
Handbook of Knowledge Representation
Edited by F. van Harmelen, V. Lifschitz and B. Porter
© 2008 Elsevier B.V. All rights reserved
DOI: 10.1016/S1574-6526(07)03011-8

467

Chapter 11

Bayesian Networks

A. Darwiche

11.1 Introduction

A Bayesian network is a tool for modeling and reasoning with uncertain beliefs.
A Bayesian network consists of two parts: a qualitative component in the form of
a directed acyclic graph (DAG), and a quantitative component in the form conditional
probabilities; see Fig. 11.1. Intuitively, the DAG of a Bayesian network explicates
variables of interest (DAG nodes) and the direct influences among them (DAG edges).
The conditional probabilities of a Bayesian network quantify the dependencies be-
tween variables and their parents in the DAG. Formally though, a Bayesian network
is interpreted as specifying a unique probability distribution over its variables. Hence,
the network can be viewed as a factored (compact) representation of an exponentially-
sized probability distribution. The formal syntax and semantics of Bayesian networks
will be discussed in Section 11.2.

The power of Bayesian networks as a representational tool stems both from this
ability to represent large probability distributions compactly, and the availability of
inference algorithms that can answer queries about these distributions without nec-
essarily constructing them explicitly. Exact inference algorithms will be discussed in
Section 11.3 and approximate inference algorithms will be discussed in Section 11.4.

Bayesian networks can be constructed in a variety of ways, depending on the appli-
cation at hand and the available information. In particular, one can construct Bayesian
networks using traditional knowledge engineering sessions with domain experts, by
automatically synthesizing them from high level specifications, or by learning them
from data. The construction of Bayesian networks will be discussed in Section 11.5.

There are two interpretations of a Bayesian network structure, a standard interpre-
tation in terms of probabilistic independence and a stronger interpretation in terms
of causality. According to the stronger interpretation, the Bayesian network specifies
a family of probability distributions, each resulting from applying an intervention to
the situation of interest. These causal Bayesian networks lead to additional types of
queries, and require more specialized algorithms for computing them. Causal Bayesian
networks will be discussed in Section 11.6.

468 11. Bayesian Networks

A ΘA

true 0.6
false 0.4

A B ΘB|A
true true 0.2
true false 0.8
false true 0.75
false false 0.25

A C ΘC|A
true true 0.8
true false 0.2
false true 0.1
false false 0.9

B C D ΘD|B,C

true true true 0.95
true true false 0.05
true false true 0.9
true false false 0.1
false true true 0.8
false true false 0.2
false false true 0
false false false 1

C E ΘE|C
true true 0.7
true false 0.3
false true 0
false false 1

Figure 11.1: A Bayesian network over five propositional variables. A table is associated with each node
in the network, containing conditional probabilities of that node given its parents.

11.2 Syntax and Semantics of Bayesian Networks

We will discuss the syntax and semantics of Bayesian networks in this section, starting
with some notational conventions.

11.2.1 Notational Conventions

We will denote variables by upper-case letters (A) and their values by lower-case let-
ters (a). Sets of variables will be denoted by bold-face upper-case letters (A) and their
instantiations by bold-face lower-case letters (a). For variable A and value a, we will
often write a instead of A = a and, hence, Pr(a) instead of Pr(A = a) for the prob-
ability of A = a. For a variable A with values true and false, we may use A or a to
denote A = true and ¬A or a to denote A = false. Therefore, Pr(A), Pr(A = true) and
Pr(a) all represent the same probability in this case. Similarly, Pr(¬A), Pr(A = false)
and Pr(a) all represent the same probability.

A. Darwiche 469

Table 11.1. A probability distribution Pr(.) and the result of conditioning it on evidence Alarm, Pr(.|Alarm)

World Earthquake Burglary Alarm Pr(.) Pr(.|Alarm)

ω1 true true true 0.0190 0.0190/0.2442
ω2 true true false 0.0010 0
ω3 true false true 0.0560 0.0560/0.2442
ω4 true false false 0.0240 0
ω5 false true true 0.1620 0.1620/0.2442
ω6 false true false 0.0180 0
ω7 false false true 0.0072 0.0072/0.2442
ω8 false false false 0.7128 0

11.2.2 Probabilistic Beliefs

The semantics of Bayesian networks is given in terms of probability distributions and
is founded on the notion of probabilistic independence. We review both of these no-
tions in this section.

Let X1, . . . , Xn be a set of variables, where each variable Xi has a finite number
of values xi . Every instantiation x1, . . . , xn of these variables will be called a possible
world, denoted by ω, with the set of all possible worlds denoted by Ω . A probabil-
ity distribution Pr over variables X1, . . . , Xn is a mapping from the set of worlds Ω

induced by variables X1, . . . , Xn into the interval [0, 1], such that
∑

ω Pr(ω) = 1;
see Table 11.1. An event η is a set of worlds. A probability distribution Pr assigns a
probability in [0, 1] to each event η as follows: Pr(η) = ∑

ω∈η Pr(ω).
Events are typically denoted by propositional sentences, which are defined induc-

tively as follows. A sentence is either primitive, having the form X = x, or complex,
having the form ¬α, α ∨ β, α ∧ β, where α and β are sentences. A propositional
sentence α denotes the event Mods(α), defined as follows: Mods(X = x) is the set
of worlds in which X is set to x, Mods(¬α) = Ω \ Mods(α), Mods(α ∨ β) =
Mods(α) ∪ Mods(β), and Mods(α ∧ β) = Mods(α) ∩ Mods(β). In Table 11.1, the
event {ω1, ω2, ω3, ω4, ω5, ω6} can be denoted by the sentence Burglary ∨ Earthquake
and has a probability of 0.28.

If some event β is observed and does not have a probability of 0 according to
the current distribution Pr, the distribution is updated to a new distribution, denoted
Pr(.|β), using Bayes conditioning:

(11.1)Pr(α|β) = Pr(α ∧ β)

Pr(β)
.

Bayes conditioning follows from two commitments: worlds that contradict evidence
β must have zero probabilities, and worlds that are consistent with β must maintain
their relative probabilities.1 Table 11.1 depicts the result of conditioning the given
distribution on evidence Alarm = true, which initially has a probability of 0.2442.

When evidence β is accommodated, the belief is some event α may remain the
same. We say in this case that α is independent of β. More generally, event α is inde-

1This is known as the principle of probability kinematics [88].

470 11. Bayesian Networks

pendent of event β given event γ iff

(11.2)Pr(α|β ∧ γ) = Pr(α|γ) or Pr(β ∧ γ) = 0.

We can also generalize the definition of independence to variables. In particular, we
will say that variables X are independent of variables Y given variables Z, written
I (X, Z, Y), iff

Pr(x|y, z) = Pr(x|z) or Pr(y, z) = 0

for all instantiations x, y, z of variables X, Y and Z. Hence, the statement I (X, Z, Y)

is a compact representation of an exponential number of independence statements of
the form given in (11.2).

Probabilistic independence satisfies some interesting properties known as the
graphoid axioms [130], which can be summarized as follows:

I (X, Z, Y) iff I (Y, Z, X)

I (X, Z, Y) & I (X, ZW, Y) iff I (X, Z, YW).

The first axiom is called Symmetry, and the second axiom is usually broken down into
three axioms called decomposition, contraction and weak union; see [130] for details.

We will discuss the syntax and semantics of Bayesian networks next, showing the
key role that independence plays in the representational power of these networks.

11.2.3 Bayesian Networks

A Bayesian network over variables X is a pair (G,Θ), where

• G is a directed acyclic graph over variables X;

• Θ is a set of conditional probability tables (CPTs), one CPT ΘX|U for each
variable X and its parents U in G. The CPT ΘX|U maps each instantiation xu to
a probability θx|u such that

∑
x θx|u = 1.

We will refer to the probability θx|u as a parameter of the Bayesian network, and to
the set of CPTs Θ as a parametrization of the DAG G.

A Bayesian network over variables X specifies a unique probability distributions
over its variables, defined as follows [130]:

(11.3)Pr(x)
def=

∏
θx|u:xu∼x

θx|u,

where ∼ represents the compatibility relationship among variable instantiations;
hence, xu ∼ x means that instantiations xu and x agree on the values of their common
variables. In the Bayesian network of Fig. 11.1, Eq. (11.3) gives:

Pr(a, b, c, d, e) = θe|cθd|b,cθc|aθb|aθa,

where a, b, c, d, e are values of variables A,B,C,D,E, respectively.
The distribution given by Eq. (11.3) follows from a particular interpretation of the

structure and parameters of a Bayesian network (G,Θ). In particular:

A. Darwiche 471

• Parameters: Each parameter θx|u is interpreted as the conditional probability
of x given u, Pr(x|u).

• Structure: Each variable X is assumed to be independent of its nondescendants
Z given its parents U: I (X, U, Z).2

The above interpretation is satisfied by a unique probability distribution, the one given
in Eq. (11.3).

11.2.4 Structured Representations of CPTs

The size of a CPT ΘX|U in a Bayesian network is exponential in the number of par-
ents U. In general, if every variable can take up to d values, and has at most k parents,
the size of any CPT is bounded by O(dk+1). Moreover, if we have n network vari-
ables, the total number of Bayesian network parameters is bounded by O(ndk+1).
This number is usually quite reasonable as long as the number of parents per vari-
able is relatively small. If number of parents U for variable X is large, the Bayesian
network representation looses its main advantage as a compact representation of prob-
ability distributions, unless one employs a more structured representation for network
parameters than CPTs.

The solutions to the problem of large CPTs fall in one of two categories. First,
we may assume that the parents U interact with their child X according to a spe-
cific model, which allows us to specify the CPT ΘX|U using a smaller number of
parameters (than exponential in the number of parents U). One of the most popular
examples of this approach is the noisy-or model of interaction and its generalizations
[130, 77, 161, 51]. In its simplest form, this model assumes that variables have binary
values true/false, that each parent U ∈ U being true is sufficient to make X true, except
if some exception αU materializes. By assuming that exceptions αU are independent,
one can induce the CPT ΘX|U using only the probabilities of these exceptions. Hence,
the CPT for X can be specified using a number of parameters which is linear in the
number of parents U, instead of being exponential in the number of these parents.

The second approach for dealing with large CPTs is to appeal to nontabular rep-
resentations of network parameters that exploit the local structure in network CPTs.
In broad terms, local structure refers to the existence of nonsystematic redundancy
in the probabilities appearing in a CPT. Local structure typically occurs in the form
of determinism, where the CPT parameters take extreme values (0, 1). Another form
of local structure is context-specific independence (CSI) [15], where the distribution
for X can sometimes be determined by only a subset of its parents U. Rules [136, 134]
and decision trees (and graphs) [61, 80] are among the more common structured rep-
resentations of CPTs.

11.2.5 Reasoning about Independence

We have seen earlier how the structure of a Bayesian network is interpreted as declar-
ing a number of independence statements. We have also seen how probabilistic inde-
pendence satisfies the graphoid axioms. When applying these axioms to the indepen-
dencies declared by a Bayesian network structure, one can derive new independencies.

2A variable Z is a nondescendant of X if Z /∈ XU and there is no directed path from X to Z.

472 11. Bayesian Networks

In fact, any independence statement derived this way can be read off the Bayesian
network structure using a graphical criterion known as d-separation [166, 35, 64]. In
particular, we say that variables X are d-separated from variables Y by variables Z if
every (undirected) path from a node in X to a node in Y is blocked by Z. A path is
blocked by Z if it has a sequential or divergent node in Z, or if it has a convergent
node that is not in Z nor any of its descendants are in Z. Whether a node Z ∈ Z is se-
quential, divergent, or convergent depends on the way it appears on the path: → Z →
is sequential, ← Z → is divergent, and → Z ← is convergent. There are a number of
important facts about the d-separation test. First, it can be implemented in polynomial
time. Second, it is sound and complete with respect to the graphoid axioms. That is, X
and Y are d-separated by Z in DAG G if and only if the graphoid axioms can be used
to show that X and Y are independent given Z.

There are secondary structures that one can build from a Bayesian network which
can also be used to derive independence statements that hold in the distribution in-
duced by the network. In particular, the moral graph Gm of a Bayesian network is an
undirected graph obtained by adding an undirected edge between any two nodes that
share a common child in DAG G, and then dropping the directionality of edges. If
variables X and Y are separated by variables Z in moral graph Gm, we also have that
X and Y are independent given Z in any distribution induced by the corresponding
Bayesian network.

Another secondary structure that can be used to derive independence statements for
a Bayesian network is the jointree [109]. This is a tree of clusters, where each cluster
is a set of variables in the Bayesian network, with two conditions. First, every family
(a node and its parents) in the Bayesian network must appear in some cluster. Second,
if a variable appears in two clusters, it must also appear in every cluster on the path
between them; see Fig. 11.4. Given a jointree for a Bayesian network (G,Θ), any two
clusters are independent given any cluster on the path connecting them [130]. One can
usually build multiple jointrees for a given Bayesian network, each revealing different
types of independence information. In general, the smaller the clusters of a jointree,
the more independence information it reveals. Jointrees play an important role in exact
inference algorithms as we shall discuss later.

11.2.6 Dynamic Bayesian Networks

The dynamic Bayesian network (DBN) is a Bayesian network with a particular struc-
ture that deserves special attention [44, 119]. In particular, in a DBN, nodes are
partitioned into slices, 0, 1, . . . , t , corresponding to different time points. Each slice
has the same set of nodes and the same set of inter-slice edges, except possibly for
the first slice which may have different edges. Moreover, intra-slice edges can only
cross from nodes in slice t to nodes in a following slice t + 1. Because of their recur-
rent structure, DBNs are usually specified using two slices only for t and t + 1; see
Fig. 11.2.

By restricting the structure of a DBN further at each time slice, one obtains more
specialized types of networks, some of which are common enough to be studied
outside the framework of Bayesian networks. Fig. 11.3 depicts one such restriction,
known as a Hidden Markov Model [160]. Here, variables Si typically represent un-
observable states of a dynamic system, and variables Oi represent observable sensors

A. Darwiche 473

Figure 11.2: Two Bayesian network structures for a digital circuit. The one on the right is a DBN, repre-
senting the state of the circuit at two times steps. Here, variables A, . . . , E represent the state of wires in
the circuit, while variables X,Y, Z represent the health of corresponding gates.

Figure 11.3: A Bayesian network structure corresponding to a Hidden Markov Model.

that may provide information on the corresponding system state. HMMs are usually
studied as a special purpose model, and are equipped with three algorithms, known as
the forward–backward, Viterbi and Baum–Welch algorithms (see [138] for a descrip-
tion of these algorithms and example applications of HMMs). These are all special
cases of Bayesian network algorithms that we discuss in later sections.

Given the recurrent and potentially unbounded structure of DBNs (their size grows
with time), they present particular challenges and also special opportunities for in-
ference algorithms. They also admit a more refined class of queries than general
Bayesian networks. Hence, it is not uncommon to use specialized inference algorithms
for DBNs, instead of applying general purpose algorithms that one may use for arbi-
trary Bayesian networks. We will see examples of such algorithms in the following
sections.

11.3 Exact Inference

Given a Bayesian (G,Θ) over variables X, which induces a probability distribution
Pr, one can pose a number of fundamental queries with respect to the distribution Pr:

• Most Probable Explanation (MPE): What’s the most likely instantiation of net-
work variables X, given some evidence e?

MPE(e) = argmax
x

Pr(x, e).

474 11. Bayesian Networks

• Probability of Evidence (PR): What’s the probability of evidence e, Pr(e)? Re-
lated to this query is Posterior Marginals: What’s the conditional probability
Pr(X|e) for every variable X in the network3?

• Maximum a Posteriori Hypothesis (MAP): What’s the most likely instantiation
of some network variables M, given some evidence e?

MAP(e, M) = argmax
m

Pr(m, e).

These problems are all difficult. In particular, the decision version of MPE, PR, and
MAP, are known to be NP-complete, PP-complete and NPPP-complete, respectively
[32, 158, 145, 123]. We will discuss exact algorithms for answering these queries
in this section, and then discuss approximate algorithms in Section 11.4. We start
in Section 11.3.1 with a class of algorithms known as structure-based as their com-
plexity is only a function of the network topology. We then discuss in Section 11.3.2
refinements of these algorithms that can exploit local structure in network parameters,
leading to a complexity which is both a function of network topology and parame-
ters. Section 11.3.3 discusses a class of algorithms based on search, specialized for
MAP and MPE problems. Section 11.3.4 discusses an orthogonal class of methods for
compiling Bayesian networks, and Section 11.3.5 discusses the technique of reducing
exact probabilistic reasoning to logical inference.

It should noted here that by evidence, we mean a variable instantiation e of some
network variables E. In general, one can define evidence as an arbitrary event α, yet
most of the algorithms we shall discuss assume the more specific interpretation of ev-
idence. These algorithms can be extended to handle more general notions of evidence
as discussed in Section 11.3.6, which discusses a variety of additional extensions to
inference algorithms.

11.3.1 Structure-Based Algorithms

When discussing inference algorithms, it is quite helpful to view the distribution in-
duced by a Bayesian network as a product of factors, where a factor f (X) is simply a
mapping from instantiations x of variables X to real numbers. Hence, each CPT ΘX|U
of a Bayesian network is a factor over variables XU; see Fig. 11.1. The product of two
factors f (X) and f (Y) is another factor over variables Z = X ∪ Y: f (z) = f (x)f (y)

where z ∼ x and z ∼ y.4 The distribution induced by a Bayesian network (G,Θ)

can then be expressed as a product of its CPTs (factors) and the inference problem in
Bayesian networks can then be formulated as follows. We are given a function f (X)

(i.e., probability distribution) expressed as a product of factors f1(X1), . . . , fn(Xn)

and our goal is to answer questions about the function f (X) without necessarily com-
puting the explicit product of these factors.

We will next describe three computational paradigms for exact inference in
Bayesian networks, which share the same computational guarantees. In particular, all
methods can solve the PR and MPE problems in time and space which is exponential

3From a complexity viewpoint, all posterior marginals can be computed using a number of PR queries
that is linear in the number of network variables.

4Recall, that ∼ represents the compatibility relation among variable instantiations.

A. Darwiche 475

only in the network treewidth [8, 144]. Moreover, all can solve the MAP problem ex-
ponential only in the network constrained treewidth [123]. Treewidth (and constrained
treewidth) are functions of the network topology, measuring the extent to which a net-
work resembles a tree. A more formal definition will be given later.

Inference by variable elimination

The first inference paradigm we shall discuss is based on the influential concept
of variable elimination [153, 181, 45]. Given a function f (X) in factored form,∏n

i=1 fi(Xi), and some corresponding query, the method will eliminate a variable
X from this function to produce another function f ′(X − X), while ensuring that the
new function is as good as the old function as far as answering the query of interest.
The idea is then to keep eliminating variables one at a time, until we can extract the
answer we want from the result. The key insight here is that when eliminating a vari-
able, we will only need to multiply factors that mention the eliminated variable. The
order in which variables are eliminated is therefore important as far as complexity is
concerned, as it dictates the extent to which the function can be kept in factored form.

The specific method for eliminating a variable depends on the query at hand. In
particular, if the goal is to solve PR, then we eliminate variables by summing them
out. If we are solving the MPE problem, we eliminate variables by maxing them out.
If we are solving MAP, we will have to perform both types of elimination. To sum out
a variable X from factor f (X) is to produce another factor over variables Y = X − X,
denoted

∑
X f , where (

∑
X f)(y) = ∑

x f (y, x). To max out variable X is similar:
(maxX f)(y) = maxx f (y, x). Note that summing out variables is commutative and
so is maxing out variables. However, summing out and maxing out do not commute.
For a Bayesian network (G,Θ) over variables X, map variables M, and some evidence
e, inference by variable elimination is then a process of evaluating the following ex-
pressions:

• MPE: maxX
∏

X ΘX|UλX.

• PR:
∑

X
∏

X ΘX|UλX.

• MAP: maxM
∑

X−M
∏

X ΘX|UλX.

Here, λX is a factor over variable X, called an evidence indicator, used to capture
evidence e: λX(x) = 1 if x is consistent with evidence e and λX(x) = 0 otherwise.
Evaluating the above expressions leads to computing the probability of MPE, the prob-
ability of evidence, and the probability of MAP, respectively. Some extra bookkeeping
allows one to recover the identity of MPE and MAP [130, 45].

As mentioned earlier, the order in which variables are eliminated is critical for
the complexity of variable elimination algorithms. In fact, one can define the width
of an elimination order as one smaller than the size of the largest factor constructed
during the elimination process, where the size of a factor is the number of variables
over which it is defined. One can then show that variable elimination has a complexity
which is exponential only in the width of used elimination order. In fact, the treewidth
of a Bayesian network can be defined as the width of its best elimination order. Hence,
the time and space complexity of variable elimination is bounded by O(n exp(w)),
where n is the number of network variables (also number of initial factors), and w is

476 11. Bayesian Networks

Figure 11.4: A Bayesian network (left) and a corresponding jointree (right), with the network factors and
evidence indicators assigned to jointree clusters.

the width of used elimination order [45]. Note that w is lower bounded by the network
treewidth. Moreover, computing an optimal elimination order and network treewidth
are both known to be NP-hard [9].

Since summing out and maxing out do not commute, we must max out variables M
last when computing MAP. This means that not all variable orders are legitimate; only
those in which variables M come last are. The M-constrained treewidth of a Bayesian
network can then be defined as the width of its best elimination order having vari-
ables M last in the order. Solving MAP using variable elimination is then exponential
in the constrained treewidth [123].

Inference by tree clustering

Tree clustering is another algorithm for exact inference, which is also known as the
jointree algorithm [89, 105, 157]. There are different ways for deriving the jointree
algorithm, one of which treats the algorithm as a refined way of applying variable
elimination.

The idea is to organize the given set of factors into a tree structure, using a jointree
for the given Bayesian network. Fig. 11.4 depicts a Bayesian network, a corresponding
jointree, and assignment of the factors to the jointree clusters. We can then use the join-
tree structure to control the process of variable elimination as follows. We pick a leaf
cluster Ci (having a single neighbor Cj) in the jointree and then eliminate variables
that appear in that cluster but in no other jointree cluster. Given the jointree properties,
these variables are nothing but Ci \Cj . Moreover, eliminating these variables requires
that we compute the product of all factors assigned to cluster Ci and then eliminate
Ci \ Cj from the resulting factor. The result of this elimination is usually viewed as
a message sent from cluster Ci to cluster Cj . By the time we eliminate every cluster
but one, we would have projected the factored function on the variables of that clus-
ter (called the root). The basic insight of the jointree algorithm is that by choosing
different roots, we can project the factored function on every cluster in the jointree.
Moreover, some of the work we do in performing the elimination process towards one
root (saved as messages) can be reused when eliminating towards another root. In fact,
the amount of work that can be reused is such that we can project the function f on
all clusters in the jointree with time and space bounded by O(n exp(w)), where n is

A. Darwiche 477

the number of jointree clusters and w is the width of given jointree (size of its largest
cluster minus 1). This is indeed the main advantage of the jointree algorithm over the
basic variable elimination algorithm, which would need O(n2 exp(w)) time and space
to obtain the same result. Interesting enough, if a network has treewidth w, then it
must have a jointree whose largest cluster has size w + 1. In fact, every jointree for
the network must have some cluster of size � w + 1. Hence, another definition for the
treewidth of a Bayesian network is as the width of its best jointree (the one with the
smallest maximum cluster).5

The classical description of a jointree algorithm is as follows (e.g., [83]). We first
construct a jointree for the given Bayesian network; assign each network CPT ΘX|U to
a cluster that contains XU; and then assign each evidence indicator λX to a cluster that
contains X. Fig. 11.4 provides an example of this process. Given evidence e, a jointree
algorithm starts by setting evidence indicators according to given evidence. A cluster
is then selected as the root and message propagation proceeds in two phases, inward
and outward. In the inward phase, messages are passed toward the root. In the outward
phase, messages are passed away from the root. The inward phase is also known as the
collect or pull phase, and the outward phase is known as the distribute or push phase.
Cluster i sends a message to cluster j only when it has received messages from all
its other neighbors k. A message from cluster i to cluster j is a factor Mij defined as
follows:

Mi,j =
∑

Ci\Cj

Φi

∏
k �=j

Mk,i ,

where Φi is the product of factors and evidence indicators assigned to cluster i. Once
message propagation is finished, we have the following for each cluster i in the join-
tree:

Pr(Ci , e) = Φi

∏
k

Mk,i .

Hence, we can compute the joint marginal for any subset of variables that is included
in a cluster.

The above description corresponds to a version of the jointree algorithm known as
the Shenoy–Shafer architecture [157]. Another popular version of the algorithm is the
Hugin architecture [89]. The two versions differ in their space and time complexity
on arbitrary jointrees [106]. The jointree algorithm is quite versatile allowing even
more architectures (e.g., [122]), more complex types of queries (e.g., [91, 143, 34]),
including MAP and MPE, and a framework for time space tradeoffs [47].

Inference by conditioning

A third class of exact inference algorithms is based on the concept of conditioning
[129, 130, 39, 81, 162, 152, 37, 52]. The key concept here is that if we know the
value of a variable X in a Bayesian network, then we can remove edges outgoing
from X, modify the CPTs for children of X, and then perform inference equivalently
on the simplified network. If the value of variable X is not known, we can still ex-
ploit this idea by doing a case analysis on variable X, hence, instead of computing

5Jointrees correspond to tree-decompositions [144] in the graph theoretic literature.

478 11. Bayesian Networks

Pr(e), we compute
∑

x Pr(e, x). This idea of conditioning can be exploited in different
ways. The first exploitation of this idea was in the context of loop-cutset conditioning
[129, 130, 11]. A loop-cutset for a Bayesian network is a set of variables C such that
removing edges outgoing from C will render the network a polytree: one in which
we have a single (undirected) path between any two nodes. Inference on polytree net-
works can indeed be performed in time and space linear in their size [129]. Hence,
by using the concept of conditioning, performing case analysis on a loop-cutset C,
one can reduce the query Pr(e) into a set of queries

∑
c Pr(e, c), each of which can be

answered in linear time and space using the polytree algorithm.
This algorithm has linear space complexity as one needs to only save modest in-

formation across the different cases. This is a very attractive feature compared to
algorithms based on elimination. The bottleneck for loop-cutset conditioning, how-
ever, is the size of cutset C since the time complexity of the algorithm is exponential
in this set. One can indeed construct networks which have a bounded treewidth, lead-
ing to linear time complexity by elimination algorithms, yet an unbounded loop-cutset.
A number of improvements have been proposed on loop-cutset conditioning (e.g., [39,
81, 162, 152, 37, 52]), yet only recursive conditioning [39] and its variants [10, 46]
have a treewidth-based complexity similar to elimination algorithms.

The basic idea behind recursive conditioning is to identify a cutset C that is not
necessarily a loop-cutset, but that can decompose a network N in two (or more) sub-
networks, say, N l

c and N r
c with corresponding distributions Prlc and Prrc for each

instantiation c of cutset C. In this case, we can write

Pr(e) =
∑

c

Pr(e, c) =
∑

c

Prlc(e
l , cl)Prrc(e

r , cr),

where el/cl and er/cr are parts of evidence/cutset pertaining to networks N l and N r ,
respectively. The subqueries Prlc(e

l , cl) and Prrc(e
r , cr) can then be solved using the

same technique, recursively, by finding cutsets for the corresponding subnetworks N l
c

and N r
c. This algorithm is typically driven by a structure known as a dtree, which is

a binary tree with its leaves corresponding to the network CPTs. Each dtree provides
a complete recursive decomposition over the corresponding network, with a cutset for
each level of the decomposition [39].

Given a dtree where each internal node T has children T l and T r , and each leaf
node has a CPT associated with it, recursive conditioning can then compute the prob-
ability of evidence e as follows:

rc(T , e) =
{∑

c rc(T l, ec)rc(T r , ec), T is an internal node with cutset C;∑
ux∼e θx|u, T is a leaf node with CPT ΘX|U.

Note that similar to loop-cutset conditioning, the above algorithm also has a linear
space complexity which is better than the space complexity of elimination algorithms.
Moreover, if the Bayesian network has treewidth w, there is then a dtree which is
both balanced and has cutsets whose sizes are bounded by w + 1. This means that the
above algorithm can run in O(n exp(w log n)) time and O(n) space. This is worse than
the time complexity of elimination algorithms, due to the log n factor, where n is the
number of network nodes.

A. Darwiche 479

A careful analysis of the above algorithm, however, reveals that it may make iden-
tical recursive calls in different parts of the recursion tree. By caching the value of a
recursive call rc(T , .), one can avoid evaluating the same recursive call multiple times.
In fact, if a network has a treewidth w, one can always construct a dtree on which
caching will reduce the running time from O(n exp(w log n)) to O(n exp(w)), while
bounding the space complexity by O(n exp(w)), which is identical to the complex-
ity of elimination algorithms. In principle, one can cache as many results as available
memory would allow, leading to a framework for trading off time and space [3], where
space complexity ranges from O(n) to O(n exp(w)), and time complexity ranges from
O(n exp(w log n)) to O(n exp(w)). Recursive conditioning can also be used to com-
pute multiple marginals [4], in addition to MAP and MPE queries [38], within the
same complexity discussed above.

We note here that the quality of a variable elimination order, a jointree and a dtree
can all be measured in terms of the notion of width, which is lower bounded by the
network treewidth. Moreover, the complexity of algorithms based on these structures
are all exponential only in the width of used structure. Polynomial time algorithms ex-
ists for converting between any of these structures, while preserving the corresponding
width, showing the equivalence of these methods with regards to their computational
complexity in terms of treewidth [42].

11.3.2 Inference with Local (Parametric) Structure

The computational complexity bounds given for elimination, clustering and condi-
tioning algorithms are based on the network topology, as captured by the notions
of treewidth and constrained treewidth. There are two interesting aspects of these
complexity bounds. First, they are independent of the particular parameters used to
quantify Bayesian networks. Second, they are both best-case and worst-case bounds
for the specific statements given for elimination and conditioning algorithms.

Given these results, only networks with reasonable treewidth are accessible to
these structure-based algorithms. One can provide refinements of both elimina-
tion/clustering and conditioning algorithms, however, that exploit the parametric struc-
ture of a Bayesian network, allowing them to solve some networks whose treewidth
can be quite large.

For elimination algorithms, the key is to adopt nontabular representations of
factors as initially suggested by [182] and developed further by other works (e.g.,
[134, 50, 80, 120]). Recall that a factor f (X) over variables X is a mapping from in-
stantiations x of variables X to real numbers. The standard statements of elimination
algorithms assume that a factor f (X) is represented by a table that has one row of
each instantiation x. Hence, the size of factor f (X) is always exponential in the num-
ber of variables in X. This also dictates the complexity of factor operations, including
multiplication, summation and maximization. In the presence of parametric structure,
one can afford to use more structured representations of factors that need not be ex-
ponential in the variables over which they are defined. In fact, one can use any factor
representation as long as they provide corresponding implementations of the factor
operations of multiplication, summing out, and maxing out, which are used in the con-
text of elimination algorithms. One of the more effective structured representations of
factors is the algebraic decision diagram (ADD) [139, 80], which provides efficient
implementations of these operations.

480 11. Bayesian Networks

In the context of conditioning algorithms, local structure can be exploited at mul-
tiple levels. First, when considering the cases c of a cutset C, one can skip a case
c if it is logically inconsistent with the logical constraints implied by the network
parameters. This inconsistency can be detected by some efficient logic propagation
techniques that run in the background of conditioning algorithms [2]. Second, one
does not always need to instantiate all cutset variables before a network is discon-
nected or converted into a polytree, as some partial cutset instantiations may have the
same effect if we have context-specific independence [15, 25]. Third, local structure
in the form of equal network parameters within the same CPT will reduce the num-
ber of distinct subproblems that need to be solved by recursive conditioning, allowing
caching to be much more effective [25]. Considering various experimental results re-
ported in recent years, it appears that conditioning algorithms have been more effective
in exploiting local structure, especially determinism, as compared to algorithms based
on variable eliminating (and, hence, clustering).

Network preprocessing can also be quite effective in the presence of local struc-
ture, especially determinism, and is orthogonal to the algorithms used afterwards. For
example, preprocessing has proven quite effective and critical for networks corre-
sponding to genetic linkage analysis, allowing exact inference on networks with very
high treewidth [2, 54, 55, 49]. A fundamental form of preprocessing is CPT decom-
position, in which one decomposes a CPT with local structure (e.g., [73]) into a series
of CPTs by introducing auxiliary variables [53, 167]. This decomposition can reduce
the treewidth of given network, allowing inference to be performed much more ef-
ficiently. The problem of finding an optimal CPT decomposition corresponds to the
problem of determining tensor rank [150], which is NP-hard [82]. Closed form solu-
tions are known, however, for CPTs with a particular local structure [150].

11.3.3 Solving MAP and MPE by Search

MAP and MPE queries are conceptually different from PR queries as they correspond
to optimization problems whose outcome is a variable instantiation instead of a prob-
ability. These queries admit a very effective class of algorithms based on branch and
bound search. For MPE, the search tree includes a leaf for each instantiation x of
nonevidence variables X, whose probability can be computed quite efficiently given
Eq. (11.3). Hence, the key to the success of these search algorithms is the use of
evaluation functions that can be applied to internal nodes in the search tree, which
correspond to partial variable instantiations i, to upper bound the probability of any
completion x of instantiation i. Using such an evaluation function, one can possibly
prune part of the search space, therefore, solving MPE without necessarily examining
the space of all variable instantiations. The most successful evaluation functions are
based on relaxations of the variable elimination algorithm, allowing one to eliminate a
variable without necessarily multiplying all factors that include the variable [95, 110].
These relaxations lead to a spectrum of evaluation functions, that can trade accuracy
with efficiency.

A similar idea can be applied to solving MAP, with a notable distinction. In MAP,
the search tree will be over the space of instantiations of a subset M of network vari-
ables. Moreover, each leaf node in the search tree will correspond to an instantiation m
in this case. Computing the probability of a partial instantiation m requires a PR query

A. Darwiche 481

A θA

true 0.5
false 0.5

A B θB|A
true true 1
true false 0
false true 0
false false 1

A C θC|A
true true 0.8
true false 0.2
false true 0.2
false false 0.8

Figure 11.5: A Bayesian network.

though, which itself can be exponential in the network treewidth. Therefore, the suc-
cess of search-based algorithms for MAP depends on both the efficient evaluation of
leaf nodes in the search tree, and on evaluation functions for computing upper bounds
on the completion of partial variable instantiations [123, 121]. The most successful
evaluation function for MAP is based on a relaxation of the variable elimination algo-
rithm for computing MAP, allowing one to use any variable order instead of insisting
on a constrained variable order [121].

11.3.4 Compiling Bayesian Networks

The probability distribution induced by a Bayesian network can be compiled into an
arithmetic circuit, allowing various probabilistic queries to be answered in time linear
in the compiled circuit size [41]. The compilation time can be amortized over many
online queries, which can lead to extremely efficient online inference [25, 27]. Com-
piling Bayesian networks is especially effective in the presence of local structure, as
the exploitation of local structure tends to incur some overhead that may not be justi-
fiable in the context of standard algorithms when the local structure is not excessive.
In the context of compilation, this overhead is incurred only once in the offline com-
pilation phase.

To expose the semantics of this compilation process, we first observe that the prob-
ability distribution induced by a Bayesian network, as given by Eq. (11.3), can be
expressed in a more general form:

(11.4)f =
∑

x

∏
λx :x ∼ x

λx

∏
θx|u:xu ∼ x

θx|u,

where λx is called an evidence indicator variable (we have one indicator λx for each
variable X and value x). This form is known as the network polynomial and represents
the distribution as follows. Given any evidence e, let f (e) denotes the value of poly-
nomial f with each indicator variable λx set to 1 if x is consistent with evidence e and
set to 0 otherwise. It then follows that f (e) is the probability of evidence e. Following
is the polynomial for the network in Fig. 11.5:

f = λaλbλcθaθb|aθc|a + λaλbλc̄θaθb|aθc̄|a + · · · λāλb̄λc̄θāθb̄|āθc̄|ā .

482 11. Bayesian Networks

Figure 11.6: Two circuits for the Bayesian network in Fig. 11.5.

The network polynomial has an exponential number of terms, but can be factored
and represented more compactly using an arithmetic circuit, which is a rooted, directed
acyclic graph whose leaf nodes are labeled with evidence indicators and network pa-
rameters, and internal nodes are labeled with multiplication and addition operations.
The size of an arithmetic circuit is measured by the number of edges that it contains.
Fig. 11.6 depicts an arithmetic circuit for the above network polynomial. This arith-
metic circuit is therefore a compilation of corresponding Bayesian network as it can
be used to compute the probability of any evidence e by evaluating the circuit while
setting the indicators to 1/0 depending on their consistency with evidence e. In fact,
the partial derivatives of this circuit with respect to indicators λx and parameters θx|u
can all be computed in a single second pass on the circuit. Moreover, the values of
these derivatives can be used to immediately answer various probabilistic queries, in-
cluding the marginals over networks variables and families [41]. Hence, for a given
evidence, one can compute the probability of evidence and posterior marginals on all
network variables and families in two passes on the arithmetic circuit.

One can compile a Bayesian network using exact algorithms based on elimination
[26] or conditioning [25], by replacing their addition and multiplication operations
by corresponding operations for building the circuit. In fact, for jointree algorithms,
the arithmetic circuit can be generated directly from the jointree structure [124]. One
can also generate these compilations by reducing the problem to logical inference
as discussed in the following section. If structure-based versions of elimination and
conditioning algorithms are used to compile Bayesian networks, the size of compiled
arithmetic circuits will be exponential in the network treewidth in the best case. If
one uses versions that exploit parametric structure, the resulting compilation may not
be lower bounded by treewidth [25, 27]. Fig. 11.6 depicts two arithmetic circuits for
the same network, the one on the right taking advantage of network parameters and
is therefore smaller than the one on the left, which is valid for any value of network
parameters.

11.3.5 Inference by Reduction to Logic

One of the more effective approaches for exact probabilistic inference in the presence
of local structure, especially determinism, is based on reducing the problem to one of

A. Darwiche 483

A ΘA

a1 0.1
a2 0.9

A B ΘB|A
a1 b1 0.1
a1 b2 0.9
a2 b1 0.2
a2 b2 0.8

A C ΘC|A
a1 c1 0.1
a1 c2 0.9
a2 c1 0.2
a2 c2 0.8

Figure 11.7: The CPTs of Bayesian network with two edges A → B and A → C.

logical inference. The key technique is to encode the Bayesian network as a proposi-
tional theory in conjunctive normal form (CNF) and then apply algorithms for model
counting [147] or knowledge compilation to the resulting CNF [40]. The encoding can
be done in multiple ways [40, 147], yet we focus on one particular encoding [40] in
this section to illustrate the reduction technique.

We will now discuss the CNF encoding for the Bayesian network in Fig. 11.7. We
first define the CNF variables which are in one-to-one correspondence with evidence
indicators and network parameters as defined in Section 11.3.4, but treated as propo-
sitional variables in this case. The CNF � is then obtained by processing network
variables and CPTs, writing corresponding clauses as follows:

Variable A: λa1 ∨ λa2 ¬λa1 ∨ ¬λa2

Variable B: λb1 ∨ λb2 ¬λb1 ∨ ¬λb2

Variable C: λc1 ∨ λc2 ¬λc1 ∨ ¬λc2

CPT for A: λa1 ⇔ θa1

CPT for B: λa1 ∧ λb1 ⇔ θb1|a1 λa1 ∧ λb2 ⇔ θb2|a1

λa2 ∧ λb1 ⇔ θb1|a2 λa2 ∧ λb2 ⇔ θb2|a2

CPT for C: λa1 ∧ λc1 ⇔ θc1|a1 λa1 ∧ λc2 ⇔ θc2|a1

λa2 ∧ λc1 ⇔ θc1|a2 λa2 ∧ λc2 ⇔ θc2|a2

The clauses for variables are simply asserting that exactly one evidence indicator must
be true. The clauses for CPTs are establishing an equivalence between each network
parameter and its corresponding indicators. This resulting CNF has two important
properties. First, its size is linear in the network size. Second, its models are in one-to-
one correspondence with the instantiations of network variables. Table 11.2 illustrates
the variable instantiations and corresponding CNF models for the previous example.

We can now either apply a model counter to the CNF queries [147], or compile the
CNF to obtain an arithmetic circuit for the Bayesian network [40]. If we want to apply
a model counter to the CNF, we must first assign weights to the CNF variables (hence,
we will be performing weighted model counting). All literals of the form λx , ¬λx and
¬θx|u get weight 1, while literals of the form θx|u get a weight equal to the value of
parameter θx|u as defined by the Bayesian network; see Table 11.2. To compute the
probability of any event α, all we need to do then is computed the weighted model
count of � ∧ α.

This reduction of probabilistic inference to logical inference is currently the most
effective technique for exploiting certain types of parametric structure, including de-
terminism and parameter equality. It also provides a very effective framework for
exploiting evidence computationally and for accommodating general types evidence
[25, 24, 147, 27].

484 11. Bayesian Networks

Table 11.2. Illustrating the models and corresponding weights of a CNF encod-
ing a Bayesian network

Network
instantiation

CNF
model

ωi sets these CNF vars to
true and all others to false

Model weight

a1b1c1 ω0 λa1λb1λc1θa1θb1|a1θc1|a1 0.1 · 0.1 · 0.1 = 0.001
a1b1c2 ω1 λa1λb1λc2θa1θb1|a1θc2|a1 0.1 · 0.1 · 0.9 = 0.009
a1b2c1 ω2 λa1λb2λc1θa1θb2|a1θc1|a1 0.1 · 0.9 · 0.1 = 0.009
a1b2c2 ω3 λa1λb2λc2θa1θb2|a1θc2|a1 0.1 · 0.9 · 0.9 = 0.081
a2b1c1 ω4 λa2λb1λc1θa2θb1|a1θc1|a2 0.9 · 0.2 · 0.2 = 0.036
a2b1c2 ω5 λa2λb1λc2θa2θb1|a1θc2|a2 0.9 · 0.2 · 0.8 = 0.144
a2b2c1 ω6 λa2λb2λc1θa2θb2|a1θc1|a2 0.9 · 0.8 · 0.2 = 0.144
a2b2c2 ω7 λa2λb2λc2θa2θb2|a1θc2|a2 0.9 · 0.8 · 0.8 = 0.576

11.3.6 Additional Inference Techniques

We discuss in this section some additional inference techniques which can be crucial
in certain circumstances.

First, all of the methods discussed earlier are immediately applicable to DBNs.
However, the specific, recurrent structure of these networks calls for some special
attention. For example, PR queries can be further refined depending on the location
of evidence and query variables within the network structure, leading to specialized
queries, such as monitoring. Here, the evidence is restricted to network slices t = 0,

. . . , t = i and the query variables are restricted to slice t = i. In such a case, and by
using restricted elimination orders, one can perform inference in space which is better
than linear in the network size [13, 97, 12]. This is important for DBNs as a linear
space complexity can be unpractical if we have too many slices.

Second, depending on the given evidence and query variables, a network can po-
tentially be pruned before inference is performed. In particular, one can always remove
edges outgoing from evidence variables [156]. One can also remove leaf nodes in the
network as long as they do not correspond to evidence or query variables [155]. This
process of node removal can be repeated, possibly simplifying the network structure
considerably. More sophisticated pruning techniques are also possible [107].

Third, we have so far considered only simple evidence corresponding to the instan-
tiation e of some variables E. If evidence corresponds to a general event α, we can add
an auxiliary node Xα to the network, making it a child of all variables U appearing
in α, setting the CPT ΘXα |U based on α, and asserting evidence on Xα [130]. A more
effective solution to this problem can be achieved in the context of approaches that
reduce the problem to logical inference. Here, we can simply add the event α to the
encoded CNF before we apply logical inference [147, 24]. Another type of evidence
we did not consider is soft evidence. This can be specified in two forms. We can declare
that the evidence changes the probability of some variable X from Pr(X) to Pr′(X).
Or we can assert that the new evidence on X changes its odds by a given factor k,
known as the Bayes factor: O′(X)/O(X) = k. Both types of evidence can be handled
by adding an auxiliary child Xe for node X, setting its CPT ΘXe|X depending on the
strength of soft evidence, and finally simulating the soft evidence by hard evidence on
Xe [130, 22].

A. Darwiche 485

11.4 Approximate Inference

All exact inference algorithms we have discussed for PR have a complexity which is
exponential in the network treewidth. Approximate inference algorithms are generally
not sensitive to treewidth, however, and can be quite efficient regardless of the net-
work topology. The issue with these methods is related to the quality of answers the
compute, which for some algorithms is quite related to the amount of time budgeted
by the algorithm. We discuss two major classes of approximate inference algorithms
in this section. The first and more classical class is based on sampling. The second and
more recent class of methods can be understood in terms of a reduction to optimization
problems. We note, however, that none of these algorithms offer general guarantees on
the quality of approximations they produce, which is not surprising since the problem
of approximating inference to any desired precision is known to be NP-hard [36].

11.4.1 Inference by Stochastic Sampling

Sampling from a probability distribution Pr(X) is a process of generating complete
instantiations x1, . . . , xn of variables X. A key property of a sampling process is its
consistency: generating samples x with a frequency that converges to their probabil-
ity Pr(x) as the number of samples approaches infinity. By generating such consistent
samples, one can approximate the probability of some event α, Pr(α), in terms of the
fractions of samples that satisfy α, P̂r(α). This approximated probability will then
converge to the true probability as the number of samples reaches infinity. Hence, the
precision of sampling methods will generally increase with the number of samples,
where the complexity of generating a sample is linear in the size of the network, and
is usually only weakly dependent on its topology.

Indeed, one can easily generate consistent samples from a distribution Pr that is
induced by a Bayesian network (G,Θ), using time that is linear in the network size to
generate each sample. This can be done by visiting the network nodes in topological
order, parents before children, choosing a value for each node X by sampling from the
distribution Pr(X|u) = ΘX|u, where u is the chosen values for X’s parents U. The key
question with sampling methods is therefore related to the speed of convergence (as
opposed to the speed of generating samples), which is usually affected by two major
factors: the query at hand (whether it has a low probability) and the specific network
parameters (whether they are extreme).

Consider, for example, approximating the query Pr(α|e) by approximating Pr(α, e)
and Pr(e) and then computing P̂r(α|e) = P̂r(α, e)/P̂r(e) according to the above sam-
pling method, known as logic sampling [76]. If the evidence e has a low probability,
the fraction of samples that satisfy e (and α, e for that matter) will be small, decreasing
exponentially in the number of variables instantiated by evidence e, and correspond-
ingly increasing the convergence time. The fundamental problem here is that we are
generating samples based on the original distribution Pr(X), where we ideally want to
generate samples based on the posterior distribution Pr(X|e), which can be shown to
be the optimal choice in a precise sense [28]. The problem, however, is that Pr(X|e)
is not readily available to sample from. Hence, more sophisticated approaches for
sampling attempt to sample from distributions that are meant to be close to Pr(X|e),
possibly changing the sampling distribution (also known as an importance function)
as the sampling process proceeds and more information is gained. This includes the

486 11. Bayesian Networks

methods of likelihood weighting [154, 63], self-importance sampling [154], heuristic
importance [154], adaptive importance sampling [28], and evidence pre-propagation
importance sampling (EPIS-BN) algorithm [179]. Likelihood weighing is perhaps the
simplest of these methods. It works by generating samples that are guaranteed to be
consistent with evidence e, by avoiding to sample values for variables E, always set-
ting them to e instead. It also assigns a weight of

∏
θe|u:eu∼x θe|u to each sample x.

Likelihood weighing will then use these weighted samples for approximating the prob-
abilities of events. The current state of the art for sampling in Bayesian networks is
probably the EPIS-BN algorithm, which estimates the optimal importance function
using belief propagation (see Section 11.4.2) and then proceeds with sampling.

Another class of sampling methods is based on Markov Chain Monte Carlo
(MCMC) simulation [23, 128]. Procedurally, samples in MCMC are generated by first
starting with a random sample x0 that is consistent with evidence e. A sample xi is
then generated based on sample xi−1 by choosing a new value of some nonevidence
variable X by sampling from the distribution Pr(X|xi − X). This means that sam-
ples xi and xi+1 will disagree on at most one variable. It also means that the sampling
distribution is potentially changed after each sample is generated. MCMC approxi-
mations will converge to the true probabilities if the network parameters are strictly
positive, yet the algorithm is known to suffer from convergence problems in case the
network parameters are extreme. Moreover, the sampling distribution of MCMC will
convergence to the optimal one if the network parameters satisfy some (ergodic) prop-
erties [178].

One specialized class of sampling methods, known as particle filtering, deserves
particular attention at it applies to DBNs [93]. In this class, one generates particles
instead of samples, where a particle is an instantiation of the variables at a given time
slice t . One starts by a set of n particles for the initial time slice t = 0, and then
moves forward generating particles xt for time t based on the particles xt−1 generated
for time t − 1. In particular, for each particle xt−1, we sample a particle xt based on
the distributions Pr(Xt |xt−1), in a fashion similar to logic sampling. The particles for
time t can then be used to approximate the probabilities of events corresponding to
that slice. As with other sampling algorithms, particle filtering needs to deal with the
problem of unlikely evidence, a problem that is more exaggerated in the context of
DBNs as the evidence pertaining to slices t > i is generally not available when we
generate particles for times t � i. One simple approach for addressing this problem is
to resample the particles for time t based on the extent to which they are compatible
with the evidence et at time t . In particular, we regenerate n particles for time t from
the original set based on the weight Pr(et |xt) assigned to each particle xt . The family
of particle filtering algorithms include other proposals for addressing this problem.

11.4.2 Inference as Optimization

The second class of approximate inference algorithms for PR can be understood in
terms of reducing the problem of inference to one of optimization. This class includes
belief propagation (e.g., [130, 117, 56, 176]) and variational methods (e.g., [92, 85]).

Given a Bayesian network which induces a distribution Pr, variational methods
work by formulating approximate inference as an optimization problem. For example,
say we are interested in searching for an approximate distribution P̂r which is more

A. Darwiche 487

well behaved computationally than Pr. In particular, if Pr is induced by a Bayesian
network N which has a high treewidth, then P̂r could possibly be induced by another
network ̂N which has a manageable treewidth. Typically, one starts by choosing the
structure of network ̂N to meet certain computational constraints and then search
for a parametrization of ̂N that minimizes the KL-divergence between the original
distribution Pr and the approximate one P̂r [100]:

KL
(
P̂r(.|e), Pr(.|e)) =

∑
w

P̂r(w|e) log
P̂r(w|e)
Pr(w|e) .

Ideally, we want parameters of network ̂N that minimize this KL-divergence, while
possibly satisfying additional constraints. Often, we can simply set to zero the par-
tial derivatives of KL(P̂r(.|e), Pr(.|e)) with respect to the parameters, and perform
an iterative search for parameters that solve the resulting system of equations. Note
that the KL-divergence is not symmetric. In fact, one would probably want to mini-
mize KL(Pr(.|e), P̂r(.|e)) instead, but this is not typically done due to computational
considerations (see [57, 114] for approaches using this divergence, based on local op-
timizations).

One of the simplest variational approaches is to choose a completely disconnected
network ̂N , leading to what is known as a mean-field approximation [72]. Other vari-
ational approaches typically assume a particular structure of the approximate model,
such as chains [67], trees [57, 114], disconnected subnetworks [149, 72, 175], or just
tractable substructures in general [173, 65]. These methods are typically phrased in
the more general setting of graphical models (which includes other representational
schemes, such as Markov Networks), but can typically be adapted to Bayesian net-
works as well. We should note here that the choice of approximate network ̂N

should at least permit one to evaluate the KL-divergence between ̂N and the orig-
inal network N efficiently. As mentioned earlier, such approaches seek minima of
the KL-divergence, but typically search for parameters where the partial derivatives
of the KL-divergence are zero, i.e., parameters that are stationary points of the KL-
divergence. In this sense, variational approaches can reduce the problem of inference
to one of optimization. Note that methods identifying stationary points, while con-
venient, only approximate the optimization problem since stationary points do not
necessarily represent minima of the KL-divergence, and even when they do, they do
not necessarily represent global minima.

Methods based on belief propagation [130, 117, 56] are similar in the sense that
they also can be understood as solving an optimization problem. However, this under-
standing is more recent and comes as an after fact of having discovered the first belief
propagation algorithm, known as loopy belief propagation or iterative belief propa-
gation (IBP). In IBP, the approximate distribution P̂r is assumed to have a particular
factored form:

(11.5)P̂r(X|e) =
∏
X∈X

P̂r(XU|e)∏
U∈U P̂r(U |e) ,

where U ∈ U are parents of the node X in the original Bayesian network N . This form
allows one to decompose the KL-divergence between the original and approximate

488 11. Bayesian Networks

distributions as follows:

KL
(
P̂r(.|e), Pr(.|e))

=
∑
xu

P̂r(xu|e) log
P̂r(xu|e)∏
u∼u P̂r(u|e) −

∑
xu

P̂r(xu|e) log θx|u + log Pr(e).

This decomposition of the KL-divergence has important properties. First, the term
Pr(e) does not depend on the approximate distribution and can be ignored in the
optimization process. Second, all other terms are expressed as a function of the ap-
proximate marginals P̂r(xu|e) and P̂r(u|e), in addition to the original network parame-
ters θx|u. In fact, IBP can be interpreted as searching for values of these approximate
marginals that correspond to stationary points of the KL-divergence: ones that set to
zero the partial derivatives of the divergence with respect to these marginals (under cer-
tain constraints). There is a key difference between the variational approaches based
on searching for parameters of approximate networks and those based on searching
for approximate marginals: The computed marginals may not actually correspond to
any particular distribution as the optimization problem solved does not include enough
constraints to ensure the global coherence of these marginals (only node marginals are
consistent, e.g., P̂r(x|e) = ∑

u P̂r(xu|e)).
The quality of approximations found by IBP depends on the extent to which the

original distribution can indeed be expressed as given in (11.5). If the original network
N has a polytree structure, the original distribution can be expressed as given in (11.5)
and the stationary point obtained by IBP corresponds to exact marginals. In fact, the
form given in (11.5) is not the only one that allows one to set up an optimization
problem as given above. In particular, any factored form that has the structure:

(11.6)P̂r(.|e) =
∏

C P̂r(C|e)∏
S P̂r(S|e) ,

where C and S are sets of variables, will permit a similar decomposition of the KL-
divergence in terms of marginals P̂r(C|e) and P̂r(S|e). This leads to a more general
framework for approximate inference, known as generalized belief propagation [176].
Note, however, that this more general optimization problem is exponential in the sizes
of sets C and S. In fact, any distribution induced by a Bayesian network N can be ex-
pressed in the above form, if the sets C and S correspond to the clusters and separators
of a jointree for network N [130]. In that case, the stationary point of the optimization
problem will correspond to exact marginals, yet the size of the optimization problem
will be at least exponential in the network treewidth. The form in (11.6) can there-
fore be viewed as allowing one to trade the complexity of approximate inference with
the quality of computed approximations, with IBP and jointree factorizations being
two extreme cases on this spectrum. Methods for exploring this spectrum include
joingraphs (which generalize jointrees) [1, 48], region graphs [176, 169, 170], and
partially ordered sets (or posets) [111], which are structured methods for generating
factorizations with interesting properties.

The above optimization perspective on belief propagation algorithms is only meant
to expose the semantics behind these methods. In general, belief propagation algo-
rithms do not set up an explicit optimization problem as discussed above. Instead,

A. Darwiche 489

they operate by passing messages in a Bayesian network (as is done by IBP), a jo-
ingraph, or some other structure such as a region graph. For example, in a Bayesian
network, the message sent from a node X to its neighbor Y is based on the messages
that node X receives from its other neighbors Z �= Y . Messages are typically initial-
ized according to some fixed strategy, and then propagated according to some message
passing schedule. For example, one may update messages in parallel or sequentially
[168, 164]. Additional techniques are used to fine tune the propagation method, in-
cluding message dampening [117, 78]. When message propagation converges (if it
does), the computed marginals are known to correspond to stationary points of the
KL-divergence as discussed above [176, 79]. There are methods that seek to optimize
the divergence directly, but they may be slow to converge [180, 171, 94, 174].

Statistical physics happens to be the source of inspiration for many of these meth-
ods and perspectives. In particular, we can reformulate the optimization of the KL-
divergence in terms of optimizing a variational free energy that approximates a free
energy (e.g., in thermodynamics). The free energy approximation corresponding to
IBP and Eq. (11.5) is often referred to as the Bethe free energy [176]. Other free en-
ergy approximations in physics that improve on, or generalize, the Bethe free energy
have indeed lent themselves to generalizing belief propagation. Among them is the
Kikuchi free energy [177], which led to region-based free energy approximations for
generalized belief propagation algorithms [176].

11.5 Constructing Bayesian Networks

Bayesian networks can be constructed in a variety of methods. Traditionally, Bayesian
networks have been constructed by knowledge engineers in collaboration with do-
main experts, mostly in the domain of medical diagnosis. In more recent applications,
Bayesian networks are typically synthesized from high level specifications, or learned
from data. We will review each of these approaches in the following sections.

11.5.1 Knowledge Engineering

The construction of Bayesian networks using traditional knowledge engineering tech-
niques has been most prevalent in medical reasoning, which also constitute some of
the first significant applications of Bayesian networks to real-world problems. Some
of the notable examples in this regard include: The Quick Medical Reference (QMR)
model [113] which was later reformulated as a Bayesian network model [159] that
covers more than 600 diseases and 4000 symptoms; the CPCS-PM network [137, 125],
which simulates patient scenarios in the medical field of hepatobiliary disease; and the
MUNIN model for diagnosing neuromuscular disorders from data acquired by elec-
tromyographic (EMG) examinations [7, 5, 6], which covers 8 nerves and 6 muscles.

The construction of Bayesian networks using traditional knowledge engineering
techniques has been recently made more effective through progress on the subject of
sensitivity analysis: a form of analysis which focuses on understanding the relationship
between local network parameters and global conclusions drawn from the network
[102, 18, 90, 98, 19–21]. These results have lead to the creation of efficient sensitivity
analysis tools which allow experts to assess the significance of network parameters,
and to easily isolate problematic parameters when obtaining counterintuitive results to
posed queries.

490 11. Bayesian Networks

11.5.2 High-Level Specifications

The manual construction of large Bayesian networks can be laborious and error-prone.
In many domains, however, these networks tend to exhibit regular and repetitive struc-
tures, with the regularities manifesting themselves both at the level of individual CPTs
and at the level of network structure. We have already seen in Section 11.2.4 how reg-
ularities in a CPT can reduce the specification of a large CPT to the specification of a
few parameters. A similar situation can arise in the specification of a whole Bayesian
network, allowing one to synthesize a large Bayesian network automatically from a
compact, high-level specification that encodes probabilistic dependencies among net-
work nodes, in addition to network parameters.

This general knowledge-based model construction paradigm [172] has given rise
to many concrete high-level specification frameworks, with a variety of representation
styles. All of these frameworks afford a certain degree of modularity, thus facilitat-
ing the adaptation of existing specifications to changing domains. A further benefit
of high-level specifications lies in the fact that the smaller number of parameters they
contain can often be learned from empirical data with higher accuracy than the larger
number of parameters found in the full Bayesian network [59, 96]. We next describe
some fundamental paradigms for high-level representation languages, where we dis-
tinguish between two main paradigms: template-based and programming-based. It
must be acknowledged, however, that this simple distinction is hardly adequate to
account for the whole variety of existing representation languages.

Template-based representations

The prototypical example of template-based representations is the dynamic Bayesian
network described in Section 11.2.6. In this case, one specifies a DBN having an ar-
bitrary number of slices using only two templates: one for the initial time slice, and
one for all subsequent slices. By further specifying the number of required slices t ,
a Bayesian network of arbitrary size can be compiled from the given templates and
temporal horizon t .

One can similarly specify other types of large Bayesian networks that are com-
posed of identical, recurring segments. In general, the template-based approach re-
quires two components for specifying a Bayesian network: a set of network templates
whose instantiation leads to network segments, and a specification of which segments
to generate and how to connect them together. Fig. 11.8 depicts three templates from
the domain of genetics, involving two classes of variables: genotypes (gt) and phe-
notypes (pt). Each template contains nodes of two kinds: nodes representing random
variables that are created by instantiating the template (solid circles, annotated with
CPTs), and nodes for input variables (dashed circles). Given these templates, to-
gether with a pedigree which enumerates particular individuals with their parental
relationships, one can then generate a concrete Bayesian network by instantiating one
genotype template and one phenotype template for each individual, and then con-
necting the resulting segments depending on the pedigree structure. The particular
genotype template instantiated for an individual will depend on whether the individual
is a founder (has no parents) in the pedigree.

The most basic type of template-based representations, such as the one in Fig. 11.8,
is quite rigid as all generated segments will have exactly the same structure. More

A. Darwiche 491

gt (X)

AA Aa aa

0.49 0.42 0.09

gt(X)

gt(p1(X)) gt(p2(X)) AA Aa aa

AA AA 1.0 0.0 0.0
AA Aa 0.5 0.5 0.0
.
aa aa 0.0 0.0 1.0

pt(X)

gt (X) affected not affected

AA 0.0 1.0
Aa 0.0 1.0
aa 1.0 0.0

Figure 11.8: Templates for specifying a Bayesian network in the domain of genetics. The templates as-
sume three possible genotypes (AA, Aa, aa) and two possible phenotypes (affected, not affected).

sophisticated template-based representations add flexibility to the specification in var-
ious ways. Network fragments [103] allow nodes in a template to have an unspeci-
fied number of parents. The CPT for such nodes must then be specified by generic
rules. Object oriented Bayesian networks [99] introduce abstract classes of network
templates that are defined by their interface with other templates. Probabilistic re-
lational models enhance the template approach with elements of relational database
concepts [59, 66], by allowing one to define probabilities conditional on aggregates
of the values of an unspecified number of parents. For example, one might include
nodes life_expectancy(X) and age_at_death(X) into a template for individuals X, and
condition the distribution of life_expectancy(X) on the average value of the nodes
age_at_death(Y) for all ancestors Y of X.

Programming-based representations

Frameworks in this group contain some of the earliest high-level representation lan-
guages. They use procedural or declarative specifications, which are not as directly
connected to graphical representations as template-based representations. Many are
based on logic programming languages [17, 132, 71, 118, 96]; others resemble func-
tional programming [86] or deductive database [69] languages. Compared to template-
based approaches, programming-based representations can sometimes allow more
modular and intuitive representations of high-level probabilistic knowledge. On the
other hand, the compilation of the Bayesian network from the high-level specification

492 11. Bayesian Networks

Table 11.3. A probabilistic Horn clause specification

alarm(X) ← burglary(X): 0.95
alarm(X) ← quake(Y), lives_in(X, Y): 0.8
call(X,Z) ← alarm(X), neighbor(X,Z): 0.7
call(X,Z) ← prankster(Z), neighbor(X,Z): 0.1
comb(alarm): noisy-or
comb(call): noisy-or

Table 11.4. CPT for ground atom alarm(Holmes)

burglary(Holmes) quake(LA) lives_in(Holmes, LA) quake(SF) lives_in(Holmes, SF) alarm(Holmes)

t t t t t 0.998
t t t t f 0.99
f t t f f 0.8
t f f f f 0.95
.

is usually not as straightforward, and part of the semantics of the specification can be
hidden in the details of the compilation process.

Table 11.3 shows a basic version of a representation based on probabilistic Horn
clauses [71]. The logical atoms alarm(X), burglary(X), . . . represent generic ran-
dom variables. Ground instances of these atoms, e.g., alarm(Holmes), alarm(Watson),
become the actual nodes in the constructed Bayesian network. Each clause in the prob-
abilistic rule base is a partial specification of the CPT for (ground instances of) the
atom in the head of the clause. The second clause in Table 11.3, for example, stipulates
that alarm(X) depends on variables quake(Y) and lives_in(X, Y). The parameters as-
sociated with the clauses, together with the combination rules associated with each
relation determine how a full CPT is to be constructed for a ground atom. Table 11.4
depicts part of the CPT constructed for alarm(Holmes) when Table 11.3 is instanti-
ated over a domain containing an individual Holmes and two cities LA and SF. The
basic probabilistic Horn clause paradigm illustrated in Table 11.3 can be extended and
modified in many ways; see for example Context-sensitive probabilistic knowledge
bases [118] and Relational Bayesian networks [86].

Specifications such as the one in Table 11.3 need not necessarily be seen as high-
level specifications of Bayesian networks. Provided the representation language is
equipped with a well-defined probabilistic semantics that is not defined procedurally
in terms of the compilation process, such high-level specifications are also stand-alone
probabilistic knowledge representation languages. It is not surprising, therefore, that
some closely related representation languages have been developed which were not
intended as high-level Bayesian network specifications [148, 116, 135, 140].

Inference

Inference on Bayesian networks generated from high-level specifications can be per-
formed using standard inference algorithms discussed earlier. Note, however, that the

A. Darwiche 493

Figure 11.9: A Bayesian network structure for medical diagnosis.

Table 11.5. A data set for learning the structure in Fig. 11.9

Case Cold? Flu? Tonsillitis? Chilling? Body ache? Sore throat? Fever?

1 true false ? true false false false
2 false true false true true false true
3 ? ? true false ? true false
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

generated networks can be very large and very connected (large treewidth), and there-
fore often pose particular challenges to inference algorithms. As an example, observe
that the size of the CPT for alarm(Holmes) in Table 11.4 grows exponentially in the
number of cities in the domain. Approximate inference techniques, as described in
Section 11.4, are therefore particularly important for Bayesian networks generated
from high-level specifications. One can also optimize some of these algorithms, such
as sampling methods, for Bayesian networks compiled from these specifications [126].
It should also be noted that such Bayesian networks can sometimes be rich with local
structure, allowing exact inference even when the network treewidth is quite high [27].

Exact inference algorithms that operate directly on high-level specifications have
also been investigated. Theoretical complexity results show that in the worst case one
cannot hope to obtain more efficient algorithms than standard exact inference on the
compiled network [87]. This does not, however, preclude the possibility that high-level
inference methods can be developed that are more efficient for particular applications
and particular queries [133, 43].

11.5.3 Learning Bayesian Networks

A Bayesian network over variables X1, . . . , Xn can be learned from a data set over
these variables, which is a table with each row representing a partial instantiation
of variables X1, . . . , Xn. Table 11.5 depicts an example data set for the network in
Fig. 11.9.

Each row in the above table represents a medical case of a particular patient, where
? indicates the unavailability of corresponding data for that patient. It is typically as-
sumed that when variables have missing values, one cannot conclude anything from

494 11. Bayesian Networks

that fact that the values are missing (e.g., a patient did not take an X-ray because the
X-ray happened to be unavailable that day) [108].

There are two orthogonal dimensions that define the process of learning a Bayesian
network from data: the task for which the Bayesian network will be used, and the
amount of information available to the learning process. The first dimension decides
the criteria by which we judge the quality of a learned network, that is, it decides
the objective function that the learning process will need to optimize. This dimension
calls for distinguishing between learning generative versus discriminative Bayesian
networks. To make this distinction more concrete, consider again the data set shown
in Table 11.5. A good generative Bayesian network is one that correctly models all
of the correlations among the variables. This model could be used to accurately an-
swer any query, such as the correlations between Chilling? and BodyAche?, as well as
whether a patient has Tonsilitis given any other (partial) description of that patient. On
the other hand, a discriminative Bayesian network is one that is intended to be used
only as a classifier: determining the value of one particular variable, called the class
variable, given the values of some other variables, called the attributes or features.
When learning a discriminative network, we will therefore optimize the classification
power of the learned network, without necessarily insisting on the global quality of
the distribution it induces. Hence, the answers that the network may generate for other
types of queries may not be meaningful. This section will focus on generative learning
of networks; for information on discriminative learning of networks, see [84, 70].

The second dimension calls for distinguishing between four cases:

1. Known network structure, complete data. Here, the goal is only to learn the
parameters Θ of a Bayesian network as the structure G is given as input to the
learning process. Moreover, the given data is complete in the sense that each
row in the data set provides a value for each network variable.

2. Known network structure, incomplete data. This is similar to the above case,
but some of the rows may not have values for some of the network variables;
see Table 11.5.

3. Unknown network structure, complete data. The goal here is to learn both the
network structure and parameters, from complete data.

4. Unknown network structure, incomplete data. This is similar to Case 3 above,
but where the data is incomplete.

In the following discussion, we will only consider the learning of Bayesian net-
works in which CPTs have tabular representations, but see [60] for results on learning
networks with structured CPT representations.

Learning network parameters

We will now consider the task of learning Bayesian networks whose structure is al-
ready known and then discuss the case of unknown structure. Suppose that we have a
complete data set D over variables X = X1, . . . , Xn. The first observation here is to
view this data set as defining a probability distribution P̂r over these variables, where
P̂r(x) = count(x,D)/|D| is simply the percentage of rows in D that contain the in-
stantiation x. Suppose now that we have a Bayesian network structure G and our goal

A. Darwiche 495

is to learn the parameters Θ of this network given the data set D. This is done by
choosing parameters Θ so that the network (G,Θ) will induce a distribution PrΘ that
is as close to P̂r as possible, according to the KL-divergence. That is, the goal is to
minimize:

KL(P̂r, PrΘ) =
∑

x

P̂r(x) log
P̂r(x)

PrΘ(x)

=
∑

x

P̂r(x) log P̂r(x) −
∑

x

P̂r(x) log PrΘ(x).

Since the term
∑

x P̂r(x) log P̂r(x) does not depend on the choice of parameters Θ , this
corresponds to maximizing

∑
x P̂r(x) log PrΘ(x), which can be shown to equal6:

(11.7)g(Θ) =
∑

x

P̂r(x) log PrΘ(x) = 1

|D| log
∏
d∈D

PrΘ(d).

Note that parameters which maximize the above quantity will also maximize the prob-
ability of data,

∏
d∈D PrΘ(d) and are known as maximum likelihood parameters.

A number of observations are in order about this method of learning. First, there is
a unique set of parameters Θ = {θx|u} that satisfy the above property, defined as fol-
lows: θx|u = count(xu,D)/count(u,D) (e.g., see [115]). Second, this method may
have problems when the data set does not contain enough cases, leading possibly to
count(u,D) = 0 and a division by zero. This is usually handled by using (something
like) a Laplacian correction; using, say

(11.8)θx|u = 1 + count(x, u,D)

|X| + count(u,D)
,

where |X| is the number of values for variable X. We will refer to these parameters as
Θ̂(G,D) from now on.

When the data is incomplete, the situation is not as simple for a number of reasons.
First, we may have multiple sets of maximum likelihood parameters. Second, the two
most commonly used methods that search for such parameters are not optimal, and
both can be computationally intensive. Both methods are based on observing, from
Eq. (11.7), that we are trying to optimize a function g(Θ) of the network parame-
ters. The first method tries to optimize this function using standard gradient ascent
techniques [146]. That is, we first compute the gradient which happens to have the
following form:

(11.9)
∂g

∂θx|u
(Θ) =

∑
d∈D

PrΘ(xu|d)

θx|u
,

and then use it to drive a gradient ascent procedure that attempts to find a local maxima
of the function g. This method will start with some initial parameter Θ0, leading to
an initial Bayesian network (G,Θ0) with distribution Pr0

Θ . It will then use Eq. (11.9)
to compute the gradient ∂g/∂θx|u(Θ0), which is then used to find the next set of pa-
rameters Θ1, with corresponding network (G,Θ1) and distribution Pr1. The process

6We are treating a data set as a multi-set, which can include repeated elements.

496 11. Bayesian Networks

continues, computing a new set of parameters Θi based on the previous set Θi−1,
until some convergence criteria is satisfied. Standard techniques of gradient ascent
all are applicable in this case, including conjugate gradient, line search and random
restarts [14].

A more commonly used method in this case is the expectation maximization (EM)
algorithm [104, 112], which works as follows. The method starts with some initial
parameters Θ0, leading to an initial distribution Pr0

Θ . It then uses the distribution to
complete the data set D as follows. If d is a row in D for which some variable values
are missing, the algorithm will (conceptually) consider every completion d ′ of this
row and assign it a weight of Pr0

Θ(d ′|d). The algorithm will then pretend as if it had a
complete (but weighted) data set, and use the method for complete data to compute a
new set of parameters Θ1, leading to a new distribution Pr1

Θ . This process continues,
computing a new set of parameters Θi based on the previous set Θi−1, until some
convergence criteria is satisfied. This method has a number of interesting properties.
First, the value of parameters at iteration i have the following closed from:

θi
x|u =

∑
d∈D Pri−1

Θ (xu|d)∑
d∈D Pri−1

Θ (u|d)
,

which has the same complexity as the gradient ascent method (see Eq. (11.9)). Second,
the probability of the data set is guaranteed to never decrease after each iteration of
the method. There are many techniques to make this algorithm even more efficient;
see [112].

Learning network structure

We now turn to the problem of learning a network structure (as well as the associated
parameters), given complete data. As this task is NP-hard in general [30], the main
algorithms are iterative, starting with a single structure (perhaps the empty graph),
and incrementally modifying this structure, until reaching some termination condition.
There are two main classes of algorithms, score-based and independence-based.

As the name suggests, the algorithms based on independence will basically run a
set of independence tests, between perhaps every pair of currently-unconnected nodes
in the current graph, to see if the data set supports the claim that they are independent
given the rest of the graph structure; see [68, 127].

Score-based algorithms will typically employ local search, although systematic
search has been used in some cases too (e.g., [165]). Local search algorithms will
evaluate the current structure, as well as every structure formed by some simple
modification—such as adding one addition arc, or deleting one existing arc, or chang-
ing the direction of one arc [29]—and climb to the new structure with the highest score.
One plausible score is based on favoring structures that lead to higher probability of
the data:

(11.10)gD(G) = max
Θ

log
∏
d∈D

PrG,Θ(d).

Unfortunately, this does not always work. To understand why, consider the sim-
pler problem of fitting a polynomial to some pairs of real numbers. If we do not fix
the degree of the polynomial, we would probably end up fitting the data perfectly by

A. Darwiche 497

Figure 11.10: Modeling intervention on causal networks.

selecting a high degree polynomial. Even though this may lead to a perfect fit over
the given data points, the learned polynomial may not generalize the data well, and
so do poorly at labeling other novel data points. The same phenomena, called overfit-
ting [141], shows up in learning Bayesian networks, as it means we would favor a fully
connected network, as clearly this complete graph would maximize the probability of
data due to its large set of parameters (maximal degrees of freedom). To deal with
this overfitting problem, other scoring functions are used, many explicitly including a
penalty term for complex structure. This includes the Minimum Description Length
(MDL) score [142, 62, 101, 163], the Akaike Information Criterion (AIC) score [16],
and the “Bayesian Dirichlet, equal” (BDe) [33, 75, 74]. For example, the MDL score
is given by:

MDLD(G) = gD(G) − log m

2
k(G),

where m is the size of data set D and k(G) is the number of independent network para-
meters (this also corresponds to the Bayesian Information Criterion (BIC) [151]). Each
of these scores is asymptotically correct in that it will identify the correct structures in
the limit as the data increases.

The above discussion has focused on learning arbitrary network structures. There
are also efficient algorithms for computing the optimal structures, for some restricted
class of structures, including trees [31] and polytrees [131].

If the data is incomplete, learning structures becomes much more complicated as
we have two nested optimization problems: one for choosing the structure, which
can again be accomplished by either greedy or optimal search, and one for choos-
ing the parameters for a given structure, which can be accomplished using methods
like EM [75]. One can improve the double search problem by using techniques such
as structural EM [58], which uses particular data structures that allow computational
results to be used across the different iterations of the algorithm.

11.6 Causality and Intervention

The directed nature of Bayesian networks can be used to provide causal semantics for
these networks, based on the notion of intervention [127], leading to models that not

498 11. Bayesian Networks

only represent probability distributions, but also permit one to induce new probability
distributions that result from intervention. In particular, a causal network, intuitively
speaking, is a Bayesian network with the added property that the parents of each node
are its direct causes. For example, Cold → HeadAche is a causal network whereas
HeadAche → Cold is not, even though both networks are equally capable of repre-
senting any joint distribution on the two variables. Causal networks can be used to
compute the result of intervention as illustrated in Fig. 11.10. In this example, we
want to compute the probability distribution that results from having set the value of
variable D by intervention, as opposed to having observed the value of D. This can
be done by deactivating the current causal mechanism for D—by disconnecting D

from its direct causes A and B—and then conditioning the modified causal model on
the set value of D. Note how different this process is from the classical operation of
Bayes conditioning (Eq. (11.1)), which is appropriate for modeling observations but
not immediately for intervention. For example, intervening on variable D in Fig. 11.10
would have no effect on the probability associated with F , while measurements taken
on variable D would affect the probability associated with F .7 Causal networks are
more properly defined, then, as Bayesian networks in which each parents–child family
represents a stable causal mechanism. These mechanisms may be reconfigured locally
by interventions, but remain invariant to other observations and manipulations.

Causal networks and their semantics based on intervention can then be used to
answer additional types of queries that are beyond the scope of general Bayesian net-
works. This includes determining the truth of counterfactual sentences of the form
α → β | γ , which read: “Given that we have observed γ , if α were true, then β would
have been true”. The counterfactual antecedent α consists of a conjunction of value as-
signments to variables that are forced to hold true by external intervention. Typically,
to justify being called “counterfactual”, α conflicts with γ . The truth (or probability)
of a counterfactual conditional α → β | γ requires a causal model. For example, the
probability that “the patient would be alive had he not taken the drug” cannot be com-
puted from the information provided in a Bayesian network, but requires a functional
causal networks, where each variable is functionally determined by its parents (plus
noise factors). This more refined specification allows one to assign unique probabili-
ties to all counterfactual statements. Other types of queries that have been formulated
with respect to functional causal networks include ones for distinguishing between di-
rect and indirect causes and for determining the sufficiency and necessity aspects of
causation [127].

Acknowledgements

Marek Druzdzel contributed to Section 11.4.1, Arthur Choi contributed to Sec-
tion 11.4.2, Manfred Jaeger contributed to Section 11.5.2, Russ Greiner contributed
to Section 11.5.3, and Judea Pearl contributed to Section 11.6. Mark Chavira, Arthur
Choi, Rina Dechter, and David Poole provided valuable comments on different ver-
sions of this chapter.

7For a simple distinction between observing and intervening, note that observing D leads us to increase
our belief in its direct causes, A and B. Yet, our beliefs will not undergo this increase when intervening to
set D.

A. Darwiche 499

Bibliography

[1] S.M. Aji and R.J. McEliece. The generalized distributive law and free energy
minimization. In Proceedings of the 39th Allerton Conference on Communica-
tion, Control and Computing, pages 672–681, 2001.

[2] D. Allen and A. Darwiche. New advances in inference by recursive condition-
ing. In Proceedings of the Conference on Uncertainty in Artificial Intelligence,
pages 2–10, 2003.

[3] D. Allen and A. Darwiche. Optimal time–space tradeoff in probabilistic infer-
ence. In Proc. International Joint Conference on Artificial Intelligence (IJCAI),
pages 969–975, 2003.

[4] D. Allen and A. Darwiche. Advances in Bayesian networks. In Studies in Fuzzi-
ness and Soft Computing, vol. 146, pages 39–55. Springer-Verlag, New York,
2004 (chapter Optimal Time–Space Tradeoff in Probabilistic Inference).

[5] S. Andreassen, F.V. Jensen, S.K. Andersen, B. Falck, U. Kjærulff, M. Woldbye,
A.R. Sorensen, A. Rosenfalck, and F. Jensen. MUNIN—an expert EMG assis-
tant. In J.E. Desmedt, editor. Computer-Aided Electromyography and Expert
Systems. Elsevier Science Publishers, Amsterdam, 1989 (Chapter 21).

[6] S. Andreassen, M. Suojanen, B. Falck, and K.G. Olesen. Improving the diag-
nostic performance of MUNIN by remodelling of the diseases. In Proceedings
of the 8th Conference on AI in Medicine in Europe, pages 167–176. Springer-
Verlag, 2001.

[7] S. Andreassen, M. Woldbye, B. Falck, and S.K. Andersen. Munin—a causal
probabilistic network for interpretation of electromyographic findings. In J. Mc-
Dermott, editor. Proceedings of the 10th International Joint Conference on Ar-
tificial Intelligence (IJCAI-87), pages 366–372. Morgan Kaufmann Publishers,
1987.

[8] S.A. Arnborg. Efficient algorithms for combinatorial problems on graphs with
bounded decomposability—a survey. BIT , 25:2–23, 1985.

[9] S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding embed-
dings in a k-tree. SIAM J. Algebraic and Discrete Methods, 8:277–284, 1987.

[10] F. Bacchus, S. Dalmao, and T. Pitassi. Value elimination: Bayesian inference
via backtracking search. In Proceedings of the 19th Annual Conference on Un-
certainty in Artificial Intelligence (UAI-03), pages 20–28. Morgan Kaufmann
Publishers, San Francisco, CA, 2003.

[11] A. Becker, R. Bar-Yehuda, and D. Geiger. Random algorithms for the loop cut-
set problem. In Proceedings of the 15th Conference on Uncertainty in Artificial
Intelligence (UAI), 1999.

[12] J. Bilmes and C. Bartels. Triangulating dynamic graphical models. In Un-
certainty in Artificial Intelligence: Proceedings of the Nineteenth Conference,
pages 47–56, 2003.

[13] J. Binder, K. Murphy, and S. Russell. Space-efficient inference in dynamic
probabilistic networks. In Proc. International Joint Conference on Artificial In-
telligence (IJCAI), 1997.

[14] C. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,
Oxford, 1998.

500 11. Bayesian Networks

[15] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller. Context-specific in-
dependence in Bayesian networks. In Proceedings of the 12th Conference on
Uncertainty in Artificial Intelligence (UAI), pages 115–123, 1996.

[16] H. Bozdogan. Model selection and Akaike’s Information Criterion (AIC): the
general theory and its analytical extensions. Psychometrica, 52:345–370, 1987.

[17] J.S. Breese. Construction of belief and decision networks. Computational Intel-
ligence, 8(4):624–647, 1992.

[18] E. Castillo, J.M. Gutiérrez, and A.S. Hadi. Sensitivity analysis in discrete
Bayesian networks. IEEE Transactions on Systems, Man, and Cybernetics,
27:412–423, 1997.

[19] H. Chan and A. Darwiche. When do numbers really matter? Journal of Artificial
Intelligence Research, 17:265–287, 2002.

[20] H. Chan and A. Darwiche. Sensitivity analysis in Bayesian networks: From
single to multiple parameters. In Proceedings of the Twentieth Conference on
Uncertainty in Artificial Intelligence (UAI), pages 67–75. AUAI Press, Arling-
ton, VA, 2004.

[21] H. Chan and A. Darwiche. A distance measure for bounding probabilistic belief
change. International Journal of Approximate Reasoning, 38:149–174, 2005.

[22] H. Chan and A. Darwiche. On the revision of probabilistic beliefs using uncer-
tain evidence. Artificial Intelligence, 163:67–90, 2005.

[23] M.R. Chavez and G.F. Cooper. A randomized approximation algorithm for
probabilistic inference on Bayesian belief networks. Networks, 20(5):661–685,
1990.

[24] M. Chavira, D. Allen, and A. Darwiche. Exploiting evidence in probabilistic
inference. In Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence (UAI), pages 112–119, 2005.

[25] M. Chavira and A. Darwiche. Compiling Bayesian networks with local struc-
ture. In Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI), pages 1306–1312, 2005.

[26] M. Chavira and A. Darwiche. Compiling Bayesian networks using variable
elimination. In Proceedings of the 20th International Joint Conference on Arti-
ficial Intelligence (IJCAI), pages 2443–2449, 2007.

[27] M. Chavira, A. Darwiche, and M. Jaeger. Compiling relational Bayesian net-
works for exact inference. International Journal of Approximate Reasoning,
42(1–2):4–20, May 2006.

[28] J. Cheng and M.J. Druzdzel. BN-AIS: An adaptive importance sampling algo-
rithm for evidential reasoning in large Bayesian networks. Journal of Artificial
Intelligence Research, 13:155–188, 2000.

[29] D.M. Chickering. Optimal structure identification with greedy search. JMLR,
2002.

[30] D.M. Chickering and D. Heckerman. Large-sample learning of Bayesian net-
works is NP-hard. JMLR, 2004.

[31] C.K. Chow and C.N. Lui. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14(3):462–467,
1968.

[32] F.G. Cooper. The computational complexity of probabilistic inference using
Bayesian belief networks. Artificial Intelligence, 42(2–3):393–405, 1990.

A. Darwiche 501

[33] G. Cooper and E. Herskovits. A Bayesian method for the induction of proba-
bilistic networks from data. MLJ, 9:309–347, 1992.

[34] R. Cowell, A. Dawid, S. Lauritzen, and D. Spiegelhalter. Probabilistic Networks
and Expert Systems. Springer, 1999.

[35] T. Verma, D. Geiger, and J. Pearl. d-separation: from theorems to algorithms.
In Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence
(UAI), pages 139–148, 1990.

[36] P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian be-
lief networks is NP-hard. Artificial Intelligence, 60(1):141–153, 1993.

[37] A. Darwiche. Conditioning algorithms for exact and approximate inference in
causal networks. In Proceedings of the 11th Conference on Uncertainty in Arti-
ficial Intelligence (UAI), pages 99–107, 1995.

[38] A. Darwiche. Any-space probabilistic inference. In Proceedings of the 16th
Conference on Uncertainty in Artificial Intelligence (UAI), pages 133–142,
2000.

[39] A. Darwiche. Recursive conditioning. Artificial Intelligence, 126(1–2):5–41,
2001.

[40] A. Darwiche. A logical approach to factoring belief networks. In Proceedings
of KR, pages 409–420, 2002.

[41] A. Darwiche. A differential approach to inference in Bayesian networks. Jour-
nal of the ACM, 50(3):280–305, 2003.

[42] A. Darwiche and M. Hopkins. Using recursive decomposition to construct elim-
ination orders, jointrees and dtrees. In Trends in Artificial Intelligence, Lec-
ture Notes in Artificial Intelligence, vol. 2143, pages 180–191. Springer-Verlag,
2001.

[43] R. de Salvo Braz, E. Amir, and D. Roth. Lifted first-order probabilistic infer-
ence. In Proceedings of the Nineteenth Int. Joint Conf. on Artificial Intelligence
(IJCAI-05), pages 1319–1325, 2005.

[44] T. Dean and K. Kanazawa. A model for reasoning about persistence and causa-
tion. Computational Intelligence, 5(3):142–150, 1989.

[45] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113:41–85, 1999.

[46] R. Dechter and R. Mateescu. Mixtures of deterministic-probabilistic networks
and their and/or search space. In Proceedings of the Twentieth Conference on
Uncertainty in Artificial Intelligence (UAI’04), pages 120–129, 2004.

[47] R. Dechter and Y. El Fattah. Topological parameters for time-space tradeoff.
Artificial Intelligence, 125(1–2):93–118, 2001.

[48] R. Dechter, K. Kask, and R. Mateescu. Iterative join-graph propagation. In Pro-
ceedings of the Conference on Uncertainty in Artificial Intelligence, pages 128–
136, 2002.

[49] R. Dechter and D. Larkin. Hybrid processing of beliefs and constraints. In Un-
certainty in Artificial Intelligence: Proceedings of the Seventeenth Conference
(UAI-2001), pages 112–119. Morgan Kaufmann Publishers, San Francisco, CA,
2001.

[50] R. Dechter and D. Larkin. Bayesian inference in the presence of determinism.
In C.M. Bishop and B.J. Frey, editors, In Proceedings of the Ninth International
Workshop on Artificial Intelligence and Statistics, Key West, FL, 2003.

502 11. Bayesian Networks

[51] F.J. Díez. Parameter adjustment in Bayesian networks: the generalized noisy-
or gate. In Proceedings of the Ninth Conference on Uncertainty in Artificial
Intelligence (UAI), 1993.

[52] F.J. Díez. Local conditioning in Bayesian networks. Artificial Intelligence,
87(1):1–20, 1996.

[53] F.J. Díez and S.F. Galán. An efficient factorization for the noisy MAX. Interna-
tional Journal of Intelligent Systems, 18:165–177, 2003.

[54] M. Fishelson and D. Geiger. Exact genetic linkage computations for general
pedigrees. Bioinformatics, 18(1):189–198, 2002.

[55] M. Fishelson and D. Geiger. Optimizing exact genetic linkage computations. In
RECOMB’03, 2003.

[56] B.J. Frey and D.J.C. MacKay. A revolution: Belief propagation in graphs with
cycles. In NIPS, pages 479–485, 1997.

[57] B.J. Frey, R. Patrascu, T. Jaakkola, and J. Moran. Sequentially fitting “inclusive”
trees for inference in noisy-or networks. In NIPS, pages 493–499, 2000.

[58] N. Friedman. The Bayesian structural EM algorithm. In Proceedings of the 14th
Conference on Uncertainty in Artificial Intelligence (UAI), 1998.

[59] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic re-
lational models. In Proceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI-99), 1999.

[60] N. Friedman and M. Goldszmidt. Learning Bayesian networks with local struc-
ture. In Proceedings of the 12th Conference on Uncertainty in Artificial Intelli-
gence (UAI), 1996.

[61] N. Friedman and M. Goldszmidt. Learning Bayesian networks with local struc-
ture. In Proceedings of the 12th Conference on Uncertainty in Artificial Intelli-
gence (UAI), pages 252–262, 1996.

[62] N. Friedman and Z. Yakhini. On the sample complexity of learning Bayesian
networks. In Proceedings of the 12th Conference on Uncertainty in Artificial
Intelligence (UAI), 1996.

[63] R. Fung and K.-C. Chang. Weighing and integrating evidence for stochastic
simulation in Bayesian networks. In M. Henrion, R.D. Shachter, L.N. Kanal, and
J.F. Lemmer, editors. Uncertainty in Artificial Intelligence, vol. 5, pages 209–
219. Elsevier Science Publishing Company, Inc., New York, NY, 1989.

[64] D. Geiger, T. Verma, and J. Pearl. Identifying independence in Bayesian net-
works. Networks:507–534, 1990.

[65] D. Geiger and C. Meek. Structured variational inference procedures and their
realizations. In Proceedings of Tenth International Workshop on Artificial Intel-
ligence and Statistics. The Society for Artificial Intelligence and Statistics, The
Barbados, January 2005.

[66] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning probabilistic models
of relational structure. In Proceedings of the 18th International Conference on
Machine Learning, pages 170–177, 2001.

[67] Z. Ghahramani and M.I. Jordan. Factorial hidden Markov models. Machine
Learning, 29(2–3):245–273, 1997.

[68] C. Glymour, R. Scheines, P. Spirtes, and K. Kelly. Discovering Causal Struc-
ture. Academic Press, Inc., London, 1987.

A. Darwiche 503

[69] R.P. Goldman and E. Charniak. Dynamic construction of belief networks. In P.P.
Bonissone, M. Henrion, L.N. Kanal, and J.F. Lemmer, editors, Uncertainty in
Artificial Intelligence, vol. 6, pages 171–184, Elsevier Science, 1991.

[70] Y. Guo and R. Greiner. Discriminative model selection for belief net structures.
In Twentieth National Conference on Artificial Intelligence (AAAI-05), pages
770–776, Pittsburgh, July 2005.

[71] P. Haddawy. Generating Bayesian networks from probability logic knowledge
bases. In Proceedings of the Tenth Conference on Uncertainty in Artificial Intel-
ligence (UAI-94), pages 262–269, 1994.

[72] M. Haft, R. Hofmann, and V. Tresp. Model-independent mean-field theory as a
local method for approximate propagation of information. Network: Computa-
tion in Neural Systems, 10:93–105, 1999.

[73] D. Heckerman. Causal independence for knowledge acquisition and inference.
In D. Heckerman and A. Mamdani, editors, Proc. of the Ninth Conf. on Uncer-
tainty in AI, pages 122–127, 1993.

[74] D. Heckerman, D. Geiger, and D. Chickering. Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning, 20:197–243,
1995.

[75] D.E. Heckerman. A tutorial on learning with Bayesian networks. In M.I. Jordan,
editor. Learning in Graphical Models. MIT Press, 1998.

[76] M. Henrion. Propagating uncertainty in Bayesian networks by probabilistic
logic sampling. In Uncertainty in Artificial Intelligence, vol. 2, pages 149–163.
Elsevier Science Publishing Company, Inc., New York, NY, 1988.

[77] M. Henrion. Some practical issues in constructing belief networks. In L.N.
Kanal, T.S. Levitt, and J.F. Lemmer, editors. Uncertainty in Artificial Intelli-
gence, vol. 3, pages 161–173. Elsevier Science Publishers B.V., North-Holland,
1989.

[78] T. Heskes. Stable fixed points of loopy belief propagation are local minima of
the Bethe free energy. In NIPS, pages 343–350, 2002.

[79] T. Heskes. On the uniqueness of loopy belief propagation fixed points. Neural
Computation, 16(11):2379–2413, 2004.

[80] J. Hoey, R. St-Aubin, A. Hu, and G. Boutilier. SPUDD: Stochastic planning
using decision diagrams. In Proceedings of the 15th Conference on Uncertainty
in Artificial Intelligence (UAI), pages 279–288, 1999.

[81] E.J. Horvitz, H.J. Suermondt, and G.F. Cooper. Bounded conditioning: Flexible
inference for decisions under scarce resources. In Proceedings of Conference on
Uncertainty in Artificial Intelligence, Windsor, ON, pages 182–193. Association
for Uncertainty in Artificial Intelligence, Mountain View, CA, August 1989.

[82] J. Hastad. Tensor rank is NP-complete. Journal of Algorithms, 11:644–654,
1990.

[83] C. Huang and A. Darwiche. Inference in belief networks: A procedural guide.
International Journal of Approximate Reasoning, 15(3):225–263, 1996.

[84] I. Inza, P. Larranaga, J. Lozano, and J. Pena. Machine Learning Journal, 59,
June 2005 (Special Issue: Probabilistic Graphical Models for Classification).

[85] T. Jaakkola. Advanced Mean Field Methods—Theory and Practice. MIT Press,
2000 (chapter Tutorial on Variational Approximation Methods).

504 11. Bayesian Networks

[86] M. Jaeger. Relational Bayesian networks. In D. Geiger and P.P. Shenoy, edi-
tors. Proceedings of the 13th Conference of Uncertainty in Artificial Intelligence
(UAI-13), pages 266–273. Morgan Kaufmann, Providence, USA, 1997.

[87] M. Jaeger. On the complexity of inference about probabilistic relational models.
Artificial Intelligence, 117:297–308, 2000.

[88] R. Jeffrey. The Logic of Decision. McGraw-Hill, New York, 1965.
[89] F.V. Jensen, S.L. Lauritzen, and K.G. Olesen. Bayesian updating in recursive

graphical models by local computation. Computational Statistics Quarterly,
4:269–282, 1990.

[90] F.V. Jensen. Gradient descent training of Bayesian networks. In Proceedings
of the Fifth European Conference on Symbolic and Quantitative Approaches to
Reasoning with Uncertainty (ECSQARU), pages 5–9, 1999.

[91] F.V. Jensen. Bayesian Networks and Decision Graphs. Springer-Verlag, 2001.
[92] M.I. Jordan, Z. Ghahramani, T. Jaakkola, and L.K. Saul. An introduction to

variational methods for graphical models. Machine Learning, 37(2):183–233,
1999.

[93] K. Kanazawa, D. Koller, and S.J. Russell. Stochastic simulation algorithms for
dynamic probabilistic networks. In Uncertainty in Artificial Intelligence: Pro-
ceedings of the Eleventh Conference, pages 346–351, 1995.

[94] H.J. Kappen and W. Wiegerinck. Novel iteration schemes for the cluster varia-
tion method. In NIPS, pages 415–422, 2001.

[95] K. Kask and R. Dechter. A general scheme for automatic generation of search
heuristics from specification dependencies. Artificial Intelligence, 129:91–131,
2001.

[96] K. Kersting and L. De Raedt. Towards combining inductive logic programming
and Bayesian networks. In Proceedings of the Eleventh International Confer-
ence on Inductive Logic Programming (ILP-2001), Springer Lecture Notes in
AI, vol. 2157. Springer, 2001.

[97] U. Kjaerulff. A computational scheme for reasoning in dynamic probabilistic
networks. In Uncertainty in Artificial Intelligence: Proceedings of the Eight
Conference, pages 121–129, 1992.

[98] U. Kjaerulff and L.C. van der Gaag. Making sensitivity analysis computationally
efficient. In Proceedings of the 16th Conference on Uncertainty in Artificial
Intelligence (UAI), 2000.

[99] D. Koller and A. Pfeffer. Object-oriented Bayesian networks. In Proceedings
of the Thirteenth Annual Conference on Uncertainty in Artificial Intelligence
(UAI–97), pages 302–313. Morgan Kaufmann Publishers, San Francisco, CA,
1997.

[100] S. Kullback and R.A. Leibler. On information and sufficiency. Annals of Math-
ematical Statistics, 22:79–86, 1951.

[101] W. Lam and F. Bacchus. Learning Bayesian belief networks: An approach based
on the MDL principle. Computation Intelligence, 10(4):269–293, 1994.

[102] K.B. Laskey. Sensitivity analysis for probability assessments in Bayesian net-
works. IEEE Transactions on Systems, Man, and Cybernetics, 25:901–909,
1995.

[103] K.B. Laskey and S.M. Mahoney. Network fragments: Representing knowledge
for constructing probabilistic models. In Proceedings of the Thirteenth Annual

A. Darwiche 505

Conference on Uncertainty in Artificial Intelligence (UAI–97), pages 334–341.
San Morgan Kaufmann Publishers, Francisco, CA, 1997.

[104] S.L. Lauritzen. The EM algorithm for graphical association models with missing
data. Computational Statistics and Data Analysis, 19:191–201, 1995.

[105] S.L. Lauritzen and D.J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. Journal of Royal
Statistics Society, Series B, 50(2):157–224, 1988.

[106] V. Lepar and P.P. Shenoy. A comparison of Lauritzen–Spiegelhalter, Hugin, and
Shenoy–Shafer architectures for computing marginals of probability distribu-
tions. In Proceedings of the Fourteenth Annual Conference on Uncertainty in
Artificial Intelligence (UAI-98), pages 328–337. Morgan Kaufmann Publishers,
San Francisco, CA, 1998.

[107] Y. Lin and M. Druzdzel. Computational advantages of relevance reasoning in
Bayesian belief networks. In Proceedings of the 13th Annual Conference on
Uncertainty in Artificial Intelligence (UAI-97), pages 342–350, 1997.

[108] J.A. Little and D.B. Rubin. Statistical Analysis with Missing Data. Wiley, New
York, 1987.

[109] D. Maier. The Theory of Relational Databases. Computer Science Press,
Rockville, MD, 1983.

[110] R. Marinescu and R. Dechter. And/or branch-and-bound for graphical models.
In Proceedings of International Joint Conference on Artificial Intelligence (IJ-
CAI), 2005.

[111] R.J. McEliece and M. Yildirim. Belief propagation on partially ordered sets. In
J. Rosenthal and D.S. Gilliam, editors, Mathematical Systems Theory in Biology,
Communications, Computation and Finance.

[112] G.J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Wiley Se-
ries in Probability and Statistics. Applied Probability and Statistics. Wiley, New
York, 1997.

[113] R.A. Miller, F.E. Fasarie, and J.D. Myers. Quick medical reference (QMR) for
diagnostic assistance. Medical Computing, 3:34–48, 1986.

[114] T.P. Minka and Y.(A.) Qi. Tree-structured approximations by expectation prop-
agation. In Proceedings of the Annual Conference on Neural Information
Processing Systems, 2003.

[115] T.M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[116] S. Muggleton. Stochastic logic programs. In L. de Raedt, editor. Advances in

Inductive Logic Programming, pages 254–264. IOS Press, 1996.
[117] K.P. Murphy, Y. Weiss, and M.I. Jordan. Loopy belief propagation for ap-

proximate inference: An empirical study. In Proceedings of the Conference on
Uncertainty in Artificial Intelligence, pages 467–475, 1999.

[118] L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic
knowledge bases. Theoretical Computer Science, 171:147–177, 1997.

[119] A. Nicholson and J.M. Brady. The data association problem when monitoring
robot vehicles using dynamic belief networks. In 10th European Conference on
Artificial Intelligence Proceedings, pages 689–693, 1992.

[120] T. Nielsen, P. Wuillemin, F. Jensen, and U. Kjaerulff. Using ROBDDs for infer-
ence in Bayesian networks with troubleshooting as an example. In Proceedings
of the 16th Conference on Uncertainty in Artificial Intelligence (UAI), pages
426–435, 2000.

506 11. Bayesian Networks

[121] J.D. Park and A. Darwiche. Solving MAP exactly using systematic search. In
Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence
(UAI–03), pages 459–468. Morgan Kaufmann Publishers, San Francisco, CA,
2003.

[122] J. Park and A. Darwiche. Morphing the Hugin and Shenoy–Shafer architectures.
In Trends in Artificial Intelligence, Lecture Notes in AI, vol. 2711, pages 149–
160. Springer-Verlag, 2003.

[123] J. Park and A. Darwiche. Complexity results and approximation strategies
for map explanations. Journal of Artificial Intelligence Research, 21:101–133,
2004.

[124] J. Park and A. Darwiche. A differential semantics for jointree algorithms. Arti-
ficial Intelligence, 156:197–216, 2004.

[125] R.C. Parker and R.A. Miller. Using causal knowledge to create simulated pa-
tient cases: The CPCS project as an extension of Internist-1. In Proceedings of
the Eleventh Annual Symposium on Computer Applications in Medical Care,
pages 473–480. IEEE Comp. Soc. Press, 1987.

[126] H. Pasula and S. Russell. Approximate inference for first-order probabilistic
languages. In Proceedings of IJCAI-01, pages 741–748, 2001.

[127] J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University
Press, New York, 2000.

[128] J. Pearl. Evidential reasoning using stochastic simulation of causal models.
Artificial Intelligence, 32(2):245–257, 1987.

[129] J. Pearl. Fusion, propagation and structuring in belief networks. Artificial Intel-
ligence, 29(3):241–288, 1986.

[130] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1988.

[131] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo, CA, 1988.

[132] D. Poole. Probabilistic horn abduction and Bayesian networks. Artificial Intelli-
gence, 64:81–129, 1993.

[133] D. Poole. First-order probabilistic inference. In Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI), 2003.

[134] D. Poole and N.L. Zhang. Exploiting contextual independence in probabilistic
inference. Journal of Artificial Intelligence, 18:263–313, 2003.

[135] D. Poole. The independent choice logic for modelling multiple agents under
uncertainty. Artificial Intelligence, 94(1–2):7–56, 1997.

[136] D. Poole. Context-specific approximation in probabilistic inference. In Proceed-
ings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI),
pages 447–454, 1998.

[137] M. Pradhan, G. Provan, B. Middleton, and M. Henrion. Knowledge engineering
for large belief networks. In Uncertainty in Artificial Intelligence: Proceedings
of the Tenth Conference (UAI-94), pages 484–490. Morgan Kaufmann Publish-
ers, San Francisco, CA, 1994.

[138] A. Krogh, R. Durbin, S. Eddy, and G. Mitchison. Biological Sequence Analy-
sis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University
Press, 1998.

A. Darwiche 507

[139] R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo, and F.
Somenzi. Algebraic decision diagrams and their applications. In IEEE /ACM In-
ternational Conference on CAD, pages 188–191. IEEE Computer Society Press,
Santa Clara, CA, 1993.

[140] M. Richardson and P. Domingos. Markov logic networks. Machine Learning,
62(1–2):107–136, 2006.

[141] B. Ripley. Pattern Recognition and Neural Networks. Cambridge University
Press, Cambridge, UK, 1996.

[142] J. Rissanen. Stochastic Complexity in Statistical Inquiry. World Scientific, 1989.
[143] S.L. Lauritzen, D.J. Spiegelhalter, R.G. Cowell, and A.P. Dawid. Probabilistic

Networks and Expert Systems. Springer, 1999.
[144] N. Robertson and P.D. Seymour. Graph minors II: Algorithmic aspects of tree-

width. J. Algorithms, 7:309–322, 1986.
[145] D. Roth. On the hardness of approximate reasoning. Artificial Intelligence,

82(1–2):273–302, April 1996.
[146] S. Russell, J. Binder, D. Koller, and K. Kanazawa. Local learning in probabilis-

tic networks with hidden variables. In Proceedings of the 11th Conference on
Uncertainty in Artificial Intelligence (UAI), pages 1146–1152, 1995.

[147] T. Sang, P. Beame, and H. Kautz. Solving Bayesian networks by weighted model
counting. In Proceedings of the Twentieth National Conference on Artificial In-
telligence (AAAI-05), vol. 1, pages 475–482. AAAI Press, 2005.

[148] T. Sato. A statistical learning method for logic programs with distribution se-
mantics. In Proceedings of the 12th International Conference on Logic Pro-
gramming (ICLP’95), pages 715–729, 1995.

[149] L.K. Saul and M.I. Jordan. Exploiting tractable substructures in intractable net-
works. In NIPS, pages 486–492, 1995.

[150] P. Savicky and J. Vomlel. Tensor rank-one decomposition of probability ta-
bles. In Proceedings of the Eleventh Conference on Information Processing and
Management of Uncertainty in Knowledge-based Systems (IPMU), pages 2292–
2299, 2006.

[151] G. Schwartz. Estimating the dimension of a model. Annals of Statistics, 6:461–
464, 1978.

[152] R. Shachter, S.K. Andersen, and P. Szolovits. Global Conditioning for Proba-
bilistic Inference in Belief Networks. In Proc. Tenth Conference on Uncertainty
in AI, pages 514–522, Seattle WA, 1994.

[153] R. Shachter, B.D. D’Ambrosio, and B. del Favero. Symbolic probabilistic in-
ference in belief networks. In Proc. Conf. on Uncertainty in AI, pages 126–131,
1990.

[154] R.D. Shachter and M.A. Peot. Simulation approaches to general probabilistic
inference on belief networks. In M. Henrion, R.D. Shachter, L.N. Kanal, and
J.F. Lemmer, editors. Uncertainty in Artificial Intelligence, vol. 5, pages 221–
231. Elsevier Science Publishing Company, Inc., New York, NY, 1989.

[155] R. Shachter. Evaluating influence diagrams. Operations Research, 34(6):871–
882, 1986.

[156] R. Shachter. Evidence absorption and propagation through evidence reversals.
In M. Henrion, R.D. Shachter, L.N. Kanal, and J.F. Lemmer, editors, Uncer-
tainty in Artificial Intelligence, vol. 5, pages 173–189, Elsvier Science, 1990.

508 11. Bayesian Networks

[157] P.P. Shenoy and G. Shafer. Propagating belief functions with local computa-
tions. IEEE Expert, 1(3):43–52, 1986.

[158] S.E. Shimony. Finding MAPs for belief networks is NP-hard. Artificial Intelli-
gence, 68:399–410, 1994.

[159] M. Shwe, B. Middleton, D. Heckerman, M. Henrion, E. Horvitz, H. Leh-
mann, and G. Cooper. Probabilistic diagnosis using a reformulation of the
INTERNIST-1/QMR knowledge base I. The probabilistic model and inference
algorithms. Methods of Information in Medicine, 30:241–255, 1991.

[160] P. Smyth, D. Heckerman, and M.I. Jordan. Probabilistic independence networks
for hidden Markov probability models. Neural Computation, 9(2):227–269,
1997.

[161] S. Srinivas. A generalization of the noisy-or model. In Proceedings of the Ninth
Conference on Uncertainty in Artificial Intelligence (UAI), 1993.

[162] H.J. Suermondt, G.F. Cooper, and D.E. Heckerman. A combination of cutset
conditioning with clique-tree propagation in the Pathfinder system. In Proceed-
ings of the 6th Annual Conference on Uncertainty in Artificial Intelligence
(UAI-91), pages 245–253. Elsvier Science, New York, NY, 1991.

[163] J. Suzuki. Learning Bayesian belief networks based on the MDL principle: An
efficient algorithm using the branch and bound technique. Annals of Statistics,
6, 1978.

[164] M.F. Tappen and W.T. Freeman. Comparison of graph cuts with belief prop-
agation for stereo, using identical MRF parameters. In ICCV, pages 900–907,
2003.

[165] J. Tian. A branch-and-bound algorithm for MDL learning Bayesian networks.
In C. Boutilier and M. Goldszmidt, editors, Proceedings of the Sixteenth Con-
ference on Uncertainty in Artificial Intelligence, Stanford, CA, pages 580–588,
2000.

[166] T. Verma and J. Pearl. Causal networks: Semantics and expressiveness. In Pro-
ceedings of the 4th Workshop on Uncertainty in AI, pages 352–359, Minneapo-
lis, MN, 1988.

[167] J. Vomlel. Exploiting functional dependence in Bayesian network inference. In
Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelli-
gence (UAI), pages 528–535. Morgan Kaufmann Publishers, 2002.

[168] M.J. Wainwright, T. Jaakkola, and A.S. Willsky. Tree-based reparameterization
for approximate inference on loopy graphs. In Proceedings of the Annual Con-
ference on Neural Information Processing Systems, pages 1001–1008, 2001.

[169] M. Welling. On the choice of regions for generalized belief propagation. In Pro-
ceedings of the Conference on Uncertainty in Artificial Intelligence, page 585.
AUAI Press, Arlington, VA, 2004.

[170] M. Welling, T.P. Minka, and Y.W. Teh. Structured region graphs: morphing EP
into GBP. In Proceedings of the Conference on Uncertainty in Artificial Intelli-
gence, 2005.

[171] M. Welling and Y.W. Teh. Belief optimization for binary networks: A stable
alternative to loopy belief propagation. In Proceedings of the Conference on
Uncertainty in Artificial Intelligence, pages 554–561, 2001.

[172] M.P. Wellman, J.S. Breese, and R.P. Goldman. From knowledge bases to deci-
sion models. The Knowledge Engineering Review, 7(1):35–53, 1992.

A. Darwiche 509

[173] W. Wiegerinck. Variational approximations between mean field theory and the
junction tree algorithm. In UAI, pages 626–633, 2000.

[174] W. Wiegerinck and T. Heskes. Fractional belief propagation. In NIPS, pages
438–445, 2002.

[175] E.P. Xing, M.I. Jordan, and S.J. Russell. A generalized mean field algorithm for
variational inference in exponential families. In UAI, pages 583–591, 2003.

[176] J. Yedidia, W. Freeman, and Y. Weiss. Constructing free-energy approximations
and generalized belief propagation algorithms. IEEE Transactions on Informa-
tion Theory, 51(7):2282–2312, 2005.

[177] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Understanding belief propagation
and its generalizations. Technical Report TR-2001-022, MERL, 2001. Available
online at http://www.merl.com/publications/TR2001-022/.

[178] J. York. Use of the Gibbs sampler in expert systems. Artificial Intelligence,
56(1):115–130, 1992, http://dx.doi.org/10.1016/0004-3702(92)90066-7.

[179] C. Yuan and M.J. Druzdzel. An importance sampling algorithm based on evi-
dence pre-propagation. In Proceedings of the 19th Conference on Uncertainty in
Artificial Intelligence (UAI-03), pages 624–631. Morgan Kaufmann Publishers,
San Francisco, CA, 2003.

[180] A.L. Yuille. Cccp algorithms to minimize the Bethe and Kikuchi free en-
ergies: Convergent alternatives to belief propagation. Neural Computation,
14(7):1691–1722, 2002.

[181] N.L. Zhang and D. Poole. A simple approach to Bayesian network compu-
tations. In Proceedings of the Tenth Conference on Uncertainty in Artificial
Intelligence (UAI), pages 171–178, 1994.

[182] N.L. Zhang and D. Poole. Exploiting causal independence in Bayesian network
inference. Journal of Artificial Intelligence Research, 5:301–328, 1996.

Several figures in this chapter are from Modeling and Reasoning with Bayesian Networks, published

by Cambridge University Press, copyright Adnan Darwiche 2008, reprinted with permission.

http://www.merl.com/publications/TR2001-022/
http://dx.doi.org/10.1016/0004-3702(92)90066-7

	Bayesian Networks
	Introduction
	Syntax and Semantics of Bayesian Networks
	Notational Conventions
	Probabilistic Beliefs
	Bayesian Networks
	Structured Representations of CPTs
	Reasoning about Independence
	Dynamic Bayesian Networks

	Exact Inference
	Structure-Based Algorithms
	Inference by variable elimination
	Inference by tree clustering
	Inference by conditioning

	Inference with Local (Parametric) Structure
	Solving MAP and MPE by Search
	Compiling Bayesian Networks
	Inference by Reduction to Logic
	Additional Inference Techniques

	Approximate Inference
	Inference by Stochastic Sampling
	Inference as Optimization

	Constructing Bayesian Networks
	Knowledge Engineering
	High-Level Specifications
	Template-based representations
	Programming-based representations
	Inference

	Learning Bayesian Networks
	Learning network parameters
	Learning network structure

	Causality and Intervention
	Acknowledgements
	Bibliography

