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An important feature of radial basis function neural networks is the 
existence of a fast, linear learning algorithm in a network capable of 
representing complex nonlinear mappings. Satisfactory generalization 
in these networks requires that the network mapping be sufficiently 
smooth. We show that a modification to the error functional allows 
smoothing to be introduced explicitly without significantly affecting 
the speed of training. A simple example is used to demonstrate the re- 
sulting improvement in the generalization properties of the network. 

1 Introduction 

Radial basis function (RBF) neural networks (Broomhead and Lowe 1988) 
provide a powerful technique for generating multivariate, nonlinear map- 
pings. Unlike the widely used technique of error backpropagation 
(Rumelhart and McClelland 1986) the learning algorithm for RBF net- 
works corresponds to the solution of a linear problem. The training of 
the network is therefore a fast procedure. 

An important consideration in setting up an RBF network is the choice 
of the number and centers of the radial basis functions (i.e., the hidden 
units). The most natural choice is to let each data point in the training set 
correspond to a basis function center. In this case the number of degrees 
of freedom in the network equals the number of items of data, and the 
network function fits exactly through each data point. If the data have a 
regular behavior, but are contaminated by noise, the network will learn 
all the details of the individual data points, rather than representing the 
underlying trends in the data. This phenomenon is sometimes called 
overfitting. The resulting network function often has poor generalization 
properties as a result of the rapid oscillations that usually characterize an 
overfitted function. One procedure for damping out these oscillations, 
referred to as curvature-driven smoothing, has been developed earlier in 
the context of networks trained by error backpropagation (Bishop 1990). 
Here we show that an analogous technique can be applied in the case of 
RBF networks, and that the resulting trained networks do indeed exhibit 
improved generalization. 

Neural Computation 3, 579-588 (1991) @ 1991 Massachusetts Institute of Technology 

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/3/4/579/812220/neco.1991.3.4.579.pdf by Penn State U
niversity user on 15 N

ovem
ber 2022



580 Chris Bishop 

outputs 

Inputs 

Figure 1: Architecture of  a radial basis function network. 

An introduction to RBF networks is given in Section 2. In Section 3 
the technique of curvature-driven smoothing is developed in the context 
of RBF networks, and results from the application to a simple problem 
are presented in Section 4. A brief summary is given in Section 5. 

2 Radial Basis Function Networks 

Here we review briefly the central features of radial basis function net- 
works. For a more extensive discussion see Broomhead and Lowe (1988). 
The network has a three layer feedforward architecture as shown in Fig- 
ure 1. Input vectors x are propagated to the hidden units (hidden neu- 
rons) each of which computes a hyperspherical function of x, so that the 
output of the ith hidden unit is given by 

(2.1) 

where y, is the center of the radial basis function for unit i, and 1 1  . . . 1 1  
denotes a distance measure that is generally taken to be the Euclidean 
norm. The nonlinear function (Is can be chosen in a variety of ways and 

4, = 4ill x - Yt II) 
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can in principle vary from one hidden unit to the next. For the examples 
shown later we have taken a gaussian nonlinearity: 

$(x) = exp{ -x’/m’} (2.2) 

The outputs of the network are formed from the weighted sum of the 
outputs from the hidden units: 

(2.3) 

where the synaptic weights wq and the biases 19i are adaptive variables 
that are set during the learning phase. The bias terms can be absorbed 
into the weight matrix by introducing an extra hidden unit whose output 
$k = 1. Training data are supplied to the network in the form of pairs 
xp ,  t, of input and target vectors, where p = 1, . . . , P labels the individual 
training pairs. The learning algorithm aims to minimize the sum-of- 
squares error defined by 

(2.4) 

where zip = z ; ( x p )  denotes the output of unit i when the network is 
presented with input vector x p .  At a minimum of ES we have 

(2.5) 

Together with equation 2.3 (and omitting the explicit bias terms) this 
gives 

where $jp  = o , (xp ) .  This can be written in the form 

where the square matrix M is defined by 

Mkj $kp$jjp 
P 

(2.6) 

(2.7) 

(2.8) 

Note that M is the covariance matrix of the transformed data (for data 
with zero mean). Provided M is not singular, we can compute M-’ 
(in practice using singular value decomposition), and hence solve equa- 
tion 2.7 to give 
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Michelli (1986) has shown that for a large class of functions q5 the matrix 
M is nonsingular provided the data points are all distinct. For nonsingu- 
lar M, the quantity (4T4)-14T, which appears implicitly in equation 2.9, 
is the Moore-Penrose pseudoinverse of the matrix # (Golub and Kahan 
1965). In the case where the number of basis functions equals the number 
of training data points, the matrix Q, is square, and the pseudoinverse of 
I$ reduces to the usual inverse. The minimum of ES then occurs at ES = 0, 
and the function generated by the trained network passes exactly through 
every data point. 

One of the great advantages of RBF networks is that the learning 
algorithm involves the solution of a linear problem, and is therefore fast. 
Due to the nonlinearity of the basis functions, however, the network can 
generate complex nonlinear mappings. In principle learning strategies 
could be devised that involve changes also in the location and form of 
the radial basis functions. The advantages of a linear learning algorithm 
would then be lost, however. 

The centers yi of the basis functions can be chosen in a variety of 
ways. A natural choice would be to take the yi to be the input vectors 
xp from the training data set, or a subset of these in the case where the 
number of hidden units is less than the number of training data points. 
If the network is to be used as a pattern classifier the number of basis 
functions is generally taken to be significantly larger than the number of 
input units. The hidden units then nonlinearly map input vectors into 
a space of higher dimension. The problem may be linearly separable in 
this higher space even when it is not linearly separable in the original 
space. In this case the single layer of modifiable weights between hidden 
and output units is sufficient to give correct classification. In this paper 
we are interested primarily in continuous mappings between input and 
output variables. 

3 Curvature-Driven Smoothing in RBF Networks 

The situation in which the network mapping passes exactly through each 
training data point is generally not desirable, even though this gives 
ES = 0. In many practical applications of neural networks the available 
set of training data will be noisy. If the network mapping fits the data 
exactly, the capability of the network to generalize, that is to produce an 
acceptable output when a novel input is applied, will often be poor. This 
arises from the rapid oscillations in the network function that generally 
are needed for the function to fit the noisy data. The situation is anal- 
ogous to the problem of overfitting which can occur when curve fitting 
using high order polynominals. 

To improve the generalization capability of the network it is neces- 
sary for the network mapping to represent the underlying trends in the 
data, rather than fitting all of the fine details of the data set. One way 

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/3/4/579/812220/neco.1991.3.4.579.pdf by Penn State U
niversity user on 15 N

ovem
ber 2022



Generalization in RBF Neural Networks 583 

in which this can be achieved is to reduce the number of degrees of 
freedom by using fewer hidden units. Although this leads to a smaller 
network, it is not clear how the basis function centers should be chosen. 
One possibility is to take a subset of the input vectors from the train- 
ing data. The subset may be chosen randomly, or by a more systematic 
elimination procedure starting with a full-sized network (Admoaitis et 
al .  1990). Another procedure for choosing the basis function centers is to 
use a self-organizing neural algorithm such as the "topology preserving 
feature map" (Kohonen 1988). If the quantity of training data available 
is at all limited, however, it may be undesirable to eliminate potential 
basis function centers, particularly if there are regions of the input space 
where the data are relatively sparse. 

We consider here an alternative procedure for avoiding the overfitting 
problem in RBF networks. The full set of radial basis functions, whose 
centers correspond to the input vectors from the training data, is retained. 
An additional term is added to the error measure whose role is to damp 
out the rapid oscillations in the network function that are characteristic of 
overfitting, while retaining the longer wavelength variations describing 
the underlying nonlinear trends in the data. The total error function then 
becomes 

E = ES + XEC (3.1) 

where ES is the standard sum-of-squares error given by equation 2.4 and 
EC is arranged to be large for functions with rapid oscillations. The 
parameter X in equation 3.1 controls the degree to which the network 
function is smoothed. This approach, known as regularization, is com- 
monly used in a number of other fields for tackling "ill-posed" problems 
(Tikhonov and Arsenin, 1977). Poggio and Girosi (19901, starting with the 
concept of regularization, have derived an approximation scheme that 
includes radial basis function networks as a special case, thus demon- 
strating a close relation between these two techniques. Regularization 
terms also arise when considering the effects of noise on the input data 
in least squares functional approximation, as discussed in Webb (1991). A 
regularization technique, referred to as curvature-driven smoothing, has 
also been applied to neural networks trained by error backpropagation 
(Bishop, 1990). 

The functional EC in equation 3.1 will be chosen to have the following 
form: 

EC = - 1 c c { ( $)2}  

2 ,  i 
(3.2) 

where n labels the input unit. This choice for EC has the required prop- 
erty of penalizing functions with large second derivatives and, most im- 
portantly, is bilinear in the synaptic weights. Thus the great advantage 
of RBF networks, namely the linear learning algorithm and consequent 
speed of training, will be retained. 
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If we now minimize E with respect to the weights {zu,,} we obtain 

Rearranging terms gives 

W k f i k ,  = f ip4lp 
k P 

which is analogous to equation 2.7, with M defined by 

(3.4) 

(3.5) 

Equation 3.4 can now be solved using the same techniques as for equa- 
tion 2.7. 

The appropriate value for X will be problem dependent. It should 
not be chosen too large since this will smooth the network function too 
much and lead to a deterioration in the ability of the network to gen- 
eralize. Results presented in the next section suggest, however, that the 
performance of the network may be fairly insensitive to the precise value 
of A. 

The form of EC given by equation 3.2 treats each input-output unit 
pair on an equal footing. It thus presupposes that the input (and output) 
variables have been rescaled to span a similar range of values. As an 
alternative, suitable scaling factors cin for each input-output unit pair 
can be included in equation 3.2. 

4 Simulation Results 

We now illustrate the ideas introduced in the previous section with a 
simple example. Consider a network with a single input unit and a 
single output unit. Data are generated from the function 

z = 0.8 sin(27rx) (4.1) 

sampled at 25 equally spaced values of x in the range (0, l), and perturbed 
with i 20% random noise. A similar set of test data was generated by 
sampling equation 4.1 at intermediate values of x, and again perturbing 
with & 20% noise. The number of basis functions is chosen to equal the 
number of training data points. Gaussian basis functions of the form of 
equation 2.2 are used, and the basis function centers are taken to coincide 
with the training data input vectors. 

Figure 2 shows the training data together with the network function 
that results from training the network without any smoothing. The func- 
tion fits each data point exactly, and the rapid oscillations (with corre- 
sponding high curvature) that are characteristic of overfitting are clearly 
seen. 
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Figure 2: Training data generated from the function z = 0.8sin(Zrx) and per- 
turbed with i 20% noise, together with a plot of the network function obtained 
without smoothing. 

The effect of introducing a smoothing term, with a small value of A, is 
to increase the error with respect to the training data, while reducing the 
test data error. This is illustrated in Figure 3 in which the mean square 
error ES is plotted as a function of !nX for both training and test data. 
The fall in the test data error indicates that the network is better able 
to generalize. Larger values of X result in oversmoothing, and the error 
with respect to the test data increases again. 

For this example the optimum value of A, corresponding to the mini- 
mum of the test data error, is given by X = 8.3 x The corresponding 
network function is plotted in Figure 4. At this value of X the short scale 
oscillations are completely suppressed. The minimum value of the test 
error is close to the value 0.004 obtained by comparing the test data with 
the original function in equation 4.1, showing that the network has good 
generalization properties when X is set to the optimum value. 
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I t. e s t. 

Figure 3: Mean square error for training data (lower curve) and test data (upper 
curve) versus In A. 

Although the appropriate value for X must be determined by exper- 
iment, Figure 3 indicates that variations in X of about an order of mag- 
nitude (note the logarithmic scale of the abscissa) have little effect on 
the test data error for this problem. The parameter (T in equation 2.2, 
which governs the width of the gaussian functions, also has to be cho- 
sen appropriately. Too small a value leads to a hidden unit response 
which is highly localized, making it difficult to generate smooth network 
functions. At too large a value, the matrix M becomes ill-conditioned. 
A suitable choice would allow the gaussians to span a number of data 
points, and a value of D = 0.1 was used in the above example. 
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Figure 4: Plot of the network function obtained with a smoothing term and 
with X = 8.3 x 

5 Summary 

In this paper we have described a practical procedure for improving 
the generalization properties of radial basis function neural networks. 
The performance of the network for new data (i.e., data not used during 
training) can be controlled by varying a single parameter A. The optimum 
value for X must be found by experiment, although simulations suggest 
that the results are not strongly dependent on the precise value chosen. 

This technique can prevent overfitting without needing to limit the 
number of radial basis functions, and therefore allows all training data 
points to act as basis function centers. This may be particularly use- 
ful when the amount of training data is limited, or when the data are 
sparsely distributed in important regions of the input space. Further- 
more, for many problems it is known that the desired mapping should 
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have certain smoothness properties, and  this technique allows this to be 
imposed explicitly. Where appropriate, curvature-driven smoothing can 
easily be combined with techniques for restricting the number of basis 
functions. 

Finally, the network can generate a large class of nonlinear multivari- 
ate mappings, while the learning algorithm corresponds to the solution 
of a linear problem and  is therefore a fast one-step procedure. 
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