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From Neural Networks to Deep Neural Networks
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Why deep learning?

Recent developments in object detection

PASCAL VOC
80%

70%

60% Before deep convnets

50% (

» —

40% A -
A Using deep convnets
30%

20%

mean Average Precision (mAP)

10%

0%
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
year

Data Science for Researchers and Scholars Vasant Honavar, Fall 2023

PennState Center for Artificial Intelligence Foundations & Scientific Applications = PennState
@ IRl e et Artificial Intelligence Research Laboratory w Clinical and Translational
and Data Sciences Science Institute

Why or why not deep learning?

deep learning

)

& older

g learn}qg

8 algorithms
&

I

&

amount of data

PennSt
@ SRR Data Science for Researchers and Scholars Vasant Honavar, Fall 2023

11/13/23



LRIt Artificial Intelligence Research Laboratory ) Clinical and Translational

@ PennState Center for Artificial Intelligence Foundations & Scientific Applications @ PennState
Science Institute

and Data Sciences

Why not deep learning?

Carbon footprint comparison
Source: Strubell et al, 2019.

CO2 emissions (Ibs)

Training Transformer (big) w/ neural
architecture search

Car, avg incl. fuel, 1 lifetime 126,000
Human life, avg, 1 year I 11,023

Training BERTbase on GPU

Air travel, 1 passenger, NY<-> SF | 1,984
‘ 1,438

Reconstructed from: http://arxiv.org/abs/1906.02243
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Typical machine learning scenarios

input output
Image label
images/video — 5 Descriptive tags
Similar images
Speech recognition
i ) Music categories
audio —_ —

Speaker identity

| EheNeworkTimes

Sentiment detection
Text categories
Translation

text
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Machine learning pipeline
Feature extraction
input output
Image label
images/video = — Descriptive tags
Similar images
Speech recognition
audio Music categories
Speaker identity
e ot Sentiment detection
Text categories
e
text f Translation
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Object classification

ML

trained —p “3jrplane”
model
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Why is object classification hard?

What you see

What the machine seég”**x
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94 95 79 104 105 124 129 113 107 87 69 67
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20 43 69 75 56 4l 51 73 55 70 63 44
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Pixel-based representation

pixel 1 lnpUt

» | Learning

algorithm
pixel 2
4 Motorbikes
Raw image = “Non”-Motorbikes Encode each

image by a

~ .

3 vector of pixel
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Pixel-based representation

pixel 1

Input

Raw image

pixel 2

pixel 2

4 Motorbikes
= “Non”-Motorbikes

Data Science for Researchers and Scholars

Learning
algorithm

Vasant Honavar, Fall 2023

PennState Center for Artificial Intelligence Foundations & Scientific Applications = PennState
@ Lo e e Artificial Intelligence Research Laboratory @ Clinical and Translational
and Data Sciences Science Institute
Feature based representation
handlebars
ﬁ_ —_— | Feature — -~ Learning
wheel representation algorithm
E.g., Does it have Handlebars? Wheels?
Input
# Motorbikes
“ 4 H
Raw image = “Non”-Motorbikes Features
~ o F * 4
q_*) = i + +
o - % 4
% - = =
pixel 1 Handlebars
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Traditional Machine learning

* Machine learning 30 years ago relied on feature engineering
* Feature engineering is hard!

* It would be nice if we can avoid ad hoc feature engineering
* Kernel machines offer one solution

* Deep learning offers another
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The brain: inspiration for deep learning

Auditory Cortex

™\

Auditory cortex learns to see!

Sur, M., Garraghty, P.E. and Roe, A.W., 1988. Experimentally induced visual projections into auditory thalamus and cortex. Science, 242(4884), pp.1437-41.
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First stage of visual processing: V1

* V1is the first stage of visual processing in the brain

* Neuronsin V1 act as edge detectors

Neuron #1 of visual cortex (model) Neuron #2 of visual cortex (model)
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Basic idea of deep learning

* Involves representation learning or unsupervised feature
learning (with subtle distinctions)

* Learn features from data even without knowing the task to
be performed?

* Then, stack such representation learning layers to obtain
‘deep’ networks
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Input < Ideally they are identical. > Recoi::tl:l:cted
x~x
Bottleneck!
Encoder Decoder .
X 9o fo 2
X
An compressed low dimensional
representation of the input.

A feedforward neural network that learns an information
preserving representation of its input

* The input-to-hidden part corresponds to an encoder
* The hidden-to-output part corresponds to a decoder

* Input and output are of the same dimension
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Autoencoders

* Training a 3-layer linear autoencoder with N inputs (plus the
constant input xo,, = 1 Vp) and 1 hidden layer of size M (plus
Zop = 1 Vp) ittty ~

Y S
e A ! Decoder
Zjp = /) WjiXip :
i :

1

1

1
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I
1
I
Hidden Layer @ Q Z E
1
I
1
1

Encoder
Yip = Z Uij Zjp Input X |

J

2
Reconstruction loss E = Zp E, = % Zp i (xip - J’ip)

Use backpropagation algorithm to learn w; and u;
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Decoder

Training Autoencoders ! : i
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Encoder
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* What is the point of learning a mapping that reproduces the input?
* If the hidden layer has lower dimension than the input, the
network is forced to learn a low-dimensional information

preserving representation of the input

* Once such a representation is learned, we can discard the
decoder and use the encoder to extract features from the input
data that can then be used to train a classification or regression
model

P State
@ Py » Data Science for Researchers and Scholars Vasant Honavar, Fall 2023

PennState Center for Artificial Intelligence Foundations & Scientific Applications = PennState
@ LRIt Artificial Intelligence Research Laboratory @ Clinical and Translational
and Data Sciences Science Institute

* The autoencoder considered above is a linear
autoencoder because it uses a linear function
in the hidden layer

* Alinear autoencoder learns an encoding that
mimics principal component analysis 2

* the number of hidden nodes correspond
to the number of principal components

* We can obtain a non-linear autoencoder by
replacing the linear function with a sigmoid
function in the hidden layer

* We can use multiple hidden layers to learn
complex autoencoder mapping
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Stacked autoencoders

* We can learn hierarchical
representations of input data using
multi-layer nonlinear encoder

* But as we increase the number of
layers, training becomes slow

* Solution: Learn a multi-layer encoder
one layer at a time

* How?
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Stacked encoders

* Learn a multi-layer encoder one layer at a time
* First learn an autoencoder X - z = X

Strip off the decoder z - x and keep x = z

Now learn an autoencoderz - u — z

Strip off the decoder u = zand keepz — u

Stack the encoders x — Z and Z — u to obtain the stacked
encoderx >z —> u

Repeat the preceding steps if more layers are desired
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Learning stacked encoders

First learn an autoencoderx - z —» x
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Learning stacked encoders

Strip off the decoder z — x and keep the encoder x — z
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Learning stacked encoders

Learn an autoencoderz - u = z
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Strip off the decoder u — z and keep the encoderz - u
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Learning stacked encoders

Stack the encoders X — Z and Z — u to obtain the stacked
encoderx >z - u

u
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Multi-modal encoder-decoder architectures

* Given a data set of images annotated with tags

* Learn a network that
* Given an image generates tags that describe image content
* Given a set of tags generates corresponding images
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* Autoencoders are only able to compress or extract useful
features from data that are similar to training data

The decoded output will be a noisy reconstruction of input

Can be trained in an unsupervised fashion on large data sets

* The resulting encoding can be used to extract useful
features from for supervised training of classifiers from
much smaller data sets

* Examples of successful applications of autoencoders

* Foundation models for computer vision
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Denoising autoencoders

* The basic autoencoder minimizes the loss between x and the
reconstruction g(f(x)) where f is the encoder and g the decoder.

* Denoising autoencoders minimizes the loss between x and
g(f(x+w)) , where w is gaussian random noise

* Input and output of a denoising autoencoder

2] /]jol4l/]v]ale]7]

* Noise added to the input forces a denoising autoencoder to learn a
mapping from noise perturbed training data to noise-free training data

zeg2archiars and Scholars Vasant Honavar, Fall 2023
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Sparse autoencoders

* Add a term to the loss function that forces sparse encoding of
training data, e.g., sum of absolute values of the activations of
the nodes in the hidden layer

* As a result, different subsets of the hidden nodes are activated
by different inputs

* This is often combined by penalties for large weights (e.g., the
square of the norm of the weight vectors).
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Contractive autoencoders

* Contractive autoencoders make the feature extraction
function (ie. encoder) robust in the presence of small
perturbations of the input

* How?

* Instead of minimizing the loss, minimize the loss plus a term
proportional to the magnitude of VE i.e., the gradient of
the loss with respect to the input x

5 and Schoars Vasant Honavar, Fall 2023
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Stochastic Encoders and Decoders

* Modern autoencoders use stochastic mappings

* We can generalize the notion of the encoding and decoding
functions to encoding and decoding distributions

* The resulting encoders are called variational autoencoders
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Deep Convolutional networks
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* Images have features at different spatial scales

* Need to be able to recognize objects regardless of where

they appearin an image

* How can we modify neural networks to accommodate these

considerations?

* Extract local features from images

Data Science for Researchers and Scholars
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“beak” detector
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Translation invariance

“‘upper-left
beak” detector

—»J—»

_|_
I Both can share parameters
+

“middle beak”
detector —
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Solution: convolutional neural network

* A CNN is a neural network with one or more convolutional layers
* A convolutional layer performs convolutional operations

7
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Convolutional Neural networks

JRSRNGL S 1oL ;|

§ i
&
m
B
&
ol
7]
hl )
e

Azu@aBun 9
Training set: Labeled images of faces.

Early work:
* Uhr and students (recognition cones) !
* Fukushima (neocognitron)

okorele 8@

* Tanimoto
* Levialdi
* Rosenfeld

Scaled up and popularized by LeCun

Data Science for Researchers and Scholars Vasant Honavar, Fall 2023

@ E%%n?g é?é?:\e;zutanonal gftrl‘ftli:‘aflol';ltAerI::ggl:(l:;n;eelzzaerlﬁle:a%:)r::f&:‘r‘;ns & Scientific Applications @ ELEEE?EE ;T;Er;slational
Convolution
These are the network
parameters to be learned.
1(-1]-1
1/0{0(0]|0|1 _11_1Filter1
oj{1|lofo0|1]0 1l
o|0|1|1|]0/|0
1/0[0|l0[1]0 111
ol1lolol1lo 111 1-1 Filter 2
olol1]|0|1]0 1111
6 x 6 image )
Each filter detects a
small pattern (3 x 3).
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Convolution

If stride =1

Dot

product
_

O|O|FR,r|O|O|F
O|r|OjJOC |~ |O
RlO|Ofj—r|O|O
oOjOo|Ooj—r|O|O
R | R [RIO|F~L|O
OO0 |OC|O|F

6 x 6 image
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Convolution

If stride =2

OO |R,|O|O|F
O|lr|OjJOC |~ |O
RlO|Of|—r|O|O
OO0 |Oj—r|O|O
R | R [(RJO | |O
O|lO0O|O0O|OC|O|F

6 x 6 image
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Convolution

Stride =1
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0 1

Rk |RrJO|—|O

0
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6 x 6 image
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Stride =1

O |OfrjJO | O+
O |~ OO |~ O
K=l [=] L=RE=R [=]
RrilRr|RrJO|R|O

oO|lo|Oof—r|O|O

OO |OJOC|O |k

6 x 6 image

Center for Artificial Intelligence Foundations & Scientific Applications
I raas il Artificial Intelligence Research Laboratory

>3 PennState
5 Clinical and Translational

¥ Science Institute

Filter 2

Data Science for Researchers and Scholars

“asan: Honavar, Fall 2023

11/13/23

22



@ PennState Center for Artificial Intelligence Foundations & Scientific Applications

PennState

Rt Artificial Intelligence Research Laboratory
and Data Sciences

Color image: RGB 3 channels
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Filter 1

Color image
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Convolution v.s. Fully Connected
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Convolution at work
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Pooling Pooling
— ) * Down-samples the
31|13 feature maps
Max 2 _ Hn c Reduces.resolutlon
1 n C Summarl.zes the.
P features in a region
* Reduces the
— — number of
3113 parameters to be
0|2 [ar] s | learned
Avg = |&]==] <+ Combinessimpler

features into more
complex ones

Pooling can be traced back to early work on computer vision, e.g.,
recognition cones (Uhr, Li, Honavar), pyramids (Rosenfeld, Dyer, Tanimoto, Tsotsos)
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Max Pooling

Rk | Rr|lO|R|O

O|l0O|O0O|OC|O|F

O|lO0O|r,r|OC|O|F
O|lRr|lO|O|RL|O

RO, |O|O

O|l0o0|O0O|—r|O|O
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Each filter
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The structure of CNN

‘ Science Institute

F_{.

¥

Convolution

P
<

Smaller than the original image
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Complete convolutional neural network (CNN)
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maps Featured maps maps Featured maps  layer 0
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\ * Can be repeated many times
"+ Modern deep neural nets can
have tens or hundreds of

feature maps as well as layers
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A CNN compresses a fully connected network

* Reduces the number of connections
* Shared weights on the edges

* Max pooling further reduces the complexity

P State
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CNN Applications

* Image classification
* Speech recognition
* Biomolecular sequence classification

 Text classification

PennSt
@ SRR Data Science for Researchers and Scholars Vasant Honavar, Fall 2023

11/13/23

28



PennState Center for Artificial Intelligence Foundations & Scientific Applications "3 PennState
@ LRIt Artificial Intelligence Research Laboratory Clinical and Translational
and Data Sciences Science Institute

Speech recognition using CNN

t

CNN

Convolution happens
along the frequency axis

Frequency

Image

Spectrogram
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Text classification using CNN
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RNA secondary structure prediction using deep CNN

PennState

Institute for Computational
and Data Sciences

CGUGUCAGGUCCGGAAGGA
AGCAGCACUAAC

Artificial Intelligence Research Laboratory

(Sequence)

Center for Artificial Intelligence Foundations & Scientific Applications @ PennState

Input tensor legend

Invalid pairing
M rotential unpaired
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Representation

Potential CG pairing
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* Good for learning over sequences of data, e.g., a sentence
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Potential UA pairing
[ Potential AU pairing

Prediction model
(CNN)

(Input tensor)
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(Sequence + its structure)  g.@

(Target matrix)
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Recurrent neural networks

of words

LSTM (Long Short Term Memory) a popular architecture

Input: Stateful Model
a Word

Recurrent
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Output:
Most likely next word

-

Neural Network

Memory of previous words
influence next predicition

Output so far:
Machine
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* System of two neural
networks generator and Random Input
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Generative adversarial networks (GAN)

q a2 Q Vector
discriminator compete against
each other in a zero-sum game
* Generator attempts to fool .| Gt;lr'\e;atlor A GAN generated image
the discriminator it
* Discriminator attempts to § \
defeat the generator | Generated
: Example Real Example

improves the network | Update

Discriminator

* Provides a kind of \ f
unsupervised learning that

Model

* The result is a generative | modsl
model whose output is =

Goodfellow, et a.(2014). Generative Adversarial Networks. NIPS 2014. pp. 2672-2680.
Special case of an earlier model proposed by Jurgen Schmidhuber in 1991

indistinguishable from real § : — |
I Binary Classification | . |
data ReallFake
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Transformers Oupt
Probabilities

* Initially introduced for natural language
processing (NLP)

Vaswani, A. et al. (2017). Attention is all you need. In NIPS 2017.

PennState :
@ Data Science for Researchers and Scholars

” . .
* "Transform” input text into output text
orwar
* E.g., translation, text summarization, i
question answering Wit Head
. Attention i
* Uses encoder-decoder architecture E
Add & Norm
* Since extended for text to image, oo Masied
sequence to structure, and many other Ll maen
applications N
p p Positional Positional
* Popular pretrained models available, %™ -t e
e.g. BERT (encoder only) and GPT I E"“’T""‘g | E"‘beld“‘”g |
(deCOder Only) Inputs Outputs

(shifted right)
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Transformers compared to older models

* The RNN and LSTM neural models were designed to process
language and perform tasks like classification, summarization,
translation, and sentiment detection

* RNN: Recurrent Neural Network
* LSTM: Long Short Term Memory

* In both models, layers get the next input word and have access to
some previous words, allowing it to use the word’s left context

* They used word embeddings where each word was encoded as a
vector of 100-300 real numbers representing its meaning

Data Science for Researchers and Scholars Vasant Honavar, Fall 2023
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Transformers compared to older models

* Transformers extend this to allow the network to process a word
input given the context: words both to the left and right

* Transformers add additional features, like attention which
identifies the important words in context
* And break the problem into two parts:
* An encoder (e.g., BERT)
* A decoder (e.g., GPT)
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Transformers, GPT, and BERT

* Atransformer uses an encoder stack to
model input, and uses decoder stack to
model output (using input information from encoder side)

* If we do not have input, we just want to model the “next
word”, we can get rid of the encoder side of a
transformer and output “next word” one by one. This
gives us GPT

* If we are only interested in training a language model for

the input for some other tasks, then we do not need the
decoder of the transformer, that gives us BERT
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Training a Transformer

* Transformers typically use semi-supervised learning with
* Unsupervised pretraining over a very large dataset of
general text
* Followed by supervised fine-tuning over a focused data
set of inputs and outputs for a particular task
* Tasks for pretraining and fine-tuning commonly include:
* language modeling
* next-sentence prediction
* question answering
* sentiment analysis
* paraphrasing
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Hype versus reality of GPT

* Transformer models such as GPT are fundamentally generative
models trained on large data sets

* Very sophisticated next word, phrase, sentence predictors
* Many ethical concers — copyright, plagiarism, intellectual property
* Great as muses or sources of inspiration
* Great for generating increasingly realistic art, poetry, etc.

* Not necessarily great for applications where accuracy matters
* Known to hallucinate — make up “facts”, citations, etc.
* Many potential downsides

* Misinformation generation at scale
* Phishing and cyberattacks at scale
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* Unsupervised representation learning offers a powerful mechanism for
learning useful features from complex data

* Multi-layer deep networks, given sufficient data, can be trained to perform
many tasks that were once beyond the reach of machine learning

» Powerful tools Keras, Pytorch allow rapid prototyping of deep learning
solutions

* But deep learning, as it is practiced today, is an environmental nightmare —
need better approaches

* Deep learning systems can be easily fooled by adversarial data samples -
need learning methods that are robust to adversarial attacks

* Deep learning produces black boxes that are hard to understand and
explain —need better tools to explain the results of deep learning

» Advanced deep learning models e.g., LLMs are susceptible to hallucination,
catastrophic forgetting, and other problems
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