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From Neural Networks to Deep Neural Networks
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Why deep learning?
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Why or why not deep learning? 
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Why not deep learning?
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Image label
Descriptive tags
Similar images
…

Speech recognition
Music categories
Speaker identity
…

Sentiment detection
Text categories
Translation
… 

text

audio

images/video

input output

Typical machine learning scenarios
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Image label
Descriptive tags
Similar images
…

Speech recognition
Music categories
Speaker identity
…

Sentiment detection
Text categories
Translation
… 

text

audio

images/video

input output

𝑓

𝑓

𝑓

Machine learning pipeline

1
0
1
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Feature extraction
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Object classification

“airplane”
ML 
trained 
model
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Why is object classification hard?

What you see

What the machine sees
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Pixel-based representation
Input

Raw image

Motorbikes
“Non”-Motorbikes

Learning
algorithm

pixel 1

pi
xe

l 2

pixel 1

pixel 2

Encode each 
image by a 
vector of pixel 
values
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Pixel-based representation

Input
Motorbikes
“Non”-Motorbikes

Learning
algorithm

pixel 1

pi
xe

l 2
pixel 1

pixel 2

Raw image
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Feature based representation

Input
Motorbikes
“Non”-Motorbikes

Learning
algorithm

pixel 1

pi
xe

l 2

Feature 
representation

handlebars

wheel
E.g., Does it have Handlebars?  Wheels? 

Handlebars

W
he

el
s

Raw image Features
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Traditional Machine learning 

• Machine learning 30 years ago relied on feature engineering
• Feature engineering is hard!
• It would be nice if we can avoid ad hoc feature engineering
• Kernel machines offer one solution
• Deep learning offers another
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Auditory cortex learns to see!

Auditory Cortex

The brain: inspiration for deep learning

Sur, M., Garraghty, P.E. and Roe, A.W., 1988. Experimentally induced visual projections into auditory thalamus and cortex. Science, 242(4884), pp.1437-41.
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• V1 is the first stage of visual processing in the brain

• Neurons in V1 act as edge detectors

Neuron #1 of visual cortex (model) Neuron #2 of visual cortex (model)

First stage of visual processing: V1
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• Involves representation learning or unsupervised feature 
learning (with subtle distinctions)

• Learn features from data even without knowing the task to 
be performed?

• Then, stack such representation learning layers to obtain 
‘deep’ networks

Basic idea of deep learning
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Autoencoder

A feedforward neural network that learns an information 
preserving representation of its input 
• The input-to-hidden part corresponds to an encoder 
• The hidden-to-output part corresponds to a decoder
• Input and output are of the same dimension

x
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Autoencoders
• Training a 3-layer linear autoencoder  with 𝑁 inputs  (plus the 

constant input 𝑥!" = 1 ∀𝑝)	and 1 hidden layer of size 𝑀 (plus 
𝑧!" = 1 ∀𝑝)

𝑧#" =+
$

𝑤#$ 𝑥$"

𝑦$" =+
#

𝑢$# 𝑧#"

Reconstruction loss 𝐸 = ∑" 𝐸" =
%
& ∑" ∑$ 𝑥$" − 𝑦$"

&

Use backpropagation algorithm to learn 𝐰# and 𝐮$  

𝑧!

𝑦"

𝑥"

𝐲

𝐳

𝐱
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Training Autoencoders

𝑧#" =+
$

𝑤#$ 𝑥$"

𝑦$" =+
#

𝑢$# 𝑧#"

𝐸 = ∑" 𝐸" =
%
&
∑" ∑$ 𝑥$" − 𝑦$"

&

𝑢$# ← 𝑢$# −
-.
-/#$

 

𝜕𝐸
𝜕𝑢$#

=+
"

𝜕𝐸
𝜕𝑦$"

𝜕𝑦$"
𝜕𝑢$#

= −+
"

𝑥$" − 𝑦$"  𝑧#"

𝑧!

𝑦"

𝑥"

𝐲

𝐳

𝐱

𝐸"

𝑦$"

𝑢$#
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Training Autoencoders

𝑧#" =+
$

𝑤#$ 𝑥$"

𝑦$" =+
#

𝑢$# 𝑧#"

𝐸 = ∑" 𝐸" =
%
&
∑" ∑$ 𝑥$" − 𝑦$"
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-0$#
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+
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𝜕𝑧#"

𝜕𝑧#"
𝜕𝑤$#
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"

+
$
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𝐲

𝐳

𝐱

𝐸"
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Autoencoders
• What is the point of learning a mapping that reproduces the input?

• If the hidden layer has lower dimension than the input, the 
network is forced to learn a low-dimensional information 
preserving representation of  the input

• Once such a representation is learned, we can discard the 
decoder and use the encoder to extract features from the input 
data that can then be used to train a classification or regression 
model 
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Autoencoders
• The autoencoder considered above is a linear 

autoencoder because it uses a linear function 
in the hidden layer

• A linear autoencoder learns an encoding that 
mimics principal component analysis 

• the number of hidden nodes correspond 
to the number of principal components

• We can obtain a non-linear autoencoder by 
replacing the linear function with a sigmoid 
function in the hidden layer 

• We can use multiple hidden layers to learn 
complex autoencoder mapping
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Stacked autoencoders

• We can learn hierarchical 
representations of input data using 
multi-layer nonlinear encoder

• But as we increase the number of 
layers, training becomes slow

• Solution: Learn a multi-layer encoder 
one layer at a time

• How? 
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Stacked encoders

• Learn a multi-layer encoder one layer at a time
• First learn an autoencoder 𝐱 → 𝒛 → 𝐱
• Strip off the decoder 𝒛 → 𝐱	and keep 𝐱 → 𝐳
• Now learn an autoencoder 𝐳 → 𝐮 → 𝐳
• Strip off the decoder 𝐮 → 𝐳 and keep 𝐳 → 𝐮
• Stack the encoders 𝐱 → 𝐳 and 𝐳 → 𝐮 to obtain the stacked 

encoder 𝐱 → 𝒛 → 𝐮
• Repeat the preceding steps if more layers are desired
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Learning stacked encoders

𝐱

𝐳

𝐱

First learn an autoencoder 𝐱 → 𝒛 → 𝐱
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Learning stacked encoders

𝐱

𝐳

Strip off the decoder 𝐳 → 𝐱 and keep the encoder 𝐱 → 𝐳
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Learning stacked encoders

𝐱

𝐳 𝐳

𝐮

𝐳

Learn an autoencoder 𝐳 → 𝐮 → 𝐳
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Learning stacked encoders

𝐱

𝐳 𝐳

𝐮

Strip off the decoder 𝐮 → 𝒛 and keep the encoder 𝐳 → 𝐮
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Learning stacked encoders

𝐱

𝐳

𝐮

Stack the encoders 𝐱 → 𝐳 and 𝐳 → 𝐮 to obtain the stacked 
encoder 𝐱 → 𝒛 → 𝐮
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Multi-modal encoder-decoder architectures

31

𝐱

𝐳

𝐲

• Given a data set of images annotated with tags
• Learn a network that 

• Given an image generates tags that describe image content
• Given a set of tags generates corresponding images 
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Autoencoders
• Autoencoders are only able to compress or extract useful 

features from data that are similar to training data
• The decoded output will be a noisy reconstruction of input
• Can be trained in an unsupervised fashion on large data sets
• The resulting encoding can be used to extract useful 

features from for supervised training of classifiers from 
much smaller data sets

• Examples of successful applications of autoencoders
• Foundation models for computer vision
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Denoising autoencoders
• The basic autoencoder minimizes the loss between 𝐱 and the 

reconstruction 𝑔 𝑓 𝐱 	where 𝑓 is the encoder and 𝑔 the decoder.
• Denoising autoencoders minimizes the loss between  𝐱  and 
𝑔 𝑓 𝐱 + 𝐰 	, where 𝐰 is gaussian random noise

• Input and output of a denoising autoencoder

• Noise added to the input forces a denoising autoencoder to learn a 
mapping from noise perturbed training data to noise-free training data

https://blog.keras.io/building-autoencoders-in-keras.html
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Sparse autoencoders
• Add a term to the loss function that forces sparse encoding of 

training data, e.g., sum of absolute values of the activations of 
the nodes in the hidden layer

• As a result, different subsets of the hidden nodes are activated 
by different inputs

• This is often combined by penalties for large weights (e.g., the 
square of the norm of the weight vectors).

https://www.jeremyjordan.me/autoencoders/
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Contractive autoencoders
• Contractive autoencoders make the feature extraction 

function (ie. encoder) robust in the presence of small 
perturbations of the input

• How?
• Instead of minimizing the loss, minimize the loss plus a term 

proportional to the magnitude of ∇𝐱𝐸 i.e., the gradient of 
the loss with respect to the input 𝐱

https://ift6266h17.files.wordpress.com/2017/03/14_autoencoders.pdf
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Stochastic Encoders and Decoders

• Modern autoencoders use stochastic mappings
• We can generalize the notion of the encoding and decoding 

functions to encoding and decoding distributions
• The resulting encoders are called variational autoencoders
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Deep Convolutional networks
• Images have features at different spatial scales
• Need to be able to recognize objects regardless of where 

they appear in an image
• How can we modify neural networks to accommodate these 

considerations?
• Extract local features from images

“beak” detector
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Translation invariance 

“upper-left 
beak” detector

“middle beak”
detector

Both can share parameters
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Solution: convolutional neural network

A filter

• A CNN is a neural network with one or more convolutional layers 
• A convolutional layer performs convolutional operations 

Beak detector
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Training set: Labeled images of faces. 

Early work: 
• Uhr and students (recognition cones)
• Fukushima (neocognitron)
• Tanimoto 
• Levialdi
• Rosenfeld
Scaled up and popularized by LeCun

Convolutional Neural networks
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Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

-1 1 -1
-1 1 -1
-1 1 -1

Filter 2

……

These are the network 
parameters to be learned.

Each filter detects a 
small pattern (3 x 3). 
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Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

3 -1

If stride =1

Dot 
product
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Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

3 -3

If stride =2
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Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

Stride =1
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Convolution

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

3 -1 -3 -1

-3 1 0 -3

-3 -3 0 1

3 -2 -2 -1

-1 1 -1
-1 1 -1
-1 1 -1

Filter 2

-1 -1 -1 -1

-1 -1 -2 1

-1 -1 -2 1

-1 0 -4 3

Repeat this for each filter
Stride =1

Two 4 x 4 images
Forming 2 x 4 x 4 matrix

Feature
Map
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Color image: RGB 3 channels

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 -1 -1
-1 1 -1
-1 -1 1 Filter 1

-1 1 -1
-1 1 -1
-1 1 -1 Filter 2

1 -1 -1
-1 1 -1
-1 -1 1

1 -1 -1
-1 1 -1
-1 -1 1

-1 1 -1
-1 1 -1
-1 1 -1

-1 1 -1
-1 1 -1
-1 1 -1

Color image
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1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

image
convolution

-1 1 -1
-1 1 -1
-1 1 -1

1 -1 -1
-1 1 -1
-1 -1 1

1x

2x

……

36x

……

1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

Convolution v.s. Fully Connected

Fully-
connected
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1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

6 x 6 image

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1
1

…

2
3

…

8
9

…
13
14
15 Only connect to 9 

inputs, not fully 
connected

4:

10:

16

1
0
0
0

0
1
0
0

0
0
1
1

3

fewer parameters!
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1 0 0 0 0 1
0 1 0 0 1 0
0 0 1 1 0 0
1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0

1 -1 -1
-1 1 -1
-1 -1 1

Filter 1

… Shared weights

1:
2:
3:

…

7:
8:
9:

…

13:
14:
15:

4:

10:

16:

1
0
0
0

0
1
0
0

0
0
1
1

3

-1

6 x 6 image

Even fewer parameters
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Convolution at work
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Pooling Pooling 
• Down-samples the 

feature maps
• Reduces resolution
• Summarizes the 

features in a region
• Reduces the 

number of 
parameters to be 
learned

• Combines simpler 
features into more 
complex ones

Pooling can be traced back to early work on computer vision, e.g., 
recognition cones (Uhr, Li, Honavar), pyramids (Rosenfeld, Dyer, Tanimoto, Tsotsos) 
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Max Pooling
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The structure of CNN

Convolution

Max Pooling
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many 
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Flattening
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Complete convolutional neural network (CNN)

• Can be repeated many times
• Modern deep neural nets can 

have tens or hundreds of 
feature maps as well as layers
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A CNN compresses a fully connected network

• Reduces the number of connections
• Shared weights on the edges
• Max pooling further reduces the complexity
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CNN Applications

• Image classification
• Speech recognition
• Biomolecular sequence classification
• Text classification
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Speech recognition using CNN

Time
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Spectrogram

CNN

Image

Convolution happens 
along the frequency axis
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Text classification using CNN

?
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RNA secondary structure prediction using deep CNN
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Recurrent neural networks

• Good for learning over sequences of data, e.g., a sentence 
of words

• LSTM (Long Short Term Memory) a popular architecture

Image source: Adam Geitgey
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Generative adversarial networks (GAN)
• System of two neural 

networks generator and 
discriminator compete against 
each other in a zero-sum game

• Generator attempts to fool 
the discriminator

• Discriminator attempts to 
defeat the generator 

• Provides a kind of 
unsupervised learning that 
improves the network

• The result is a generative 
model whose output is 
indistinguishable from real 
data

62

A GAN generated image

Goodfellow,  et a.(2014). Generative Adversarial Networks.  NIPS 2014. pp. 2672–2680.
Special case of an earlier model proposed by Jurgen Schmidhuber in 1991
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Transformers
• Initially introduced for natural language 

processing (NLP)
• ”Transform” input text into output text

• E.g., translation, text summarization,
question answering

• Uses encoder-decoder architecture
• Since extended for text to image, 

sequence to structure, and many other 
applications

• Popular pretrained models available,
e.g. BERT (encoder only) and GPT 
(decoder only)

63

Vaswani, A. et al. (2017). Attention is all you need. In NIPS 2017.
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Transformers compared to older models

• The RNN and LSTM neural models were designed to process 
language and perform tasks like classification, summarization, 
translation, and sentiment detection
• RNN: Recurrent Neural Network
• LSTM: Long Short Term Memory

• In both models, layers get the next input word and have access to 
some previous words, allowing it to use the word’s left context

• They used word embeddings where each word was encoded as a 
vector of 100-300 real numbers representing its meaning
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Transformers compared to older models

• Transformers extend this to allow the network to process a word 
input given the context: words both to the left and right

• Transformers add additional features, like attention which 
identifies the important words in context

• And break the problem into two parts:
• An encoder (e.g., BERT)
• A decoder (e.g., GPT)
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Transformer model

Encoder (e.g., BERT) Decoder (e.g., GPT)
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Transformers, GPT, and BERT

• A transformer uses an encoder stack to
model input, and uses decoder stack to
model output (using input information from encoder side)

• If we do not have input, we just want to model the “next 
word”, we can get rid of the encoder side of a 
transformer and output “next word” one by one. This 
gives us GPT

• If we are only interested in training a language model for 
the input for some other tasks, then we do not need the 
decoder of the transformer, that gives us BERT
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Training a Transformer
• Transformers typically use semi-supervised learning with

• Unsupervised pretraining over a very large dataset of 
general text

• Followed by supervised fine-tuning over a focused data 
set of inputs and outputs for a particular task

• Tasks for pretraining and fine-tuning commonly include:
• language modeling
• next-sentence prediction
• question answering 
• sentiment analysis 
• paraphrasing 
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Hype versus reality of GPT
• Transformer models such as GPT are fundamentally generative 

models trained on large data sets 
• Very sophisticated next word, phrase, sentence predictors

• Many ethical concers – copyright, plagiarism, intellectual property
• Great as muses or sources of inspiration
• Great for generating increasingly realistic art, poetry, etc.
• Not necessarily great for applications where accuracy matters

• Known to hallucinate – make up ”facts”, citations, etc.
• Many potential downsides

• Misinformation generation at scale
• Phishing and cyberattacks at scale 
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Summary
• Unsupervised representation learning offers a powerful mechanism for 

learning useful features from complex data
• Multi-layer deep networks, given sufficient data, can be trained to perform 

many tasks that were once beyond the reach of machine learning
• Powerful tools Keras, Pytorch allow rapid prototyping of deep learning 

solutions
• But deep learning, as it is practiced today, is an environmental nightmare – 

need better approaches
• Deep learning systems can be easily fooled by adversarial data samples  - 

need learning methods that are robust to adversarial attacks
• Deep learning produces black boxes that are hard to understand and 

explain –need better tools to explain the results of deep learning
• Advanced deep learning models e.g., LLMs are susceptible to hallucination, 

catastrophic forgetting, and other problems 
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