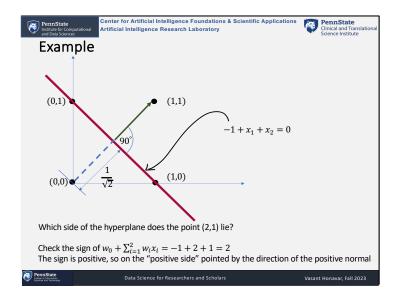
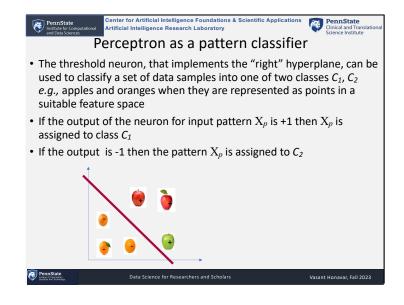


-1

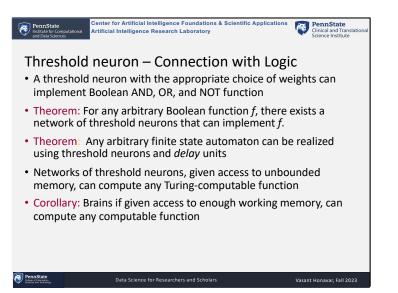


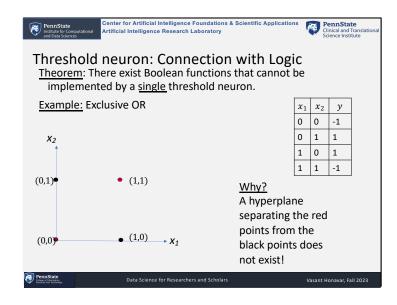
-1

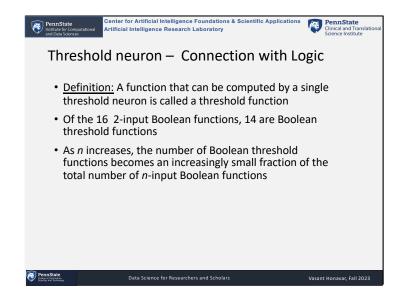


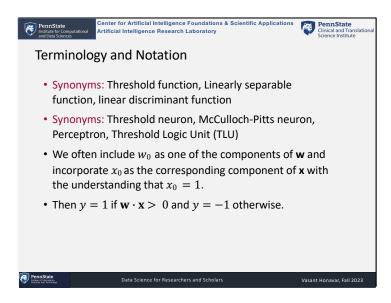
PennState Ind bids Sciences Center for Artificial Intelligence Foundations & Scientific Applications PennState Clinical and Transi Science Institute								
Threshold neuron – Conne	ctior	n wit	h Logic					
• Suppose the input space is $\{0,1\}^n$								
• Then threshold neuron computes $f: \{0,1\}^n \rightarrow \{-1,1\}$	a Boc	olean fi	unction					
<u>Example</u>	<i>x</i> ₁	<i>x</i> ₂	$h(X) = \mathbf{w} \cdot \mathbf{x}$	У				
Let $w_0 = -1.5; w_1 = w_2 = 1$	0	0	-1.5	-1				
 In this case, if we interpret 1 as TRUE and -1 as FALSE, the 	0	1	-0.5	-1				
threshold neuron	1	0	-0.5	-1				
implements the logical AND function	1	1	0.5	1				
Thurs Shale								
PennState Data Science for Researchers a	nd Scholars		Vasant Hon	avar, Fall 2	023			

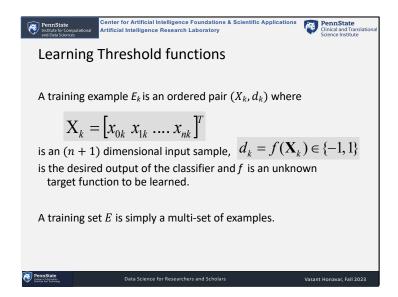
ional



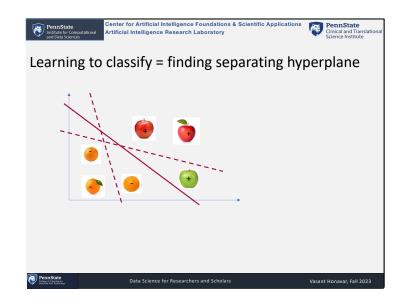


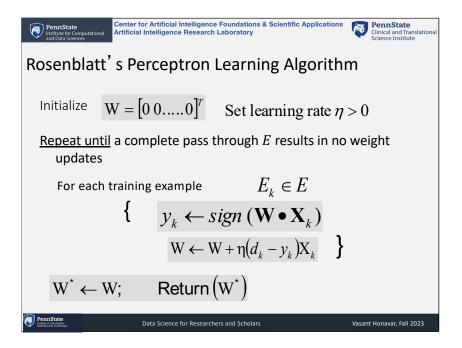




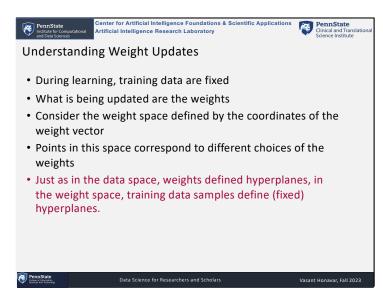


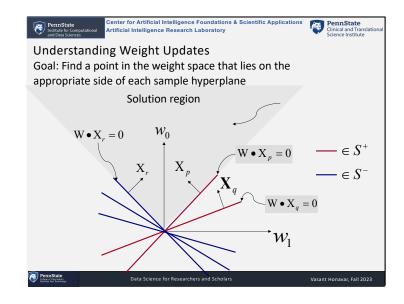
PennState Institute for Computational and Data Sciences	Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory	PennState Clinical and Translation Science Institute
Learning Th	nreshold functions	
S^+	$\mathbf{T} = \left\{ \mathbf{X}_k (\mathbf{X}_k, d_k) \in E \text{ and } d_k = 1 \right\}$	
S^{-}	$\mathbf{T} = \left\{ \mathbf{X}_k (\mathbf{X}_k, d_k) \in E \text{ and } d_k = -1 \right\}$	
We say that	a training set E is linearly separable if and	only if
$\exists \mathbf{W}^{\star}$	such that $\forall X_p \in S^+$, $W^* \bullet X_p > 0$	
	and $\forall \mathbf{X}_{p} \in S^{-}$, $\mathbf{W}^{*} \bullet \mathbf{X}_{p} < 0$	
Learning Task	c: Given a linearly separable training set <i>E</i> ,	find a solution
W^* such the	at $\forall \mathbf{X}_p \in S^+$, $\mathbf{W}^* \bullet \mathbf{X}_p > 0$ and $\forall \mathbf{X}_p \in S^-$, $W^* \bullet X_p < 0$
PennState College af Information Solences A and Performance	Data Science for Researchers and Scholars	Vasant Honavar, Fall 2023

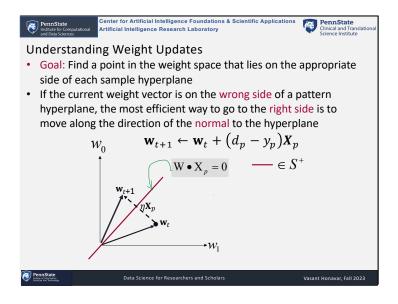


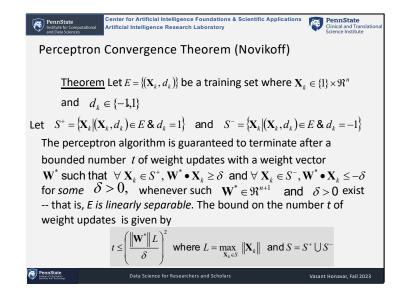


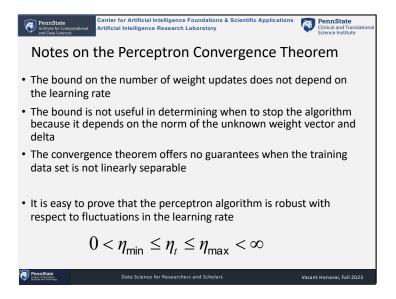
PennS Institute I and Data	for Comput		Center for Artif Artificial Intellig			ations & Scientifi ory	c Applications	PennState Clinical and Translational Science Institute
Perce	erceptron learning algorithm – Example							
Let	Let $S^{+}=\{(1,1,1),(1,1,-1),(1,0,-1)\}$ $S^{-}=\{(1,-1,-1),(1,-1,1),(1,0,1)\}$							
_		3	= {(1,-	-1, -1)	,(1,-1	., 1), (1,0,	1)}	$W = (0 \ 0 \ 0)$
X _k		d_k	W	$W.X_k$	y_k	Update?	Updated W	1
(1, 1,	, 1)	1	(0, 0, 0)	0	-1	Yes	(1, 1, 1)	$\eta = -\frac{1}{2}$
(1, 1,	-1)	1	(1, 1, 1)	1	1	No	(1, 1, 1)	
(1,0,	-1)	1	(1, 1, 1)	0	-1	Yes	(2, 1, 0)	
(1, -1,	, -1)	-1	(2, 1, 0)	1	1	Yes	(1, 2, 1)	
(1,-1,	, 1)	-1	(1, 2, 1)	0	-1	No	(1, 2, 1)	
(1,0,	1)	-1	(1, 2, 1)	2	1	Yes	(0, 2, 0)	
(1, 1,	, 1)	1	(0, 2, 0)	2	1	No	(0, 2, 0)	
PennState	7		Data Sc	ience for Rese	archers and So	:holars	Vasa	nt Honavar, Fall 2023

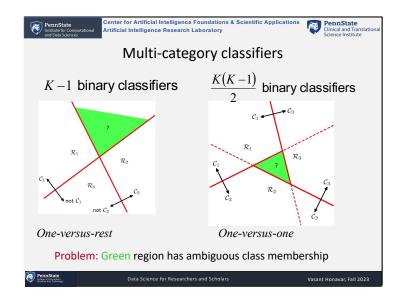


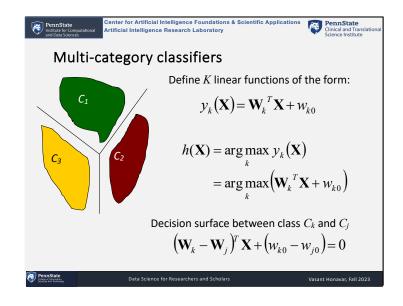


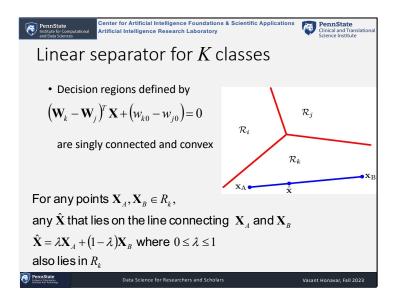








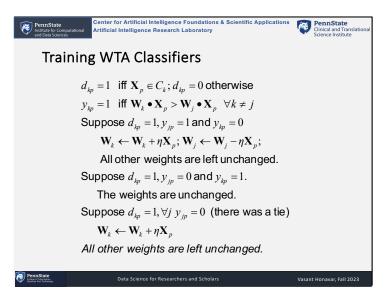


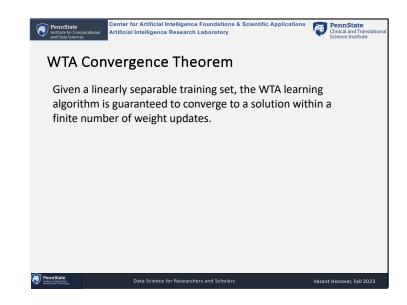


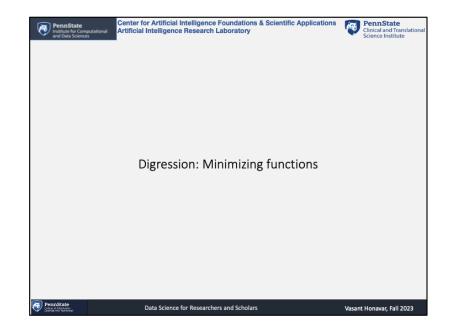
PennSta Institute for and Data Sc	Computa			Artificial Intellige celligence Resea			Applica	tions	Clinica	n State II and Translational re Institute
Winner-Take-All Networks										
7	0 ot	herwi	se	$\mathbf{W}_j \bullet \mathbf{X}_p \times \mathbf{N}_p$ Note $]^T, \mathbf{W}_2 = [$: W _j are a			eight	vecto	rs
				W ₁ .X _p	W ₂ .X _p	$W_3.X_p$	y 1	y 2	Уз	
	1	-1	-1	3	-1	2	1	0	0	
	1	-1	+1	1	1	2	0	0	1	
	1	+1	-1	1	1	2	0	0	1	
	1	+1	+1	-1	3	2	0	1	0	
	Wh	at doe	es nei	uron 3 co	mpute?					-
PennState Data Science for Researchers and Scholars				v	'asant Hona	var, Fall 2023				

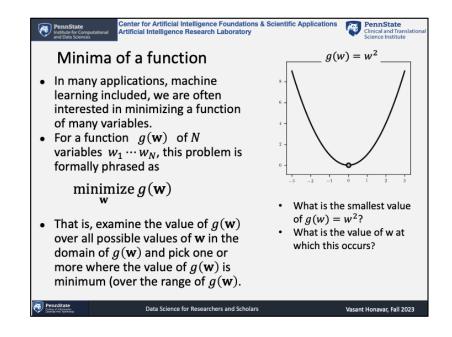
PennState Institute for Computational and Data Sciences Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory PennState Clinical and Translational Science Institute
Linear separability of multiple classes
Let S_1, S_2, S_3S_M be multisets of instances
Let C_1, C_2, C_3C_M be disjoint classes
$\forall i \ S_i \subseteq C_i$
$\forall i \neq j \ C_i \cap C_j = \emptyset$
We say that the sets S_1, S_2, S_3S_M are linearly
separable iff \exists weight vectors W_1^*, W_2^*, W_M^* such that
$\forall i \; \left\{ \forall \mathbf{X}_{p} \in S_{i}, \left(\mathbf{W}_{i}^{*} \bullet \mathbf{X}_{p} > \mathbf{W}_{j}^{*} \bullet \mathbf{X}_{p} \right) \forall j \neq i \right\}$

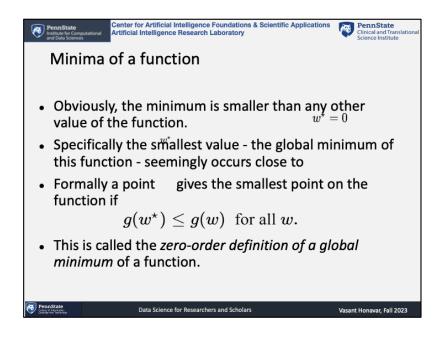
PennState

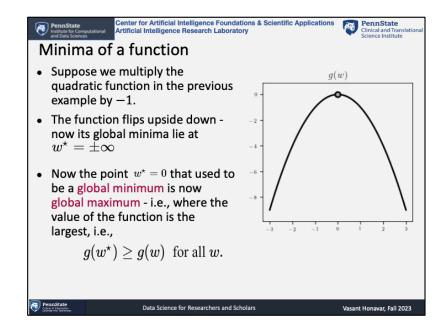


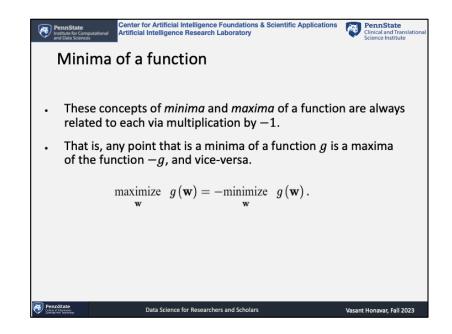


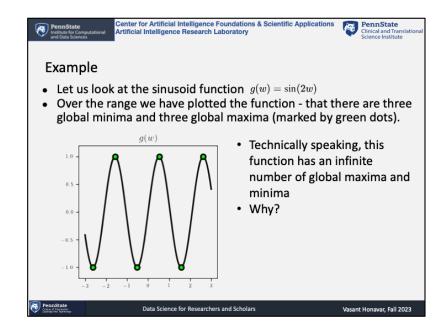


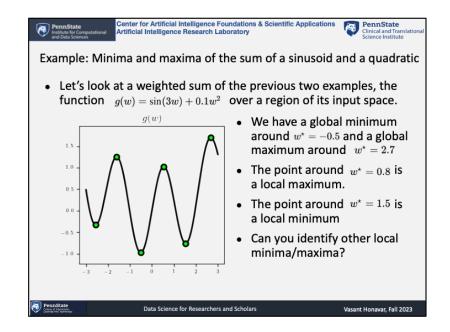


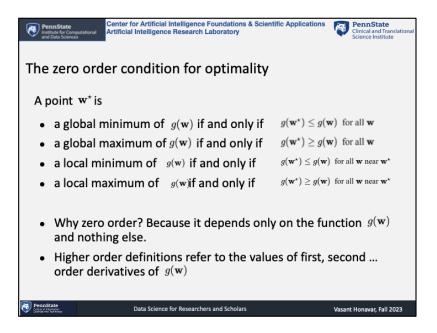


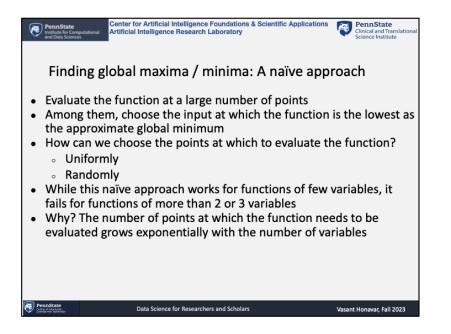


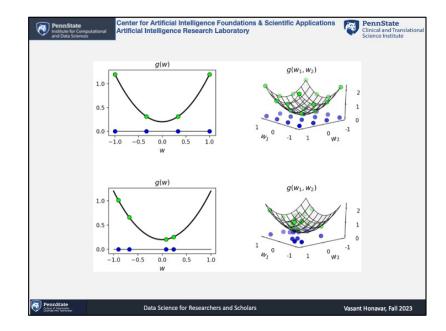


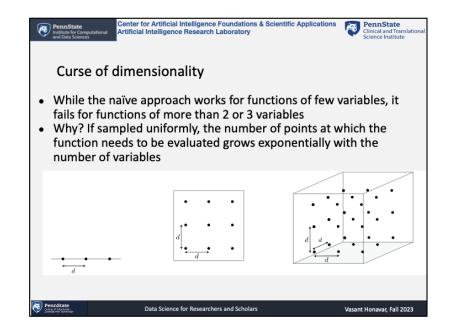


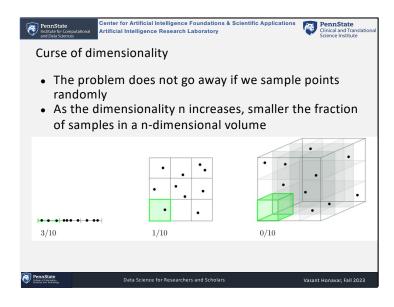


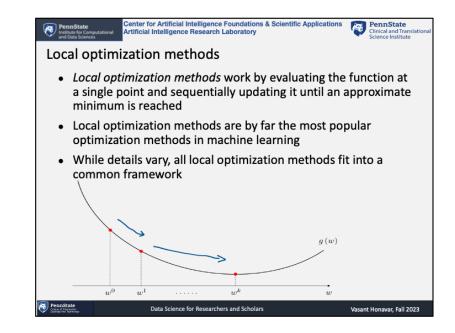


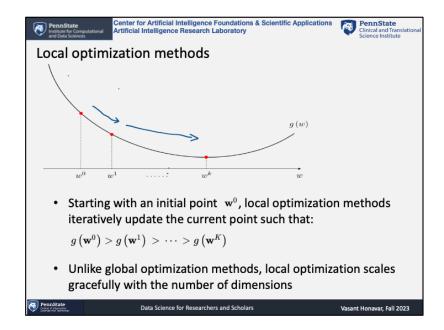


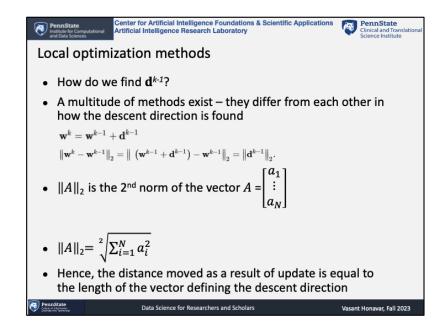


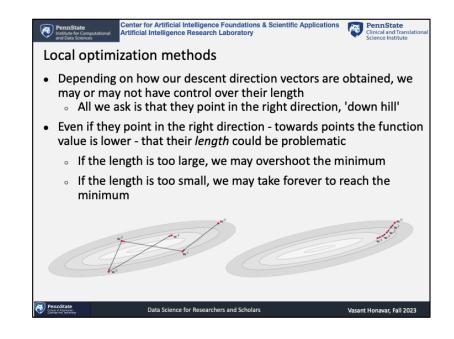


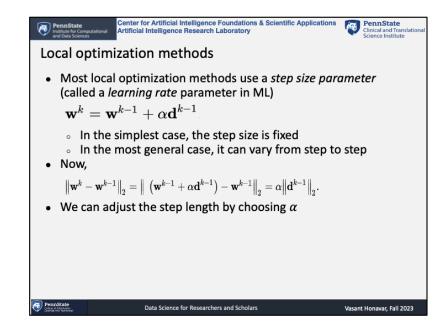


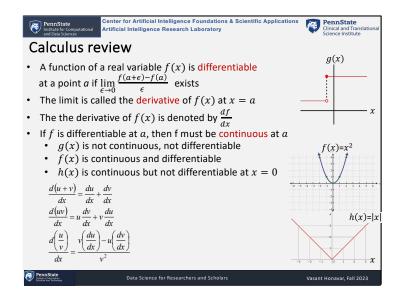


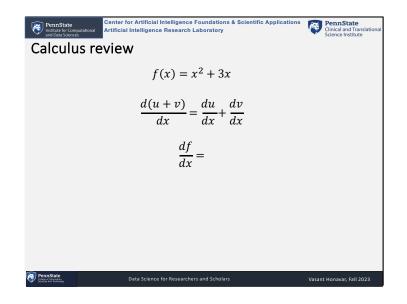


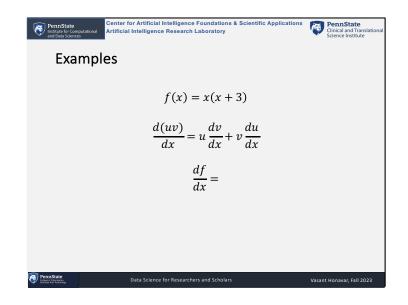


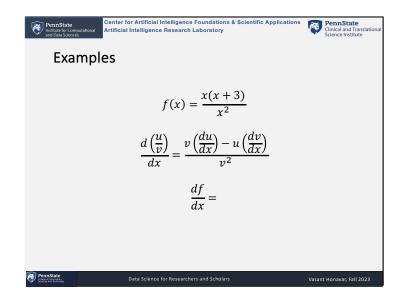




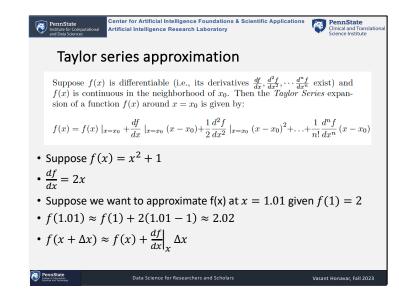


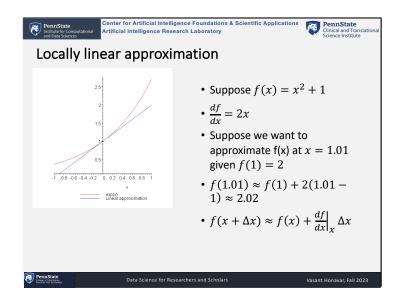






PennState Institute for Computational and Data Sciences	& Scientific Applications PennState Clinical and Translational Science Institute
Partial derivatives and chain rule	
Let $f(\mathbf{X}) = f(x_0, x_1, x_2, \dots, x_n)$ $\frac{\partial f}{\partial x_i}$ is obtained by treating all $x_i i \neq j$ as	s constant.
Chain rule Let $z = \varphi(u_1u_m)$ Let $u_i = f_i(x_{0,}x_1x_n)$ Then $\forall k \frac{\partial z}{\partial x_k} = \sum_{i=1}^m \left(\frac{\partial z}{\partial u_i}\right) \left(\frac{\partial u_i}{\partial x_k}\right)$	• $z = f(u, v) = u^2 + 2v$ • $u = f_1(x, y) = 2x + y$ • $v = f_2(x, y) = x^2 + y$ • $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}$ $\frac{dz}{dx} = 2u(2) + 2(2x)$ $\frac{dz}{dx} = 4(2x + y) + 4x$ $\frac{dz}{dx} = 4(3x + y)$
PennState Data Science for Researchers and Scholars	Vasant Honavar, Fall 2023





PennState

Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory Clinical and Transic

Taylor series approximation of multi-variable functions

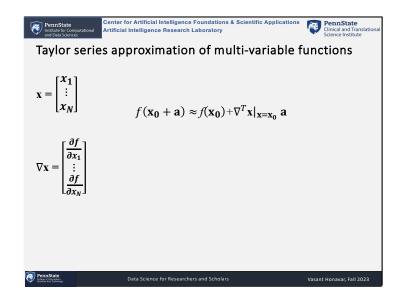
The concepts introduced above extend quite naturally to the case of multivariate functions (i.e., functions of several variables). Consider a multivariate function $f(\mathbf{X}) = f(x_0, \ldots, x_n)$). Now we have *partial derivatives* that represent the rate of change of $f(\mathbf{X})$ with respect to each variable x_i . A partial derivative with respect to x_i is computed by taking the derivative of $f(x_0, \ldots, x_n)$ by treating $\forall j \neq i, x_j$ as though it were a constant.

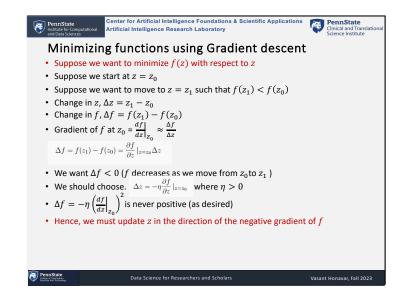
<u>Taylor Series</u> can be used to approximate a function of several variables in a neighborhood where the function is continuous and differentiable. For example, the Taylor Series expansion for the function $\phi(x_1, x_2)$ around $\mathbf{X}_0 = (x_{01}, x_{02})$ is given by:

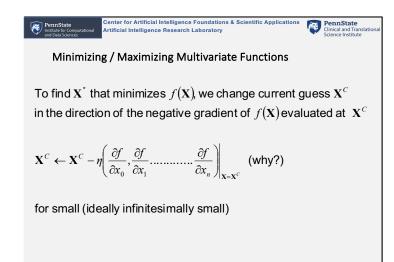
$$\phi(\mathbf{X}_{0}) + \frac{\partial \phi}{\partial x_{1}} |_{\mathbf{X}=\mathbf{X}_{0}} (x_{1} - x_{01}) + \frac{\partial \phi}{\partial x_{2}} |_{\mathbf{X}=\mathbf{X}_{0}} (x_{2} - x_{02}) + \frac{1}{2} \frac{\partial^{2} \phi}{\partial x_{1}^{2}} |_{\mathbf{X}=\mathbf{X}_{0}} (x_{1} - x_{01})^{2} + \frac{1}{2} \frac{\partial^{2} \phi}{\partial x_{2}^{2}} |_{\mathbf{X}=\mathbf{X}_{0}} (x_{2} - x_{02})^{2} + \dots$$

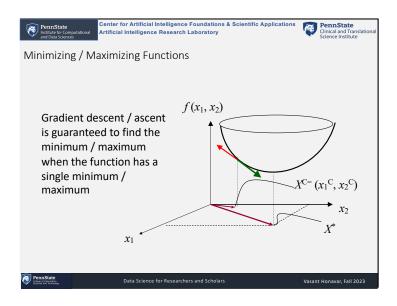
PennState

Scholars



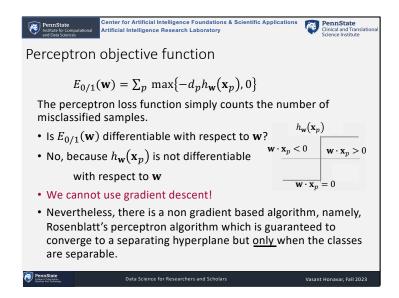


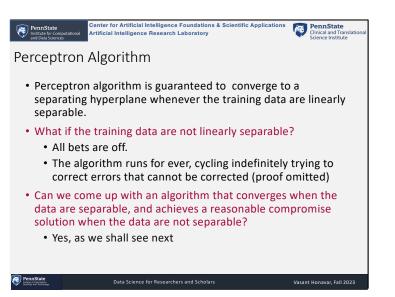




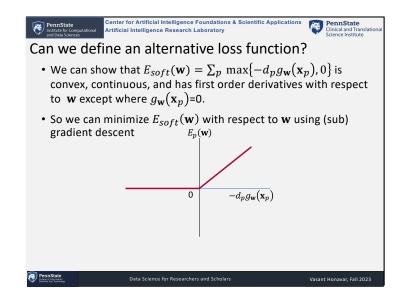
PennState Institute for Com and Data Science	Center for Artificial Intelligence Foundations & Scientific Applications putational Artificial Intelligence Research Laboratory	PennState Clinical and Translational Science Institute
• Whe	n does gradient descent stop?	
	nically (when is chosen well) the algorithm w onary points of a function, typically minima or so is.	
	do we know this? By the very form of the gradient step itself.	ient
• Say	the step	
	$\mathbf{w}^{\:k} = \mathbf{w}^{\:k-1} - lpha abla g\left(\mathbf{w}^{k-1} ight)$	
does no	t move from the prior point \mathbf{w}^{k-1} significantly.	
	n this can mean only one thing: that the direction eling leads us to a point where $- abla g\left(\mathbf{w}^k ight) pprox 0_{N imes 1}$	on we are
	is - by definition - a minimum, or saddle point) tion.	of the
PennState	Data Science for Researchers and Scholars	Vasant Honavar, Fall 2023

Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory Artificial Science Institute Center for Artificial Intelligence Research Laboratory Center for Artificial Intelligence Research Laboratory		
Perceptron objective function		
 We did not so far explicitly specify an objective function or loss function for the perceptron 		
Can we write down a loss function for the perceptron?		
$E_{0/1}(\mathbf{w}) = \sum_{p} \max\{-d_{p}h_{\mathbf{w}}(\mathbf{x}_{p}), 0\}$		
where		
d_p is the label (+1 or -1) for sample \mathbf{x}_p		
$h_{\mathbf{w}}(\mathbf{x}_p) = +1$ if $\mathbf{w} \cdot \mathbf{x}_p > 0$ and $h_{\mathbf{w}}(\mathbf{x}_p) = -1$ if $\mathbf{w} \cdot \mathbf{x}_p < 0$		
$-d_p h_{\mathbf{w}}(\mathbf{x}_p) = +1$ if and only if d_p and $h_{\mathbf{w}}(\mathbf{x}_p)$ agree		
in which case $\max\{-d_p h_{\mathbf{w}}(\mathbf{x}_p), 0\} = \max\{1, 0\} = 1$		
$-d_p h_{\mathbf{w}}(\mathbf{x}_p) = -1$ if and only if d_p and $h_{\mathbf{w}}(\mathbf{x}_p)$ disagree		
in which case max{ $-d_ph_{\mathbf{w}}(\mathbf{x}_p), 0$ } = max{ $-1,0$ } = 0		
The max operation ensures that contribution of a sample \mathbf{x}_p to $E_{0/1}(\mathbf{w})$ is 1 if $h_{\mathbf{w}}(\mathbf{x}_p)$ misclassifies \mathbf{x}_p and it is 0 otherwise.		
PennState Data Science for Researchers and Scholars Vasant Honavar, Fall 2023		

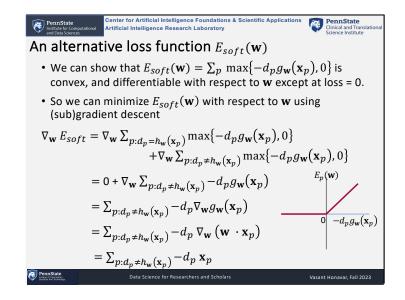


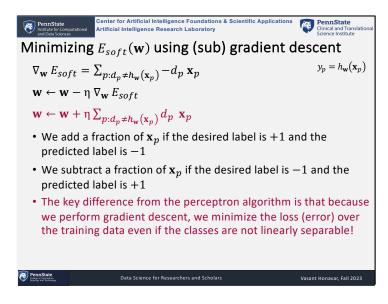


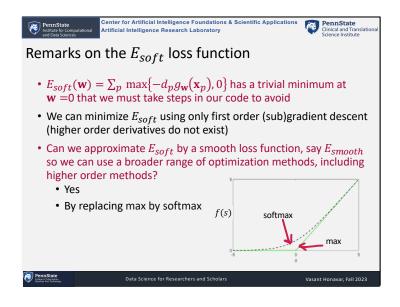
Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory PennState Clinical and Transl Science Institute PennState Can we define an alternative differentiable loss function? $g_{\mathbf{w}}(\mathbf{x}_p) = \mathbf{w} \cdot \mathbf{x}_p$ $h_{\mathbf{w}}(\mathbf{x}_p) = +1$ if $\mathbf{w} \cdot \mathbf{x}_p > 0$ and $h_{\mathbf{w}}(\mathbf{x}_p) = -1$ if $\mathbf{w} \cdot \mathbf{x}_p < 0$ Let $E_p(\mathbf{w}) = \max\{-d_p g_{\mathbf{w}}(\mathbf{x}_p), 0\}$ $E_{soft}(\mathbf{w}) = \sum_{p} E_{p}(\mathbf{w})$ where d_p is the label (+1 or -1) for sample \mathbf{x}_p $-d_p g_{\mathbf{w}}(\mathbf{x}_p) =$ • $+g_{\mathbf{w}}(\mathbf{x}_p)$ if d_p and $g_{\mathbf{w}}(\mathbf{x}_p)$ are of different signs • $-g_{\mathbf{w}}(\mathbf{x}_p)$ if d_p and $g_{\mathbf{w}}(\mathbf{x}_p)$ are of same sign The max operation ensures that contribution of a sample \mathbf{x}_p to $E_{soft}(\mathbf{w})$ is $\mathbf{\hat{v}} \cdot g_{\mathbf{w}}(\mathbf{x}_p)$ whenever $h_{\mathbf{w}}(\mathbf{x}_p)$ misclassifies \mathbf{x}_p and • 0 otherwise. nState



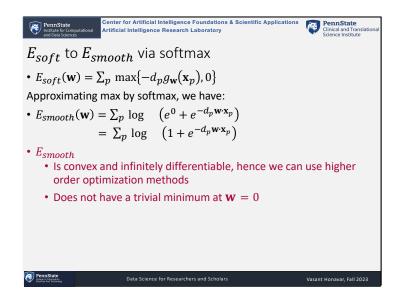
R	PennState Institute for Computa and Data Sciences		ter for Artificial I ficial Intelligence			ientific Applications PennState Clinical and Translational Science Institute		
Vector and matrix calculus								
	Scalar analog			Vector or Matrix counterpart				
	f(x)	$\frac{df}{dx}$		f (w)	$\frac{df}{dw}$			
	ax	а		$\mathbf{W}^T \mathbf{A}$	А			
	<i>x</i> ²	2 <i>x</i>		$\mathbf{W}^{T}a$	а	a scalar constant		
	ax^2	2ax		$\mathbf{W}^T \mathbf{W}$	2 W	x scalar variable w vector variable		
	e ^{ax}	ae ^{ax}		$\mathbf{w}^T \mathbf{B} \mathbf{w}$	2 Bw	A constant matrix		
				a · w	а	 B a constant square matrix W a square matrix variable 		
				e ^{a.w}	ae ^{a⋅w}	a a constant vector		
Reference: http://www.cs.cmu.edu/~mgormley/courses/10601/slides/10601-matrix-calculus.pdf								
Constant Data Science for Researchers and Scholars Vasant Honavar, Fall 2023								

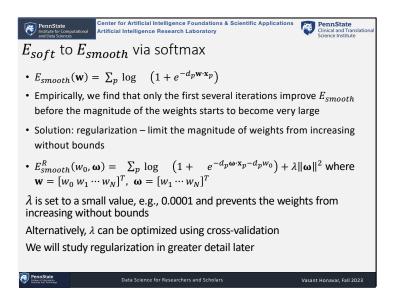






EXAMPLE Constraints: Example 2 Constraints: Constraints:





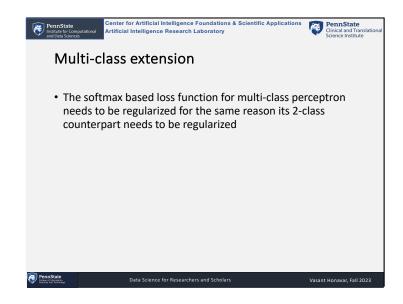
PennState Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory Artificial Intelligence Research Laboratory							
E_{soft} to E_{smooth} via softmax							
$\begin{split} E^R_{smooth}(w_0, \boldsymbol{\omega}) &= \sum_p \log \left(1 + e^{-d_p \boldsymbol{\omega} \cdot \mathbf{x}_p - d_p w_0}\right) + \lambda \ \boldsymbol{\omega}\ ^2 \text{ where if } \\ \mathbf{w} &= [w_0 w_1 \cdots w_N]^T, \boldsymbol{\omega} = [w_1 \cdots w_N]^T \end{split}$							
Gradient based update:							
$\nabla_{\boldsymbol{\omega}} E^{R}_{smooth}(w_{0}, \boldsymbol{\omega}) = \nabla_{\boldsymbol{\omega}} \left(\sum_{p} \log \left(1 + e^{-d_{p}\boldsymbol{\omega} \cdot \mathbf{x}_{p} - d_{p}w_{0}} \right) + \lambda \ \boldsymbol{\omega}\ ^{2} \right)$							
$= \sum_{p} \frac{1}{(1+e^{-d_{p}\boldsymbol{\omega}\cdot\mathbf{x}_{p}-d_{p}w_{0}})} \nabla_{\boldsymbol{\omega}} \left(1 + e^{-d_{p}\boldsymbol{\omega}\cdot\mathbf{x}_{p}-d_{p}w_{0}}\right) + \nabla_{\boldsymbol{\omega}}(\lambda \ \boldsymbol{\omega}\ ^{2})$							
$= -\sum_{p} \frac{e^{-d_{p}\boldsymbol{\omega}\cdot\mathbf{x}_{p}-d_{p}w_{0}}}{\left(1+e^{-d_{p}\boldsymbol{\omega}\cdot\mathbf{x}_{p}-d_{p}w_{0}}\right)} d_{p}\mathbf{x}_{p} + 2\lambda\boldsymbol{\omega}$							
Weight update							
$\boldsymbol{\omega} \leftarrow \boldsymbol{\omega} - \eta \nabla_{\boldsymbol{\omega}} E^R_{smooth}(w_0, \boldsymbol{\omega})$							
PennState Data Science for Researchers and Scholars Vasant Honavar, Fall 2023							

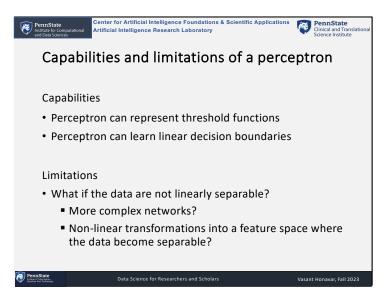
$$\overrightarrow{E} expected with the expected of the expec$$

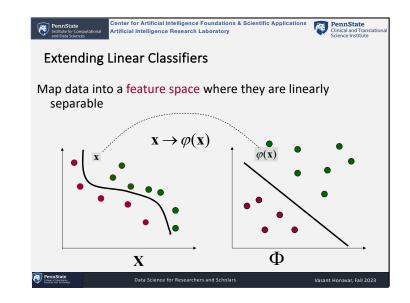
PennState Center for Artificial Intelligence Foundations & Scientific Applications	nnState				
Institute for Computational Artificial Intelligence Research Laboratory	nical and Translationa ence Institute				
Multi-class extension					
Predicted class label for \mathbf{x}_p is given by $y_p = argmax_c \mathbf{w}_p$	$\mathbf{w}_c \cdot \mathbf{x}_p$				
Predicted class label for \mathbf{x}_p is d_p	Predicted class label for \mathbf{x}_p is d_p				
Suppose we define E_p , the error on sample \mathbf{x}_p	Suppose we define E_p , the error on sample \mathbf{x}_p				
$E_p(\mathbf{w}_1, \cdots, \mathbf{w}_C) = \max_{c=1, \cdots, C; \& c \neq d_p} \left\{ 0, \ \mathbf{x}_p \cdot \left(\mathbf{w}_c - \mathbf{w}_c \right) \right\}$					
Decision surface Error on the training set between class k	Error on the training set				
and j is given by $(\mathbf{w}_k - \mathbf{w}_j) \cdot \mathbf{x} = 0$ $E = \sum_p E_p(\mathbf{w}_1, \cdots \mathbf{w}_C)$					
PennState Data Science for Researchers and Scholars Vasant Hone	onavar, Fall 2023				

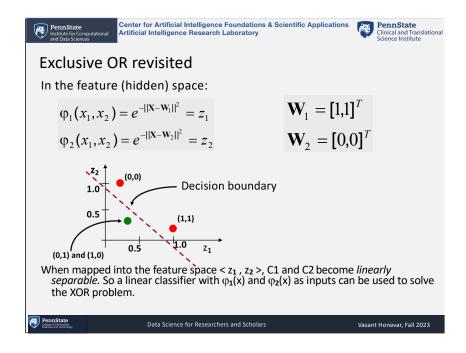
EXAMPLE CONTRACT OF Artificial Intelligence Foundations & Scientific Applications
Multi-class softmax
Suppose we define
$$E_p$$
, the error on sample \mathbf{x}_p
 $E_p(\mathbf{w}_1, \cdots, \mathbf{w}_c) = \max_c \mathbf{x}_p \cdot \mathbf{w}_c - \mathbf{w}_{d_p} \cdot \mathbf{x}_p$
 $\approx \log(\sum_{c=1}^c e^{\mathbf{x}_p \cdot \mathbf{w}_c}) - \mathbf{w}_{d_p} \cdot \mathbf{x}_p$
 $\approx \log(\sum_{c=1}^c e^{\mathbf{x}_p \cdot \mathbf{w}_c}) - \mathbf{w}_{d_p} \cdot \mathbf{x}_p$
 $E = \sum_p E_p(\mathbf{w}_1, \cdots, \mathbf{w}_c)$
 $\nabla_{\mathbf{w}_c} E = \nabla_{\mathbf{w}_c} \left(\log(\sum_{j=1}^c e^{\mathbf{x}_p \cdot \mathbf{w}_j}) - \mathbf{w}_{d_p} \cdot \mathbf{x}_p \right)$
 $= \left(\frac{1}{\sum_{j=1}^c e^{\mathbf{x}_p \cdot \mathbf{w}_j}} \right) \nabla_{\mathbf{w}_c} \left(\log(\sum_{j\neq c} e^{\mathbf{x}_p \cdot \mathbf{w}_j}) + \log e^{\mathbf{x}_p \cdot \mathbf{w}_c} \right) - 0$
 $= \left(\frac{1}{\sum_{j=1}^c e^{\mathbf{x}_p \cdot \mathbf{w}_j}} \right) (0 + e^{\mathbf{x}_p \cdot \mathbf{w}_c}) \nabla_{\mathbf{w}_c} (\mathbf{x}_p \cdot \mathbf{w}_c)$
 $= \left(\frac{e^{\mathbf{x}_p \cdot \mathbf{w}_c}}{\sum_{j=1}^c e^{\mathbf{x}_p \cdot \mathbf{w}_j}} \right) \mathbf{x}_p$
 $\mathbf{w}_c \leftarrow \mathbf{w}_c - \eta \left(\frac{e^{\mathbf{x}_p \cdot \mathbf{w}_c}}{\sum_{j=1}^c e^{\mathbf{x}_p \cdot \mathbf{w}_j}} \right) \mathbf{x}_p$

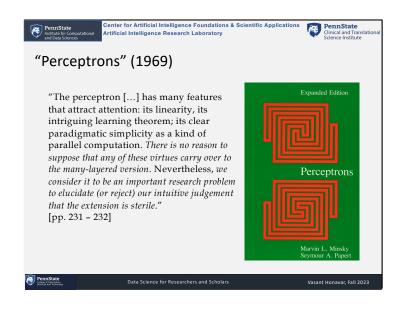
EXAMPLE CPARTER OF Artificial Intelligence Foundations & Scientific Applications
Multi-class softmax
Suppose we define
$$E_p$$
, the error on sample \mathbf{x}_p
 $E_p(\mathbf{w}_1, \cdots, \mathbf{w}_C) \approx \log(\sum_{c=1}^C e^{\mathbf{x}_p \cdot \mathbf{w}_c}) - \mathbf{w}_{d_p} \cdot \mathbf{x}_p$
 $E = \sum_p E_p(\mathbf{w}_1, \cdots, \mathbf{w}_C)$
 $\nabla_{\mathbf{w}_{d_p}} E = \nabla_{\mathbf{w}_{d_p}} \left(\log(\sum_{j=1}^C e^{\mathbf{x}_p \cdot \mathbf{w}_j}) - \mathbf{w}_{d_p} \cdot \mathbf{x}_p \right)$
 $= \left(\frac{1}{\sum_{j=1}^C e^{\mathbf{x}_p \cdot \mathbf{w}_j}} \right) \nabla_{\mathbf{w}_{d_p}} \left(e^{\mathbf{x}_p \cdot \mathbf{w}_d p} - \nabla_{\mathbf{w}_{d_p}} \left(\mathbf{w}_{d_p} \cdot \mathbf{x}_p \right) \right)$
 $= \left(\frac{1}{\sum_{j=1}^C e^{\mathbf{x}_p \cdot \mathbf{w}_j}} \right) \left(e^{\mathbf{x}_p \cdot \mathbf{w}_d p} \right) \nabla_{\mathbf{w}_{d_p}} \left(\mathbf{x}_p \cdot \mathbf{w}_{d_p} \right) - \mathbf{x}_p$
 $= \left(\frac{e^{\mathbf{x}_p \cdot \mathbf{w}_c}}{\sum_{j=1}^C e^{\mathbf{x}_p \cdot \mathbf{w}_j}} \right) \left(e^{\mathbf{x}_p \cdot \mathbf{w}_d p} \right) \nabla_{\mathbf{w}_{d_p}} \left(\mathbf{x}_p \cdot \mathbf{w}_{d_p} \right) - \mathbf{x}_p$
 $= \left(\frac{e^{\mathbf{x}_p \cdot \mathbf{w}_c}}{\sum_{j=1}^C e^{\mathbf{x}_p \cdot \mathbf{w}_j}} \right) \mathbf{x}_p - \mathbf{x}_p = - \mathbf{x}_p \left(1 - \frac{e^{\mathbf{x}_p \cdot \mathbf{w}_c}}{\sum_{j=1}^C e^{\mathbf{x}_p \cdot \mathbf{w}_j}} \right)$
 $\mathbf{w}_{d_p} \leftarrow \mathbf{w}_{d_p} + \eta \left(1 - \frac{e^{\mathbf{x}_p \cdot \mathbf{w}_c}}{\sum_{j=1}^C e^{\mathbf{x}_p \cdot \mathbf{w}_j}} \right) \mathbf{x}_p$











Center for Artificial Intelligence Foundations & Scientific Applications PennState Clinical and Transla Science Institute PennState Artificial Intelligence Research Laboratory Postscript • Minsky and Papert's book had a chilling effect on machine learning research in the US for the next 25 years • A few die-hards continued to work on machine learning • Artificial Intelligence research shifted to knowledge-based systems • Some success with human-engineered knowledge bases • Knowledge engineering bottleneck encountered (1980's) • Renewed interest in machine learning (mid-late 1980's) • Practical approaches to training multi-layer neural networks (late 1980s) • Data and computing revolution (1990s – 2000s) • Machine learning takes over Artificial Intelligence (2010 – present) PennState