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Bayesian Neiworks

his brief tutorial on Bayesian networks serves to intro-
duce readers to some of the concepts, terminology, and
notation employed by articles in this special section. In
a Bayesian network, a variable takes on values from a
collection of mutually exclusive and collective exhaus-
tive states. A variable may be discrete, having a finite or
countable number of states, or it may be continuous.
Often the choice of states itself presents an interesting
modeling question. For example, in a system for
troubleshooting a problem with printing, we may
choose to mode] the variable “print output” with two
states—"“present” and “absent”—or we may want to
model the variable with finer distinctions such as
“absent,” “blurred ,” “cut off,” and “ok.”

In describing a Bayesian network, we use lower-case
letters to represent single variables and upper-case
letters to represent sets of variables. We write x =k to
denote that variable xis in state &, When we observe
the state for every variable in set X, we call this set of
observations an instance of X The joint space of a set
of variables Uls the set of all instances of U. The joint
probability distribution over Uis the probability distri-
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bution over the joint space of U. We use p(X|Y) to de-
note the set of joint probability distributions over X,
one for each conditional on every instance in the joint
space of Y.

A problem domain is just a set of variables. A
Bayesian network for the domain {x;, ..., x,} repre-
sents a joint probability distribution over those vari-
ables. The representation consists of a set of local con-
ditional probability distributions, combined with a set of
assertions of conditional independence that allow us to
construct the global joint distribution from the local
distributions. The decomposition is based on the chain
rule of probability, which dictates that

n
o= Hph,
-

plxr, - JX1) (48]

For each variable x,, let 1L, C {x,, ..., x, 1} be a set of
variables that renders x; and {x,, ..., x;} condition-
ally independent. That is,

pller, - x) = pllL) @)
The idea is that the distribution of x; can often be de-
scribed conditional on a parent set II; that is substan-
tially smaller than the set {x;, ... ,x,_}. Given these

sets, a Bayesian network can be described as a directed
acyclic graph such that each variable x;, ..., x, corre-

sponds 1o a node in that graph and the parents of the
node corresponding to x; are the nodes corresponding
to the variables in 11;. Note that since the parents in the
graph coincide with the conditioning sets II;, the
Bayesian network structure directly encodes the asser-
tions of conditional independence in (2).

Associated with each node x; are the conditional
probability distributions p(x{I1;)—one distribution for
each instance of II,, Combining (1) and (2), we see that
any Bayesian network for {x;, ..., x,} uniquely deter-
mines a joint probability distribution for those variables.
That is,

Py, LX) = [ peiny 3)
i=1

Although the formal definition of a Bayesian network
is based on conditional independence, in practice a
Bayesian network typically is constructed using notions
of cause and effect. Loosely speaking, to construct a
Bayesian network for a given set of variables, we draw
arcs from cause variables to their immediate effects. In
almost all cases, doing so results in a Bayesian network
whose conditional independence implications are accu-
rate. Figure 1 illustrates the structure of a Bayesian
network for troubleshooting printing problems using
the Windows™ operating system, which was constructed

Figure 1. A Bayesian network structure for troubieshooting a printing problem. Arcs are drawn from

cause to effect.
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using cause-and-eftect considerations. For example,
“Net Path OK” is caused by “Network Up,” “Correct
Printer Path,” and “Net Cable Connected.”

When a node has many parents, specifying even its
local distribution can be quite onerous in the general
case. According to the definition of Bayesian networks,
we must assess the probability distribution of the node
conditional on every instance of its parents. Thus, for
example, if a node has » binary-valued parents, we
must specify 2" probability distributions for the node.
In such cases, we can often reduce the burden of this
assessment by introducing more structure into the
model.

For example, suppose we have n binary causes ¢,

., ¢, bearing on a single binary effect ¢, as shown in
Figure 2(a). In many cases, we can model the n-way
interaction by associating with each cause an inhibitory
mechanism that prevents the cause from producing the
effect. The effect will be absent only if all the inhibitory
mechanisms associated with present causes are active.
For example, consider the node “Spooled Data OK”
and its parents in our print troubleshooter model. Al-
though the spool process may be bad for a given font
due to a programming bug, this cause of bad spooled
output will be inhibited if the document being printed
does not use that font. Also, local disk space may be
inadequate, but this cause of bad spooled output will be
inhibited if the print job is small. Figure 2(b) represents
this scenario, under the assumption that the inhibitory
mechanisms m,, .. .,m, are independent. This model.
called the noisy-OR model [11], reduces the assessment
burden from exponential to linear in n. Other models
that are useful in practice include “noisy” versions of
AND, MAX, MIN, and ADDER [4].

Because a Bayesian network for any domain deter-
mines a joint probability distribution for that domain,
we can—in principle—use a Bayesian network to com-
pute any probability of interest. For example, suppose we
have the simple Bayesian network with structure
w—x—y—z, and we want to know p(wlz). From the
rules of probability we have

_ pw, z) _ 2, pw, x,y,2)
T T @

where p(w, x, 3, z) is the joint distribution determined
from the Bayesian network. In practice, this approach
is not feasible, because it entails summing over an ex-
ponential number of terms. Fortunately, we can exploit
the conditional independencies encoded in a Bayesian
network to make this computation more efficient. In
this case, given the network structure, (4) becomes
Dy = Znbx D)
Zoxy P, X, 3, 2)
pw) X, pllw) 2, polply)
S, plw) S, peoplate) %, pobp(h)

(3)

That is, using conditional independence, we can often
reduce the dimensionality of the problem by rewriting
the sums over multiple variables as the product of sums

Networks

Bayesian

Figure 2. () A Bayesian network structure for mul-
tiple causes and a single effect. (b) A noisy-OR
model for the multiple-cause interactionin (a).
Here, independent mechanisms may inhibit the
expression of each cause. Nodes with double bor-
ders, called deterministic nodes, are deterministic
functions of their parents. Assuming all variables
are binary, the model in (a) requires 0(2") probabili-
ties, whereas the model in (b) requires O(m proba-
bilities.

over a single variable (or at least smaller numbers of
variables).

The general problem of computing probabilities of
interest from a (possibly implicit) joint probability distri-
bution is called probabilistic inference. All exact algo-
rithms for probabilistic inference in Bayesian networks
exploit conditional independence roughly as we have
described, although with different twists. For example,
Howard and Matheson [6], Olmsted [9], and Shachter
[13] have developed an algorithm that reverses arcs in
the network structure until the answer to the given
probabilistic query can be read directly from the graph.
In this algorithm, each arc reversal corresponds to an
application of Bayes’ theorem. Pearl [10] has developed
a message-passing scheme that updates the probability
distributions for each node in a Bayesian network in
response to observations of one or more variables.
Lauritzen and Spiegelhalter [8] have created an algo-
rithm that first builds an undirected graph from the
Bayesian network. The algorithm then exploits several
mathematical properties of undirected graphs to
perform probabilistic inference. Most recently, D’Ambrosio
[3] has developed an inference algorithm that simplifies
sums and products symbolically, as in the transforma-
tion from (4) to (5).

Although we can exploit assertions of conditional
independence in a Bayesian network for probabilistic
inference, exact inference in an arbitrary Bayesian net-
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Bayesian Networks

work is NP-hard [1]. Even approximate mference (tor
example, using Monte Carlo methods) is NP-hard [2].
For many applications, however, the networks are small
enough (or can be simplified sufficiently) so that these
complexity results are not fatal. For applications in
which the usual inference methods are impractical, re-
searchers are developing techniques custom-tailored to
particular network topologies [5, 15], or particular in-
ference queries (7, 12, 14]. @
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