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A Survey of Optimization Methods From
a Machine Learning Perspective
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Abstract—Machine learning develops rapidly, which has made
many theoretical breakthroughs and is widely applied in various
fields. Optimization, as an important part of machine learning,
has attracted much attention of researchers. With the exponential
growth of data amount and the increase of model complex-
ity, optimization methods in machine learning face more and
more challenges. A lot of work on solving optimization prob-
lems or improving optimization methods in machine learning
has been proposed successively. The systematic retrospect and
summary of the optimization methods from the perspective of
machine learning are of great significance, which can offer guid-
ance for both developments of optimization and machine learning
research. In this article, we first describe the optimization prob-
lems in machine learning. Then, we introduce the principles and
progresses of commonly used optimization methods. Finally, we
explore and give some challenges and open problems for the
optimization in machine learning.

Index Terms—Approximate Bayesian inference, deep neu-
ral network (DNN), machine learning, optimization method,
reinforcement learning (RL).

I. INTRODUCTION

RECENTLY, machine learning has grown at a remark-
able rate, attracting a great number of researchers and

practitioners. It has become one of the most popular research
directions and plays a significant role in many fields, such
as machine translation, speech recognition, image recogni-
tion, recommendation systems, etc. Optimization is one of
the core components of machine-learning. The essence of
most machine learning algorithms is to build an optimization
model and learn the parameters in the objective function from
the given data. In the era of immense data, the effectiveness
and efficiency of the numerical optimization algorithms dra-
matically influence the popularization and application of the
machine-learning models. In order to promote the development
of machine learning, a series of effective optimization meth-
ods was put forward, which have improved the performance
and efficiency of the machine-learning methods.
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From the perspective of the gradient information in
optimization, popular optimization methods can be divided
into three categories: 1) first-order optimization methods,
which are represented by the widely used stochastic gradi-
ent methods; 2) high-order optimization methods, in which
Newton’s method is a typical example; and 3) heuristic
derivative-free optimization methods, in which the coordinate
descent method is a representative.

As the representative of the first-order optimization meth-
ods, the stochastic gradient descent (SGD) method [1], [2],
as well as its variants, has been widely used in recent years
and is evolving at a high speed. However, many users pay
little attention to the characteristics or application scope of
these methods. They often adopt them as black-box optimizers,
which may limit the functionality of the optimization methods.
In this article, we comprehensively introduce the fundamental
optimization methods. Particularly, we systematically explain
their advantages and disadvantages, their application scope,
and the characteristics of their parameters. We hope that the
targeted introduction will help users choose the first-order
optimization methods more conveniently and make parameter
adjustment more reasonable in the learning process.

Compared with the first-order optimization methods, high-
order methods [3]–[5] converge at a faster speed in which the
curvature information makes the search direction more effec-
tive. High-order optimizations attract widespread attention but
face more challenges. The difficulty in the high-order meth-
ods lies in the operation and storage of the inverse matrix
of the Hessian matrix. To solve this problem, many vari-
ants based on Newton’s method have been developed, most
of which try to approximate the Hessian matrix through some
techniques [6], [7]. In subsequent studies, the stochastic quasi-
Newton method and its variants are introduced to extend
high-order methods to large-scale data [8]–[10].

The derivative-free optimization methods [11], [12] are
mainly used in the case that the derivative of the objective
function may not exist or be difficult to calculate. There are
two main ideas in the derivative-free optimization methods.
One is adopting a heuristic search based on empirical rules,
and the other is fitting the objective function with samples.
The derivative-free optimization methods can also work in
conjunction with the gradient-based methods.

Most machine-learning problems, once formulated, can be
solved as the optimization problems. Optimization in the
fields of deep neural network (DNN), reinforcement learn-
ing (RL), meta learning, variational inference- and Markov
chain Monte Carlo (MCMC) encounters different difficulties
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and challenges. The optimization methods developed in the
specific machine-learning fields are different, which can be
inspiring to the development of general optimization methods.

DNNs have shown great success in pattern recognition
and machine learning. There are two popular NNs, that
is, convolutional neural networks (CNNs) [13] and recur-
rent neural networks (RNNs), which play important roles in
various fields of machine learning. CNNs are feedforward neu-
ral networks with convolution calculation. CNNs have been
successfully used in many fields, such as image process-
ing [14], [15]; video processing [16]; and natural language
processing (NLP) [17], [18]. RNNs are a kind of sequential
model and very active in NLP [19]–[22]. Besides, RNNs are
also popular in the fields of image processing [23], [24] and
video processing [25]. In the field of constrained optimization,
RNNs can achieve excellent results [26]–[29]. In these works,
the parameters of weights in RNNs can be learned by analyt-
ical methods, and these methods can find the optimal solution
according to the trajectory of the state solution.

The stochastic gradient-based algorithms are widely used
in DNNs [30]–[33]. However, various problems are emerg-
ing when employing stochastic gradient-based algorithms. For
example, the learning rate will be oscillating in the later train-
ing stage of some adaptive methods [34], [35], which may lead
to the problem of nonconvergence. Thus, further optimization
algorithms based on variance reduction were proposed to
improve the convergence rate [36], [37]. Moreover, combining
the SGD and the characteristics of its variants is a possible
direction to improve the optimization. Especially, switching
an adaptive algorithm to the SGD method can improve the
accuracy and convergence speed of the algorithm [38].

RL is a branch of machine learning, for which an agent
interacts with the environment by trial-and-error mechanism
and learns an optimal policy by maximizing cumulative
rewards [39]. Deep RL combines the RL and deep learning
techniques and enables the RL agent to have a good per-
ception of its environment. Recent research has shown that
deep learning can be applied to learn a useful representation
for the RL problems [40]–[44]. The stochastic optimization
algorithms are commonly used in RL and deep RL models.

Meta learning [45], [46] has recently become very popular
in the field of machine learning. The goal of meta learning
is to design a model that can efficiently adapt to the new
environment with as few samples as possible. The application
of meta learning in supervised learning can solve few-shot
learning problems [47]. In general, the meta learning meth-
ods can be summarized into the following three types [48]:
1) metric-based methods [49]–[52]; 2) model-based meth-
ods [53], [54]; and 3) optimization-based methods [47], [55],
[56]. We will describe the details of optimization-based meta
learning methods in the subsequent sections.

Variational inference is a useful approximation method
which aims to approximate the posterior distributions in
the Bayesian machine learning. It can be considered as an
optimization problem. For example, mean-field variational
inference uses a coordinate ascent to solve this optimization
problem [57]. As the amount of data increase continuously,
it is not friendly to use the traditional optimization method

to handle the variational inference. Thus, the stochastic vari-
ational inference was proposed, which introduced natural
gradients and extended the variational inference to large-scale
data [58].

Optimization methods have a significative influence
on various fields of machine learning. For example,
Pajarinen et al. [5] proposed the transformer network using
Adam optimization [33], which is applied to machine trans-
lation tasks. Ledig et al. [59] proposed the super-resolution
generative adversarial network for image super resolution,
which is also optimized by Adam. Wu et al. [60] proposed
actor–critic using trust-region optimization to solve the deep
RL on Atari games as well as the MuJoCo environments.

The stochastic optimization method can also be applied to
MCMC sampling to improve efficiency. In this kind of appli-
cation, stochastic gradient Hamiltonian Monte Carlo (HMC)
is a representative method [61] where the stochastic gradient
accelerates the step of gradient update when handling large-
scale samples. The noise introduced by the stochastic gradient
can be characterized by introducing the Gaussian noise and
friction terms. In addition, the deviation caused by HMC dis-
cretization can be eliminated by the friction term, and thus the
Metropolis–Hasting step can be omitted. The hyper parameter
settings in the HMC will affect the performance of the model.
There are some efficient ways to automatically adjust the
hyperparameters and improve the performance of the sampler.

The development of optimization brings a lot of contri-
butions to the progress of machine learning. However, there
are still many challenges and open problems for optimization
problems in machine learning.

1) How to improve the optimization performance with
insufficient data in DNNs is a tricky problem. If there
are not enough samples in the training of DNNs, it
is prone to cause the problem of high variances and
overfitting [62]. In addition, nonconvex optimization has
been one of the difficulties in DNNs, which makes the
optimization tend to obtain a locally optimal solution
rather than the global optimal solution.

2) For sequential models, the samples are often trun-
cated by batches when the sequence is too long, which
will cause deviation. How to analyze the deviation of
stochastic optimization in this case and correct it is vital.

3) The stochastic variational inference is graceful and prac-
tical, and it is probably a good choice to develop
methods of applying high-order gradient information to
stochastic variational inference.

4) It may be a great idea to introduce the stochastic tech-
nique to the conjugate gradient method to obtain an ele-
gant and powerful optimization algorithm. The detailed
techniques to make improvements in the stochastic
conjugate gradient is an interesting and challenging
problem.

The purpose of this article is to summarize and analyze the
classical and modern optimization methods from a machine-
learning perspective. The remainder of this article is organized
as follows. Section II summarizes the machine-learning prob-
lems from the perspective of optimization. Section III dis-
cusses the classical optimization algorithms and their latest
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developments in machine learning. Particularly, the recent
popular optimization methods including the first- and second-
order optimization algorithms are emphatically introduced.
Section IV presents the challenges and open problems in
the optimization methods. In Section V, we conclude this
article. We introduce the developments and applications of
optimization methods in some specific machine-learning fields
in the supplementary material.

II. MACHINE LEARNING FORMULATED AS OPTIMIZATION

Almost all machine-learning algorithms can be formulated
as an optimization problem to find the extremum of an objec-
tive function. Building models and constructing reasonable
objective functions are the first step in the machine-learning
methods. With the determined objective function, appropriate
numerical or analytical optimization methods are usually used
to solve the optimization problem.

According to the modeling purpose and the problem to be
solved, the machine-learning algorithms can be divided into
supervised learning, semisupervised learning (SSL), unsuper-
vised learning, and RL. Particularly, supervised learning is
further divided into the classification problem (e.g., sentence
classification [17], [63]; image classification [64]–[66], etc.)
and regression problem; unsupervised learning is divided into
clustering and dimension reduction [67]–[69], among others.

A. Optimization Problems in Supervised Learning

For supervised learning, the goal is to find an optimal map-
ping function f (x) to minimize the loss function of the training
samples

min
θ

1

N

N∑

i=1

L
(
yi, f

(
xi, θ

))
(1)

where N is the number of training samples, θ is the param-
eter of the mapping function, xi is the feature vector of the
ith samples, yi is the corresponding label, and L is the loss
function.

There are many kinds of loss functions in supervised learn-
ing, such as the square of Euclidean distance, cross-entropy,
contrast loss, hinge loss, information gain- and so on. For
the regression problems, the simplest way is using the square
of Euclidean distance as the loss function, that is, minimiz-
ing square errors on training samples. But the generalization
performance of this kind of empirical loss is not necessarily
good. Another typical form is structured risk minimization,
whose representative method is the support vector machine. On
the objective function, regularization items are usually added
to alleviate overfitting, for example, in terms of L2-norm

min
θ

1

N

N∑

i=1

L
(
yi, f

(
xi, θ

))+ λ‖θ‖22 (2)

where λ is the compromise parameter, which can be deter-
mined through cross-validation.

B. Optimization Problems in Semisupervised Learning

SSL is the method between supervised and unsupervised
learning, which incorporates labeled data and unlabeled data
during the training process. It can deal with different tasks,
including classification tasks [70], [71]; regression tasks [72];
clustering tasks [73], [74]; and dimensionality reduction
tasks [75], [76]. There are different kinds of SSL meth-
ods, including self-training, generative models, semisupervised
support vector machines (S3VM) [77], graph-based methods,
multilearning methods, and others. We take S3VM as an
example to introduce the optimization in SSL.

S3VM is a learning model that can deal with binary
classification problems and only part of the training set in
this problem is labeled. Let Dl be the labeled data which
can be represented as Dl = {{x1, y1}, {x2, y2}, . . . , {xl, yl}},
and Du be the unlabeled data which can be represented as
Du = {xl+1, xl+2, . . . , xN} with N = l + u. In order to use
the information of unlabeled data, an additional constraint on
the unlabeled data is added to the original objective of SVM
with slack variables ζ i. Specifically, defining εj as the mis-
classification error of the unlabeled instance if its true label is
positive and zj as the misclassification error of the unlabeled
instance if its true label is negative. The constraint means to
make

∑N
j=l+1 min(εi, ζ i) as small as possible. Thus, an S3VM

problem can be described as

min ‖ω‖ + C

⎡

⎣
l∑

i=1

ζ i +
N∑

j=l+1

min
(
εi, zj)

⎤

⎦

subject to yi(w · xi + b
)+ ζ i ≥ 1, ζ ≥ 0, i = 1, . . . , l

w · xj + b+ εj ≥ 1, ε ≥ 0, j = l+ 1, . . . , N

− (
w · xj + b

)+ zj ≥ 1, zj ≥ 0 (3)

where C is a penalty coefficient. The optimization problem
in S3VM is a mixed-integer problem which is difficult to
deal with [78]. There are various methods summarized in [79]
to deal with this problem, such as the branch-and-bound
techniques [80] and convex relaxation methods [81].

C. Optimization Problems in Unsupervised Learning

Clustering algorithms [67], [82]–[84] divide a group of
samples into multiple clusters, ensuring that the differences
between the samples in the same cluster are as small as pos-
sible, and samples in different clusters are as different as
possible. The optimization problem for the k-means cluster-
ing algorithm is formulated as minimizing the following loss
function:

min
S

K∑

k=1

∑

x∈Sk

‖x− μk‖22 (4)

where K is the number of clusters, x is the feature vector of
samples, μk is the center of cluster k, and Sk is the sample set
of cluster k. The implication of this objective function is to
make the sum of variances of all clusters as small as possible.

The dimensionality reduction algorithm ensures that the
original information from data is retained as much as pos-
sible after projecting them into the low-dimensional space.
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The principal component analysis (PCA) [85]–[87] is a typical
algorithm of dimensionality reduction methods. The objective
of PCA is formulated to minimize the reconstruction error as

min
N∑

i=1

∥∥xi − xi
∥∥2

2 where xi =
D′∑

j=1

zi
jej, D� D′ (5)

where N represents the number of samples, xi is a
D-dimensional vector, and xi is the reconstruction of xi. zi =
{zi

1, . . . , zi
D′ } is the projection of xi in D′-dimensional coordi-

nates. ej is the standard orthogonal basis under D′-dimensional
coordinates.

Another common optimization goal in the probabilistic
models is to find an optimal probability density function
of p(x), which maximizes the logarithmic-likelihood function
(MLE) of the training samples

max
N∑

i=1

ln p
(
xi; θ)

. (6)

In the framework of the Bayesian methods, some prior distri-
butions are often assumed on parameter θ , which also has the
effect of alleviating overfitting.

D. Optimization Problems in Reinforcement Learning

RL [42], [88], [89], unlike supervised learning and unsu-
pervised learning, aims to find an optimal strategy function,
whose output varies with the environment. For a deterministic
strategy, the mapping function from state s to action a is the
learning target. For an uncertain strategy, the probability of
executing each action is the learning target. In each state, the
action is determined by a = π(s), where π(s) is the policy
function.

The optimization problem in RL can be formulated as maxi-
mizing the cumulative return after executing a series of actions
which are determined by the policy function

max
π

Vπ (s) where Vπ (s) = E

[ ∞∑

k=0

γ krt+k|St = s

]
(7)

where Vπ (s) is the value function of state s under policy π , r
is the reward, and γ ∈ [0, 1] is the discount factor.

E. Optimization for Machine Learning

Overall, the main steps of machine learning are to build a
model hypothesis, define the objective function, and solve the
maximum or minimum of the objective function to determine
the parameters of the model. In these three vital steps, the first
two steps are the modeling problems of machine learning, and
the third step is to solve the desired model by optimization
methods.

III. FUNDAMENTAL OPTIMIZATION METHODS

AND PROGRESSES

From the perspective of gradient information, the funda-
mental optimization methods can be divided into first-order
optimization methods, high-order optimization methods, and
derivative-free optimization methods. These methods have

a long history and are constantly evolving. They are pro-
gressing in many practical applications and have achieved
good performance. Here, we mainly introduce the first-order
optimization methods. The high-order and derivative-free
optimization methods are presented in the supplementary
material. Besides these fundamental methods, preconditioning
is a useful technique for optimization methods. Applying rea-
sonable preconditioning can reduce the number of iterations
and obtain better spectral characteristics. These technologies
have been widely used in practice. For the convenience of
researchers, we summarize the existing common optimization
toolkits in a table at the end of this section.

A. First-Order Methods

In the field of machine learning, the most commonly used
first-order optimization methods are mainly based on gradient
descent. In this section, we introduce some of the representative
algorithms along with the development of the gradient descent
methods. At the same time, the classical alternating direction
method of multipliers (ADMMs) and the Frank–Wolfe method
in numerical optimization are also introduced.

1) Gradient Descent: The gradient descent method is the
earliest and most common optimization method. The idea of
the gradient descent method is that variables update iteratively
in the (opposite) direction of the gradients of the objective
function. The update is performed to gradually converge to
the optimal value of the objective function. The learning rate
η determines the step size in each iteration, and thus influences
the number of iterations to reach the optimal value [90].

The steepest descent algorithm is a widely known algo-
rithm. The idea is to select an appropriate search direction
in each iteration so that the value of the objective function
minimizes the fastest. Gradient descent and steepest descent
are not the same because the direction of the negative gradi-
ent does not always descend fastest. Gradient descent is an
example of using the Euclidean norm in steepest descent [91].

Next, we give the formal expression of the gradient descent
method. For a linear regression model, we assume that fθ (x)
is the function to be learned, L(θ) is the loss function, and θ

is the parameter to be optimized. The goal is to minimize the
loss function with

L(θ) = 1

2N

N∑

i=1

(
yi − fθ

(
xi))2

(8)

fθ (x) =
D∑

j=1

θjxj (9)

where N is the number of training samples, D is the num-
ber of input features, xi is an independent variable with
xi = (xi

1, . . . , xi
D) for i = 1, . . . , N, and yi is the target output.

The gradient descent alternates the following two steps until
it converges.

1) Derive L(θ) for θj to obtain the gradient corresponding
to each θj

∂L(θ)

∂θj

= − 1

N

N∑

i=1

(
yi − fθ

(
xi))xi

j. (10)
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2) Update each θj in the negative gradient direction to
minimize the risk function

θ ′j = θj + η · 1

N

N∑

i=1

(
yi − fθ

(
xi))xi

j. (11)

The gradient descent method is simple to implement. The
solution is global optimal when the objective function is con-
vex. It often converges at a slower speed if the variable is
closer to the optimal solution, and more careful iterations need
to be performed.

In the above linear regression example, note that all of the
training data are used in each iteration step, so the gradient
descent method is also called the batch gradient descent. If
the number of samples is N and the dimension of x is D, the
computational complexity for each iteration will be O(ND). In
order to mitigate the cost of computation, some parallelization
methods were proposed [92], [93]. However, the cost is still
hard to accept when dealing with large-scale data. Thus, the
SGD method emerges.

2) Stochastic Gradient Descent: Since the batch gradient
descent has high computational complexity in each iteration
for large-scale data and does not allow online update, SGD was
proposed [1]. The idea of SGD is using one sample randomly to
update the gradient per iteration, instead of directly calculating
the exact value of the gradient. The stochastic gradient is
an unbiased estimate of the real gradient [1]. The cost of
the SGD algorithm is independent of sample numbers and
can achieve sublinear convergence speed [37]. SGD reduces
the update time to deal with large numbers of samples and
removes a certain amount of computational redundancy, which
significantly accelerates the calculation. In the strong convex
problem, SGD can achieve the optimal convergence speed [36],
[94]–[96]. Meanwhile, it overcomes the disadvantage of batch
gradient descent that cannot be used for online learning.

The loss function (8) can be written as the following
equation:

L(θ) = 1

N

N∑

i=1

1

2

(
yi − fθ

(
xi))2 = 1

N

N∑

i=1

cost
(
θ,

(
xi, yi)). (12)

If a random sample i is selected in SGD, the loss function will
be L∗(θ)

L∗(θ) = cost
(
θ,

(
xi, yi)) = 1

2

(
yi − fθ

(
xi))2

. (13)

The gradient update in SGD uses the random sample i rather
than all samples in each iteration

θ ′ = θ + η
(
yi − fθ

(
xi))xi. (14)

Since SGD uses only one sample per iteration, the com-
putational complexity for each iteration is O(D), where D is
the number of features. The update rate for each iteration of
SGD is much faster than that of batch gradient descent when
the number of samples N is large. SGD increases the overall
optimization efficiency at the expense of more iterations, but
the increased iteration number is insignificant compared with
the high computational complexity caused by large numbers of
samples. It is possible to use only thousands of samples over-
all to obtain the optimal solution even when the sample size is

hundreds of thousands. Therefore, compared with batch meth-
ods, SGD can effectively reduce the computational complexity
and accelerate convergence.

However, one problem in SGD is that the gradient direction
oscillates because of additional noise introduced by random
selection, and the search process is blind in the solution space.
Unlike batch gradient descent which always moves toward the
optimal value along the negative direction of the gradient, the
variance of gradients in SGD is large and the movement direc-
tion in SGD is biased. So a compromise between the two
methods, the mini-batch gradient descent method (MSGD),
was proposed [1].

The MSGD uses b independent identically distributed sam-
ples (b is generally in 50 to 256 [90]) as the sample sets to
update the parameters in each iteration. It reduces the vari-
ance of the gradients and makes the convergence more stable,
which helps to improve the optimization speed. For brevity,
we will call MSGD as SGD in the following sections.

As a common feature of stochastic optimization, SGD has
a better chance of finding the global optimal solution for
complex problems. The deterministic gradient in batch gra-
dient descent may cause the objective function to fall into
a local minimum for the multimodal problem. The fluctua-
tion in the SGD helps the objective function jump to another
possible minimum. However, the fluctuation in SGD always
exists, which may more or less slow down the process of
convergence.

There are still many details to be noted about the use of SGD
in the concrete optimization process [90], such as the choice of
a proper learning rate. A too small learning rate will result in
a slower convergence rate, while a too large learning rate will
hinder convergence, making loss function fluctuate at the min-
imum. One way to solve this problem is to set up a predefined
list of learning rates or a certain threshold and adjust the learn-
ing rate during the learning process [1], [97]. However, these
lists or thresholds need to be defined in advance according
to the characteristics of the dataset. It is also inappropriate
to use the same learning rate for all parameters. If data are
sparse and features occur at different frequencies, it is not
expected to update the corresponding variables with the same
learning rate. A higher learning rate is often expected for less
frequently occurring features [30], [33].

Besides the learning rate, how to avoid the objective func-
tion being trapped in infinite numbers of the local minimum
is a common challenge. Some work has proved that this dif-
ficulty does not come from the local minimum values, but
comes from the “saddle point” [98]. The slope of a sad-
dle point is positive in one direction and negative in another
direction, and gradient values in all directions are zero. It
is an important problem for SGD to escape from these
points. Some research about escaping from saddle points was
developed [99], [100].

3) Nesterov Accelerated Gradient Descent: Although SGD
is popular and widely used, its learning process is sometimes
prolonged. How to adjust the learning rate, how to speed up
the convergence, and how to prevent from being trapped at
a local minimum during the search are worthwhile research
directions.
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Much work is presented to improve SGD. For example, the
momentum idea was proposed to be applied in SGD [101].
The concept of momentum is derived from the mechanics
of physics, which simulates the inertia of objects. The idea
of applying momentum in SGD is to preserve the influence of
the previous update direction on the next iteration to a certain
degree. The momentum method can speed up the convergence
when dealing with high curvature, small but consistent gra-
dients, or noisy gradients [102]. The momentum algorithm
introduces the variable v as the speed, which represents the
direction and the rate of the parameter’s movement in the
parameter space. The speed is set as the average exponential
decay of the negative gradient.

In the gradient descent method, the speed update is v =
η · (−(∂L(θ))/∂(θ)) each time. Using the momentum algo-
rithm, the amount of the update v is not just the amount of
gradient descent calculated by η · (−(∂L(θ))/∂(θ)). It also
takes into account the friction factor, which is represented as
the previous update vold multiplied by a momentum factor
ranging between [0, 1]. Generally, the mass of the object is
set to 1. The formulation is expressed as

v = η ·
(
−∂L(θ)

∂(θ)

)
+ vold · mtm (15)

where mtm is the momentum factor. If the current gradient
is parallel to the previous speed vold, the previous speed can
speed up this search. The proper momentum plays a role in
accelerating the convergence when the learning rate is small. If
the derivative decays to 0, it will continue to update v to reach
equilibrium and will be attenuated by friction. It is beneficial to
escape from the local minimum in the training process so that
the search process can converge more quickly [101], [103].
If the current gradient is opposite than the previous update
vold, the value vold will have a deceleration effect on this
search.

The momentum method with a proper momentum factor
plays a positive role in reducing the oscillation of convergence
when the learning rate is large. How to select the proper size
of the momentum factor is also a problem. If the momentum
factor is small, it is hard to obtain the effect of improving con-
vergence speed. If the momentum factor is large, the current
point may jump out of the optimal value point. Many exper-
iments have empirically verified the most appropriate setting
for the momentum factor is 0.9 [90].

The Nesterov accelerated gradient descent (NAG)
makes further improvement over the traditional momen-
tum method [103], [104]. In Nesterov momentum, the
momentum vold · mtm is added to θ , denoted as θ̃ . The
gradient of θ̃ is used when updating. The detailed update
formulas for parameters θ are as follows:

⎧
⎪⎨

⎪⎩

θ̃ = θ + vold · mtm

v = vold · mtm+ η ·
(
− ∂L(θ̃)

∂(θ)

)

θ ′ = θ + v.

(16)

The improvement of Nesterov momentum over momentum
is reflected in updating the gradient of the future position
instead of the current position. From the update formula, we
can find that Nestorov momentum includes more gradient

information compared with the traditional momentum method.
Note that Nesterov momentum improves the convergence from
O(1/k) (after k steps) to O(1/k2), when not using stochastic
optimization [104].

Another issue worth considering is how to determine the
size of the learning rate. It is more likely to occur with
the oscillation if the search is closer to the optimal point.
Thus, the learning rate should be adjusted. The learning rate
decay factor d is commonly used in the SGD’s momentum
method, which makes the learning rate decrease with the
iteration period [105]. The formula of the learning rate decay
is defined as

ηt = η0

1+ d · t (17)

where ηt is the learning rate at the t-th iteration, η0 is the
original learning rate, and d is a decimal in [0, 1]. As can
be seen from the formula, the smaller d is, the slower the
decay of the learning rate will be. The learning rate remains
unchanged when d = 0 and the learning rate decays fastest
when d = 1.

4) Adaptive Learning Rate Method: The manually regu-
lated learning rate greatly influences the effect of the SGD
method. It is a tricky problem for setting an appropriate value
of the learning rate [30], [33], [106]. Some adaptive methods
were proposed to adjust the learning rate automatically. These
methods are free of parameter adjustment, fast to converge,
and often achieve not bad results. They are widely used in
DNNs to deal with optimization problems.

The most straightforward improvement to SGD is
AdaGrad [30]. AdaGrad adjusts the learning rate dynamically
based on the historical gradient in some previous iterations.
The update formulas are as follows:

⎧
⎪⎨

⎪⎩

gt = ∂L(θt)
∂θ

Vt =
√∑t

i=1(gi)2 + ε

θt+1 = θt − η
gt
Vt

(18)

where gt is the gradient of parameter θ at iteration t, Vt is
the accumulate historical gradient of parameter θ at iteration
t, and θt is the value of parameter θ at iteration t.

The difference between AdaGrad and the gradient descent
is that during the parameter update process, the learning rate is
no longer fixed, but is computed using all historical gradients
accumulated up to this iteration. One main benefit of AdaGrad
is that it eliminates the need to tune the learning rate manu-
ally. Most implementations use a default value of 0.01 for
η in (18).

Although AdaGrad adaptively adjusts the learning rate, it
still has two issues: 1) the algorithm still needs to set the
global learning rate η manually and 2) as the training time
increases, the accumulated gradient will become larger and
larger, making the learning rate tend to zero, resulting in an
ineffective parameter update.

AdaGrad was further improved to AdaDelta [31] and
RMSProp [32] for solving the problem that the learning rate
will eventually go to zero. The idea is to consider not accumu-
lating all historical gradients but focusing only on the gradients
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in a window over a period, and using the exponential moving
average to calculate the second-order cumulative momentum

Vt =
√

βVt−1 + (1− β)(gt)
2 (19)

where β is the exponential decay parameter. Both RMSProp
and AdaDelta have been developed independently around the
same time, stemming from the need to resolve the radically
diminishing learning rates of AdaGrad.

Adaptive moment estimation (Adam) [33] is another
advanced SGD method, which introduces an adaptive learning
rate for each parameter. It combines the adaptive learn-
ing rate and momentum methods. In addition to storing an
exponentially decaying average of past squared gradients Vt,
like AdaDelta and RMSProp, Adam also keeps an exponen-
tially decaying average of past gradients mt, similar to the
momentum method

mt = β1mt−1 + (1− β1)gt (20)

Vt =
√

β2Vt−1 + (1− β2)(gt)
2 (21)

where β1 and β2 are the exponential decay rates. The final
update formula for the parameter θ is

θt+1 = mt − η

√
1− β2

1− β1

mt

Vt + ε
. (22)

The default values of β1, β2, and ε are suggested to set to
0.9, 0.999, and 10−8, respectively. Adam works well in prac-
tice and compares favorably to other adaptive learning rate
algorithms.

5) Variance Reduction Methods: Due to a large amount
of redundant information in the training samples, the SGD
methods are very popular since they were proposed. However,
the stochastic gradient method can only converge at a sub-
linear rate and the variance of gradient is often very large.
How to reduce the variance and improve SGD to the linear
convergence has always been an important problem.

Stochastic Average Gradient: The stochastic average gra-
dient (SAG) method [36] is a variance reduction method
proposed to improve the convergence speed. The SAG algo-
rithm maintains parameter d recording the sum of the N latest
gradients {gi} in memory, where gi is calculated using one
sample i, i ∈ {1, . . . , N}. The detailed implementation is to
select a sample it to update d randomly, and use d to update
the parameter θ in iteration t

⎧
⎨

⎩

d = d − ĝit + git(θt−1)

ĝit = git(θt−1)

θt = θt−1 − α
N d

(23)

where the updated item d is calculated by replacing the old
gradient ĝit in d with the new gradient git(θt−1) in iteration
t,and α is a constant representing the learning rate. Thus, each
update only needs to calculate the gradient of one sample, not
the gradients of all samples. The computational overhead is no
different from SGD, but the memory overhead is much larger.
This is a typical way of using space for saving time. The SAG
has been shown to be a linear convergence algorithm [36],
which is much faster than SGD, and has great advantages over
other stochastic gradient algorithms.

However, the SAG method is applicable only to the case
where the loss function is smooth and the objective function
is convex [36], [107], such as convex linear prediction prob-
lems. In this case, the SAG achieves a faster convergence rate
than the SGD. In addition, under some specific problems, it
can even deliver better convergence than the standard batch
gradient descent.

Stochastic Variance Reduction Gradient: Since the SAG
method is applicable only to smooth and convex functions
and needs to store the gradient of each sample, it is incon-
venient to be applied in the nonconvex neural networks. The
stochastic variance reduction gradient (SVRG) [37] method
was proposed to improve the performance of optimization in
the complex models.

The algorithm of SVRG maintains the interval average gra-
dient μ̃ by calculating the gradients of all samples in every w
iterations instead of in each iteration

μ̃ = 1

N

N∑

i=1

gi

(
θ̃
)

(24)

where θ̃ is the interval update parameter. The interval param-
eter μ̃ contains the average memory of all sample gradients in
the past time for each time interval w. SVRG picks uniform
it ∈ {1, . . . , N} randomly and executes gradient updates to the
current parameters

θt = θt−1 − η ·
(

git(θt−1)− git

(
θ̃
)
+ μ̃

)
. (25)

The gradient is calculated up to two times in each update. After
w iterations, perform θ̃ ← θw and start the next w iterations.
Through these updates, θt and the interval update parameter θ̃

will converge to the optimal θ∗, and then μ̃→ 0, and

git(θt−1)− git

(
θ̃
)
+ μ̃→ git(θt−1)− git

(
θ∗

)→ 0. (26)

SVRG proposes a vital concept called variance reduction.
This concept is related to the convergence analysis of SGD,
in which it is necessary to assume that there is a constant
upper bound for the variance of the gradients. This constant
upper bound implies that the SGD cannot achieve linear con-
vergence. However, in SVRG, the upper bound of variance
can be continuously reduced due to the special update item
git(θt−1)− git(θ̃)+ μ̃, thus achieving linear convergence [37].

The strategies of SAG and SVRG are related to vari-
ance reduction. Compared with SAG, SVRG does not need
to maintain all gradients in memory, which means that
memory resources are saved, and it can be applied to com-
plex problems efficiently. Experiments have shown that the
performance of SVRG is remarkable on a nonconvex neu-
ral network [37], [108], [109]. There are also many variants
of such linear convergence stochastic optimization algorithms,
such as the SAGA algorithm [110].

6) Alternating Direction Method of Multipliers:
The augmented Lagrangian multiplier method is a common
method to solve optimization problems with linear constraints.
Compared with the naive Lagrangian multiplier method, it
makes problems easier to solve by adding a penalty term to
the objective. Consider the following example:

min{θ1(x)+ θ2(y)|Ax+ By = b, x ∈ X , y ∈ Y}. (27)
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The augmented Lagrange function for problem (27) is

Lβ(x, y, λ) = θ1(x)+ θ2(y)− λ(Ax+ By− b)

+β

2
‖Ax+ By− b‖2. (28)

When solved by the augmented Lagrangian multiplier method,
its t-th step iteration starts from the given λt, and the
optimization turns out to be

{
(xt+1, yt+1) = arg min

{Lβ(x, y, λt)|x ∈ X , y ∈ Y}

λt+1 = λt − β(Axt+1 + Byt+1 − b).
(29)

Separating the (x, y) subproblem in (29), the augmented
Lagrange multiplier method can be relaxed to the following
ADMMs [111], [112]. Its t-th step iteration starts with the
given (yt, λt), and the details of iterative optimization are as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

xt+1 = arg min
{
θ1(x)− (λt)

Ax+ β
2 ‖Conx‖2|x ∈ X

}

yt+1 = arg min
{
θ2(y)− (λt)

By+ β
2

∥∥Cony
∥∥2|y ∈ Y

}

λt+1 = λt − β(Axt+1 + Byt+1 − b)

(30)

where Conx = Ax+ Byt − b and Cony = Axt+1 + By− b.
The penalty parameter β has a certain impact on the con-

vergence rate of the ADMM. The larger β is, the greater the
penalties for the constraint term. In general, a monotonically
increasing sequence of {βt} can be adopted instead of the
fixed β [113]. Specifically, an auto-adjustment criterion that
automatically adjusts {βt} based on the current value of {xt}
during the iteration was proposed and applied for solving some
convex optimization problems [114], [115].

The ADMM method uses the separable operators in the
convex optimization problem to divide a large problem into
multiple small problems that can be solved in a distributed
manner. In theory, the framework of ADMM can solve most of
the large-scale optimization problems. However, there are still
some problems in practical applications. For example, if we
use a stop criterion to determine whether convergence occurs,
the original residuals and dual residuals are both related to β,
and β with a large value will lead to difficulty in meeting the
convergence conditions [116].

7) Frank–Wolfe Method: In 1956, Frank and Wolfe
proposed an algorithm to solve the linear constraint prob-
lems [117]. The basic idea is to approximate the objective
function with a linear function, then solve the linear program-
ming to find the feasible descending direction and, finally,
make a 1-D search along the direction in the feasible domain.
This method is also called the approximate linearization
method.

Here, we give a simple example of the Frank–Wolfe method.
Consider the optimization problem

⎧
⎨

⎩

min f (x)
s.t. Ax = b

x ≥ 0
(31)

where A is an m × n full-row rank matrix, and the feasible
region is S = {x|Ax = b, x ≥ 0}. Expand f (x) linearly at x0,

Algorithm 1 Frank–Wolfe Method [117], [118]
Input: x0, ε ≥ 0, t := 0
Output: x∗

yt ← min∇f (xt)
x

while |∇f (xt)
(yt − xt)| > ε do

λt = arg min0≤λ≤1 f (xt + λ(yt − xt))

xt+1 ≈ xt + λt(yt − xt)

t := t + 1
yt ← min∇f (xt)

x
end while
x∗ ≈ xt

f (x) ≈ f (x0) + ∇f (x0)
(x − x0), and substitute it into (31).

Then, we have
{

min f (xt)+∇f (xt)
(x− xt)

s.t. x ∈ S
(32)

which is equivalent to
{

min ∇f (xt)
x

s.t. x ∈ S.
(33)

Suppose there exist an optimal solution yt, and then there
must be

{ ∇f (xt)
yt < ∇f (xt)

xt

∇f (xt)
(yt − xt) < 0.

(34)

So yt − xt is the decreasing direction of f (x) at xt. A fetch
step of λt updates the search point in a feasible direction. The
detailed operation is shown in Algorithm 1.

The algorithm satisfies the following convergence
theorem [117]:

1) xt is the Kuhn–Tucker point of (31) when ∇f (xt)
(yt −

xt) = 0;
2) since yt is an optimal solution for problem (33), the vec-

tor dt satisfies dt = yt−xt and is the feasible descending
direction of f at point xt when ∇f (xt)

(yt − xt) �= 0.
The Frank–Wolfe algorithm is a first-order iterative method

to solve the convex optimization problems with constrained
conditions. It consists of determining the feasible descent
direction and calculating the search step size. The algorithm
is characterized by fast convergence in early iterations and
slower in later phases. When the iterative point is close to the
optimal solution, the search direction and the gradient direc-
tion of the objective function tend to be orthogonal. Such a
direction is not the best downward direction so that the Frank–
Wolfe algorithm can be improved and extended in terms of the
selection of the descending directions [119]–[121].

8) Summary: We summarize the above-mentioned first-
order optimization methods in terms of properties, advantages,
and disadvantages in Table I in the supplementary material.

B. Preconditioning in Optimization

Preconditioning is a very important technique in
optimization methods. Reasonable preconditioning can
reduce the iteration number of optimization algorithms.
For many important iterative methods, the convergence
depends largely on the spectral properties of the coefficient
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TABLE I
AVAILABLE TOOLKITS FOR OPTIMIZATION

matrix [122]. It can be simply considered that the pre-
treatment is to transform a difficult linear system Aθ = b
into an equivalent system with the same solution but better
spectral characteristics. For example, if M is a nonsingular
approximation of the coefficient matrix A, the transformed
system

M−1Aθ = M−1b (35)

will have the same solution as the system Aθ = b. But (35)
may be easier to solve and the spectral properties of the
coefficient matrix M−1A may be more favorable.

In most linear systems, for example, Aθ = b, the matrix
A is often complex and makes it hard to solve the system.
Therefore, some transformation is needed to simplify this
system. M is called the preconditioner. If the matrix after using
preconditioner is obviously structured, or sparse, it will be
beneficial to the calculation [123].

The conjugate gradient algorithm is the most commonly
used optimization method with preconditioning technology,
which speeds up the convergence. The algorithm is shown
in Algorithm 2.

C. Public Toolkits for Optimization

The fundamental optimization methods are applied in
machine-learning problems extensively. There are many

Algorithm 2 Preconditioned Conjugate Gradient Method [93]
Input: A, θ0, M, b
Output: The solution θ∗

f0 = f (θ0)

g0 = ∇f (θ0) = Aθ0 − b
y0 is the solution of My = g0
d0 = −g0
t = t
while gt �= 0 do

ηt = gt yt

dt Adt
θt+1 = θt + ηtdt

gt+1 = gt + ηtAdt

yt+1 =solution of My = gt

βt+1 = gt+1yt+1

gt dt
dt+1 = −yt+1 + βt+1dt

t = t + 1
end while

integrated powerful toolkits. We summarize the existing com-
mon optimization toolkits and present them in Table I.

IV. CHALLENGES AND OPEN PROBLEMS

With the rise of practical demand and the increase of the
complexity of the machine-learning models, the optimization
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methods in machine learning still face challenges. In this
part, we discuss open problems and challenges for some
optimization methods in machine learning, which may offer
suggestions or ideas for future research and promote the wider
application of optimization methods in machine learning.

A. Challenges in Deep Neural Networks

There are still many challenges while optimizing DNNs.
Here, we mainly discuss two challenges with respect to data
and model. One is insufficient data in training, and the other
is a nonconvex objective in DNNs.

1) Insufficient Data in Training Deep Neural Networks:
In general, deep learning is based on big datasets and com-
plex models. It requires a large number of training samples
to achieve good training effects. But in some particular fields,
finding a sufficient amount of training data is difficult. If we
do not have enough data to estimate the parameters in the
neural networks, it may lead to high variance and overfitting.

There are some techniques in neural networks that can be
used to reduce the variance. Adding L2 regularization to the
objective is a natural method to reduce the model complexity.
Recently, a common method is dropout [62]. In the training
process, each neuron is allowed to stop working with a prob-
ability of p, which can prevent the synergy between certain
neurons. M subnets can be sampled like bagging by multiple
inputs and returns [130]. Each expected result at the output
layer is calculated as

o = EM
[
f (x; θ, M)

] =
M∑

i=1

p(Mi)f (x; θ, Mi) (36)

where p(Mi) is the probability of the ith subnet. Dropout can
prevent overfitting and improve the generalization ability of
the network, but its disadvantage is increasing the training
time as each training changes from the full network to a
subnetwork [131].

Not only overfitting but also some training details will affect
the performance of the model due to the complexity of the
DNNs. The improper selection of the learning rate and the
number of iterations in the SGD will make the model unable to
converge, which makes the accuracy of model fluctuate greatly.
Besides, taking an inappropriate black box of neural-network
construction may result in training not being able to continue,
so designing an appropriate neural-network model is particu-
larly important. These impacts are even greater when data are
insufficient.

The technology of transfer learning [132] can be applied to
build networks in the scenario of insufficient data. Its idea is
that the models trained from other data sources can be reused
in similar target fields after certain modifications and improve-
ments, which dramatically alleviates the problems caused by
insufficient datasets. Moreover, the advantages brought by
transfer learning are not limited to reducing the need for suf-
ficient training data but also can avoid overfitting effectively
and achieve better performance in general. However, if tar-
get data are not as relevant to the original training data, the
transferred model does not bring good performance.

Meta learning methods can be used for systematically learn-
ing parameter initialization, which ensures that training begins
with a suitable initial model. However, it is necessary to ensure
the correlation between multiple tasks for meta-training and
tasks for meta-testing. Under the premise of models with
similar data sources for training, transfer learning and meta
learning can overcome the difficulties caused by insufficient
training data in new data sources, but these methods usually
introduce a large number of parameters or complex parameter
adjustment mechanisms, which need to be further improved
for specific problems. Therefore, using insufficient data for
training DNNs is still a challenge.

2) Nonconvex Optimization in the Deep Neural
Network: Convex optimization has good properties and a
comprehensive set of tools is open to solve the optimization
problem. However, many machine-learning problems are for-
mulated as the nonconvex optimization problems. For exam-
ple, almost all of the optimization problems in DNNs are
nonconvex. Nonconvex optimization is one of the difficulties
in the optimization problem. Unlike convex optimization, there
may be innumerable optimum solutions in its feasible domain
in nonconvex problems. The complexity of the algorithm for
searching the global optimal value is NP-hard [108].

In recent years, nonconvex optimization has gradually
attracted the attention of researchers. The methods for solving
nonconvex optimization problems can be roughly divided into
two types. One is to transform the nonconvex optimization
into a convex optimization problem, and then use the con-
vex optimization method. The other is to use some special
optimization method for solving nonconvex functions directly.
There is some work on summarizing the optimization meth-
ods for solving nonconvex functions from the perspective of
machine learning [133].

1) Relaxation Method: Relax the problem to make
it become a convex optimization problem. There
are many relaxation techniques, for example, the
branch-and-bound method called αBB convex relax-
ation [134], [135], which uses a convex relaxation at
each step to compute the lower bound in the region.
The convex relaxation method has been used in many
fields. In the field of computer vision, a convex relax-
ation method was proposed to calculate minimal par-
titions [136]. For unsupervised and SSL, the convex
relaxation method was used for solving semidefinite
programming [137].

2) Nonconvex Optimization Methods: These methods
include projection gradient descent [138], [139];
alternating minimization [140]–[142]; expectation
maximization algorithm [143], [144]; and stochastic
optimization and its variants [37].

B. Difficulties in Sequential Models With Large-Scale Data

When dealing with the large-scale time series, the usual
solutions are using stochastic optimization, processing data
in mini-batches, or utilizing distributed computing to improve
computational efficiency [145]. For a sequential model, seg-
menting the sequences can affect the dependencies between

Authorized licensed use limited to: Penn State University. Downloaded on September 21,2022 at 18:49:40 UTC from IEEE Xplore.  Restrictions apply. 



3678 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 50, NO. 8, AUGUST 2020

the data on the adjacent time indices. If sequence length is
not an integral multiple of the mini-batch size, the general
operation is to add some items sampled from the previous
data into the last subsequence. This operation will introduce
the wrong dependency in the training model. Therefore, the
analysis of the difference between the approximated solution
obtained and the exact solution is a direction worth exploring.

Particularly, in RNNs, the problem of gradient vanishing and
gradient explosion is also prone to occur. So far, it is generally
solved by specific interaction modes of LSTM and GRU [146]
or gradient clipping. Better appropriate solutions for dealing
with problems in RNNs are still worth investigating.

C. High-Order Methods for Stochastic Variational Inference

The high-order optimization method utilizes curvature
information and thus converges fast. Although computing and
storing the Hessian matrices are difficult, with the develop-
ment of research, the calculation of the Hessian matrix has
made great progress [8], [9], [147], and the second-order
optimization method has become more and more attractive.
Recently, stochastic methods have also been introduced into
the second-order method, which extends the second-order
method to large-scale data [8], [10].

We have introduced some work on stochastic variational
inference. It introduces the stochastic method into variational
inference, which is an interesting and meaningful combination.
This makes variational inference be able to handle large-scale
data. A natural idea is whether we can incorporate second-
order optimization methods (or higher-order) into stochastic
variational inference, which is interesting and challenging.

D. Stochastic Optimization in Conjugate Gradient

Stochastic methods exhibit powerful capabilities when
dealing with large-scale data, especially for first-order
optimization [148]. Then, the relevant experts and schol-
ars also introduced this stochastic idea to the second-order
optimization methods [149]–[151] and achieved good results.

The conjugate gradient method is an elegant and attrac-
tive algorithm, which has the advantages of both the first-
order and second-order optimization methods. The standard
form of a conjugate gradient is not suitable for a stochas-
tic approximation. Using the fast Hessian-gradient product,
the stochastic method is also introduced to conjugate gradi-
ent, in which some numerical results show the validity of the
algorithm [148]. Another version of the stochastic conjugate
gradient method employs the variance reduction technique and
converges quickly with just a few iterations and requires less
storage space during the running process [152]. The stochas-
tic version of conjugate gradient is a potential optimization
method and is still worth studying.

V. CONCLUSION

This article introduced and summarized the frequently
used optimization methods from the perspective of machine
learning, and studied their applications in various fields of
machine learning. First, we described the theoretical basis
of optimization methods from the first-order, high-order, and

derivative-free aspects, as well as the research progress in
recent years. Then, we described the applications of the
optimization methods in different machine-learning scenarios
and the approaches to improve their performance in the supple-
mentary material. Finally, we discussed some challenges and
open problems in the machine-learning optimization methods.
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