

Data Science for Researchers and Scholars

Vasant G. Honavar

Dorothy Foehr Huck and J. Lloyd Huck Chair in Biomedical Data Sciences and Artificial Intelligence Professor of Data Sciences, Informatics, Computer Science and Engineering, Bioinformatics & Genomics, Public Health Sciences and Neuroscience Director, Center for Artificial Intelligence Foundations and Scientific Applications Associate Director, Institute for Computational and Data Sciences Pennsylvania State University

Center for Artificial Intelligence Foundations & Scientific Applications

vhonavar@psu.edu http://faculty.ist.psu.edu/vhonavar http://ailab.ist.psu.edu

PennSta

Data Science for Researchers and Scholars

Vasant Honavar, Fall 2023

PennState Clinical and Translationa Science Institute

A

@ `	Data scier	er for Artificial Intelligence Foundations & Scientifi icial Intelligence Research Laboratory	c Applications PennState Clinical and Translational Science Institute
•	Questions co	me in many forms	
	Question type	Description	Example
	Descriptive	A question about summary characteristics of a data set without interpretation (i.e., report a fact).	How many students are enrolled at Penn State in Fall 2023?
	Exploratory	A question about patterns, trends, or relationships within a single data set. Often used to propose hypotheses for future study.	Do political party preferences change with indicators of wealth in a collected sample of 2000 individuals US?
Penn	State	Data Science for Researchers and Scholars	Vasant Honavar, Fall 2023

Q	PrenaState Instance for Computational Data Science	enter for Artificial Intelligence Foundations & Scientifi Artificial Intelligence Research Laboratory	c Applications PennState Clinical and Translational Science Institute		
	Questions come in many forms				
	Question type	Description	Example		
	Predictive	A question a bout prediction of an outcome of interest, but not what causes the outcome.	What political party will Joe Sixpack vote for in the next US Presidential election?		
	Inferential	A question about patterns, trends, or relationships in a single data set and quantification of how applicable these findings are to the wider population.	Do political party preferences change with indicators of wealth for all people living in the US?		
(PennState	Data Science for Researchers and Scholars	Vasant Honavar, Fall 2023		

10	PennState Institute for Computational and Data Sciences	Center for Artificial Intelligence Foundations & Scie Artificial Intelligence Research Laboratory	ntific Applications PennState Clinical and Translational Science Institute
	• Questions	come in many forms	
	Question type	Description	Example
	Causal	A question a bout whether changing one factor will lead to a change in a nother factor, on average, in the wider population.	Does college e ducation causally impact voting for a certain political party in the US elections?
	Mechanistic	A question a bout the underlying mechanism of the observed patterns, trends, or relationships (i.e., how does it happen?)	How do wealth lead to voting for a certain political party in the US elections?
	Mechanist	tic questions are beyond the sc	ope of this course
Per 😥	n State e of Information ex And Technology	Data Science for Researchers and Scholars	Vasant Honavar, Fall 2023

PennState Institute for Computational and Data Sciences	Center for Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory	PennState Clinical and Translational Science Institute
Notebook	Environments	
• Expect to data ana	b have to redo your analysis from scratch, so lysis workflows to make it possible.	o build your
 Noteboo Mix of into of Make S R N E S C 	k environments code, data, computational results, and docu easy-to-maintain data analysis workflows e projects elf-contained deproducible Aodifiable xtensible hareable bocumented	imentation
PennState Gray of Melomation Scattar And Technology	Data Science for Researchers and Scholars	Vasant Honavar, Fall 2023

PennState Instance for Computational Artificial Intelligence Foundations & Scientific Applications Artificial Intelligence Research Laboratory	PennState Clinical and Translational Science Institute
Proprietary Data	
 Facebook, Google, Amazon, Blue Cross, Highmark, etc. exciting user/transaction/log data sets 	. have
 Most organizations have internal data sets of interest business 	to their
 Getting access as an outsider is usually impossible 	
 Getting access is sometimes possible Collaboration Internships 	
Companies, e.g., Google sometimes offer rate-limited	APIs
 The commercial promise of generative AI (e.g., large la models) has prompted once open data providers like > (formerly known as Twitter) and Reddit to tighten up 	anguage K
 Data may be contaminated with AI-generated data 	
PennState Data Science for Researchers and Scholars	Vasant Honavar, Fall 2023

Center for Artificial Intelligence Foundations & Scientific Applications PennState Artificial Intelligence Research Laboratory Cautionary Tale 2: Protein Annotation Using Machine

Learning*

@

Pen:

• AmiGO RCA annotations for 201 of the 211 mouse proteins were inconsistent with UniProt annotations

KINASE FAMILY	AmiGO Ser/Thr	AmiGO Tyr	AmiGO dual specificity
UniProt Ser/Thr	10	105	35
UniProt Tyr	54	0	3
UniProt dual specificity	0	4	0

- A search of the Mouse Kinome Database shows that 154 of the 244 mouse kinases have a human ortholog with sequence similarity greater then 90%!
- So this must be an easy problem for machine learning
- Why does machine learning fail on this problem?

Source: Andorf, Carson, Drena Dobbs, and Vasant Honavar. "Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach "BMC bioinformatics 8.1 (2007): 284

Center for Artificial Intelligence Foundations & Scientific Applications PennState Artificial Intelligence Research Laboratory Science Institute
Cautionary Tale 2: Protein Annotation Using Machine Learning*
 Use UniProt labels instead of original (AmiGO) labels as reference Train classifier using Human proteins and test on mouse proteins Test accuracy on mouse proteins: 97%! 205 of the 211 proteins that were mislabeled with respect to AmiGO reference labels were correctly labeled with respect to UniProt reference labels
Source: Andorf, Carson, Drena Dobbs, and Vasant Honavac "Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach." BMC bioinformatics 8.1 (2007): 284.
PennState Data Science for Researchers and Scholars Vasant Honavar, Fall 2023

Source: Andorf, Carson, Drena Dobbs, and Vasant Honavar "Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach." *BMC bioinformatics* 8.1 (2007): 284.