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Predictive modeling in practice
• Model accuracy depends on the data!
• Are the samples representative?
• Do we have enough samples?
• Do we have an informative set of features?
• Do you have to gather the features yourself? 
• Different features may have different measurement cost

• Do we have enough labeled (as opposed to unlabeled) data?
• Do you have homogenous features e.g., all numeric or all 

categorical or do you have a mix of heterogeneous features?
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Predictive modeling in practice
• If you want to improve the model performance, you may need 

• More data samples
• Better (more informative) features
• Different machine learning algorithms (or hyperparameters)

• One way to decide if you need more/better data
• Estimate model performance on training and test set
• If performance on the training data is unsatisfactory, you may need

• More data samples
• More informative features
• Different learning algorithm

• If performance on the training data is good but performance on test 
data is unsatisfactory, you may want to
• Gather more samples 
• Reduce model complexity

• Regularization e.g., SVM
• Feature selection
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Predictive modeling in practice
• Data Types
• Categorical
• Nominal – No natural ordering 
• Nominal encoding (e.g., for decision trees)
• One hot encoding (e.g., for linear classifiers)

• Ordered/Ordinal – integers that preserve ordering
• Continuous
• Normalize using z-score (transform data by subtracting 

the mean and then dividing by the standard deviation
• Look at the data to make these and other decisions!
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What if your data has heterogeneous features?
• Find models that can handle all of the feature types

• Transform features in a sensible way into the form that the chosen 
machine learning algorithm can handle
• One-hot-encode the categorical features
• Nominal – No natural ordering 

• Nominal encoding (e.g., for decision trees)
• One hot encoding (e.g., for linear classifiers)

• Ordered/Ordinal and continuous 
• Continuous encoding followed by z-score normalization
• Mapping continuous to ordered data using binning
• Thermometer code

• Build different sub-models using different types of features and combine 
them using a second model
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Derived features
• Features derived  using by domain knowledge
• BMI calculated from height and weight
• Force calculated from mass and acceleration

• Features constructed by systematically combining existing 
features 
• Products of existing numerical features
• Logical combinations categorical feature values (e.g., 

(color = red) and (shape = circle)
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Uninformative features
• Avoid features which
• Have the same value across almost all data samples
• Have unique nominal value for each sample
• E.g., Social security number, phone-number
• An abstraction  of the feature (such as area code) 

might be useful
• Are highly correlated with one or more other features
• Such features are redundant and only one is needed
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Feature selection and dimensionality reduction
• Given 𝑛 original features 𝐹 = {𝑓!, ⋯,𝑓"} select a subset 𝐹# ⊂ 𝐹 

that results in optimal performance of the trained predictive 
model
• Retain informative features, discard uninformative ones
• Reduces training time and prediction time
• Reduces sample size needed
• Mitigates overfitting

• Dimensionality Reduction maps the data represented using the  
𝑛 original features into a new space defined by 𝑚 derived 
features
• Offers similar advantages to feature selection
• Example: Autoencoders, Principal Component Analysis ..
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Feature selection
• Given 𝑛 original features 𝐹 = {𝑓!, ⋯,𝑓"} select a subset 𝐹# ⊂ 𝐹 

that results in optimal performance of the trained predictive 
model

• You can preselect a size m < n

• Search for the optimal 𝑚

• Exhaustive search over all possible 2" subsets of 𝐹	not 
feasible for large values of 𝑛

• Need efficient compromises

9

9

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

  
   
   
              
   
  

Data Science for Researchers and Scholars Vasant Honavar, Fall 2023

Feature selection: Simple Strategy
• Given 𝑛 original features 𝐹 = {𝑓!, ⋯,𝑓"} select a subset 𝐹# ⊂ 𝐹 that 

results in optimal performance of the trained predictive model

• Filters – independent of the learning algorithm used to build the 
predictive model

• Use a scoring function to score each feature, e.g., correlation 
between feature and class label

• Greedily select 𝑚 highest  scoring features

• Ignores correlation between features

• Efficient – complexity 𝑂(𝑛)
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Feature selection: Second Order Methods
• Given 𝑛 original features 𝐹 = {𝑓!, ⋯,𝑓"} select a subset 𝐹# ⊂ 𝐹 that 

results in optimal performance of the trained predictive model

• Use a scoring function to score each feature

• Until 𝑚 features have been selected or we have run through all 
𝑛	features

• Pick the highest scoring feature that hasn’t already been 
considered

• If none of the already chosen features  is redundant with the 
current candidate

• Add the candidate to the selected list
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Feature scoring - Correlation
Example:
Pearson correlation coefficient
𝑅(𝑓$,𝑦) =

%&'()!,*)
,-.()!),-.(*)

• We estimate the correlation 
coefficients from the training data 

• Correlation lies between −1	and 1 
• Higher magnitude of correlation 

means higher score
• So scoring is done using 𝑅(𝑓$,𝑦)
• Other scoring functions may be 

used  for other types of features 
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Variable Ranking – Single Var Classifier

• Select variables according to individual predictive power
• Performance of a classifier built with 1 variable
• E.g., the value of the variable itself (set threshold on the 

values)
• Usually estimated in terms of standard measures on the 

training data 
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Variable Ranking – Mutual Information

• Empirical estimates of mutual information between features 
and the label
• Continuous case 

• 𝐼(𝑓$,𝑦) = ∫)! ∫* 𝑝(𝑓$ , 𝑦)log
/()!,*)
/ )! /(*)

𝑑𝑓$𝑑𝑦
• Discrete Case
• 𝐼(𝑓$,𝑦) = ∑)!∑* 𝑃 𝑓$, 𝑦 log 1 )!,*

1 )! 1 *
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Feature Subset Selection

•Requirements:
• Scoring function to asses the features
• Strategy to search the space of possible feature subsets
• Finding the optimal feature subset is general hard

• Methods:
• Filters
• Wrappers
• Embedded
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Feature Subset Selection - Filters
• Select subsets of variables as a pre-processing step, 

independently of the predictive model to be trained
• Variable ranking with score function is a filter method

• Fast and efficient
• Works for training any predictive model 
• Not optimized for any specific model
• Sometimes used as a pre-processing step for other methods
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Feature Selection - Wrappers
• Different feature subsets may perform optimally with different 

learning algorithms
• The feature subset selection algorithm is a "wrapper" around the 

learning algorithm
• Until some termination criterion is met

1. Pick a feature subset and pass it to learning algorithm
2. Train a model on a training set using the selected features 
3. Evaluate the model on a validation set (not the test set)

• There are many variations based on how to select the feature 
subsets 
• Greedy forward selection 
• Greedy backward selection
• Etc.
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Feature Selection - Wrappers
• Exhaustive Search – Not feasible except for small 𝑛
• Forward Search – 𝑂(𝑛2) – Greedy

• Score each feature by itself and add the best feature to the initially 
empty set S 

• Try each subset consisting of the current S plus one remaining 
feature and add the best feature to S

• Continue until stop getting significant improvement 
• Backward Search – 𝑂(𝑛2)	– Greedy

• Score the initial set  S of all	𝑛	features
• Try each subset consisting of the current S minus one feature in S 

and drop the feature from S causing least decrease in performance
• Continue until dropping a feature causes a significant decrease in 

performance
• Branch and Bound and other heuristic approaches available
• Pro – selected features are customized for the learning algorithm
• Con – computational overhead
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Feature Subset Selection – Embedded Methods

• Performs feature selection during training
• Nested Subset Methods
• Direct Objective Optimization
• Formulate the objective function of variable selection and 

optimize
• goodness-of-fit (to be maximized)
• number of variables (to be minimized)

• Example: Lasso

19

Vasant G Honavar

Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

  
   
   
              
   
  

Data Science for Researchers and Scholars Vasant Honavar, Fall 2023

Feature Selection - Summary

• Feature selection can improve the performance of 
learning algorithms
• Predictive performance
• Cost of training and prediction

• Don’t automatically discard variables with small scores
• Filters, Wrappers, Embedded Methods
• How to search the space of all feature subsets?
• How to asses performance of learner that uses a 

given feature subset?
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Dimensionality Reduction
• Goal: reduce data dimensionality
• Feature grouping – collapse feature values with similar class 

conditional distributions into single values
• Transformation of feature space

• Linear methods (PCA/SVD, LDA)
• Matrix factorization of variable subsets
• Kernel methods (kernel PCA)
• Representation learning (autoencoders and deep 

autoencoders)
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