

```
PennState
    PennState
Center for Artificial Intelligence Foundations & Scientific Application
Artificial Intelligence Research Laboratory
Clinical and Tran
```


A deeper dive into data

```
- What do we mean by data?
- Digital representation of objects, entities, persons, events, processes, etc. in the real world
- Employees
- Genomic sequences
- Social relationships
- Images
- Documents
- Medical histories
- .....

\section*{Tabular data}

\section*{- Objects or entities are} represented by rows in a table.
- Columns of the table encode properties or characteristics, features, of the objects
- Each object is represented by specifying the values of each attribute
- We call the set of all possible values of an attributes its domain
- Domain of Refund is \(\{\) Yes, No \}
- Domain of Taxable Income is \(\mathfrak{R}^{+}\) (positive real numbers)


\section*{The way you encode an attribute has consequences}
- Two different encodings of lengths of objects


\section*{Attributes come in many flavors}
- There are different types of attributes
- Nominal
- Examples: ID numbers, eye color, zip codes
- Ordinal
- Examples: rankings (e.g., taste of potato chips on a scale from 110), grades, height \{tall, medium, short\}
- Interval
- Examples: calendar dates, temperatures in Celsius or Fahrenheit.
- Ratio
- Examples: temperature in Kelvin, length, counts, elapsed time (e.g., time to run a race)

\section*{Properties of Attribute Values}
- Different types of attributes possess different properties:
- Distinctness:
\(=\neq\)
- Order:
< >
- Meaningfulness of differences + -
- Meaningfulness of ratios * /
- Nominal attribute: distinctness
- Ordinal attribute: distinctness \& order
- Interval attribute: distinctness, order \& meaningfulness of differences
- Ratio attribute: All 4 properties

\section*{Measurement is a tricky subject}
- Temperature is measured in Kelvin, degrees Celsius, and degrees Fahrenheit
- Temp in Kelvin = Temp in degrees Celsius +273.15
- Temp in Fahrenheit = (Temp in degrees Celsius)(9/5)+32
- Is it physically meaningful to say that a temperature of \(10^{\circ}\) Celsius is twice as high as \(5^{\circ}\) Celsius?
- Depends
- On what?
- the measurement scale!!!
- Consider measuring height
- If Bill's height is three inches above average and Bob's height is six inches above average, then would we say that Bob is twice as tall as Bill?
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory} & PennState Clinical and Translationa Science Institute \\
\hline \multirow{3}{*}{} & Attribute Type & Description & Examples & Operations \\
\hline & Nominal & Nominal attribute values only distinguish. (=, \(\neq\) ) & zip codes, employee ID numbers, eye color, sex: \{male, female\} & mode, entropy, contingency correlation, \(\chi 2\) test \\
\hline & Ordinal & Ordinal attribute values also order objects.
\[
(<,>)
\] & hardness of minerals, \{hard, medium, soft\}, grades, street numbers & median, percentiles, rank correlation, run tests, sign tests \\
\hline \multirow[t]{2}{*}{} & Interval & For interval attributes, differences between values are meaningful. (+, - ) & calendar dates, temperature in Celsius or Fahrenheit & mean, standard deviation, Pearson's correlation, \(t\) and \(F\) tests \\
\hline & Ratio & For ratio variables, both differences and ratios are meaningful. (*, /) & temperature in Kelvin, monetary quantities, counts, age, mass, length, current & geometric mean, harmonic mean, percent variation \\
\hline (0) Pennstat & & \multicolumn{2}{|l|}{Data Science for Researchers and Scholars} & Vasant Honevar, Fall 2023 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory} \\
\hline \multirow[b]{3}{*}{} & Attribute Type & Transformation & Comments \\
\hline & Nominal & Any permutation of values & If all employee ID numbers were reassigned, would it make any difference? \\
\hline & Ordinal & \begin{tabular}{l}
An order preserving change of values, i.e., \\
new_value = f(old_value) where \(f\) is a monotonic function
\end{tabular} & An attribute encompassing the notion of good, better best can be represented equally well by the values \(\{1,2,3\}\) or by \(\{0.5,1,10\}\). \\
\hline \multirow[t]{2}{*}{} & Interval & new_value = a * old_value + b where \(a\) and \(b\) are constants & Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree). \\
\hline & Ratio & new_value = a * old_value & Length can be measured in meters or feet. \\
\hline (0) Pensiate & & Data Science for Researchers and Scholars & Vasant Honavar, Fall 2023 \\
\hline
\end{tabular}

\section*{Discrete and Continuous Attributes}
- Discrete Attribute
- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Binary attributes are a special case of discrete attributes
- Continuous Attribute
- Takes real numbers as values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floatingpoint numbers.

\section*{(3) PennState \\ Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory}

\section*{Asymmetric Attributes}
- Only presence (a non-zero attribute value) matters
- Words present in documents
- Items present in customer transactions
- If you run into a friend at the grocery store would you ever say the following?
"We have similar taste because I did not buy almost every item that you also did not buy"

\section*{Points to remember about attribute types}
- The types of operations you choose should be "meaningful" for the type of data you have
- Distinctness, order, meaningful intervals, and meaningful ratios are only four (among many possible) properties of data
- The data type you see - often numbers or strings - may not capture all the properties or may suggest properties that are not present
- Analysis may depend on these other properties of the data
- In the end, what is meaningful may be domain-specific

Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory

\section*{Important Characteristics of Data}
- Dimensionality (number of attributes)
- Sparsity
- Resolution
- Size

Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory

\section*{Types of data}
- Tabular data
- Document Data
- Transaction Data
- Graph
- World Wide Web
- Molecular Structures
- Social networks
- Ordered
- Clinical histories
- System call sequences
- Genome Sequences Sequence Data

Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory

\section*{Tabular data}
- Data that consists of a collection of records, each of which encoded by a fixed set of attributes
\begin{tabular}{|l|l|l|l|l|}
\hline Tid & Refund & \begin{tabular}{l} 
Marital \\
Status
\end{tabular} & \begin{tabular}{l} 
Taxable \\
Income
\end{tabular} & Cheat \\
\hline 1 & Yes & Single & 125 K & No \\
2 & No & Married & 100 K & No \\
3 & No & Single & 70 K & No \\
4 & Yes & Married & 120 K & No \\
5 & No & Divorced & 95 K & Yes \\
6 & No & Married & 60 K & No \\
7 & Yes & Divorced & 220 K & No \\
8 & No & Single & 85 K & Yes \\
9 & No & Married & 75 K & No \\
10 & No & Single & 90 K & Yes \\
\hline
\end{tabular}

\section*{Tabular data}
- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multidimensional space, where each dimension represents a distinct attribute
- Such a data set can be represented by an \(m\) by \(n\) matrix, where there are \(m\) rows, one for each object, and \(n\) columns, one for each attribute

\section*{Document Data}
- Each document is encoded using a vector of word frequencies
- Each term is a component (attribute) of the vector
- The value of each component is the number of times the corresponding word occurs in the document.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \vec{D} \\
& \stackrel{\otimes}{3}
\end{aligned}
\] & \[
\begin{aligned}
& \text { O} \\
& \stackrel{\circ}{3}
\end{aligned}
\] & \[
\underset{\sim}{0}
\] & \[
\begin{aligned}
& \text { 耳 } \\
& \stackrel{O}{0}
\end{aligned}
\] &  &  & §. & - & \[
\begin{aligned}
& \text { 空 } \\
& \stackrel{\rightharpoonup}{0} \\
& \stackrel{\rightharpoonup}{c}
\end{aligned}
\] & \begin{tabular}{l} 
¢ \\
O/ \\
0 \\
\hline
\end{tabular} \\
\hline Document 1 & 3 & 0 & 5 & 0 & 2 & 6 & 0 & 2 & 0 & 2 \\
\hline Document 2 & 0 & 7 & 0 & 2 & 1 & 0 & 0 & 3 & 0 & 0 \\
\hline Document 3 & 0 & 1 & 0 & 0 & 1 & 2 & 2 & 0 & 3 & 0 \\
\hline
\end{tabular}

\section*{Transaction Data}
- A special type of data, where
- Each transaction involves a set of items.
- For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.
- Can represent transaction data as record data
\begin{tabular}{|l|l|}
\hline TID & Items \\
\hline 1 & Bread, Coke, Milk \\
\hline 2 & Beer, Bread \\
\hline 3 & Beer, Coke, Diaper, Milk \\
\hline 4 & Beer, Bread, Diaper, Milk \\
\hline 5 & Coke, Diaper, Milk \\
\hline
\end{tabular}

\section*{(n) PennState \\ Graph Data}
- Examples: Social network, protein interaction network, protein structure, criminal network


\section*{Ordered Data}
- Genomic sequence data

> GGTTCCGCCTTCAGCCCCGCGCC CGCAGGGCCCGCCCCGCGCCGTC GAGAAGGGCCCGCCTGGCGGGCG GGGGGAGGCGGGGCCGCCCGAGC CCAACCGAGTCCGACCAGGTGCC CCCTCTGCTCGGCCTAGACCTGA GCTCATTAGGCGGCAGCGGACAG GCCAAGTAGAACACGCGAAGCGC TGGGCTGCCTGCTGCGACCAGGG


\section*{Function approximation (Regression)}
- Function approximation is like classification except the labels are real valued
\[
\text { S\&P } 500
\]

S\&P Indices: INX - Jan 16 4:30 PM ET
Example applications:
\[
2,019.42 \uparrow 26.75(1.34 \%)
\]
\begin{tabular}{llllll}
1 day & 5 day & 1 month & 3 month & 1 year & 5 year
\end{tabular} \(\max\)

Predicting
- Stock value
- Income
- Power consumption


\section*{K nearest neighbor Function Approximator}

\section*{Learning Phase}

For each training example \(\left(X_{i}, f\left(X_{i}\right)\right)\), store the example in memory

Approximation phase
Given a query instance \(X_{q}\), identify the \(k\) nearest neighbors \(X_{1} \ldots X_{k}\) of \(X_{q}\)
\[
g\left(X_{q}\right) \leftarrow \frac{\sum_{l=1}^{K} f\left(X_{i}\right)}{K}
\]

Value of a function (e.g., price of a product) at a query point is simply the average or inverse distance weighted average of the value of the function at the \(k\) nearest neighbors of the query point

\section*{Generative models for classification}
```

(3) PennState
Institue for Con
Center for Artificial Intelligence Foundations \& Scientific Application
Artificial Intelligence Research Loundations

Basic Probability Theory

```
- A random experiment has a set of potential outcomes, e.g., throw a die, "look at" another data sample
- The sample space of an experiment is the set of all possible outcomes, e.g., \(\{1,2,3,4,5,6\}\)
- For machine learning the sample spaces can be very large
```

(7) PennState Center for Artificial Intelligence Foundations \& Scientific Applications
PennState
Artificial Intelligence Research Laboratory

Basic Probability Theory

```
An event is a subset of the sample space
Dice rolls
- \(\{2\}\)
- \(\{3,6\}\)
- even \(=\{2,4,6\}\)
- odd \(=\{1,3,5\}\)
Machine learning
- A chosen feature has particular values
- A data sample is described by the values of features
```

 PennState
 PennState
 Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory
    ```

\section*{Events}
```

We're interested in probabilities of events

- p(\{2\})
- p(label=cancer)
- p(tumorpresent = 1)
- p(smoker = 1)

```

\section*{ariables}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline IHT & HTH & HTT & THH & THT & TTH & TTT \\
\hline\(!\) & 2 & 1 & 2 & 1 & 1 & 0 \\
\hline
\end{tabular}
ole is a mapping from the sample space to a svents)
vhose values we want to measure in an experiment ndom variable, \(X\), could be the number of heads for

```

Center for Artificial Intelligence Foundations \& Scientific Applications
Pennstate Artificial Intelligence Research Laboratory

Probability distribution

To be explicit

- A probability distribution assigns probability values to all possible values of a random variable
- These values must be >= 0 and $<=1$
- These values must sum to 1 for all possible values of the random variable

```
(3) PennState
    Institute for Com
Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

\section*{Unconditional/prior probability}
```

Simplest form of probability is

- $P(X)$
Prior probability: In the absence of any additional information, what is the probability of an outcome of interest
- What is the probability of heads?
- What is the probability of surviving cancer?
- What is the probability of a wine review containing the word "pinot"?
- What is the probability of a passenger on the titanic being under 21 years old?
- ...

```
    PennState
    Mstitute for Con
Center for Artificial Intelligence Foundations & Scientific Application Artificial Intelligence Research Laboratory

\section*{Joint distribution}
```

We can also talk about probability distributions over multiple variables
$P(X, Y)$

- Joint probability of X and Y
- A distribution over the cross product of possible values

| DSPass AND HCIPass | P(DsPass, HCIPass) |
| :--- | :--- |
| true, true | .80 |
| true, false | .01 |
| false, true | .04 |
| false, false | .15 |

```
PennState
Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory

\section*{Joint distribution}
```

Still a probability distribution

- all values between 0 and 1 , inclusive
- all values sum to 1
All questions/probabilities of the two variables can be calculate from the joint distribution

| What is P(HCIPass)? | |
| :---: | :---: |
| DSPass AND HCIPass | P(DsPass, HCIPass) |
| true, true | . 80 |
| true, false | . 01 |
| false, true | . 04 |
| false, false | . 15 |

```
PennState
    nstitute for Con
Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory

\section*{Joint distribution}
```

Still a probability distribution

- all values between 0 and 1 , inclusive
- all values sum to 1
All questions/probabilities of the two variables can be calculate from the ioint distribution

| DSPass AND HCIPass | P(DsPass, HCIPass) |
| :--- | :--- |
| true, true | .80 |
| true, false | .01 |
| false, true | .04 |
| false, false | .15 |

P (HCIPass) $=0.84$
How did you figure that out?

| | Center for Artificial Intelligence Foundations \& Scientific Applications Artificial Intelligence Research Laboratory | | | PennState Clinical and Translationa Science Institute |
| :---: | :---: | :---: | :---: | :---: |
| Joint distribution | | | | |
| DSPass AND HCIPass | | P(DsPass, HCIPass) | | |
| true, true | | . 80 | | |
| true, false | | . 01 | | |
| false, true | | . 04 | | |
| false, false | | . 15 | | |
| $P(x)=\sum p(x, y)$ | | | | |
| DSPass | P(DSPass) | HCIPass | P (HClPass) | |
| true | 0.81 | true | 0.84 | |
| false | 0.19 | false | 0.16 | |
| (0) Pens Site | Data Science for Researchers and Scholars | | | Vasant Honavar, Fall 2023 |

Conditional probability

- As we acquire more information, we can update our probability distribution
- $P(X \mid Y)$ models this (read "probability of X given $Y^{\text {" }}$)
- What is the probability of a heads given that both sides of the coin are heads?
- What is the probability the document is about Chardonnay, given that it contains the word "Pinot"?
- What is the probability of the word "noir" given that the sentence also contains the word "pinot"?
- Notice that $P(X \mid Y)$ is still a distribution over the values of X

```
PennState
    Institute for Computational
Center for Artificial Intelligence Foundations & Scientific Application Artificial Intelligence Research Laboratory

\section*{Conditional probability}
```

$$
p(X \mid Y)=\frac{P(X, Y)}{P(Y)}
$$

```

```

Given that y has happened, in what proportion of those events does x also happen?


```
PennState
    M
Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory

\section*{Conditional probability}
```

| DSPass AND HCIPass | P(DsPass, HCIPass) | $\frac{P(X, Y)}{P(Y)}$ |
| :---: | :---: | :---: |
| true, true | . 80 | $p(X \mid Y)=\frac{P(X, Y)}{P(Y)}$ |
| true, false | . 01 | |
| false, true | . 04 | |
| false, false | . 15 | |
| What is: $P($ DSPass $=$ True \mid HCIPass $=$ False $)$? | | |
| $P($ DSPass $=$ True, HCIPass $=$ False $)$ | | $0.01=1$ |
| P(HC | IPass $=$ False) | $0.15+0.01-\frac{1}{16}$ |

```

Notice this is very different than \(P(\) DSPass \(=\) true \()=0.81\)

```

7. PennState Center for Artificial Intelligence Foundations \& Scientific Applications
Institute for Con
A note about notation

- When talking about a particular random variable value, you should technically write $P(X=x)$, etc.
- We may write $P(x)$ to mean probability that X takes any particular value, i.e. $P(X=x)$

Chain rule (aka product rule)

$$
p(X \mid Y)=\frac{P(X, Y)}{P(Y)} \quad \square p p(X, Y)=P(X \mid Y) P(Y)
$$

We can view calculating the probability of X AND
Y occurring as two steps:

- Y occurs with some probability $P(Y)$
- Then, X occurs, given that Y has occurred

Chain rule

$$
\begin{aligned}
& p(X, Y, Z)=P(X \mid Y, Z) P(Y, Z) \\
& p(X, Y, Z)=P(X, Y \mid Z) P(Z) \\
& p(X, Y, Z)=P(X \mid Y, Z) P(Y \mid Z) P(Z) \\
& p(X, Y, Z)=P(Y, Z \mid X) P(X) \\
& p\left(X_{1}, X_{2}, \cdots X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \cdots X_{i-1}\right)
\end{aligned}
$$

Applications of the chain rule

We saw that we could calculate the individual prior probabilities using the joint distribution

$$
p(x)=\sum_{y \in Y} p(x, y)
$$

What if we don't have the joint distribution, but do have conditional probability information:

- $P(Y)$
- $P(X \mid Y)$

$$
p(x)=\sum_{y \in Y} p(y) p(x \mid y)
$$

This is called "summing over" or "marginalizing out" a variable C) Dengsare Data Science for Researchers and scholars Vasant Honavar, Fall 1203

$$
\begin{aligned}
& \text { (7) PennState Center for Artificial Intelligence Foundations \& Scientific Applications } \\
& \text { nstitute for Co } \\
& p(X \mid Y)=\frac{P(X, Y)}{P(Y)} \quad \square p(X, Y)=P(X \mid Y) P(Y) \\
& p(Y \mid X)=\frac{P(X, Y)}{P(X)} \quad \square p(X, Y)=P(Y \mid X) P(X) \\
& p(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
\end{aligned}
$$

```
(73) PennState
    nstitute for Computationa
Center for Artificial Intelligence Foundations & Scientific Applications
Artificial Intelligence Research Laboratory
Clinical and Translational
```


Bayes' rule

```
- p(disease | symptoms)
- For everyone who had the symptoms, what fraction had the disease?
- p(symptoms|disease)
- For everyone that had the disease, what fraction had this symptom?
- p( label| features )
- For all examples that had those features, what fraction had that label?
- p(features | label)
- For all the examples with that label, what fraction had this feature

\section*{Bayes Rule}

Does patient have cancer or not?
A patient takes a lab test and the result comes back positive. The test returns a correct positive result in only \(98 \%\) of the cases in which the disease is actually present, and a correct negative result in only \(97 \%\) of the cases in which the disease is not present. Furthermore, .008 of the entire population have this cancer.
\[
\begin{array}{cc}
P(\text { cancer })= & P(\neg \text { cancer })= \\
P(+\mid \text { cancer })= & P(-\mid \text { cancer })= \\
P(+\mid \neg \text { cancer })= & P(-\mid \neg \text { cancer })=
\end{array}
\]

Ins itiafor pratzional Artificial Intelligence Research Laboratory

Does patient have cancer or not?
\[
\begin{gathered}
P(\text { cancer })=0.008 \\
P(+\mid \text { cancer })=0.98 \quad P(\neg \text { cancer })=0.992 \\
P(+\mid \text { cancer })=0.03 \quad P(-\mid \text { cancer })=0.02 \\
P(\text { cancer } \mid+)=\frac{P(+\mid \text { cancer }) P(\text { cancer })}{P(+)} ; \\
P(\neg \text { cancer } \mid+)=\frac{P(+\mid- \text { cancer }) P(\neg \text { cancer })}{P(+)} \\
P(\text { cancer } \mid+) P(+)=0.98 \times 0.008=0.0078 ; \\
P(\neg \text { cancer } \mid+) P(+)=0.03 \times 0.992=0.0298 \\
P(+)=0.0078+0.0298 \\
P(\text { cancer } \mid+)=0.21 ; \quad P(\neg \text { cancer } \mid+)=0.79
\end{gathered}
\]

The patient, more likely than not, does not have cancer```

