛽𝑋 

E[(Y −  βX )2] = E[YY −  2βXY + β2XX ]
= E[YY ] −  2βE[XY ] + β2 E[XX ]
= 1 + β2 − 2βE[XY ]
= 1 + β2 − 2βσxy

Solving

We get: 𝛽 = 𝜎()

The regression coefficient is just the covariance between 𝑋 and 𝑌!

What does Regression Compute?

.
./ 1+ β2 − 2βσxy =(2β − 2σxy) = 0
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Regression Equation vs. SCM: Confusion of the Century

• The regression equation 𝑌	 = 	𝛽𝑋	 + 	𝑒  assumes 𝑒	 ∐𝑋
• The solution  of the regression equation is: 𝛽 = 𝜎𝑥𝑦	.	
• We will call this value 𝑟𝑦𝑥 (solved value of linear regression of	𝑌 on 𝑋)
• Knowledge of 𝑟𝑦𝑥	supports no causal claims.

• In contrast, the structural causal model  

• Corresponds to the structural equation 𝑌	 = 	𝜆	𝑋	 + 	𝑒𝑦 

• which implies E[𝑌	|𝑑𝑜(𝑋	)] 	= 	𝜆	𝑋
• The structural model makes causal claims, that is, claims about 

the interventional distribution which can be tested, and can be 
falsified.

• The SCM and regression equation look similar but have different 
interpretations.

X Yλ

What does Regression Compute?
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Equations for Causal Effect Identification in Linear Causal Models

• Note that the sigmas can be expressed in terms of lambdas using 
techniques previously introduced (path analysis)
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Equations for Causal Effect Identification in Linear Causal Models

• Covariance matrix Σ	is symmetric 
• Only the entries in the lower or upper triangle need to be considered
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Causal Effect Identification in Linear Causal Models
• Given a SCM and an observational dataset, is 

it possible to uniquely determine λxy ?
• Can 𝜆𝑥𝑦	be solved in terms of Σ?

𝜎𝑥𝑧	 = 	𝜆𝑧𝑥
𝜎𝑥𝑦 = 𝜆𝑥𝑦 + 𝜆𝑧𝑥 𝑒𝑧𝑦
𝜎𝑧𝑦 = 𝜆𝑧𝑥𝜆𝑥𝑦 + 𝑒 𝑧𝑦

• Σcan be estimated from the observational 
data (and hence known)

• The Λ	need to be solved for
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Causal Effect Identification in Linear Causal Models

• Can	Λ be solved in terms of Σ?
𝜎𝑥𝑧	 = 	𝜆𝑧𝑥
𝜎𝑥𝑦 = 𝜆𝑥𝑦 + 𝜆𝑧𝑥 𝑒𝑧𝑦
𝜎𝑧𝑦 = 𝜆𝑧𝑥𝜆𝑥𝑦 + 𝑒 𝑧𝑦

• 𝜆𝑧𝑥 can be solved from the first equation

• Substituting 𝜆𝑧𝑥 into the remaining 2 
equations, we get 2 equations in 2 
unknowns 

• Hence, we can solve for Λ from Σ

• The given linear causal model can be 
identified from observational data
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Causal Effect Identification in Linear Causal Models

• Can	Λ e solved in terms of Σ?



177

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

  
   
   
              
   
  

Data Science for Researchers and Scholars Vasant Honavar, Fall 2023

Causal Effect Identification in Linear Causal Models

• Can	Λ e solved in terms of Σ?

• We have one equation in 2 unknowns
𝜎𝑥𝑦	 = 	𝜆𝑥𝑦	 + 	𝑒	𝑥𝑦

• There is no unique solution for 𝜆𝑥𝑦 or  𝑒	𝑥𝑦
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Causal Effect Identification in Linear Causal Models

• Can we identify 𝜆%&? 
• Yes, by solving the system of equations

• We have one equation in 2 unknowns
𝜎𝑥𝑦	 = 	𝜆𝑥𝑦	 + 	𝑒	𝑥𝑦

• There is no unique solution for 𝜆𝑥𝑦 or  𝑒	𝑥𝑦
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Causal Effect Identification in Linear Causal Models

• 𝑃(𝑌|𝑑𝑜(𝑋))	Identifiable: Unique value of 𝜆%& consistent with 
observational data

•  𝑃 𝑌 𝑑𝑜 𝑋 	NOT identifiable: Infinite set of possible solutions 
for 𝜆%&  consistent with observational data

• 𝑃 𝑌 𝑑𝑜 𝑋 	finite identifiable: if there is only a finite number of 
solutions for 𝜆%& that are consistent with observational data
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Causal transportability1

• Suppose we have run a study in Chicago and learned a causal 
relationship, say between poverty and obesity

• Suppose we want to see if the relationship is true in some form 
in Los Angeles
• Los Angeles is different from Chicago in some respects, e.g., 

demographics
• We now have tools to answer if the causal relationship which we 

learned from a study in Chicago can be tweaked in some way so 
that it applies to Los Angeles

1Bareinboim and Pearl, 2012; Lee and Honavar, 2013a; 2013b, Bareinboim, Lee, Honavar, and Pearl, 
2013, Bareinboim and Pearl,  2016; Lee et al., 2019.
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P (y | do(t), x)

Transportability of Causal  Effects Across 
Populations

Source Population Π Target Population Π∗

𝑃(𝑦, 𝑡, 𝑥⋯)

Given P (y | do(t), x) P*(y | do(t), x)

𝑃∗(𝑦, 𝑡, 𝑥⋯)

?
=
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Selection Diagrams

𝑋

𝑇 𝑌

• Represent different causal mechanisms across the source and target 
distributions (Π and Π∗)

𝑋

𝑇 𝑌

𝑆Π Π∗
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Selection Diagrams

Selection diagrams
• Allow for different causal mechanisms across the source and target 

distributions (Π and Π∗)

Π3∗ Π$∗ Π4∗

𝑆!𝑆! 𝑆!
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Causal transportability

Experimental study in LA
Measured: 𝑃 𝑥, 𝑦, 𝑧 , 𝑃(𝑦|𝑑𝑜 𝑥 , 𝑧)

    𝑄 = 𝑃∗ 𝑦 𝑑𝑜 𝑥 = ∑+ 𝑃 𝑦 𝑑𝑜 𝑥 , 𝑧 𝑃∗ 𝑧
 

Observational study in NYC
Measured: 𝑃∗ 𝑥, 𝑦, 𝑧

𝑃∗ 𝑧 	≠ 𝑃(𝑧)

X 
(Intervention)

Y
 (Outcome)

Z  (Age)

Transport Formula:   𝐹 𝑃, 𝑃89, 𝑃∗

Needed: 

• Source Π	and target Π∗ 
differ with respect to the 
distribution of 𝑍 (Age)

• Π	includes all ages, Π∗ 
includes only young

• Indicated by the 
“selection” arrow into 𝑍

𝑆
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Causal transportability

Experimental study in LA
Measured: 𝑃 𝑥, 𝑦,𝑤, 𝑧 , 𝑃(𝑦|𝑑𝑜 𝑥 ,𝑤)

    𝑄 = 𝑃∗ 𝑦 𝑑𝑜 𝑥 = 𝑃 𝑦|𝑑𝑜(𝑥)
 

Observational study in NYC
Measured: 𝑃∗ 𝑥, 𝑦,𝑤, 𝑧

𝑃∗ 𝑧 	≠ 𝑃(𝑧)

X 
(Intervention)

Y
 (Outcome)

Z  (Language skill)

Transport Formula:   𝐹 𝑃, 𝑃89, 𝑃∗

Needed: 

• Source Π	and target Π∗ 
differ with respect to the 
distribution of 𝑍

• For example, Π	and	Π∗ 
differ through “selection” 
on 𝑍 (language skill)

𝑊

• Not all differences 
between source and 
target matter!

𝑆
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Causal transportability

Experimental study in LA
Measured: 𝑃 𝑥, 𝑦,𝑤, 𝑧 , 𝑃(𝑦|𝑑𝑜 𝑥 ,𝑤)

 𝑄 = 𝑃∗ 𝑦 𝑑𝑜 𝑥 = 𝑃 𝑦|𝑑𝑜 𝑥 , 𝑧  𝑃∗ 𝑧 𝑥
 

Observational study in NYC
Measured: 𝑃∗ 𝑥, 𝑦,𝑤, 𝑧

𝑃∗ 𝑧 	≠ 𝑃(𝑧)

X 
(Intervention)

Y
 (Outcome)

Z

Transport Formula:   𝐹 𝑃, 𝑃89, 𝑃∗

Needed: 

• Source Π	and target Π∗ 
differ with respect to the 
distribution of 𝑍

• For example, Π	and	Π∗ 
differ through “selection” 
on 𝑍 (language skill)

𝑊

𝑆
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Causal transportability reduced to do-
calculus

• Theorem: A causal relation 𝑹 is transportable from a 
source domain Π	to a  target  domain Π∗ 
• if  and only if it is reducible, using the rules of do-

calculus, to an expression in which the selection 
variable(s) 𝑺 is(are) separated from do( ). 
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Transportability
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Transportability and do-calculus

X

T Y

S

U

Intervention on 𝑇
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External validity (direct transportability)
• We say that the causal effect 
𝑃 𝑦 𝑑𝑜 𝑡 , 𝑥 	 is directly transportable 
from source domain Π	to a  target  
domain Π∗ if 

• Such a causal effect is said to have 
external validity (or generalizability)
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Transportability
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Trivial Transportability X

T Y

S

• We clearly don’t have direct transportability
• 𝑃	(𝑦	|	𝑑𝑜(𝑡), 𝑥) 	≠ 𝑃∗(𝑦	|	𝑑𝑜(𝑡), 𝑥)

• Suppose we have  access to observational data from the target 
population: 𝑃∗(𝑦, 𝑡, 𝑥)

• Then we can identify 𝑃∗(𝑦	|	𝑑𝑜(𝑡), 𝑥)using only target data 
• 𝑃∗(𝑦	|	𝑑𝑜(𝑡), 𝑥) = 𝑃∗(𝑦	|	𝑡, 𝑥)

• If a causal effect is identifiable from observational data in the 
target domain,

• We do not need any information from the source domain 
to estimate it

• It is trivially transportable from any source domain
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Causal transportability – general version

• How to combine results of 
• several experimental and observational studies, 
• each conducted on a different population and 

under a different set of conditions, 
• to construct a valid estimate a causal effect of 

interest, 
• in a new (target) population, 
• that may be different from any of the ones studied
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Causal transportability

(b)  New York

Only survey data 
Resembling target

(c)  Los Angeles

Only survey data  
Young fashionistas

(e)  San Francisco
Mostly techies 

(d)  Boston

Age not recorded
  

Mostly educated 
scholars

(f) Texas

Mostly  Hispanics
  

(h)  Utah

RCT
 paid volunteers

(g)  State College

RCT
College students

(i)  Wyoming
  

RCT, young 
athletes

Target population Π∗           Query of interest:    Q = P*(y | do(x))
(a)  Arkansas

Only survey data
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Target population Π∗           Query of interest:    Q = P*(y | do(x))

X Y

(f) Z

W

X Y

(b) Z

W X Y

(c) Z
S

WX Y

(a) Z

W

X Y

(g) Z

W

X Y

(e) Z

W

S S

X Y

(h) Z

W X Y

(i) Z
S

W

S

X Y

(d) Z

W
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Summary
• Given the commonalities and differences between one or 

more source domains and a target domain encoded in 
selection diagrams, transportability of a causal effect of 
interest from the source domain(s) to a target domain can 
be determined using do-calculus

• When an effect is transportable, the transport formula can 
be derived in time that is polynomial in the size of the 
formula

• The algorithm is sound and complete
• Corollary do-calculus is complete for causal transportability
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Further generalizations

• mz-transportability 
• Identification from proxy experiments
• Multiple transportability

• Meta analysis



198

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

  
   
   
              
   
  

Data Science for Researchers and Scholars Vasant Honavar, Fall 2023

Do calculus for causal inference
Do calculus is complete for

üCausal transportability
• Bareinboim & Pearl, 2012

üCausal m-transposability
• Bareinboim & Pearl, 2013; Lee and Honavar, 2013

üCausal z transposability
• Bareinboim & Pearl, 2013; Lee & Honavar, 2013

üCausal mz-transportability
• Bareinboim, Lee, Honavar & Pearl, 2013

üMeta analysis
• Bareinboim et al., 2016; Lee et al., 2019

Analyses have been extended to non IID setting (Lee and Honavar, 
2015, 2016, 2020)
Do-calculus is for causal inference what Newton’s laws of motion 
are for classical physics


